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ABSTRACT

Large language models (LLMs) are increasingly being applied to black-box op-
timization tasks, from program synthesis to molecule design. Prior work typi-
cally leverages in-context learning to iteratively guide the model towards better
solutions. Such methods, however, often struggle to balance exploration of new
solution spaces with exploitation of high-reward ones. Recently, test-time train-
ing (TTT) with synthetic data has shown promise in improving solution quality.
However, the need for hand-crafted training data tailored to each task limits fea-
sibility and scalability across domains. To address this problem, we introduce
MIGRATE—a method for online TTT that uses GRPO as a search algorithm to
adapt LLMs at inference without requiring external training data. MIGRATE op-
erates via a mixed-policy group construction procedure that combines on-policy
sampling with two off-policy data selection techniques: greedy sampling, which
selects top-performing past completions, and neighborhood sampling (NS), which
generates completions structurally similar to high-reward ones. Together, these
components bias the policy gradient towards exploiting promising regions in the
solution space, while preserving exploration through on-policy sampling. We
evaluate MIGRATE on four challenging domains—word search, molecule opti-
mization, hypothesis+program induction on the Abstraction and Reasoning Cor-
pus (ARC), and natural-language hypothesis search on DiscoveryBench—and find
that it consistently outperforms both inference-only and TTT baselines, demon-
strating the potential of online TTT as a solution for complex search tasks without
curated training data.

1 INTRODUCTION

Large language models (LLMs) have emerged as general-purpose tools for solving a wide range of
black-box optimization problems (Boiko et al., 2023; Ramos et al., 2023; Liu et al., 2024). These
models offer a flexible interface for generating candidate solutions, both in structured tasks, e.g.,
molecule design (Ranković & Schwaller, 2023; Kristiadi et al., 2024; Gruver et al., 2024), and un-
structured, natural-language tasks, e.g., scientific hypothesis generation (Lu et al., 2024; Majumder
et al., 2025; Agarwal et al., 2025b).

Recent work has shown that in-context learning (ICL) (Brown et al., 2020) can effectively be used to
steer LLMs toward higher-quality outputs in such tasks (Meyerson et al., 2023; Yang et al., 2024b;
Agarwal et al., 2025a). However, ICL alone lacks a principled mechanism to balance exploration
of novel solution areas with exploitation of known high-reward ones (Krishnamurthy et al., 2024)
based on simply injecting a history of candidates in-context. Without this balance, the model may
either get trapped in local optima or waste sampling budget on unpromising regions of the solution
space.

To improve LLM-based search, recent methods have explored test-time training (TTT) (Sun et al.,
2020; Hardt & Sun, 2024)—a paradigm inspired from the human ability to generalize from a few
examples (Yu et al., 2025a), in which the LLM is adapted at inference time for a specific prob-
lem instance before sampling a set of candidate solutions to evaluate. Similarly, some works have
explored the use of off-policy reinforcement learning to efficiently learn suitable sampling distri-
butions (Levine et al., 2020; Yan et al., 2025). However, these approaches either rely on carefully
hand-crafted, task-specific data generation strategies or assume availability of expert demonstration
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Figure 1: Overview of MIGRATE. Given a search problem, MIGRATE iteratively searches for op-
timal solutions by sampling candidates and updating its policy model πt

θ using mixed-policy GRPO.
In each iteration, we combine online samples (•) from the current policy distribution, top-performing
past solutions (⋆) as greedy references, and samples drawn from the neighborhoods of greedy solu-
tions (◦) to form a GRPO group. The resulting group is used to update πt

θ and migrate towards a
sampling distribution that is likely to generate higher-quality solutions according to f(·).

data (Akyürek et al., 2025; Li et al., 2024), both of which limit the generality and scalability of such
solutions.

To address these shortcomings, we cast search as an online reinforcement learning problem and
leverage group relative policy optimization (GRPO) (Shao et al., 2024) to iteratively find promising
regions of the search space, balancing exploration and exploitation. We, thus, propose MIGRATE
(Mixed-policy GRPO for Adaptation at Test-Time), a method for online TTT that enables adaptive
search with LLMs without requiring any external, handcrafted training data. Our method combines:

1. On-policy sampling, which ensures continual exploration of the solution space,

2. Greedy sampling, which reuses top-performing past completions to exploit known high-
reward regions, and

3. Neighborhood sampling (NS), which generates structurally similar variants of high-reward
completions to facilitate local exploration.

Crucially, all components in MIGRATE use only model-generated signals, eliminating the need
for any external training data. We perform experiments on four challenging domains with diverse
solution spaces and reward functions—word search, molecule optimization, hypothesis+program
induction using the Abstraction and Reasoning Corpus (ARC) (Chollet, 2019), and data-driven dis-
covery using DiscoveryBench (Majumder et al., 2025). Across all domains, we find that MIGRATE
outperforms both inference-only and TTT baselines, demonstrating the effectiveness of lightweight
parameter updates, using online TTT with mixed-policy guidance, in providing a generic approach
to LLM-based black-box optimization.

To summarize, our main contributions are as follows:

• We introduce MIGRATE, a method to search for optimal solutions with LLMs using an online
test-time training (TTT) algorithm without external demonstrations.

• We propose a mixed-policy group construction strategy that combines on-policy sampling with
two novel off-policy techniques—greedy sampling and neighborhood sampling.

• We conduct comprehensive experiments across four diverse domains, showing that MIGRATE
outperforms both inference-only and TTT baselines in complex black-box optimization tasks.

2 RELATED WORK

Test-time training. Test-time training (TTT) aims to improve model performance on distribution
shifts by updating models at inference. Sun et al. (2020) introduced TTT using a self-supervised
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objective on images to adapt network weights at test time. Hardt & Sun (2024) demonstrate that fine-
tuning LLMs on data closely related to each test prompt can yield large accuracy gains, extending
TTT to reasoning tasks. Hübotter et al. (2025) show that nearest-neighbor retrieval for test-time fine-
tuning often wastes effort on redundant examples, and instead propose an active-learning method
that chooses maximally informative examples to reduce model uncertainty.

