
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MIGRATE: MIXED-POLICY GRPO FOR ADAPTATION
AT TEST-TIME

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) are increasingly being applied to black-box op-
timization tasks, from program synthesis to molecule design. Prior work typi-
cally leverages in-context learning to iteratively guide the model towards better
solutions. Such methods, however, often struggle to balance exploration of new
solution spaces with exploitation of high-reward ones. Recently, test-time train-
ing (TTT) with synthetic data has shown promise in improving solution quality.
However, the need for hand-crafted training data tailored to each task limits fea-
sibility and scalability across domains. To address this problem, we introduce
MIGRATE—a method for online TTT that uses GRPO as a search algorithm to
adapt LLMs at inference without requiring external training data. MIGRATE op-
erates via a mixed-policy group construction procedure that combines on-policy
sampling with two off-policy data selection techniques: greedy sampling, which
selects top-performing past completions, and neighborhood sampling (NS), which
generates completions structurally similar to high-reward ones. Together, these
components bias the policy gradient towards exploiting promising regions in the
solution space, while preserving exploration through on-policy sampling. We
evaluate MIGRATE on four challenging domains—word search, molecule opti-
mization, hypothesis+program induction on the Abstraction and Reasoning Cor-
pus (ARC), and natural-language hypothesis search on DiscoveryBench—and find
that it consistently outperforms both inference-only and TTT baselines, demon-
strating the potential of online TTT as a solution for complex search tasks without
curated training data.

1 INTRODUCTION

Large language models (LLMs) have emerged as general-purpose tools for solving a wide range of
black-box optimization problems (Boiko et al., 2023; Ramos et al., 2023; Liu et al., 2024). These
models offer a flexible interface for generating candidate solutions, both in structured tasks, e.g.,
molecule design (Ranković & Schwaller, 2023; Kristiadi et al., 2024; Gruver et al., 2024), and un-
structured, natural-language tasks, e.g., scientific hypothesis generation (Lu et al., 2024; Majumder
et al., 2025; Agarwal et al., 2025b).

Recent work has shown that in-context learning (ICL) (Brown et al., 2020) can effectively be used to
steer LLMs toward higher-quality outputs in such tasks (Meyerson et al., 2023; Yang et al., 2024b;
Agarwal et al., 2025a). However, ICL alone lacks a principled mechanism to balance exploration
of novel solution areas with exploitation of known high-reward ones (Krishnamurthy et al., 2024)
based on simply injecting a history of candidates in-context. Without this balance, the model may
either get trapped in local optima or waste sampling budget on unpromising regions of the solution
space.

To improve LLM-based search, recent methods have explored test-time training (TTT) (Sun et al.,
2020; Hardt & Sun, 2024)—a paradigm inspired from the human ability to generalize from a few
examples (Yu et al., 2025a), in which the LLM is adapted at inference time for a specific prob-
lem instance before sampling a set of candidate solutions to evaluate. Similarly, some works have
explored the use of off-policy reinforcement learning to efficiently learn suitable sampling distri-
butions (Levine et al., 2020; Yan et al., 2025). However, these approaches either rely on carefully
hand-crafted, task-specific data generation strategies or assume availability of expert demonstration

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Overview of MIGRATE. Given a search problem, MIGRATE iteratively searches for op-
timal solutions by sampling candidates and updating its policy model πt

θ using mixed-policy GRPO.
In each iteration, we combine online samples (•) from the current policy distribution, top-performing
past solutions (⋆) as greedy references, and samples drawn from the neighborhoods of greedy solu-
tions (◦) to form a GRPO group. The resulting group is used to update πt

θ and migrate towards a
sampling distribution that is likely to generate higher-quality solutions according to f(·).

data (Akyürek et al., 2025; Li et al., 2024), both of which limit the generality and scalability of such
solutions.

To address these shortcomings, we cast search as an online reinforcement learning problem and
leverage group relative policy optimization (GRPO) (Shao et al., 2024) to iteratively find promising
regions of the search space, balancing exploration and exploitation. In practice, this means itera-
tively optimizing a set of LoRA parameters added to a pre-trained LLM in order to improve the
instance-specific sampling distribution to generate better solutions. We, thus, propose MIGRATE
(Mixed-policy GRPO for Adaptation at Test-Time), a method for online TTT that enables adaptive
search with LLMs without requiring any external, handcrafted training data. Our method combines:

1. On-policy sampling, which ensures continual exploration of the solution space,

2. Greedy sampling, which reuses top-performing past completions to exploit known high-
reward regions, and

3. Neighborhood sampling (NS), which generates structurally similar variants of high-reward
completions to facilitate local exploration.

Crucially, all components in MIGRATE use only model-generated signals, eliminating the need
for any external training data. We perform experiments on four challenging domains with diverse
solution spaces and reward functions—word search, molecule optimization, hypothesis+program
induction using the Abstraction and Reasoning Corpus (ARC) (Chollet, 2019), and data-driven dis-
covery using DiscoveryBench (Majumder et al., 2025). Across all domains, we find that MIGRATE
outperforms both inference-only and TTT baselines, demonstrating the effectiveness of lightweight
parameter updates, using online TTT with mixed-policy guidance, in providing a generic approach
to LLM-based black-box optimization.

To summarize, our main contributions are as follows:

• We introduce MIGRATE, a method to search for optimal solutions with LLMs using an online
test-time training (TTT) algorithm without external demonstrations.

• We propose a mixed-policy group construction strategy that combines on-policy sampling with
two novel off-policy techniques—greedy sampling and neighborhood sampling.

• We conduct comprehensive experiments across four diverse domains, showing that MIGRATE
outperforms both inference-only and TTT baselines in complex black-box optimization tasks.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Test-time training. Test-time training (TTT) aims to improve model performance on distribution
shifts by updating models at inference. Sun et al. (2020) introduced TTT using a self-supervised
objective on images to adapt network weights at test time. Hardt & Sun (2024) demonstrate that fine-
tuning LLMs on data closely related to each test prompt can yield large accuracy gains, extending
TTT to reasoning tasks. Hübotter et al. (2025) show that nearest-neighbor retrieval for test-time fine-
tuning often wastes effort on redundant examples, and instead propose an active-learning method
that chooses maximally informative examples to reduce model uncertainty.

Local-structure methods. Instance-based learning (or “local learning”) (Atkeson et al., 1997) is
a common framework in machine learning where local structure is exploited around a test point to
improve model accuracy, e.g., locally-weighted regression (Cleveland, 1979). In modern practice,
this manifests as retrieving nearest-neighbor examples to guide adaptation, referred to as retrieval-
augmented generation (RAG) or case-based reasoning (CBR) (Lewis et al., 2020; Das et al., 2021;
Thai et al., 2023; Agarwal et al., 2024). In reinforcement learning, local policy search methods (e.g.,
off-policy local improvements, trust-region updates) behave like hill-climbers in the policy space.

Evolutionary computation. EvoTune (Surina et al., 2025) uses an LLM as a policy-generating
operator in an evolutionary loop, then applies RL fine-tuning to iteratively improve it. AlphaEvolve
(Novikov et al., 2025) similarly creates an agent that uses multiple LLMs and automated evaluators
to propose and refine codebases via an evolutionary framework. FunSearch (Romera-Paredes et al.,
2024) pairs a pre-trained LLM with an automated evaluator and repeatedly samples and scores code
functions, effectively evolving programs to solve mathematical problems. In these systems, the
“population” of programs or policies evolves over generations, often via an islands model or parallel
ensembles, to avoid local traps.

Bayesian optimization and LLMs. Bayesian optimization (BO) is an optimization approach that
consists of using a surrogate model and an acquisition function in an iterative process to optimize
some objective function. Recent works integrate LLMs at various stages of the BO process, leverag-
ing their semantic understanding and ability to encode information. LLAMBO (Liu et al., 2024) uses
the natural language capabilities of LLMs to be surrogates for both parts of the BO framework by
having it generate and evaluate solution proposals. BOPRO (Agarwal et al., 2025a) embeds solutions
into a latent space and employs an acquisition function to adapt the proposal prompt for an LLM,
effectively steering the the model towards promising regions in the solution space. InstructZero
(Chen et al., 2023) uses BO to learn soft prompts, which are then converted into instruction prompts
to elicit better instruction following behavior from LLMs. Our work focuses on optimizing the LLM
as a proposal mechanism for generating optimal solutions with respect to a black-box function. In-
ternally, MIGRATE operates an acquisition-like strategy to formulate prompts that evoke higher
quality solutions from the LLM.

3 BACKGROUND

GRPO. Group relative policy optimization (Shao et al., 2024) is a reinforcement learning algo-
rithm used to fine-tune LLMs that replaces the value function in Proximal Policy Optimization
(PPO) training (Schulman et al., 2017) with an estimate derived from Monte Carlo samples instead.
In particular, in each iteration of training, GRPO constructs a group G of N completions, typically
sampled from the current model, and calculates the advantage for every completion as a relative
comparison to the group. Let πθold and πθ denote the model policies (LLM parameters, in our case)
before and after taking a gradient step. Given a task prompt PT and a set of completions sampled
from the current model {oi : oi ∼ πθold}Ni=1, the GRPO loss objective is defined as

LGRPO(θ) =− 1∑N
i=1 |oi|

N∑
i=1

|oi|∑
t=1

[
min

(
ri,t(θ)Âi,t, clip(ri,t(θ), 1− εlow, 1 + εhigh)Âi,t

)]
, (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where ri,t(θ) =
πθ(oi,t | PT , oi,<t)

πθold(oi,t | PT , oi,<t)
, and Âi,t = ri −mean({f(oi)}Ni=1)

are the policy ratio and advantage estimates, respectively, for each token in each completion, f(·) is
a reward function that provides a scalar score for each completion, clip(·, ·, ·) is a clipping function
to prevent large updates during optimization, and εlow/high are clipping hyperparameters.

On-, off-, and mixed-policy optimization. Typically, reinforcement learning (including GRPO)
operates in an on-policy manner, where new solutions are sampled using πθ (i.e., the policy being
trained) to estimate the loss for the next training step. On the other hand, some works have argued
that on-policy training may constrain learning to only the capabilities of the base LLM itself, re-
sulting in echo chambers (Zhao et al., 2025; Yue et al., 2025) that prevent novel task generalization.
This problem is further exacerbated in the sparse reward scenario, where the base model is unable
to generate solutions that elicit non-zero reward, thus leading to degenerate policy gradients. To
address this, off-policy optimization (Levine et al., 2020) has been proposed as an effective strat-
egy that leverages previously collected expert demonstrations for training instead of online samples.
However, a purely offline strategy can result in learning policies that are unable to generalize at
inference time (Fujimoto et al., 2019; Kumar et al., 2019). Consequently, recent work (Yan et al.,
2025) shows that a combination of online and offline samples, called mixed-policy optimization, can
outperform either strategy used in isolation.