Local-structure methods. Instance-based learning (or “local learning”) (Atkeson et al., 1997) is
a common framework in machine learning where local structure is exploited around a test point to
improve model accuracy, e.g., locally-weighted regression (Cleveland, 1979). In modern practice,
this manifests as retrieving nearest-neighbor examples to guide adaptation, referred to as retrieval-
augmented generation (RAG) or case-based reasoning (CBR) (Lewis et al., 2020; Das et al., 2021;
Thai et al., 2023; Agarwal et al., 2024). In reinforcement learning, local policy search methods (e.g.,
off-policy local improvements, trust-region updates) behave like hill-climbers in the policy space.

Evolutionary computation. EvoTune (Surina et al., 2025) uses an LLM as a policy-generating
operator in an evolutionary loop, then applies RL fine-tuning to iteratively improve it. AlphaEvolve
(Novikov et al., 2025) similarly creates an agent that uses multiple LLMs and automated evaluators
to propose and refine codebases via an evolutionary framework. FunSearch (Romera-Paredes et al.,
2024) pairs a pre-trained LLM with an automated evaluator and repeatedly samples and scores code
functions, effectively evolving programs to solve mathematical problems. In these systems, the
“population” of programs or policies evolves over generations, often via an islands model or parallel
ensembles, to avoid local traps.

RLVR. Reinforcement Learning with Verifiable Rewards (RLVR) (Lambert et al., 2025;
DeepSeek-AI et al., 2025) is an approach for fine-tuning LLMs using RL guided by ground-truth
reward functions, in contrast to typical RL-based methods that rely on learned or heuristic-based
reward functions, which can introduce ambiguity. In mathematics and code generation, these re-
wards are determined by correctness, such as matching a ground-truth solution or passing unit tests
(Lambert et al., 2025; DeepSeek-AI et al., 2025; Team et al., 2025). Recently, RLVR has been
instrumental in developing reasoning-based LLMs such as OpenAI-o1 (OpenAI et al., 2024) and
DeepSeek-R1 (DeepSeek-AI et al., 2025).

3 BACKGROUND

GRPO. Group relative policy optimization (Shao et al., 2024) is a reinforcement learning algo-
rithm used to fine-tune LLMs that replaces the value function in Proximal Policy Optimization
(PPO) training (Schulman et al., 2017) with an estimate derived from Monte Carlo samples instead.
In particular, in each iteration of training, GRPO constructs a group G of N completions, typically
sampled from the current model, and calculates the advantage for every completion as a relative
comparison to the group. Let πθold and πθ denote the model policies (LLM parameters, in our case)
before and after taking a gradient step. Given a task prompt PT and a set of completions sampled
from the current model {oi : oi ∼ πθold}Ni=1, the GRPO loss objective is defined as

LGRPO(θ) =−
1∑N

i=1 |oi|

N∑
i=1

|oi|∑
t=1

[
min

(
ri,t(θ)Âi,t, clip(ri,t(θ), 1− εlow, 1 + εhigh)Âi,t

)]
, (1)

where ri,t(θ) =
πθ(oi,t | PT , oi,<t)

πθold(oi,t | PT , oi,<t)
, and Âi,t = ri −mean({f(oi)}Ni=1)

are the policy ratio and advantage estimates, respectively, for each token in each completion, f(·) is
a reward function that provides a scalar score for each completion, clip(·, ·, ·) is a clipping function
to prevent large updates during optimization, and εlow/high are clipping hyperparameters.

On-, off-, and mixed-policy optimization. Typically, reinforcement learning (including GRPO)
operates in an on-policy manner, where new solutions are sampled using πθ (i.e., the policy being
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trained) to estimate the loss for the next training step. On the other hand, some works have argued
that on-policy training may constrain learning to only the capabilities of the base LLM itself, re-
sulting in echo chambers (Zhao et al., 2025; Yue et al., 2025) that prevent novel task generalization.
This problem is further exacerbated in the sparse reward scenario, where the base model is unable
to generate solutions that elicit non-zero reward, thus leading to degenerate policy gradients. To
address this, off-policy optimization (Levine et al., 2020) has been proposed as an effective strat-
egy that leverages previously collected expert demonstrations for training instead of online samples.
However, a purely offline strategy can result in learning policies that are unable to generalize at
inference time (Fujimoto et al., 2019; Kumar et al., 2019). Consequently, recent work (Yan et al.,
2025) shows that a combination of online and offline samples, called mixed-policy optimization, can
outperform either strategy used in isolation.

4 MIGRATE: METHODOLOGY

The focus in this work is on finding optimal solutions with respect to a black-box objective function
f(·) under a finite sampling budget B. To this end, we are interested in using GRPO as a search
algorithm, wherein a single example query is used as the input for a search task across multiple
sampling iterations. The goal, then, is to learn query-specific parameters that shift the model’s
sampling distribution iteratively, improving the quality of solutions that are generated.12

Overcoming sparse rewards in search. As described earlier, purely on-policy learning is often
unable to find an appropriate sampling distribution for a single query within a limited budget due to
sparse rewards, i.e., when solutions sampled from the current policy do not result in useful policy
gradients to make progress. At the same time, both off- and mixed-policy strategies require access
to known expert demonstrations, which we assume are not available in our setting. We, therefore,
present MIGRATE—a mixed-policy optimization strategy for GRPO that generates off-policy data
via (a) selecting high-performing solutions from the model’s own sampling history, and (b) sam-
pling variations from the neighborhoods of observed high-performing solutions. In each iteration,
MIGRATE “mixes” on- and off-policy samples to construct a group of completions G, which is then
used to compute the policy gradient with respect to the loss function in Equation 1. This process is
repeated until either the optimal solution is found or the sampling budget is exhausted.

4.1 MIXED-POLICY GROUP CONSTRUCTION FOR SEARCH

Given a search task T and a corresponding task prompt PT for the LLM, our goal is to construct
a new group Gt composed of N completions in each search iteration t to compute a policy gradi-
ent via GRPO. We introduce two off-policy data selection techniques—greedy and neighborhood
sampling (NS)—which we combine with on-policy sampling to generate test-time training data.
Intuitively, both techniques are designed to bias policy gradients to exploit known high-quality solu-
tions sampled thus far, while on-policy sampling encourages exploration. In experiments (§ 5), we
find that the simultaneous application of greedy and NS off-policy data selection (i.e., MIGRATE;
Algorithm 1) results in the best performance.

On-policy sampling. Let α (≤ N ) be the number of completions sampled from the current policy
model, i.e., at timestep t, we generate on-policy completions (or observations) Oonline := {oi : oi ∼
πt−1
θ (· | PT )}αi=1 using temperature-based ancestral sampling.

Greedy sampling. Let D be a database of completions, which may be composed both of any
candidate solutions available a priori as well as all attempts sampled from the model in previ-
ous search iterations. In greedy off-policy data selection, if D ̸= ∅, we sample β (≤ N ) known
completions from D that are high-quality. In particular, we first greedily select the top-k comple-
tions from D with respect to f(·) and then randomly sample β completions from the top-k, i.e.,

1This is in contrast to the more typical setting of training a generalizable model with multiple examples.
See the appendix for a complete description of modifications we incorporate from previous work beyond the
original formulation from Shao et al. (2024).

2Note that throughout this work, we use LoRA fine-tuning (Hu et al., 2022) instead of full-model training.
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Ogreedy := {oi : oi ∼ topkf (D)}βi=1, where topkf (D) returns the best-k completions from D with
respect to f .

Algorithm 1 Solution search with MIGRATE

Input: Task T , black-box function f , budget B
Parameters: GRPO group size N , α on-policy sam-
ples, β greedy samples, γ neighborhood samples
Output: Best solution obest

1: Initialize: Policy π0
θ ← LLM, task prompt PT ,

database D ← ∅, timestep t← 0, obest ← ∅
2: while |D| < B do
3: t← t+ 1
4: Oonline ← {oi : oi ∼ πt−1

θ (· | PT )}αi=1

5: Ogreedy ← {oi : oi ∼ topkf (D)}βi=1
6: PNS ← Build NS prompt using Ogreedy

7: ONS ← {oi : oi ∼ πt−1
θ (· | PNS)}γi=1

8: Gt ← Oonline ⊕Ogreedy ⊕ONS
9: D ← D ⊕Oonline ⊕ONS

10: obest ← argmaxoi∈D f(oi)
11: if obest is optimal then
12: return obest
13: end if
14: πt

θ ← Update using GRPO with Gt (Eq. 1)
15: end while
16: return obest

Neighborhood sampling. While greedy
sampling explicitly encourages the ex-
ploitation of high-quality samples, it lim-
its exploration of the solution space and is
prone to optimizing for local optima (Kr-
ishnamurthy et al., 2024; Agarwal et al.,
2025a). To mitigate this, we incorpo-
rate a complementary off-policy sampling
strategy grounded in a continuity assump-
tion—namely, that small variations in so-
lutions yield small changes in quality. This
assumption motivates exploration within
neighborhoods of known high-quality can-
didates by prompting the model to gen-
erate stochastic variations of greedy sam-
ples, thereby producing new solutions that
may both provide useful variations for bet-
ter policy gradients as well as solutions
that may outperform previous samples. In
practice, we construct a single neighbor-
hood sampling prompt PNS composed of
all β greedy samples along with an in-
struction to generate γ (≤ N ) solution
variations to construct ONS := {oi : oi ∼
πt−1
θ (· | PNS)}γi=1.

MIGRATE. To balance exploration and exploitation during test-time training with GRPO, MI-
GRATE integrates both off-policy techniques with on-policy sampling by combiningOonline,Ogreedy,
and ONS into a single group Gt, with the constraint that α + γ + β = N in each iteration 3 (see
Algorithm 1). We compute the loss on Gt with respect to the task prompt PT , irrespective of how the
sample was generated. While on-policy sampling encourages exploration of new solutions, greedy
sampling promotes exploitation by reusing high-quality completions from a running database, and
neighborhood sampling introduces structured exploration via local variations of the greedy samples.
Empirically, we find that this combination produces higher-quality search results than any single
strategy alone.

5 EXPERIMENTS

5.1 SEARCH TASKS

We evaluate MIGRATE by conducting experiments on four text-based search tasks—Semantle
(word search), Dockstring (molecule optimization), ARC (hypothesis + program search), and Dis-
coveryBench (data-driven hypothesis search).

Semantle. Semantle (Agarwal et al., 2025a) is a word-search task, where the goal is to identify
a held-out English word (e.g., “polyethylene”) within a limited number of guesses. The black-box
function used indicates how semantically close a guessed word is to the target, which is computed
using cosine similarities over SimCSE (Gao et al., 2021) embeddings, following prior work. Each
search problem is initialized with a warmstart set of 20 words (randomly sampled from the word2vec
index (Mikolov et al., 2013)) and corresponding black-box scores. We conduct evaluation using 10
hidden words and 5 warmstart sets for each of them, resulting in a total of 50 problem instances.

3We keep constant the number of new solutions sampled from the LLM for fair comparison with baselines.
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Dockstring. Garcı́a-Ortegón et al. (2022) provides a suite of challenging molecule optimization
tasks that reflect real-world problems in drug discovery. We focus on a multi-objective optimization
task: generating molecules, represented as SMILES strings (Weininger, 1988), that simultaneously
maximize druglikeness and binding affinity, quantified by QED (Bickerton et al., 2012) and nega-
tive Vina scores (Trott & Olson, 2010), respectively. We use a scalarized multi-objective black-box
function (Equation 2) that places a greater weight on Vina scores than QED, reflecting the com-
mon prioritization of binding affinity over druglikeness when evaluating a molecule’s drug efficacy
(Hughes et al., 2011; Wenlock et al., 2003). Following prior works (Yuksekgonul et al., 2024), we
run our evaluation with 58 pharmaceutically-relevant protein targets.