4 MIGRATE: METHODOLOGY

The focus in this work is on finding optimal solutions with respect to a black-box objective function
f(·) under a finite sampling budget B. To this end, we are interested in using GRPO as a search
algorithm, wherein a single example query is used as the input for a search task across multiple
sampling iterations. The goal, then, is to learn query-specific parameters that shift the model’s
sampling distribution iteratively, improving the quality of solutions that are generated.12

Overcoming sparse rewards in search. As described earlier, purely on-policy learning is often
unable to find an appropriate sampling distribution for a single query within a limited budget due to
sparse rewards, i.e., when solutions sampled from the current policy do not result in useful policy
gradients to make progress. At the same time, both off- and mixed-policy strategies require access
to known expert demonstrations, which we assume are not available in our setting. We, therefore,
present MIGRATE—a mixed-policy optimization strategy for GRPO that generates off-policy data
via (a) selecting high-performing solutions from the model’s own sampling history, and (b) sam-
pling variations from the neighborhoods of observed high-performing solutions. In each iteration,
MIGRATE “mixes” on- and off-policy samples to construct a group of completions G, which is then
used to compute the policy gradient with respect to the loss function in Equation 1. This process is
repeated until either the optimal solution is found or the sampling budget is exhausted.

4.1 MIXED-POLICY GROUP CONSTRUCTION FOR SEARCH

Given a search task T and a corresponding task prompt PT for the LLM, our goal is to construct
a new group Gt composed of N completions in each search iteration t to compute a policy gradi-
ent via GRPO. We introduce two off-policy data selection techniques—greedy and neighborhood
sampling (NS)—which we combine with on-policy sampling to generate test-time training data.
Intuitively, both techniques are designed to bias policy gradients to exploit known high-quality solu-
tions sampled thus far, while on-policy sampling encourages exploration. In experiments (§ 5), we
find that the simultaneous application of greedy and NS off-policy data selection (i.e., MIGRATE;
Algorithm 1) results in the best performance.

1This is in contrast to the more typical setting of training a generalizable model with multiple examples.
See the appendix for a complete description of modifications we incorporate from previous work beyond the
original formulation from Shao et al. (2024).

2Note that throughout this work, we use LoRA fine-tuning (Hu et al., 2022) instead of full-model training.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

On-policy sampling. Let α (≤ N) be the number of completions sampled from the current policy
model, i.e., at timestep t, we generate on-policy completions (or observations) Oonline := {oi : oi ∼
πt−1
θ (· | PT)}αi=1 using temperature-based ancestral sampling.

Greedy sampling. Let D be a database of completions, which may be composed both of any
candidate solutions available a priori as well as all attempts sampled from the model in previ-
ous search iterations. In greedy off-policy data selection, if D ̸= ∅, we sample β (≤ N) known
completions from D that are high-quality. In particular, we first greedily select the top-k comple-
tions from D with respect to f(·) and then randomly sample β completions from the top-k, i.e.,
Ogreedy := {oi : oi ∼ topkf (D)}βi=1, where topkf (D) returns the best-k completions from D with
respect to f .

104 105 106

L2 Norm

0.00

0.02

0.04

0.06

0.08

0.10

Av
g.

 R
ew

ar
d

Di
ffe

re
nc

e

20

40

60

80

Di
ffe

re
nc

e
in

 It
er

at
io

n

Figure 2: Visualizing parameter space
continuity. Each point is a pairwise compar-
ison between two sets of LoRA parameters,
indicating distance (x-axis) and average dif-
ference in sample quality (y-axis), over 100
search iterations on Semantle. Performance
converges with a decrease in pairwise dis-
tances, whereas at larger distances, perfor-
mance varies, indicating the variability en-
countered when exploring.

Neighborhood sampling. While greedy sampling ex-
plicitly encourages the exploitation of high-quality sam-
ples, it limits exploration of the solution space and is
prone to optimizing for local optima (Krishnamurthy
et al., 2024; Agarwal et al., 2025a). To mitigate this,
we incorporate a complementary off-policy sampling
strategy grounded in a continuity assumption—namely,
that small variations in a model’s parameter space yield
small shifts in the average quality of sampled solutions
(see Fig. 2). This assumption motivates exploration
within neighborhoods of known high-quality candidates
by prompting the model to generate stochastic variations
of greedy samples, thereby producing new solutions that
may both provide useful variations for better policy gra-
dients as well as solutions that may outperform previ-
ous samples. In practice, we construct a single neighbor-
hood sampling prompt PNS composed of β greedy sam-
ples along with an instruction to generate γ (≤ N) to con-
struct the NS set of solutions ONS := {oi : oi ∼ πt−1

θ (· |
PNS)}γi=1.

Algorithm 1 Solution search with MIGRATE
Input: Task T , black-box function f , budget B
Parameters: GRPO group size N , α on-policy samples, β
greedy samples, γ neighborhood samples
Output: Best solution obest

1: Initialize: Policy π0
θ ← LLM, task prompt PT ,

database D ← ∅, timestep t← 0, obest ← ∅
2: while |D| < B do
3: t← t+ 1
4: Oonline ← {oi : oi ∼ πt−1

θ (· | PT)}αi=1

5: Ogreedy ← {oi : oi ∼ topkf (D)}
β
i=1

6: PNS ← Build NS prompt using Ogreedy

7: ONS ← {oi : oi ∼ πt−1
θ (· | PNS)}γi=1

8: Gt ← Oonline ⊕Ogreedy ⊕ONS
9: D ← D ⊕Oonline ⊕ONS

10: obest ← argmaxoi∈D f(oi)
11: if obest is optimal then
12: return obest
13: end if
14: πt

θ ← Update using GRPO with Gt (Eq. 1)
15: end while
16: return obest

MIGRATE. To balance exploration and
exploitation during test-time training with
GRPO, MIGRATE integrates both off-
policy techniques with on-policy sampling
by combining Oonline, Ogreedy, and ONS
into a single group Gt, with the constraint
that α + γ + β = N in each iteration 3

(see Algorithm 1). We compute the loss
on Gt with respect to the task prompt PT ,
irrespective of how the sample was gen-
erated. While on-policy sampling encour-
ages exploration of new solutions, greedy
sampling promotes exploitation by reusing
high-quality completions from a running
database, and neighborhood sampling in-
troduces structured exploration via local
variations of the greedy samples. Empir-
ically, we find that this combination pro-
duces higher-quality search results than
any single strategy alone.

3We keep constant the number of new solutions sampled from the LLM for fair comparison with baselines.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5 EXPERIMENTS

5.1 SEARCH TASKS

We evaluate MIGRATE by conducting experiments on four text-based search tasks—Semantle
(word search), Dockstring (molecule optimization), ARC (hypothesis + program search), and Dis-
coveryBench (data-driven hypothesis search).

Semantle. Semantle (Agarwal et al., 2025a) is a word-search task, where the goal is to identify
a held-out English word (e.g., “polyethylene”) within a limited number of guesses. The black-box
function used indicates how semantically close a guessed word is to the target, which is computed
using cosine similarities over SimCSE (Gao et al., 2021) embeddings, following prior work. Each
search problem is initialized with a warmstart set of 20 words (randomly sampled from the word2vec
index (Mikolov et al., 2013)) and corresponding black-box scores. We conduct evaluation using 10
hidden words and 5 warmstart sets for each of them, resulting in a total of 50 problem instances.

Dockstring. Garcı́a-Ortegón et al. (2022) provides a suite of challenging molecule optimization
tasks that reflect real-world problems in drug discovery. We focus on a multi-objective optimization
task: generating molecules, represented as SMILES strings (Weininger, 1988), that simultaneously
maximize druglikeness and binding affinity, quantified by QED (Bickerton et al., 2012) and nega-
tive Vina scores (Trott & Olson, 2010), respectively. We use a scalarized multi-objective black-box
function (Equation 2) that places a greater weight on Vina scores than QED, reflecting the com-
mon prioritization of binding affinity over druglikeness when evaluating a molecule’s drug efficacy
(Hughes et al., 2011; Wenlock et al., 2003). Following prior works (Yuksekgonul et al., 2024), we
run our evaluation with 58 pharmaceutically-relevant protein targets.

ARC. The Abstraction and Reasoning Corpus (ARC) (Chollet, 2019) is a benchmark of 400 grid-
based puzzles that involves inferring the transformation logic from a small set of input-output grid
pairs and applying it to a held-out test grid. Recent methods improve performance via data aug-
mentation with invertible transformations (Akyürek et al., 2025) or by combining program synthesis
with transductive strategies (Li et al., 2024). We take an inductive hypothesis + program search
approach (Wang et al., 2024), where natural language transformation algorithms are hypothesized
and translated into Python programs. We report two accuracy metrics: pass@2, which measures
whether any of the top-2 common outputs from the programs that solve the train set matches the test
grid, and oracle, which provides credit if any of the sampled programs solves the test grid. Note
that oracle accuracy reflects a coarse ability to find a distribution that can generate the correct solu-
tion. We follow prior work (Agarwal et al., 2025a) and use a Hamming-distance based black-box
function. 4

DiscoveryBench. DiscoveryBench (Majumder et al., 2025) is a benchmark to evaluate hypothesis
search ability in data-driven scientific discovery. It includes a set of discovery tasks extracted from
real-world scientific publications, each represented by a research query and a corresponding dataset,
aiming to find statistically verifiable natural-language hypotheses that can answer the given queries.
We assume oracle feedback in each iteration to help guide search (akin to feedback from a human
researcher) using a scalar score representing the degree to which a generated hypothesis matches
the gold hypothesis using a Beta belief distribution elicited from an LLM (Agarwal et al., 2025b).
We evaluate performance using both the belief-based black-box function (average belief and % of
queries where the belief was maximized) as well as the hypothesis match score (HMS) from Ma-
jumder et al. (2025), which provides an LLM-judge evaluation of hypotheses based on contexts,
variables, and relationships. Additionally, our analyses found that the HMS tends to score hypothe-
ses with even minor deviation from the gold context as zeros. Therefore, we introduce HMS-ρ, a
relaxation of HMS that allows an LLM to provide partial scores for the context, i.e., {0, 0.5, 1.0}
instead of {0, 1} only, in order to lend graded improvement information.