ARC. The Abstraction and Reasoning Corpus (ARC) (Chollet, 2019) is a benchmark of 400 grid-
based puzzles that involves inferring the transformation logic from a small set of input-output grid
pairs and applying it to a held-out test grid. Recent methods improve performance via data aug-
mentation with invertible transformations (Akyürek et al., 2025) or by combining program synthesis
with transductive strategies (Li et al., 2024). We take an inductive hypothesis + program search
approach (Wang et al., 2024), where natural language transformation algorithms are hypothesized
and translated into Python programs. We report two accuracy metrics: pass@2, which measures
whether any of the top-2 common outputs from the programs that solve the train set matches the test
grid, and oracle, which provides credit if any of the sampled programs solves the test grid. Note
that oracle accuracy reflects a coarse ability to find a distribution that can generate the correct solu-
tion. We follow prior work (Agarwal et al., 2025a) and use a Hamming-distance based black-box
function. 4

DiscoveryBench. DiscoveryBench (Majumder et al., 2025) is a benchmark to evaluate hypothesis
search ability in data-driven scientific discovery. It includes a set of discovery tasks extracted from
real-world scientific publications, each represented by a research query and a corresponding dataset,
aiming to find statistically verifiable natural-language hypotheses that can answer the given queries.
We assume oracle feedback in each iteration to help guide search (akin to feedback from a human
researcher) using a scalar score representing the degree to which a generated hypothesis matches
the gold hypothesis using a Beta belief distribution elicited from an LLM (Agarwal et al., 2025b).
We evaluate performance using both the belief-based black-box function (average belief and % of
queries where the belief was maximized) as well as the hypothesis match score (HMS) from Ma-
jumder et al. (2025), which provides an LLM-judge evaluation of hypotheses based on contexts,
variables, and relationships. Additionally, our analyses found that the HMS tends to score hypothe-
ses with even minor deviation from the gold context as zeros. Therefore, we introduce HMS-ρ, a
relaxation of HMS that allows an LLM to provide partial scores for the context, i.e., {0, 0.5, 1.0}
instead of {0, 1} only, in order to lend graded improvement information.

5.2 BASELINES

Inference-only. We evaluate three inference-only sampling strategies (Random, NS, and OPRO)
for Semantle, Dockstring, and ARC, and use Reflexion (following Majumder et al. (2025)) as the
baseline for DiscoveryBench:

• Random, which generates completions by sampling from the base model using the task prompt.

• Neighborhood Sampling (NS), which samples completions from a prompt that includes top-
performing solutions from previous iterations to encourage local exploration.

• OPRO (Yang et al., 2024b), which generates completions using a prompt that builds a trajectory
of top-performing solutions as a textual gradient to discover improved solutions.

• Reflexion (Shinn et al., 2024), which iteratively improves LLM performance by generating
natural-language feedback (“self-reflection”) using solutions from past iterations.

Test-time training. Beyond inference-only methods, we evaluate three variants of our GRPO-
based test-time training (TTT) approach:

4Due to hardware limitations, we truncate prompts at 2048 tokens in all experiments. As a result, only 200
out of 400 tasks in ARC-Full could be evaluated with their full context.
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Figure 2: Best-so-far performance results. (a) On Semantle, MIGRATE outperforms all baselines,
improving the second-best (NS) by 25%. (b) In Dockstring, MIGRATE surpasses baselines after 50
proposals. (c) On ARC, MIGRATE solves more tasks than baselines at the full budget. (d) On
DiscoveryBench, MIGRATE outperforms Reflexion after 65 experiments.

• GRPO is the base algorithm, using a fixed task prompt and sampling N on-policy completions
from the model as it is being trained (i.e., α = N , β = 0, γ = 0).

• GRPO-Greedy augments GRPO by using greedy off-policy sampling to select β previous com-
pletions to place in the group at each iteration (i.e., α, β > 0 and γ = 0).

• MIGRATE is our full method, combining on-policy exploration, greedy sampling of top com-
pletions, and neighborhood sampling for local exploration (i.e., each of α, β, γ > 0).

We provide complete details of our experimental settings in Appendix A.1, including the values used
for α, β, and γ for different tasks, and sensitivity analyses of these choices in Appendix B.3.

Additional baselines. We also evaluate MIGRATE (OPRO), a variant of MIGRATE that replaces
the neighborhood sampling (NS) prompt with the OPRO prompting strategy for local exploration
(Appendix B.4), as well as explore an alternative strategy for selectingOgreedy using an islands-based
evolutionary search method (Appendix B.1).

Models. Our main results on Semantle and Dockstring are presented using LLaMA-3.2-3B-
Instruct (AI@Meta, 2024). For ARC, we use LLaMA-3.1-ARC-Potpourri-Induction-8B (Li et al.,
2024), a fine-tuned version of LLaMA-3.1-8B-Instruct (AI@Meta, 2024) trained on synthetic
Python programs that solve ARC training tasks. The latter decision is driven by the bespoke na-
ture of the ARC challenge, where base models are entirely unable to generate valid solutions. For
DiscoveryBench, we use Qwen2.5-7B-Instruct (Yang et al., 2024a) for generating experiment plans
and GPT-5-nano (OpenAI, 2025) for the remainder of the agentic loop (code, reviews, and analy-
ses). We use Qwen2.5-7B-Instruct for belief elicitation during search, but report final accuracy using
GPT-4o (as in Majumder et al. (2025)).

6 RESULTS AND DISCUSSION

MIGRATE outperforms both inference-only and TTT baselines. Across tasks, we run each
method until either the correct solution is found or a pre-defined budget of solution candidates
is proposed and evaluated (1000 for Semantle, 200 for Dockstring, 1024 for ARC, and 200 for
DiscoveryBench). We report our results on each search task in Table 1 and provide a best-so-far plot
to trace search behavior across sampling budgets in Figure 2. We find that mixed-policy GRPO via
MIGRATE outperforms each inference-only baseline and TTT ablation.

On Semantle, MIGRATE outperforms baselines by ≥ 25 percentage points. As shown in Fig-
ure 2(a), across the 50 problem instances averaged over 3 repeat runs, MIGRATE surpasses
inference-only NS after 200 guesses (∼20 MIGRATE iterations), pointing to the effectiveness of
explicit gradient updates in finding sampling distributions with high-quality solutions versus in-
context optimization alone.