4Due to hardware limitations, we truncate prompts at 2048 tokens in all experiments. As a result, only 200
out of 400 tasks in ARC-Full could be evaluated with their full context.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5.2 BASELINES

Inference-only. We evaluate five inference-only sampling strategies (Random, NS, OPRO,
Evolvution, and BOPRO) for Semantle, Dockstring, and ARC, and use Reflexion (following Ma-
jumder et al. (2025)) as the baseline for DiscoveryBench:

• Random, which generates completions by sampling from the base model using the task prompt.
• Neighborhood Sampling (NS), which samples completions from a prompt that includes top-

performing solutions from previous iterations to encourage local exploration.
• OPRO (Yang et al., 2024b), which generates completions using a prompt that builds a trajectory

of top-performing solutions as a textual gradient to discover improved solutions.
• Reflexion (Shinn et al., 2024), which iteratively improves LLM performance by generating

natural-language feedback (“self-reflection”) using solutions from past iterations.
• Evolution, which iteratively optimizes generated solutions by mutating sampled solutions ac-

cording to an evolutionary pipeline.5

• BOPRO (Agarwal et al., 2025a), which uses latent space Bayesian optimization over solution
embeddings to search for better sampling distributions via context engineering over past solu-
tions.

Test-time training. Beyond inference-only methods, we evaluate three variants of our GRPO-
based test-time training (TTT) approach:

• GRPO is the base algorithm, using a fixed task prompt and sampling N on-policy completions
from the model as it is being trained (i.e., α = N , β = 0, γ = 0).

• GRPO-Greedy augments GRPO by using greedy off-policy sampling to select β previous com-
pletions to place in the group at each iteration (i.e., α, β > 0 and γ = 0).

• Online DPO (Guo et al., 2024) samples N on-policy completions in each iteration, which
are used to construct preference pairs and calculate a policy gradient using the standard DPO
objective (Rafailov et al., 2023).

• MIGRATE is our full method, combining on-policy exploration, greedy sampling of top com-
pletions, and neighborhood sampling for local exploration (i.e., each of α, β, γ > 0).

We provide complete details of our experimental settings in Appendix A.1, including the values used
for α, β, and γ for different tasks, and sensitivity analyses of these choices in Appendix B.3.

Additional baselines. We also evaluate MIGRATE (OPRO), a variant of MIGRATE that replaces
the neighborhood sampling (NS) prompt with the OPRO prompting strategy for local exploration
(Appendix B.5), as well as explore an alternative strategy for selecting Ogreedy using an islands-based
evolutionary search method (Appendix B.1).

Models. Our main results on Semantle and Dockstring are presented using LLaMA-3.2-3B-
Instruct (AI@Meta, 2024). For ARC, we use LLaMA-3.1-ARC-Potpourri-Induction-8B (Li et al.,
2024), a fine-tuned version of LLaMA-3.1-8B-Instruct (AI@Meta, 2024) trained on synthetic
Python programs that solve ARC training tasks. The latter decision is driven by the bespoke na-
ture of the ARC challenge, where base models are entirely unable to generate valid solutions. For
DiscoveryBench, we use Qwen2.5-7B-Instruct (Yang et al., 2024a) for generating experiment plans
and GPT-5-nano (OpenAI, 2025) for the remainder of the agentic loop (code, reviews, and analy-
ses). We use Qwen2.5-7B-Instruct for belief elicitation during search, but report final accuracy using
GPT-4o (as in Majumder et al. (2025)).

6 RESULTS AND DISCUSSION

MIGRATE outperforms both inference-only and TTT baselines. Across tasks, we run each
method until either the correct solution is found or a pre-defined budget of solution candidates

5We use OpenEvolve for our implementation (Novikov et al., 2025; Sharma, 2025).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000

Words Guessed

0%

10%

20%

30%

40%

50%

60%

70%

80%

%
F

ou
nd

Random

NS

OPRO

GRPO

GRPO-Greedy

MiGrATe

(a) Semantle

0 25 50 75 100 125 150 175 200

Molecules Proposed

0.3

0.4

0.5

0.6

0.7

0.8

S
ca

la
ri

ze
d

O
ve

ra
ll

S
co

re
(↑

)

Random

NS

OPRO

GRPO

GRPO-Greedy

MiGrATe

(b) Dockstring

0 200 400 600 800 1000

Programs Sampled

0%

5%

10%

15%

20%

S
ol

ve
R

at
e

Random

NS

OPRO

GRPO

GRPO–Greedy

MiGrATe

(c) ARC

0 25 50 75 100 125 150 175 200

Experiments Sampled

0%

10%

20%

30%

40%

50%

%
F

ou
nd

Reflexion

MiGrATe

(d) DiscoveryBench

Figure 3: Best-so-far performance results. (a) On Semantle, MIGRATE outperforms all baselines,
improving the second-best (NS) by 25%. (b) In Dockstring, MIGRATE surpasses baselines after 50
proposals. (c) On ARC, MIGRATE solves more tasks than baselines at the full budget. (d) On
DiscoveryBench, MIGRATE outperforms Reflexion after 65 experiments.

is proposed and evaluated (1000 for Semantle, 200 for Dockstring, 1024 for ARC, and 200 for
DiscoveryBench). We report our results on each search task in Table 1 and provide a best-so-far plot
to trace search behavior across sampling budgets in Figure 3. We find that mixed-policy GRPO via
MIGRATE outperforms each inference-only baseline and TTT ablation.

On Semantle, MIGRATE outperforms baselines except for BOPRO by ≥ 21 percentage points.
As shown in Figure 3(a), across the 50 problem instances averaged over 3 repeat runs, MIGRATE
surpasses inference-only NS after 200 guesses (∼20 MIGRATE iterations), pointing to the effec-
tiveness of explicit gradient updates in finding high-quality solutions versus in-context optimization
alone. BOPRO’s better performance suggests that incorporating a BO strategy into MIGRATE to
construct the NS prompt could be beneficial.

Semantle Dockstring ARC

Method % Found QED (↑) Vina Score (↓) Overall Score (↑) Pass@2 (%) Oracle (%)

Random 2.00 ± 1.63 0.91 ± 0.00 −9.92 ± 0.15 0.73 ± 0.00 20.75 28.00
NS 45.30 ± 2.49 0.87 ± 0.01 −9.65 ± 0.21 0.71 ± 0.00 20.25 29.50
OPRO 40.70 ± 1.89 0.90 ± 0.00 −9.94 ± 0.06 0.74 ± 0.00 20.75 27.75
Evolution 49.33 ± 4.11 0.89 ± 0.03 −9.56 ± 0.09 0.72 ± 0.01 - -
BOPRO 84.67 ± 0.94 0.89 ± 0.00 −10.28 ± 0.04 0.77 ± 0.00 - -
Online DPO 4.00 ± 4.90 0.90 ± 0.02 −9.41 ± 0.09 0.71 ± 0.01 - -
GRPO 10.00 ± 4.32 0.91 ± 0.00 −10.09 ± 0.05 0.73 ± 0.00 17.75 27.00
GRPO-Greedy 12.70 ± 0.94 0.90 ± 0.01 −10.80 ± 0.19 0.77 ± 0.00 21.00 30.00

MIGRATE 71.30 ± 4.11 0.90 ± 0.00 −11.00 ± 0.07 0.79 ± 0.00 22.25 30.00

DiscoveryBench

Method Belief % Found (Belief) HMS % Found (HMS) HMS-ρ % Found (HMS-ρ)

Reflexion 0.758 ± 0.022 17.00 ± 3.78 0.293 13.00 7.00 0.273
MIGRATE 0.795 ± 0.018 20.00 ± 4.13 0.285 11.00 13.00 0.268

Table 1: Search performance. Results are averaged over three random seeds for Semantle and
Dockstring, with standard deviations reported. For ARC and DiscoveryBench, we report using sin-
gle runs (due to expense) but report standard deviation via bootstrapping. Top-2 results in each col-
umn are marked with bold and underline, respectively. MIGRATE outperforms on all but one metric
(QED) on Semantle, Dockstring, and ARC 6. On DiscoveryBench, MIGRATE finds hypotheses that
are more similar to the gold as measured by the belief-based black-box function and HMS-ρ, while
showing marginally lower performance using HMS.

On Dockstring, Table 1 shows that MIGRATE synthesizes molecules with higher scalarized scores
(according to Equation 2), i.e., jointly optimizing for QED and Vina. Further, in Figure 3(b), we see
that MIGRATE outperforms all baselines on average after 50 molecule proposals. We also show the
search trace of different methods in Figure 4.

On ARC, we report performance over a single run (due to hardware constraints), and report standard
deviation via bootstrapping. From Figure 3(c) and Table 1, we find that MIGRATE does outperform

6Due to hardware limitations, we only evaluated Evolution and BOPRO on a subset of the ARC benchmark
in B.5

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.3 0.4 0.5 0.6 0.7

Druglikeness (QED) (↑)

−11

−10

−9

−8

−7

−6

−5

−4

B
in

di
ng

A
ffi

ni
ty

(v
in

a
sc

or
e)

(↓
)

Random

NS

OPRO

GRPO

GRPO-Greedy

MiGrATe

Trace start

Trace end

(a) Dockstring search trace

0.0 0.2 0.4 0.6 0.8 1.0

Druglikeness (QED)

−14

−12

−10

−8

−6

−4

B
in

d
in

g
A

ffi
n

it
y

(v
in

a
sc

or
e)

Protein Target: KDR

Random

NS

OPRO

GRPO

GRPO-Greedy

MiGrATe

(b) SMILES distribution (KDR)

0 25 50 75 100 125 150 175 200

Experiments Sampled

30

40

50

60

70

80

T
ok

en
le

ng
th

Reflection

MiGrATe

(c) DiscoveryBench Token Length

Figure 4: Search behaviors. (a) Vina and QED scores for best molecules found as search pro-
gresses. Each trace starts from 3 fragments (acetamide, pentane, and benzene). (b) Distribution of
binding affinity and druglikeness for KDR target. MIGRATE explores a broader region of chemical
space, including low-affinity and low-druglikeness. (c) Experiments generated by Reflexion mono-
tonically increase in token length with time, while those by MIGRATE remain stable on average.

Inference–Only MiGrATe

-60%

-50%

-40%

-30%

-20%

-10%

0%

10%

20%

30%

40%

P
er

ce
nt

D
iff

er
en

ce
(%

)

(a) Semantle

Inference–Only MiGrATe

-100%

-75%

-50%

-25%

0%

25%

50%

75%

100%

125%

150%

P
er

ce
nt

D
iff

er
en

ce
(%

)

(b) Dockstring

Inference–Only MiGrATe

-100%

0%

-50%

0%

50%

100%

150%

200%

250%

P
er

ce
nt

D
iff

er
en

ce
(%

)

(c) ARC

Inference–Only MiGrATe

-100%

-50%

0%

50%

100%

150%

200%

250%

300%

P
er

ce
nt

D
iff

er
en

ce
(%

)

(d) DiscoveryBench

Figure 5: Relative to the best-so-far. Percentage difference between samples from MIGRATE
(versus inference-only NS) relative to their best-so-far scores during optimization. Across search
iterations, MIGRATE generates solutions (a) with higher quality on average (as indicated by the
higher mean; except on Dockstring), and (b) those that show greater jumps in performance over the
best-so-far (i.e., the outliers), indicating better search and exploration ability.

baselines, though, with modest gains akin to behavior reported by prior work on LLM-based pro-
gram search. We do, however, find that MIGRATE solves all but two tasks also solved by baselines.
We note that MIGRATE also outperformed Evolution and BOPRO on a subset of the ARC bench-
mark in Appendix B.5.

On DiscoveryBench, we evaluate 100 tasks from the test set, ensuring a balanced distribution of
domains and question types. The Reflexion baseline solves 44 queries, while MIGRATE solves 48,
crucially, without any natural language feedback. As shown in Figure 3(d), MIGRATE outperforms
Reflexion after proposing 65 experiment plans, which corresponds to 13 training iterations.

TTT methods produce qualitatively different solutions than inference-only methods. On Se-
mantle, across all runs, we find that MIGRATE is the only method to find all 10 hidden words.
Although BOPRO achieves a higher average accuracy, it fails to every find one of the ten hid-
den words. Furthermore, only MIGRATE and its ablations can optimize for specific words, like
“birthstone,” demonstrating the ability to navigate the unique search landscape for such terms. On
Dockstring, as shown in Figure 4(a), the best-performing SMILES strings found using TTT methods
(MIGRATE and its ablations) show a distinct optimization pattern, focusing more on Vina scores
than those from inference-only methods. While MIGRATE is capable of generating molecules with
high QED scores (> 0.8), optimization prefers to reduce QED to below 0.3 in exchange for better
Vina scores. This reflects the multi-objective function in Equation 2, which weighs Vina scores more
than QED. On DiscoveryBench, the lengths of experiment plans from Reflexion monotonically in-
crease over time, while plans from MIGRATE remain stable on average (Figure 4(c)). Notably, the
best plans are consistently shorter (<115 tokens), suggesting MIGRATE is able to prioritize these
during search.

What search behaviors are observed with MIGRATE? We analyze the quality of samples gen-
erated by MIGRATE and NS (inference-only) and compare them in Figure 5. We measure the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

relative difference between the scores of each solution and the best-so-far performance when that
solution is sampled, then compare the distributions of these differences between the two methods.
On Semantle and ARC, MIGRATE demonstrates the ability to improve upon its previously best-
found solution in contrast to the behavior seen with the inference-only strategy, which often samples
solutions with no improvement. In Dockstring, MIGRATE generates more invalid molecules than
inference-only approaches, suggesting broader exploration of the solution space (Figure 4(a) and
(b)). Many of the proposed molecules are also longer and more complex SMILES strings, evi-
denced by a 44% increase in average length. Despite proposing more invalid molecules, MIGRATE
still finds molecules that improve upon the best-so-far with larger gains than with inference-only.

7 CONCLUSION

We introduced MIGRATE, a method for online test-time training of LLMs that enables efficient
search in black-box optimization tasks without requiring handcrafted training data. By leveraging
Group Relative Policy Optimization (GRPO) along with a novel mixed-policy group construction
strategy—comprising on-policy, greedy, and neighborhood sampling—MIGRATE effectively bal-
ances exploration and exploitation. Our experiments across four text-based domains demonstrate
the efficacy of MIGRATE to improve LLM-based search. Future work may include scaling online
TTT to multi-step decision-making and integrating stronger uncertainty-aware acquisition strategies
to further improve sample efficiency.

8 REPRODUCIBILITY STATEMENT

We include the source code along with instructions to reproduce our experiments as part of the
supplementary material. We also provide the specific hyperparameters used in Appendix A.1.

REFERENCES

Dhruv Agarwal, Rajarshi Das, Sopan Khosla, and Rashmi Gangadharaiah. Bring your own KG:
Self-supervised program synthesis for zero-shot KGQA. In Kevin Duh, Helena Gomez, and
Steven Bethard (eds.), Findings of the Association for Computational Linguistics: NAACL 2024,
pp. 896–919, Mexico City, Mexico, June 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.findings-naacl.57. URL https://aclanthology.org/2024.
findings-naacl.57/.

Dhruv Agarwal, Manoj Ghuhan Arivazhagan, Rajarshi Das, Sandesh Swamy, Sopan Khosla, and
Rashmi Gangadharaiah. Searching for optimal solutions with LLMs via bayesian optimization.
In The Thirteenth International Conference on Learning Representations, 2025a. URL https:
//openreview.net/forum?id=aVfDrl7xDV.

Dhruv Agarwal, Bodhisattwa Prasad Majumder, Reece Adamson, Megha Chakravorty,
Satvika Reddy Gavireddy, Aditya Parashar, Harshit Surana, Bhavana Dalvi Mishra, Andrew Mc-
Callum, Ashish Sabharwal, et al. Open-ended scientific discovery via bayesian surprise. arXiv
preprint arXiv:2507.00310, 2025b.

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/
llama3/blob/main/MODEL_CARD.md.

Ekin Akyürek, Mehul Damani, Adam Zweiger, Linlu Qiu, Han Guo, Jyothish Pari, Yoon Kim, and
Jacob Andreas. The surprising effectiveness of test-time training for few-shot learning, 2025.
URL https://arxiv.org/abs/2411.07279.

Christopher G Atkeson, Andrew W Moore, and Stefan Schaal. Locally weighted learning. Lazy
learning, pp. 11–73, 1997.

G Richard Bickerton, Gaia V Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L Hopkins.
Quantifying the chemical beauty of drugs. Nature chemistry, 4(2):90–98, 2012.

Daniil A Boiko, Robert MacKnight, Ben Kline, and Gabe Gomes. Autonomous chemical research
with large language models. Nature, 624(7992):570–578, 2023.

10

https://aclanthology.org/2024.findings-naacl.57/
https://aclanthology.org/2024.findings-naacl.57/
https://openreview.net/forum?id=aVfDrl7xDV
https://openreview.net/forum?id=aVfDrl7xDV
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2411.07279

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Lichang Chen, Jiuhai Chen, Tom Goldstein, Heng Huang, and Tianyi Zhou. Instructzero: Efficient
instruction optimization for black-box large language models. arXiv preprint arXiv:2306.03082,
2023.

François Chollet. On the measure of intelligence. arXiv preprint arXiv:1911.01547, 2019.

William S Cleveland. Robust locally weighted regression and smoothing scatterplots. Journal of the
American statistical association, 74(368):829–836, 1979.

Michael Han Daniel Han and Unsloth team. Unsloth, 2023. URL http://github.com/
unslothai/unsloth.

Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya Godbole, Ethan Perez, Jay Yoon Lee, Lizhen
Tan, Lazaros Polymenakos, and Andrew McCallum. Case-based reasoning for natural language
queries over knowledge bases. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and
Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 9594–9611, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.755. URL
https://aclanthology.org/2021.emnlp-main.755/.

Jordan S. Ellenberg, Cristofero S. Fraser-Taliente, Thomas R. Harvey, Karan Srivastava, and An-
drew V. Sutherland. Generative modeling for mathematical discovery, 2025. URL https:
//arxiv.org/abs/2503.11061.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052–2062. PMLR, 2019.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
embeddings. arXiv preprint arXiv:2104.08821, 2021.

Miguel Garcı́a-Ortegón, Gregor NC Simm, Austin J Tripp, José Miguel Hernández-Lobato, Andreas
Bender, and Sergio Bacallado. Dockstring: easy molecular docking yields better benchmarks for
ligand design. Journal of chemical information and modeling, 62(15):3486–3502, 2022.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
soo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,
Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew

11

http://github.com/unslothai/unsloth
http://github.com/unslothai/unsloth
https://aclanthology.org/2021.emnlp-main.755/
https://arxiv.org/abs/2503.11061
https://arxiv.org/abs/2503.11061

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng
Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vı́tor Albiero, Vladan Petrovic, Weiwei
Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smoth-
ers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
son Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
driguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

Nate Gruver, Anuroop Sriram, Andrea Madotto, Andrew Gordon Wilson, C. Lawrence Zitnick,
and Zachary Ward Ulissi. Fine-tuned language models generate stable inorganic materials as
text. In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=vN9fpfqoP1.

Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe Llinares, Alexandre
Rame, Thomas Mesnard, Yao Zhao, Bilal Piot, et al. Direct language model alignment from
online ai feedback. arXiv preprint arXiv:2402.04792, 2024.

Moritz Hardt and Yu Sun. Test-time training on nearest neighbors for large language models.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=CNL2bku4ra.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Jonas Hübotter, Sascha Bongni, Ido Hakimi, and Andreas Krause. Efficiently learning at test-time:
Active fine-tuning of LLMs. In The Thirteenth International Conference on Learning Represen-
tations, 2025. URL https://openreview.net/forum?id=NS1G1Uhny3.

JP Hughes, S Rees, SB Kalindjian, and KL Philpott. Principles of early drug discovery.
British Journal of Pharmacology, 162(6):1239–1249, 2011. doi: https://doi.org/10.1111/
j.1476-5381.2010.01127.x. URL https://bpspubs.onlinelibrary.wiley.com/
doi/abs/10.1111/j.1476-5381.2010.01127.x.

Akshay Krishnamurthy, Keegan Harris, Dylan J Foster, Cyril Zhang, and Aleksandrs Slivkins. Can
large language models explore in-context? arXiv preprint arXiv:2403.15371, 2024.