On Dockstring, Table 1 shows that MIGRATE synthesizes molecules with higher scalarized scores
(according to Equation 2), i.e., jointly optimizing for QED and Vina. Further, in Figure 2(b), we see
that MIGRATE outperforms all baselines on average after 50 molecule proposals. We also show the
search trace of different methods in Figure 3.
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Semantle Dockstring ARC

Method % Found QED (↑) Vina Score (↓) Overall Score (↑) Pass@2 (%) Oracle (%)

Random 2.00 ± 1.63 0.91 ± 0.00 −9.92 ± 0.15 0.73 ± 0.00 20.75 28.00
NS 45.30 ± 2.49 0.87 ± 0.01 −9.65 ± 0.21 0.71 ± 0.00 20.25 29.50
OPRO 40.70 ± 1.89 0.90 ± 0.00 −9.94 ± 0.06 0.74 ± 0.00 20.75 27.75
GRPO 10.00 ± 4.32 0.91 ± 0.00 −10.09 ± 0.05 0.73 ± 0.00 17.75 27.00
GRPO-Greedy 12.70 ± 0.94 0.90 ± 0.01 −10.80 ± 0.19 0.77 ± 0.00 21.00 30.00

MIGRATE 71.30 ± 4.11 0.90 ± 0.00 −11.00 ± 0.07 0.79 ± 0.00 22.25 30.00

DiscoveryBench

Method Belief % Found (Belief) HMS % Found (HMS) HMS-ρ % Found (HMS-ρ)

Reflexion 0.758 ± 0.022 17.00 ± 3.78 0.293 13.00 7.00 0.273
MIGRATE 0.795 ± 0.018 20.00 ± 4.13 0.285 11.00 13.00 0.268

Table 1: Search performance. Results are averaged over three random seeds for Semantle and
Dockstring, with standard deviations reported. For ARC and DiscoveryBench, we report using sin-
gle runs (due to expense) but report standard deviation via bootstrapping. Top-2 results in each
column are marked with bold and underline, respectively. MIGRATE outperforms on all but one
metric (QED) on Semantle, Dockstring, and ARC. On DiscoveryBench, MIGRATE finds hypothe-
ses that are more similar to the gold as measured by the belief-based black-box function and HMS-ρ,
while showing marginally lower performance using HMS.

On ARC, we report performance over a single run (due to hardware constraints), and report standard
deviation via bootstrapping. From Figure 2(c) and Table 1, we find that MIGRATE does outperform
baselines, though, with modest gains akin to behavior reported by prior work on LLM-based pro-
gram search. We do, however, find that MIGRATE solves all but two tasks also solved by baselines.

On DiscoveryBench, we evaluate 100 tasks from the test set, ensuring a balanced distribution of
domains and question types. The Reflexion baseline solves 44 queries, while MIGRATE solves 48,
crucially, without any natural language feedback. As shown in Figure 2(d), MIGRATE outperforms
Reflexion after proposing 65 experiment plans, which corresponds to 13 training iterations.

TTT methods produce qualitatively different solutions than inference-only methods. On Se-
mantle, across runs, we find that MIGRATE is the only method that is able to find all 10 hidden
words. Furthermore, we observe that only MIGRATE and its ablations are able to optimize for
certain words, e.g., “birthstone”, indicating an ability to effectively navigate the unique search land-
scape for this word. On Dockstring, as shown in Figure 3(a), we find that the optimization trajecto-
ries of the best-performing SMILES strings found using TTT methods (MIGRATE and its ablations)
show a distinct pattern that optimize for Vina scores more heavily than those from inference-only
methods, which prefer higher QED and are unable to synthesize molecules with lower than −10
kcal/mol Vina. While MIGRATE is indeed capable of generating molecules with high QED scores
(> 0.8), optimization prefers to reduce QED to below 0.3 in exchange for better Vina scores. This
also follows from the scalarized multi-objective function in Equation 2, which attaches a stronger
weight to Vina scores than QED. On DiscoveryBench, we observe that the lengths of experiment
plans from Reflexion monotonically increase over time, while plans from MIGRATE remain stable
on average (Figure 3(c)). Notably, the best plans are consistently shorter (<115 tokens), suggesting
MIGRATE is able to prioritize these during search.

What search behaviors are observed with MIGRATE? To understand this, we analyze the qual-
ity of samples generated by MIGRATE and compare them to those from the inference-only NS
baseline in Figure 4. More specifically, we measure the relative difference between the black-box
score of each solution sampled by both methods and the best-so-far performance when that solution
was sampled during optimization. We then compare the distributions of these differences between
the two methods. On Semantle and ARC, search with MIGRATE demonstrates the ability to it-
eratively improve upon its previously best-found solution in contrast to the behavior seen with the
inference-only strategy, which often samples solutions that show no improvement. In Dockstring, on
the other hand, we see MIGRATE produce a higher number of invalid molecules than inference-only
approaches, indicating broader exploration of the solution space, as also shown in Figure 3(a) and
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Figure 3: Search behaviors. (a) Vina and QED scores for best molecules found as search pro-
gresses. Each trace starts from 3 diverse fragments (acetamide, pentane, and benzene). (b) Distri-
bution of binding affinity and druglikeness for KDR target. MIGRATE explores a broader region
of chemical space, including low-affinity, low-druglikeness areas ignored by baselines. (c) Exper-
iments generated by Reflexion monotonically increase in token length with time, while those by
MIGRATE remain stable on average.
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Figure 4: Relative to the best-so-far. Percentage difference between samples from inference-only
NS and MIGRATE with their best-so-far scores during optimization. MIGRATE produces more
samples close to or above the best-so-far than NS. On Dockstring, though MIGRATE shows lower
performance on average (due to producing more invalid molecules), its outliers show larger gains in
performance than NS.

(b). We find that many of the proposed molecules are longer and more complex SMILES strings,
evidenced by a 44% increase in average length. Despite proposing more invalid molecules, however,
MIGRATE finds molecules that improve upon the best-so-far with larger improvements than with
inference-only.

7 CONCLUSION

We introduced MIGRATE, a method for online test-time training of LLMs that enables efficient
search in black-box optimization tasks without requiring handcrafted training data. By leveraging
Group Relative Policy Optimization (GRPO) along with a novel mixed-policy group construction
strategy—comprising on-policy, greedy, and neighborhood sampling—MIGRATE effectively bal-
ances exploration and exploitation. Our experiments across four text-based domains demonstrate
the efficacy of MIGRATE to improve LLM-based search. Future work may include scaling online
TTT to multi-step decision-making and integrating stronger uncertainty-aware acquisition strategies
to further improve sample efficiency.

8 REPRODUCIBILITY STATEMENT

We include the source code along with instructions to reproduce our experiments as part of the
supplementary material. We also provide the specific hyperparameters used in Appendix A.1.
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learning. https://github.com/huggingface/trl, 2020.

Ruocheng Wang, Eric Zelikman, Gabriel Poesia, Yewen Pu, Nick Haber, and Noah Goodman. Hy-
pothesis search: Inductive reasoning with language models. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
G7UtIGQmjm.

David Weininger. Smiles, a chemical language and information system. 1. introduction to method-
ology and encoding rules. Journal of chemical information and computer sciences, 28(1):31–36,
1988.

Mark C Wenlock, Rupert P Austin, Patrick Barton, Andrew M Davis, and Paul D Leeson. A com-
parison of physiochemical property profiles of development and marketed oral drugs. J. Med.
Chem., 46(7):1250–1256, March 2003.

Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang.
Learning to reason under off-policy guidance. arXiv preprint arXiv:2504.14945, 2025.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
technical report. arXiv preprint arXiv:2407.10671, 2024a.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Twelfth International Conference on Learning
Representations, 2024b. URL https://openreview.net/forum?id=Bb4VGOWELI.

Haizi Yu, Igor Mineyev, Lav R Varshney, and James A Evans. Learning from one and only one shot.
npj Artificial Intelligence, 1(1):13, 2025a.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi

16

https://arxiv.org/abs/2501.12599
https://aclanthology.org/2023.findings-emnlp.564/
https://github.com/huggingface/trl
https://openreview.net/forum?id=G7UtIGQmjm
https://openreview.net/forum?id=G7UtIGQmjm
https://openreview.net/forum?id=Bb4VGOWELI


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi
Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying
Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. Dapo: An open-
source llm reinforcement learning system at scale, 2025b. URL https://arxiv.org/abs/
2503.14476.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
inforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and
James Zou. Textgrad: Automatic” differentiation” via text. arXiv preprint arXiv:2406.07496,
2024.

Rosie Zhao, Alexandru Meterez, Sham Kakade, Cengiz Pehlevan, Samy Jelassi, and Eran Malach.
Echo chamber: Rl post-training amplifies behaviors learned in pretraining. arXiv preprint
arXiv:2504.07912, 2025.

17

https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2503.14476


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Hyperparameter Value
Model Llama 3.2 3B Instruct

Grattafiori et al. (2024)
Learning rate 1e-5
Group size 5
LoRA rank 64
LoRA alpha 16
Training steps 100
Iterations per step 2

GRPO [α, γ, β] [5, 0, 0]
GRPO-Greedy [α, γ, β] [4, 0, 1]
MIGRATE [α, γ, β] [0, 4, 1]

Table 2: MIGRATE hyperparameters for Semantle

A APPENDIX A

A.1 EXPERIMENTAL SETTINGS

Semantle. The black-box function we use is the cosine similarity of vector representations generated
using the SimCSE Gao et al. (2021) sentence embedding model, where the score for a proposed word
x for a hidden target word y is computed by comparing the embeddings for the sequences ”What is
a {x}?” and ”What is a {y}?”. The number of warmstart candidates is 20. Our main results with
NS and MIGRATE selectsOgreedy by uniformly sampling among the top-3 completions found so far
according to their black-box scores.

In MIGRATE, we execute GRPO for 100 generation steps where we sample a batch of 10 words in
each step for a total sampling budget of 1000 words. In each step, we sort the generated batch of
words by their scores and construct a group of 5 completions, each consisting of 2 words each. Each
completion is assigned the maximum score of the two words as its reward.

For the Random baseline, we sample 1000 words using the task prompt. For the NS baseline, we
sample 10 words using the NS prompt for 100 iterations. Similarly, for the OPRO baseline, we also
sample 10 words using the OPRO prompt for 100 iterations. We provide, in-context, the top-10
words found so far for every OPRO-based method.

Dockstring. The black-box function we use is a linear function of the binding affinity (Vina) and
druglikeness (QED). We use RDKit’s MolFromSmiles to sanitize a given generated SMILES string.
If this process fails due to an invalid format structure or molecule, we assign the generated molecule
a score of 0. If the molecule is valid, we compute the QED and Vina scores on the given protein
target. We then compute the overall score of these two metrics as follows:

soverall(molecule, protein) = 1−N (Vina(molecule, protein) + (1− QED(molecule)) (2)

Where N denotes min-max normalization to the range [0,1]. The QED score is bounded between 0
and 1, and we assume the Vina score to be between 0 and -13.0 kcal/mol. In practice, the binding
affinity is a much higher priority than the druglikeness. Given our equation and the value ranges for
computing soverall, our black-fox function accurately emphasizes the Vina score about 10 times more
than the QED score.

For the Random baseline, we sample 200 molecules using the task prompt. For the NS baseline, we
sample 3 molecules using the task prompt and 2 molecules using the NS prompt in each iteration
for 40 iterations. We select Ogreedy from the top-1 molecule found so far in NS and MIGRATE. For
the OPRO baseline, we sample 5 molecules using the OPRO prompt for 40 iterations. We provide,
in-context, the top-5 molecules proposed so far for every OPRO-based method.
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Hyperparameter Value
Model Llama 3.2 3B Instruct

Grattafiori et al. (2024)
Learning rate 5e-5
Group size 5
LoRA rank 64
LoRA alpha 16
Training steps 40
Iterations per step 1

GRPO [α, γ, β] [5, 0, 0]
GRPO-Greedy [α, γ, β] [4, 0, 1]
MIGRATE [α, γ, β] [2, 2, 1]

Table 3: MIGRATE hyperparameters for Dockstring

Hyperparameter Value
Model BARC Li et al. (2024)
Learning rate 1e-5
Group size 16
LoRA rank 128
LoRA alpha 32
Training steps 64
Iterations per step 1

GRPO [α, γ, β] [16, 0, 0]
GRPO-Greedy [α, γ, β] [15, 0, 1]
MIGRATE [α, γ, β] [11, 4, 1]

Table 4: MIGRATE hyperparameters for ARC

ARC. The black-box function we use is a hamming-distance based metric. We run all input grids
with the sampled program and compute the proportion of cells in the ground-truth grid that matches
the output grid. We assign a reward of 0 if the program does not terminate within 10 seconds of
execution. During training, the reward is given by averaging the score across all training input grids
of the given ARC task. If the output grid is larger than the ground-truth, then we assign a score of 0.