Agustinus Kristiadi, Felix Strieth-Kalthoff, Marta Skreta, Pascal Poupart, Alan Aspuru-Guzik, and
Geoff Pleiss. A sober look at LLMs for material discovery: Are they actually good for Bayesian
optimization over molecules? In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian
Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st
International Conference on Machine Learning, volume 235 of Proceedings of Machine Learning
Research, pp. 25603–25622. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.
press/v235/kristiadi24a.html.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. Advances in neural information processing systems,
32, 2019.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

13

https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=vN9fpfqoP1
https://openreview.net/forum?id=vN9fpfqoP1
https://openreview.net/forum?id=CNL2bku4ra
https://openreview.net/forum?id=CNL2bku4ra
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=NS1G1Uhny3
https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/j.1476-5381.2010.01127.x
https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/j.1476-5381.2010.01127.x
https://proceedings.mlr.press/v235/kristiadi24a.html
https://proceedings.mlr.press/v235/kristiadi24a.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
ation for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:
9459–9474, 2020.

Wen-Ding Li, Keya Hu, Carter Larsen, Yuqing Wu, Simon Alford, Caleb Woo, Spencer M. Dunn,
Hao Tang, Michelangelo Naim, Dat Nguyen, Wei-Long Zheng, Zenna Tavares, Yewen Pu, and
Kevin Ellis. Combining induction and transduction for abstract reasoning, 2024. URL https:
//arxiv.org/abs/2411.02272.

Tennison Liu, Nicolás Astorga, Nabeel Seedat, and Mihaela van der Schaar. Large language models
to enhance bayesian optimization. In The Twelfth International Conference on Learning Repre-
sentations, 2024. URL https://openreview.net/forum?id=OOxotBmGol.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective, 2025. URL https://arxiv.
org/abs/2503.20783.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scien-
tist: Towards fully automated open-ended scientific discovery. arXiv preprint arXiv:2408.06292,
2024.

Bodhisattwa Prasad Majumder, Harshit Surana, Dhruv Agarwal, Bhavana Dalvi Mishra, Abhijeets-
ingh Meena, Aryan Prakhar, Tirth Vora, Tushar Khot, Ashish Sabharwal, and Peter Clark. Dis-
coverybench: Towards data-driven discovery with large language models. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=vyflgpwfJW.

Elliot Meyerson, Mark J Nelson, Herbie Bradley, Adam Gaier, Arash Moradi, Amy K Hoover, and
Joel Lehman. Language model crossover: Variation through few-shot prompting. arXiv preprint
arXiv:2302.12170, 2023.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Alexander Novikov, Ngân Vũ, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt
Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco JR Ruiz, Abbas Mehrabian,
et al. Alphaevolve: A coding agent for scientific and algorithmic discovery. arXiv preprint
arXiv:2506.13131, 2025.

OpenAI. Introducing gpt-5, 2025. URL https://openai.com/index/
introducing-gpt-5/.

OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden
Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko,
Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally
Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich,
Andrey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghor-
bani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao Hao,
Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaresi, Cary
Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong Zhang,
Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts, Daniel
Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David Robinson,
Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong, Eliz-
abeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan Wang,
Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred
von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace
Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart An-
drin, Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan,
Ian O’Connell, Ian Osband, Ignasi Clavera Gilaberte, Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever,
Irina Kofman, Jakub Pachocki, James Lennon, Jason Wei, Jean Harb, Jerry Twore, Jiacheng Feng,
Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quiñonero Candela, Joe Palermo, Joel Parish,

14

https://arxiv.org/abs/2411.02272
https://arxiv.org/abs/2411.02272
https://openreview.net/forum?id=OOxotBmGol
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2503.20783
https://openreview.net/forum?id=vyflgpwfJW
https://openreview.net/forum?id=vyflgpwfJW
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-gpt-5/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Johannes Heidecke, John Hallman, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan
Ward, Joost Huizinga, Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Karina Nguyen, Karl
Cobbe, Katy Shi, Kayla Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu,
Kevin Stone, Kevin Yu, Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam
Fedus, Lilian Weng, Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kon-
draciuk, Lukasz Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen,
Marko Tintor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet
Yatbaz, Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael
Lampe, Michael Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles
Wang, Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat McAleese, Neil
Chowdhury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir Nachum, Oleg
Boiko, Oleg Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter Zhokhov,
Rachel Dias, Rahul Arora, Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Miyara, Reimar
Leike, Renny Hwang, Rhythm Garg, Robin Brown, Roshan James, Rui Shu, Ryan Cheu, Ryan
Greene, Saachi Jain, Sam Altman, Sam Toizer, Sam Toyer, Samuel Miserendino, Sandhini Agar-
wal, Santiago Hernandez, Sasha Baker, Scott McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu,
Shibani Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Steph
Lin, Suchir Balaji, Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao Wang, Tay-
lor Gordon, Ted Sanders, Tejal Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas Dimson,
Tianhao Zheng, Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peterson, Tyna
Eloundou, Valerie Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi
Zheng, Wenda Zhou, Wes McCabe, Wojciech Zaremba, Yann Dubois, Yinghai Lu, Yining Chen,
Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng Shao, and Zhuohan Li.
Openai o1 system card, 2024. URL https://arxiv.org/abs/2412.16720.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=HPuSIXJaa9.

Mayk Caldas Ramos, Shane S Michtavy, Marc D Porosoff, and Andrew D White. Bayesian opti-
mization of catalysts with in-context learning. arXiv preprint arXiv:2304.05341, 2023.

Bojana Ranković and Philippe Schwaller. Bochemian: Large language model embeddings for
bayesian optimization of chemical reactions. In NeurIPS 2023 Workshop on Adaptive Experi-
mental Design and Active Learning in the Real World, 2023. URL https://openreview.
net/forum?id=A1RVn1m3J3.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proxi-
mal policy optimization algorithms. ArXiv, abs/1707.06347, 2017. URL https://api.
semanticscholar.org/CorpusID:28695052.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Asankhaya Sharma. Openevolve: an open-source evolutionary coding agent, 2025. URL https:
//github.com/algorithmicsuperintelligence/openevolve.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time train-
ing with self-supervision for generalization under distribution shifts. In International conference
on machine learning, pp. 9229–9248. PMLR, 2020.

15

https://arxiv.org/abs/2412.16720
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=A1RVn1m3J3
https://openreview.net/forum?id=A1RVn1m3J3
https://api.semanticscholar.org/CorpusID:28695052
https://api.semanticscholar.org/CorpusID:28695052
https://github.com/algorithmicsuperintelligence/openevolve
https://github.com/algorithmicsuperintelligence/openevolve

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Anja Surina, Amin Mansouri, Lars Quaedvlieg, Amal Seddas, Maryna Viazovska, Emmanuel Abbe,
and Caglar Gulcehre. Algorithm discovery with llms: Evolutionary search meets reinforcement
learning. arXiv preprint arXiv:2504.05108, 2025.

Dung Thai, Dhruv Agarwal, Mudit Chaudhary, Wenlong Zhao, Rajarshi Das, Jay-Yoon Lee, Han-
naneh Hajishirzi, Manzil Zaheer, and Andrew McCallum. Machine reading comprehension using
case-based reasoning. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the
Association for Computational Linguistics: EMNLP 2023, pp. 8414–8428, Singapore, December
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.564.
URL https://aclanthology.org/2023.findings-emnlp.564/.

Oleg Trott and Arthur J Olson. Autodock vina: improving the speed and accuracy of docking with
a new scoring function, efficient optimization, and multithreading. Journal of computational
chemistry, 31(2):455–461, 2010.

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement
learning. https://github.com/huggingface/trl, 2020.

Ruocheng Wang, Eric Zelikman, Gabriel Poesia, Yewen Pu, Nick Haber, and Noah Goodman. Hy-
pothesis search: Inductive reasoning with language models. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
G7UtIGQmjm.

David Weininger. Smiles, a chemical language and information system. 1. introduction to method-
ology and encoding rules. Journal of chemical information and computer sciences, 28(1):31–36,
1988.

Mark C Wenlock, Rupert P Austin, Patrick Barton, Andrew M Davis, and Paul D Leeson. A com-
parison of physiochemical property profiles of development and marketed oral drugs. J. Med.
Chem., 46(7):1250–1256, March 2003.

Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang.
Learning to reason under off-policy guidance. arXiv preprint arXiv:2504.14945, 2025.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
technical report. arXiv preprint arXiv:2407.10671, 2024a.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Twelfth International Conference on Learning
Representations, 2024b. URL https://openreview.net/forum?id=Bb4VGOWELI.

Haizi Yu, Igor Mineyev, Lav R Varshney, and James A Evans. Learning from one and only one shot.
npj Artificial Intelligence, 1(1):13, 2025a.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi
Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi
Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying
Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. Dapo: An open-
source llm reinforcement learning system at scale, 2025b. URL https://arxiv.org/abs/
2503.14476.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
inforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

16

https://aclanthology.org/2023.findings-emnlp.564/
https://github.com/huggingface/trl
https://openreview.net/forum?id=G7UtIGQmjm
https://openreview.net/forum?id=G7UtIGQmjm
https://openreview.net/forum?id=Bb4VGOWELI
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2503.14476

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and
James Zou. Textgrad: Automatic” differentiation” via text. arXiv preprint arXiv:2406.07496,
2024.

Rosie Zhao, Alexandru Meterez, Sham Kakade, Cengiz Pehlevan, Samy Jelassi, and Eran Malach.
Echo chamber: Rl post-training amplifies behaviors learned in pretraining. arXiv preprint
arXiv:2504.07912, 2025.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A APPENDIX A

A.1 EXPERIMENTAL SETTINGS

Semantle. The black-box function we use is the cosine similarity of vector representations generated
using the SimCSE Gao et al. (2021) sentence embedding model, where the score for a proposed word
x for a hidden target word y is computed by comparing the embeddings for the sequences ”What is
a {x}?” and ”What is a {y}?”. The number of warmstart candidates is 20. Our main results with
NS and MIGRATE selects Ogreedy by uniformly sampling among the top-3 completions found so far
according to their black-box scores.

In MIGRATE, we execute GRPO for 100 generation steps where we sample a batch of 10 words in
each step for a total sampling budget of 1000 words. In each step, we sort the generated batch of
words by their scores and construct a group of 5 completions, each consisting of 2 words each. Each
completion is assigned the maximum score of the two words as its reward.

For the Random baseline, we sample 1000 words using the task prompt. For the NS baseline, we
sample 10 words using the NS prompt for 100 iterations. Similarly, for the OPRO baseline, we also
sample 10 words using the OPRO prompt for 100 iterations. We provide, in-context, the top-10
words found so far for every OPRO-based method.

In our Online DPO baseline, we used the same training hyperparameters as GRPO. In each training
iteration, we generate 10 words which equates to 5 preferences. Here, words with the higher score
are preferred (ranked) over those with lower scores.

Dockstring. The black-box function we use is a linear function of the binding affinity (Vina) and
druglikeness (QED). We use RDKit’s MolFromSmiles to sanitize a given generated SMILES string.
If this process fails due to an invalid format structure or molecule, we assign the generated molecule
a score of 0. If the molecule is valid, we compute the QED and Vina scores on the given protein
target. We then compute the overall score of these two metrics as follows:

soverall(molecule, protein) = 1−N (Vina(molecule, protein) + (1− QED(molecule)) (2)

Where N denotes min-max normalization to the range [0,1]. The QED score is bounded between 0
and 1, and we assume the Vina score to be between 0 and -13.0 kcal/mol. In practice, the binding
affinity is a much higher priority than the druglikeness. Given our equation and the value ranges for
computing soverall, our black-fox function accurately emphasizes the Vina score about 10 times more
than the QED score.

For the Random baseline, we sample 200 molecules using the task prompt. For the NS baseline, we
sample 3 molecules using the task prompt and 2 molecules using the NS prompt in each iteration
for 40 iterations. We select Ogreedy from the top-1 molecule found so far in NS and MIGRATE. For
the OPRO baseline, we sample 5 molecules using the OPRO prompt for 40 iterations. We provide,
in-context, the top-5 molecules proposed so far for every OPRO-based method.

In our Online DPO baseline, we used the same training hyperparameters as GRPO. In each training
iteration, we generate 5 molecules and create 10 pairwise preferences. Here, molecules with a higher
overall score according to Eq. 2 are preferred (ranked) over those with lower scores.

ARC. The black-box function we use is a hamming-distance based metric. We run all input grids
with the sampled program and compute the proportion of cells in the ground-truth grid that matches
the output grid. We assign a reward of 0 if the program does not terminate within 10 seconds of
execution. During training, the reward is given by averaging the score across all training input grids
of the given ARC task. If the output grid is larger than the ground-truth, then we assign a score of 0.

For the Random baseline, we sample 1024 programs using the task prompt. For the NS baseline, we
sample 12 programs using the task prompt and 4 programs using the NS prompt for 64 iterations.
We note that this Random baseline is equivalent to the main evaluations ran by Li et al. Additionally,
our TTT baselines on ARC in the inductive setting are not an entirely fair comparison to prior works
that do TTT in the transductive setting. We select Ogreedy as the top-1 program found so far for

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Hyperparameter Value
Model Llama 3.2 3B Instruct

Grattafiori et al. (2024)
Learning rate 1e-5
Group size 5
LoRA rank 64
LoRA alpha 16
Training steps 100
Iterations per step 2

GRPO [α, γ, β] [5, 0, 0]
GRPO-Greedy [α, γ, β] [4, 0, 1]
MIGRATE [α, γ, β] [0, 4, 1]

Table 2: MIGRATE hyperparameters for Semantle

Hyperparameter Value
Model Llama 3.2 3B Instruct

Grattafiori et al. (2024)
Learning rate 5e-5
Group size 5
LoRA rank 64
LoRA alpha 16
Training steps 40
Iterations per step 1

GRPO [α, γ, β] [5, 0, 0]
GRPO-Greedy [α, γ, β] [4, 0, 1]
MIGRATE [α, γ, β] [2, 2, 1]

Table 3: MIGRATE hyperparameters for Dockstring

both NS and MIGRATE. Similarly, for the OPRO baseline, we sample 12 programs using the task
prompt and 4 programs using the OPRO prompt for 64 iterations. Due to hardware limitations and to
maintain a fair comparison with MIGRATE, we only provide one program in-context for the OPRO
prompt.

Discoverybench. The main black-box function we use is a belief-based score which represents the
extent a model believes a generated hypothesis matches the gold hypothesis. In our implementation,
we create a Beta belief distribution from 10 samples from a base Qwen 2.5 7B-Instruct model Yang
et al. (2024a). We observed that using the Qwen model for this task performed similarly to sampling
from GPT-4o OpenAI et al. (2024). During Reflextion and MIGRATE, we perform early stopping
once a hypothesis with a belief score greater than 0.8 is found.

For the Reflextion baseline, we perform 40 iterations where we sample 5 experiments in each iter-
ation. We evaluate and generate a reflection for the 5 experiments in each iteration to pass into the
next. Similarly, in MIGRATE, we perform 40 training iterations where each iteration generates 5
experiments.

A.2 GRPO FORMULATION

We remove the KL term in the original GRPO objective. Following DAPO Yu et al. (2025b), we
utilize token-level normalization, which assigns more balanced rewards to individually generated
tokens—alleviating the bias towards longer responses. We also set εlow = 0.2 and εlow = 0.28
which DAPO finds to promote exploration of low-probability tokens that perform well. Dr. GRPO
Liu et al. (2025) also divides the sum of loss by a constant instead of the total sequence length

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Hyperparameter Value
Model BARC Li et al. (2024)
Learning rate 1e-5
Group size 16
LoRA rank 128
LoRA alpha 32
Training steps 64
Iterations per step 1

GRPO [α, γ, β] [16, 0, 0]
GRPO-Greedy [α, γ, β] [15, 0, 1]
MIGRATE [α, γ, β] [11, 4, 1]

Table 4: MIGRATE hyperparameters for ARC

Hyperparameter Value
Model Qwen 2.5 7B Instruct Yang et al. (2024a)
Learning rate 1e-5
Group size 5
LoRA rank 128
LoRA alpha 32
Training steps 40
Iterations per step 2

MIGRATE [α, γ, β] [2, 2, 1]

Table 5: MIGRATE hyperparameters for Discoverybench

to completely remove any completion length bias. Although we did not use this formulation in
our experiments, there should be no substantial differences since there is not high variability in the
solution lengths in the domains we studied. Following Dr. GRPO, we do not scale the advantage by
the standard deviation of the group’s rewards. By doing so, we avoid biasing weight optimization on
groups that perform extremely well or poorly on a given prompt. While our online prompt always
remains constant, this bias is relevant for our NS prompt which can vary across iterations.

A.3 COMPUTATIONAL RESOURCES

All experiments were conducted on a cluster of NVIDIA GPUs. We utilize a mixture of A100 (40GB
and 80GB), L40S, and A40 GPUs. TTT methods on ARC-Full were run with A100 (80GB) GPUs
due to the higher memory requirements. Our implementation of MIGRATE is based on the TRL
0.19.0 implementation of GRPO from HuggingFace von Werra et al. (2020). We also utilize Unsloth
Daniel Han & team (2023) and vLLM Kwon et al. (2023) to enable higher sampling throughput and
lower memory usage.

Runtimes. The average runtime for MIGRATE on each Semantle problem was 93 seconds on an
A100 GPU, while for NS, it is 83 seconds for each problem. On Dockstring, the average runtime
across all GPU types on each molecule optimization task was 7.5 minutes for MIGRATE and 8.2
minutes for NS. The average runtime on each ARC task with early stopping is 51 minutes for MI-
GRATE and 47 minutes for NS on an A100 GPU. The average runtime for on each DiscoveryBench
query with early stopping is 61 minutles for MIGRATE and 46.6 minutes for Reflexion.

As seen from these runtimes, test-time training with MIGRATE does not add substantial latency
over inference-only methods. Most of the latency can be attributed to routines common to both
optimization strategies. For example, in ARC, the primary source of latency is solution (program)
sampling, where in Dockstring, the main source is the black-box function, i.e., simulating whether
the proposal molecule can dock onto the target protein.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

B APPENDIX B: ADDITIONAL EXPERIMENTS

B.1 ISLAND-BASED EVOLUTION ALGORITHM

We implement an island-based evoluationary algorithm as an alterative to top-k for selecting Ogreedy.
We created a database inspired by Ellenberg et al. (2025) to store generated solutions and sample
them for constructing neighborhood sampling. The island model organizes the solutions into isolated
islands of solutions that are evolved independently.

At every training step, we iterate to another “island” in the database in a cyclic order. We then
sample a solution stored at this island to construct our neighborhood sampling prompt. We note
that unlike prior works Ellenberg et al. (2025); Surina et al. (2025) we do not construct additional
subclusters of solutions within each island. This was done due to the low sampling constraints of
our experiments but can also be seen as using a single cluster per island. Sampling from an island is
carried out by an exploitation strategy with probability p and an exploration strategy with probability
1 − p. With the exploitation strategy, we randomly select a top solutions on the island that is also
considered a globally top-k solution across all islands. If the island does not have a solution that is in
the top-k solution for all islands then we fall back on the exploration strategy. With the exploration
strategy, we randomly select among the top solutions on the island that are not one of the globally
top-k solutions.

We periodically migrate a percentage of the top-performing solutions from each island to their neigh-
boring islands according to a ring topology. This maintains a balance of exploring diverse solutions
in isolation and preventing the algorithm from spending too much time on low-performing solutions.

We conduct a comparison of using NS and MIGRATE with three different strategies for selecting the
solution to sample neighbors from: Top-1, Top-3, and Evolution. For each of these configurations
we use 10 neighborhood samples, 0 online samples, and 0 greedy samples. Fig. 6 shows that Top-3
outperforms Top-1 and that using our evolution-based strategy outperforms Top-3 in both NS and
MIGRATE methods. While Top-3 shows the better initial gains in both NS and MIGRATE, the
evolution-based strategy narrowly outperforms it by 1000 samples. Much like our other results in
Table. 1, we also observe that the MIGRATE equivalent of each NS variation performs better –
reinforcing the pattern that TTT improves search performance.

0 200 400 600 800 1000

Words Guessed

0%

10%

20%

30%

40%

50%

60%

70%

80%

%
F

ou
nd

NS (Top-1)

NS (Top-3)

NS (Evolution)

MiGrATe (Top-1)

MiGrATe (Top-3)

MiGrATe (Evolution)

Figure 6: Comparing selection methods for NS. Evolution-based selection shows slower initial
gains but results in more consistent improvements than using a top-k sampling strategy–resulting in
better final performances.

B.2 CAN RELATED TASKS BOOTSTRAP SEARCH?

We investigate whether fine-tuned weights from TTT can generalize to other tasks. After running
MIGRATE on every task, we perform TTT again on unsolved tasks and bootstrap the method with
the learned weights of its “nearest” solved task.

In this experiment, we attempt to solve ARC tasks that were not solved by MIGRATE. For each
unsolved task, we determine its “nearest” solved task by evaluating this task using the solution

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

program from every solved task. We pass the training inputs of the unsolved task into each program
and determine the nearest solved task to be the one whose solution program achieve the highest
reward from our hamming distance-based reward function.