For the Random baseline, we sample 1024 programs using the task prompt. For the NS baseline, we
sample 12 programs using the task prompt and 4 programs using the NS prompt for 64 iterations.
We note that this Random baseline is equivalent to the main evaluations ran by Li et al. Additionally,
our TTT baselines on ARC in the inductive setting are not an entirely fair comparison to prior works
that do TTT in the transductive setting. We select Ogreedy as the top-1 program found so far for
both NS and MIGRATE. Similarly, for the OPRO baseline, we sample 12 programs using the task
prompt and 4 programs using the OPRO prompt for 64 iterations. Due to hardware limitations and to
maintain a fair comparison with MIGRATE, we only provide one program in-context for the OPRO
prompt.

Discoverybench. The main black-box function we use is a belief-based score which represents the
extent a model believes a generated hypothesis matches the gold hypothesis. In our implementation,
we create a Beta belief distribution from 10 samples from a base Qwen 2.5 7B-Instruct model Yang
et al. (2024a). We observed that using the Qwen model for this task performed similarly to sampling
from GPT-4o OpenAI et al. (2024).
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Hyperparameter Value
Model Qwen 2.5 7B Instruct Yang et al. (2024a)
Learning rate 1e-5
Group size 5
LoRA rank 128
LoRA alpha 32
Training steps 40
Iterations per step 2

MIGRATE [α, γ, β] [2, 2, 1]

Table 5: MIGRATE hyperparameters for Discoverybench

A.2 GRPO FORMULATION

We remove the KL term in the original GRPO objective. Following DAPO Yu et al. (2025b), we
utilize token-level normalization, which assigns more balanced rewards to individually generated
tokens—alleviating the bias towards longer responses. We also set εlow = 0.2 and εlow = 0.28
which DAPO finds to promote exploration of low-probability tokens that perform well. Dr. GRPO
Liu et al. (2025) also divides the sum of loss by a constant instead of the total sequence length
to completely remove any completion length bias. Although we did not use this formulation in
our experiments, there should be no substantial differences since there is not high variability in the
solution lengths in the domains we studied. Following Dr. GRPO, we do not scale the advantage by
the standard deviation of the group’s rewards. By doing so, we avoid biasing weight optimization on
groups that perform extremely well or poorly on a given prompt. While our online prompt always
remains constant, this bias is relevant for our NS prompt which can vary across iterations.

A.3 COMPUTATIONAL RESOURCES

All experiments were conducted on a cluster of NVIDIA GPUs. We utilize a mixture of A100 (40GB
and 80GB), L40S, and A40 GPUs. TTT methods on ARC-Full were only ran with A100 (80GB)
GPUs due to the higher memory requirements. Our implementation of MIGRATE is based on the
TRL 0.19.0 implementation of GRPO from Hugging Face von Werra et al. (2020). We also utilize
Unsloth Daniel Han & team (2023) and vLLM Kwon et al. (2023) to enable higher inferencing
throughput and lower memory usage. The average runtime for MIGRATE on each Semantle prob-
lem was 93 seconds on an A100 GPU. The average runtime for MIGRATE across all GPU types on
each molecule optimization task was 7.5 minutes. The average runtime for MIGRATE on each ARC
task with early stopping is 51 minutes on an A100 GPU. The average runtime for MIGRATE on each
DiscoveryBench query with early stopping is 61 minutes across all of the mentioned devices.

B APPENDIX B: ADDITIONAL EXPERIMENTS

B.1 ISLAND-BASED EVOLUTION ALGORITHM

We implement an island-based evoluationary algorithm as an alterative to top-k for selectingOgreedy.
We created a database inspired by Ellenberg et al. (2025) to store generated solutions and sample
them for constructing neighborhood sampling. The island model organizes the solutions into isolated
islands of solutions that are evolved independently.

At every training step, we iterate to another “island” in the database in a cyclic order. We then
sample a solution stored at this island to construct our neighborhood sampling prompt. We note
that unlike prior works Ellenberg et al. (2025); Surina et al. (2025) we do not construct additional
subclusters of solutions within each island. This was done due to the low sampling constraints of
our experiments but can also be seen as using a single cluster per island. Sampling from an island is
carried out by an exploitation strategy with probability p and an exploration strategy with probability
1 − p. With the exploitation strategy, we randomly select a top solutions on the island that is also
considered a globally top-k solution across all islands. If the island does not have a solution that is in
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the top-k solution for all islands then we fall back on the exploration strategy. With the exploration
strategy, we randomly select among the top solutions on the island that are not one of the globally
top-k solutions.

We periodically migrate a percentage of the top-performing solutions from each island to their neigh-
boring islands according to a ring topology. This maintains a balance of exploring diverse solutions
in isolation and preventing the algorithm from spending too much time on low-performing solutions.

We conduct a comparison of using NS and MIGRATE with three different strategies for selecting the
solution to sample neighbors from: Top-1, Top-3, and Evolution. For each of these configurations
we use 10 neighborhood samples, 0 online samples, and 0 greedy samples. Fig. 5 shows that Top-3
outperforms Top-1 and that using our evolution-based strategy outperforms Top-3 in both NS and
MIGRATE methods. While Top-3 shows the better initial gains in both NS and MIGRATE, the
evolution-based strategy narrowly outperforms it by 1000 samples. Much like our other results in
Table. 1, we also observe that the MIGRATE equivalent of each NS variation performs better –
reinforcing the pattern that TTT improves search performance.

0 200 400 600 800 1000

Words Guessed

0%

10%

20%

30%

40%

50%

60%

70%

80%

%
F

ou
nd

NS (Top-1)

NS (Top-3)

NS (Evolution)

MiGrATe (Top-1)

MiGrATe (Top-3)

MiGrATe (Evolution)

Figure 5: Comparing selection methods for NS. Evolution-based selection shows slower initial
gains but results in more consistent improvements than using a top-k sampling strategy–resulting in
better final performances.

B.2 CAN RELATED TASKS BOOTSTRAP SEARCH?

We investigate whether fine-tuned weights from TTT can generalize to other tasks. After running
MIGRATE on every task, we perform TTT again on unsolved tasks and bootstrap the method with
the learned weights of its “nearest” solved task.