Once the nearest solved task is identified, we use its fine-tuned weights from MIGRATE as the
initializing point for solving the unsolved task. This procedure aims to transfer inductive biases
that may have been learned from structurally similar tasks, enabling the model to efficiently explore
more viable programs on the unsolved task. This tests whether there is an advantage to initializing
search via TTT from a more informed starting point on problems where starting with the base model
fails.

We see marginal improvements from bootstrapping search with learned weights from MIGRATE.
Fig. 7 shows that initializing Random Sampling and MIGRATE with the nearest solved task’s
weights allowed each respective method to solve tasks that were initially unsolvable by the base
model. Notably, bootstrapping Random Sampling with nearest weights was able to solve more tasks
than executing MIGRATE on the base model.

Random@Base Random@Nearest-TTT MiGrATe@Base MiGrATe@Nearest-TTT
0%

5%

10%

15%

20%

25%

30%

35%

S
ol

ve
R

at
e

20.75%

23.50%
22.25%

24.75%

28.00%

33.00%

30.00%

35.25%

ARC Accuracy

Pass@2 Accuracy

Oracle Accuracy

Figure 7: Bootstrapping with nearest weights on ARC-Full. Bootstrapping Random and MI-
GRATE with initial weights learned from one round of MIGRATE shows slight improvement on
total tasks solved.

B.3 HYPERPARAMETER SENSITIVITY ANALYSES

B.3.1 VARYING α AND γ SAMPLES

We conduct experiments on Semantle, Dockstring, and ARC-Small to investigate the tradeoff in-
volved in varying the ratio of online to neighborhood samples within a GRPO group in MIGRATE.
ARC-Small is a subset consisting of 54 tasks with grids up to a maximum of 64 cells, created to
measure variance across search methods via repeat runs.7

Throughout these experiments, we fix the number of greedy samples at β = 1. The results in Fig. 8
reveals that the optimal configuration of online sand NS samples vary across domains. Particu-
larly, Semantle benefits from more NS samples, Dockstring performs the best with an equal ratio
of samples, while ARC prefers a higher proportion of online samples. These results highlights the
importanced of tuning α and γ when applying MIGRATE to different domains.

B.3.2 VARYING β SAMPLES

We explore varying the number of greedy samples on Semantle. In these experiments, we run
MIGRATE with α = 0 onlines amples, β greedy samples, and N − β neighborhood sampless. As
shown in Fig. 9a, performance remains relatively similar over β = 0, 1, 5, 10 with a small trend

7Note that we ensure ARC-Small maintains the same difficulty distribution as ARC-Full.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000

Words Guessed

0%

10%

20%

30%

40%

50%

60%

70%

80%

%
F

ou
nd

MiGrATe (α = 9, γ = 0)

MiGrATe (α = 4, γ = 5)

MiGrATe (α = 0, γ = 9)

(a) Semantle

0 25 50 75 100 125 150 175 200

Molecules Proposed

0.3

0.4

0.5

0.6

0.7

0.8

S
ca

la
ri

ze
d

O
ve

ra
ll

S
co

re
(↑

)

MiGrATe (α = 4, γ = 0)

MiGrATe (α = 2, γ = 2)

MiGrATe (α = 0, γ = 4)

(b) Dockstring

0 200 400 600 800 1000

Programs Sampled

0%

10%

20%

30%

40%

50%

S
ol

ve
R

at
e

MiGrATe (α = 15, γ = 0)

MiGrATe (α = 11, γ = 4)

MiGrATe (α = 7, γ = 8)

MiGrATe (α = 3, γ = 12)

(c) ARC-Small

Figure 8: Varying α and γ. We vary the number of online and NS samples per group in MIGRATE.
(a) On Semantle, we found that the strategy of using no online samples to be the most successful
by a significant margin. (b) On Dockstring, we found that using only NS samples yield better
performances at smaller budgets and a configuration of equal amounts of online and NS samples to
achieve the best final performance. (c) On ARC-Small, we found the mixed configuration of α = 11
and γ = 4 to perform the best.

0 200 400 600 800 1000

Words Guessed

0%

10%

20%

30%

40%

50%

60%

70%

80%

%
F

ou
nd

MiGrATe (β = 0)

MiGrATe (β = 1)

MiGrATe (β = 5)

MiGrATe (β = 10)

(a) Semantle

0 200 400 600 800 1000

Programs Sampled

0%

10%

20%

30%

40%

50%

S
ol

ve
R

at
e

MiGrATe (α = 16, γ = 0)

MiGrATe (α = 15, γ = 1)

MiGrATe (α = 8, β = 8)

MiGrATe (α = 1, β = 15)

(b) ARC-Small

Figure 9: Comparing β on Semantle and ARC. MIGRATE shows a bias towards smaller β for
better performance on Semantle and ARC-Small.

of better performance with smaller β. In tandem with the results on varying γ, this supports the
potential of more off-policy methods of performing TTT with GRPO.

B.4 VARYING REWARD FUNCTION SPARSITY

To investigate the impact of reward function sparsity on the performance of MIGRATE, we conduct
experiments on Semantle and systematically vary the sparsity of the reward signal. Specifically, we
modify the reward function such that rewards below a certain threshold are rounded down to zero,
thereby introducing sparsity into the reward signal. Let f(oi) be the original value from a black-box
function for a solution oi. We introduce a sparsity threshold T ∈ [0, 1] and define the modified
reward function f̂(·) as follows:

f̂(oi) =

{
0 iff(oi) < T

f(oi) otherwise.
(3)

Next, we apply this sparsity function to MIGRATE and OPRO on Semantle to evaluate the effect
of sparsity on search performance. We test with T = [0, 0.25, 0.5, 0.75, 1.0]. Specifically, T = 0
corresponds to the original reward function f(·) and T = 1.0 results in a binary reward function
where only the oracle solution maps to a non-zero reward.

As expected, in Figure 10(a,b), both MIGRATE and OPRO show a decline in performance as the
reward sparsity increases. Interestingly, however, Figure 10(c) demonstrates that MIGRATE shows
higher robustness to sparse rewards than the purely in-context OPRO baseline, with the gap between
MIGRATE and OPRO progressively increasing with higher sparsity.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000

Words Guessed

0%

10%

20%

30%

40%

50%

60%

70%

80%

%
F

ou
nd

OPRO (0.0 threshold)

OPRO (0.25 threshold)

OPRO (0.50 threshold)

OPRO (0.75 threshold)

OPRO (1.0 threshold)

(a) OPRO

0 200 400 600 800 1000

Words Guessed

0%

10%

20%

30%

40%

50%

60%

70%

80%

%
F

ou
nd

MiGrATe (0.0 threshold)

MiGrATe (0.25 threshold)

MiGrATe (0.50 threshold)

MiGrATe (0.75 threshold)

MiGrATe (1.0 threshold)

(b) MIGRATE

1.0 (Binary) 0.75 0.50 0.25 0.0 (Dense)

Reward Sparsity (T)

0%

10%

20%

30%

40%

50%

60%

70%

80%

%
F

ou
n

d

MiGrATe

OPRO

(c) Best Results

Figure 10: Impact of reward sparsity on MIGRATE and OPRO. (a,b) MIGRATE and OPRO
see similar decreases in performance on Semantle as reward sparsity increases. (c) MIGRATE
also shows more robustness to the reward sparsity by scaling better to denser rewards than OPRO.
Notably, MIGRATE matches the best OPRO performance at the second highest sparsity setting.

Semantle Dockstring

Method % Found QED (↑) Vina Score (↓) Overall Score (↑)
NS 45.30± 2.49 0.87± 0.01 −9.65± 0.21 0.71± 0.00
OPRO 40.70± 1.89 0.90± 0.00 −9.94± 0.06 0.74± 0.00

MIGRATE 71.30 ± 4.11 0.90 ± 0.00 −11.00 ± 0.07 0.79 ± 0.00
MIGRATE (OPRO) 65.3%± 2.49 0.90 ± 0.00 −10.80± 0.10 0.78± 0.00

ARC-Small

Method Pass@2 (%) Oracle (%)

NS 48.15± 0.00 55.56± 1.51
OPRO 50.62 ± 1.75 59.26 ± 0.00
Evolution 44.44± 1.51 57.41± 0.00
BOPRO 22.22± 0.80 22.22± 0.80

MIGRATE 51.23 ± 3.49 62.35 ± 0.87
MIGRATE (γ-OPRO) 44.44%± 3.02 55.56± 0.04
MIGRATE (γ-Evolution) 45.68± 0.01 46.30± 0.00

Table 6: Comparing alternative sampling strategies. We compare the inference-only and MI-
GRATE (TTT) performance of different sampling techniques. All results are averaged over three
random seeds, with the standard deviation reported. The best result in each column is marked in
bold and the second best result is underlined. Despite OPRO showing better performance over NS
when comparing with the inference-only strategy, we see that NS demonstrates higher performance
than OPRO when combined with MIGRATE.

0 25 50 75 100 125 150 175 200

Molecules Proposed

0.4

0.5

0.6

0.7

0.8

0.9

D
ru

gl
ik

en
es

s
(Q

E
D

)
(↑

)

Random

NS

OPRO

GRPO

GRPO-Greedy

MiGrATe

(a) Best-so-far QED

0 25 50 75 100 125 150 175 200

Molecules Proposed

−11

−10

−9

−8

−7

−6

−5

−4

−3

B
in

d
in

g
A

ffi
n

it
y

(v
in

a
sc

or
e)

(↓
)

Random

NS

GRPO

GRPO-Greedy

MiGrATe

MiGrATe (OPRO)

(b) Bset-so-far Vina

Figure 11: QED and Vina Score plots for Dockstring.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

B.5 ALTERNATIVE LOCAL STRUCTURE SAMPLING IN MIGRATE?

We experiment with the alternative of using OPRO in place of neighborhood sampling (NS) in MI-
GRATE. Our results in Table. 6 show similar results between MIGRATE and MIGRATE (OPRO) on
Dockstring and more favorable results towards MIGRATE on Semantle and ARC-Small. Compared
to other baselines in Table 1, MIGRATE (OPRO) only underperforms relative to MIGRATE on
Semantle and Dockstring. Notably, on ARC-Small, incorporating TTT into OPRO substantially de-
grades performance compared to inference-only OPRO. We also observe that OPRO achieves better
performance than NS across most metrics. The varying performance of MIGRATE (OPRO) across
domains suggests that NS is more compatible than OPRO with MIGRATE. In addition, the greater
improvement achieved by using NS over OPRO suggests that the NS strategy of generating diverse
variations may be better suited to TTT than OPRO, which focuses more on direct improvement of
previous solutions.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

C APPENDIX C: LLM PROMPTS

C.1 SEMANTLE: TASK PROMPT

Your task is to guess a hidden word from the English
dictionary. Stick to proper, single-word English words.
Now, guess exactly n=%s new word(s) that could be the
hidden word. Be creative! (Note: give only a list of word(s)
in the provided JSON format, e.g. "response": ["word1",
"word2",...])

C.2 SEMANTLE: NEIGHBORHOOD SAMPLING PROMPT

Your task is to guess words related to a word from the
English dictionary. Stick to proper, single-word English
words. Now, guess exactly n=%s new word(s) that could be
related to the word(s):

Word: %s

Be creative! (Note: give only a list of word(s) in
the provided JSON format, e.g. "response": ["word1",
"word2",...])

C.3 DOCKSTRING: TASK PROMPT

Your task is to find the optimal drug molecule that has
both a high druglikeness (QED) as well as a strong binding
affinity (vina) with the protein %s. For docking, lower
is better (less than --10 is considered good) and for
druglikeness, 1 is the best and 0 is the worst (greater
than 0.8 is considered good). While both properties are
important, the docking score is 10 times as important as the
druglikeness score. If you propose an invalid molecule or
make a repeat guess, you will get no score, so stick to valid
SMILES strings.

Now, guess exactly n=%s new molecule(s).

(Note: give only a list of SMILES string(s) in the provided
JSON format, e.g. "response": ["SMILES1", "SMILES2", ...])

C.4 DOCKSTRING: NEIGHBORHOOD SAMPLING PROMPT

Your task is to find the optimal drug molecule that has
both a high druglikeness (QED) as well as a strong binding
affinity (vina) with the protein %s. For docking, lower
is better (less than --10 is considered good) and for
druglikeness, 1 is the best and 0 is the worst (greater
than 0.8 is considered good). While both properties are
important, the docking score is 10 times as important as the
druglikeness score. If you propose an invalid molecule or
make a repeat guess, you will get no score, so stick to valid
SMILES strings!

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Here is my guess for a molecule:
SMILES: %s

Now, guess exactly n=%s new variation(s) of my molecule that
could improve the scores to reach the optimal molecule.

(Note: give only a list of SMILES string(s) in the provided
JSON format, e.g. "response": ["SMILES1", "SMILES2", ...])

C.5 ARC: TASK PROMPT

Given input-output grid pairs as reference examples,
carefully observe the patterns to predict the output grid
for new test input. Each pair follows the same transformation
rule. Grids are 2D arrays represented as strings, with cells
(colors) separated by spaces and rows by newlines. Here are
the input and output grids for the reference examples:

Example 1:
Input:
[[1,1,1,...,1]]
Output:
[[2,2,2,...,2]]

Example 2:
Input:
[[2,2,2,...,2]]
Output:
[[3,3,3,...,3]]

...

Here is the input grid for the test example:
Input:
[[3,3,3,...,3]]

Write a Python function ‘transform‘ that can convert any
given input grid to its corresponding output grid based on
the pattern observed in the reference examples.

C.6 ARC: NEIGHBORHOOD SAMPLING PROMPT

Given input-output grid pairs as reference examples,
carefully observe the patterns to predict the output grid
for new test input. Each pair follows the same transformation
rule. Grids are 2D arrays represented as strings, with cells
(colors) separated by spaces and rows by newlines.

Here are the input and output grids for the reference
examples:

Example 1:
Input:
[[1,1,1,...,1]]
Output:
[[2,2,2,...,2]]

...

Here is the input grid for the test example:

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Input:
[[3,3,3,...,3]]

The goal is to write a Python function ‘transform‘ that can
convert any given input grid to its corresponding output
grid based on the pattern observed in the reference examples.

Here is my guess for the function:
‘‘‘python
def transform(input: np.ndarray) -> np.ndarray:

Code
‘‘‘

Provide a variation of my guess that could be the correct
answer.

C.7 DISCOVERYBENCH: TASK PROMPT

You are a research scientist who is interested in data-driven
research using the provided dataset(s) and query. Be creative
and think of an interesting new experiment to help answer
the provided scientific query. Explain in natural language
the experiment plan that the programmer should follow (do not
provide the code yourself). Here are a few instructions that
you must follow:

1. Strictly use only the dataset(s) provided and do not
simulate dummy/synthetic data or columns that cannot be
derived from the existing columns.

2. The experiment plan should be creative, independent, and
self-contained.

3. Use the prior experiments (if any) as inspiration to think
of an interesting and creative new experiment. However, do
not repeat the same experiments.

Here is a possible approach to coming up with a new
experiment plan:

1. Find an interesting context: this could be a specific
subset of the data. E.g., if the dataset has multiple
categorical variables, you could split the data based on
specific values of such variables, which would then allow
you to validate a hypothesis in the specific contexts defined
by the values of those variables.

2. Find interesting variables: these could be the columns
in the dataset that you find interesting or relevant to the
context. You are allowed and encouraged to create composite
variables derived from the existing variables.

3. Find interesting relationships: these are interactions
between the variables that you find interesting or relevant
to the context. You are encouraged to propose experiments
involving complex predictive or causal models.

4. You must require that your proposed experiment plan is
based on robust statistical tests. Remember, your programmer
can install python packages via pip which can allow it to
write code for complex statistical analyses.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

5. Multiple datasets: If you are provided with more than one
dataset, then try to also propose an experiment that utilize
contexts, variables, and relationships across datasets, e.g.,
this may involve using join or similar operations.

"Generally, in typical data-driven research, you will need
to explore and visualize the data for possible high-level
insights, clean, transform, or derive new variables from the
dataset to be suited for the investigation, deep-dive into
specific parts of the data for fine-grained analysis, perform
data modeling, and run statistical tests.

Examples of valid experiment plans:

Experiment plan #1:

1. Merge the datasets offshore, immigration, and
native employment on the common columns ’year’ and ’beaind’.

2. Replace infinite values with NaNs and drop rows with NaNs
in any column.

3. Independent variables: ’iv offshoring 1’, ’penetration’

4. Fit the OLS regression modela

Experiment plan #2:

1. Chose BMI as dependent variable.

2. Time preference (independent) variables as ’DISSAVED’ and
’SAMESAVE’.

3. Fit an OLS regression model and returned the model
summary.

Plan an experiment to answer the question about the following
dataset.

{dataset metadata}
Now create exactly {n} new experiment plans that could
answer the scientific question. Note: give only a list
of experiment plans in the provided JSON format, e.g.
{"response": ["experiment plan 1", "experiment plan 2", ...]})

C.8 DISCOVERYBENCH: NEIGHBORHOOD SAMPLING PROMPT

You are a research scientist who is interested in data-driven
research using the provided dataset(s) and query. Be creative
and think of an interesting new experiment to help answer
the provided scientific query. Explain in natural language
the experiment plan that the programmer should follow (do not
provide the code yourself). Here are a few instructions that
you must follow:

1. Strictly use only the dataset(s) provided and do not
simulate dummy/synthetic data or columns that cannot be
derived from the existing columns.

2. The experiment plan should be creative, independent, and
self-contained.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

3. Use the prior experiments (if any) as inspiration to think
of an interesting and creative new experiment. However, do
not repeat the same experiments.

Here is a possible approach to coming up with a new
experiment plan:

1. Find an interesting context: this could be a specific
subset of the data. E.g., if the dataset has multiple
categorical variables, you could split the data based on
specific values of such variables, which would then allow
you to validate a hypothesis in the specific contexts defined
by the values of those variables.

2. Find interesting variables: these could be the columns
in the dataset that you find interesting or relevant to the
context. You are allowed and encouraged to create composite
variables derived from the existing variables.

3. Find interesting relationships: these are interactions
between the variables that you find interesting or relevant
to the context. You are encouraged to propose experiments
involving complex predictive or causal models.

4. You must require that your proposed experiment plan is
based on robust statistical tests. Remember, your programmer
can install python packages via pip which can allow it to
write code for complex statistical analyses.

5. Multiple datasets: If you are provided with more than one
dataset, then try to also propose an experiment that utilize
contexts, variables, and relationships across datasets, e.g.,
this may involve using join or similar operations.

"Generally, in typical data-driven research, you will need
to explore and visualize the data for possible high-level
insights, clean, transform, or derive new variables from the
dataset to be suited for the investigation, deep-dive into
specific parts of the data for fine-grained analysis, perform
data modeling, and run statistical tests.

Examples of valid experiment plans:

Experiment plan #1:

1. Merge the datasets offshore, immigration, and
native employment on the common columns ’year’ and ’beaind’.

2. Replace infinite values with NaNs and drop rows with NaNs
in any column.

3. Independent variables: ’iv offshoring 1’, ’penetration’

4. Fit the OLS regression modela

Experiment plan #2:

1. Chose BMI as dependent variable.

2. Time preference (independent) variables as ’DISSAVED’ and
’SAMESAVE’.

3. Fit an OLS regression model and returned the model
summary.

Plan an experiment to answer the question about the following
dataset.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

{dataset metadata}
PRIOR EXPERIMENTS

Now create exactly {n} new experiment plans that could
answer the scientific question and are **similar** to the
prior experiments. Note: give only a list of experiment
plans in the provided JSON format, e.g. {"response":
["experiment plan 1", "experiment plan 2", ...]})

31

	Introduction
	Related Work
	Background
	MiGrATe: Methodology
	Mixed-Policy Group Construction for Search

	Experiments
	Search Tasks
	Baselines

	Results and Discussion
	Conclusion
	Reproducibility Statement
	Appendix A
	Experimental Settings
	GRPO Formulation
	Computational Resources

	Appendix B: Additional Experiments
	Island-based Evolution Algorithm
	Can related tasks bootstrap search?
	Hyperparameter Sensitivity Analyses
	Varying and Samples
	Varying Samples

	Varying Reward Function Sparsity
	Alternative local structure sampling in MiGrATe?

	Appendix C: LLM Prompts
	Semantle: Task Prompt
	Semantle: Neighborhood Sampling Prompt
	Dockstring: Task Prompt
	Dockstring: Neighborhood Sampling Prompt
	ARC: Task Prompt
	ARC: Neighborhood Sampling Prompt
	DiscoveryBench: Task Prompt
	DiscoveryBench: Neighborhood Sampling Prompt