In this experiment, we attempt to solve ARC tasks that were not solved by MIGRATE. For each
unsolved task, we determine its “nearest” solved task by evaluating this task using the solution
program from every solved task. We pass the training inputs of the unsolved task into each program
and determine the nearest solved task to be the one whose solution program achieve the highest
reward from our hamming distance-based reward function.

Once the nearest solved task is identified, we use its fine-tuned weights from MIGRATE as the
initializing point for solving the unsolved task. This procedure aims to transfer inductive biases
that may have been learned from structurally similar tasks, enabling the model to efficiently explore
more viable programs on the unsolved task. This tests whether there is an advantage to initializing
search via TTT from a more informed starting point on problems where starting with the base model
fails.

We see marginal improvements from bootstrapping search with learned weights from MIGRATE.
Fig. 6 shows that initializing Random Sampling and MIGRATE with the nearest solved task’s
weights allowed each respective method to solve tasks that were initially unsolvable by the base
model. Notably, bootstrapping Random Sampling with nearest weights was able to solve more tasks
than executing MIGRATE on the base model.
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Figure 6: Bootstrapping with nearest weights on ARC-Full. Bootstrapping Random and MI-
GRATE with initial weights learned from one round of MIGRATE shows slight improvement on
total tasks solved.
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(b) Dockstring
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Figure 7: Varying α and γ. We vary the number of online and NS samples per group in MIGRATE.
(a) On Semantle, we found that the strategy of using no online samples to be the most successful
by a significant margin. (b) On Dockstring, we found that using only NS samples yield better
performances at smaller budgets and a configuration of equal amounts of online and NS samples to
achieve the best final performance. (c) On ARC-Small, we found the mixed configuration of α = 11
and γ = 4 to perform the best.

B.3 SENSITIVITY ANALYSES

B.3.1 VARYING α AND γ SAMPLES

We conduct experiments on Semantle, Dockstring, and ARC-Small to investigate the tradeoff in-
volved in varying the ratio of online to neighborhood samples within a GRPO group in MIGRATE.
ARC-Small is a subset consisting of 54 tasks with grids up to a maximum of 64 cells, created to
measure variance across search methods via repeat runs.5

Throughout these experiments, we fix the number of greedy samples at β = 1. The results in Fig. 7
reveals that the optimal configuration of online sand NS samples vary across domains. Particu-
larly, Semantle benefits from more NS samples, Dockstring performs the best with an equal ratio
of samples, while ARC prefers a higher proportion of online samples. These results highlights the
importanced of tuning α and γ when applying MIGRATE to different domains.

B.3.2 VARYING β SAMPLES

We explore varying the number of greedy samples on Semantle. In these experiments, we run
MIGRATE with α = 0 onlines amples, β greedy samples, and N − β neighborhood sampless. As

5Note that we ensure ARC-Small maintains the same difficulty distribution as ARC-Full.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000

Words Guessed

0%

10%

20%

30%

40%

50%

60%

70%

80%

%
F

ou
nd

MiGrATe (β = 0)

MiGrATe (β = 1)

MiGrATe (β = 5)

MiGrATe (β = 10)

(a) Semantle

0 200 400 600 800 1000

Programs Sampled

0%

10%

20%

30%

40%

50%

S
ol

ve
R

at
e

MiGrATe (α = 16, γ = 0)

MiGrATe (α = 15, γ = 1)

MiGrATe (α = 8, β = 8)

MiGrATe (α = 1, β = 15)

(b) ARC-Small

Figure 8: Comparing β on Semantle and ARC. MIGRATE shows a bias towards smaller β for
better performance on Semantle and ARC-Small.

shown in Fig. 8a, performance remains relatively similar over β = 0, 1, 5, 10 with a small trend
of better performance with smaller β. In tandem with the results on varying γ, this supports the
potential of more off-policy methods of performing TTT with GRPO.

Semantle Dockstring

Method % Found QED (↑) Vina Score (↓) Overall Score (↑)

NS 45.30± 2.49 0.87± 0.01 −9.65± 0.21 0.71± 0.00
OPRO 40.70± 1.89 0.90± 0.00 −9.94± 0.06 0.74± 0.00

MIGRATE 71.30 ± 4.11 0.90 ± 0.00 −11.00 ± 0.07 0.79 ± 0.00
MIGRATE (OPRO) 65.3%± 2.49 0.90 ± 0.00 −10.80± 0.10 0.78± 0.00

ARC-Small

Method Pass@2 (%) Oracle (%)

NS 48.15± 0.00 55.56± 1.51
OPRO 50.62± 1.75 59.26± 0.00

MIGRATE 51.23 ± 3.49 62.35 ± 0.87
MIGRATE (OPRO) 44.44%± 3.02 55.56± 0.04

Table 6: Comparing Prompt Optimization Techniques. We compare the inference-only and MI-
GRATE (TTT) performance of different prompt optimization techniques. All results are averaged
over three random seeds, with the standard deviation reported. The best result in each column is
marked in bold and the second best result is underlined. MIGRATE achieves the best performance
across all metrics and ties with MIGRATE (OPRO) on optimizing QED for Dockstring. Notably,
OPRO beats NS in every metric with the exception of accuracy on Semantle.

0 200 400 600 800 1000

Words Guessed

0%

10%

20%

30%

40%

50%

60%

70%

80%

%
F

ou
nd

NS

OPRO

MiGrATe

MiGrATe (OPRO)

(a) Semantle

0 25 50 75 100 125 150 175 200

Molecules Proposed

0.3

0.4

0.5

0.6

0.7

0.8

S
ca

la
ri

ze
d

O
ve

ra
ll

S
co

re
(↑

)

NS

OPRO

MiGrATe

MiGrATe (OPRO)

(b) Dockstring

0 200 400 600 800 1000

Programs Sampled

0%

10%

20%

30%

40%

50%

S
ol

ve
R

at
e

NS

OPRO

MiGrATe

MiGrATe (OPRO)

(c) ARC-Small

Figure 9: Comparing Prompt Optimization Techniques. MIGRATE (OPRO) shows similar per-
formance to MIGRATE on Semantle and Dockstring and noticeably worse performance on ARC-
Small.
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Figure 10: QED and Vina Score plots for Dockstring.

B.4 ALTERNATIVE LOCAL STRUCTURE SAMPLING IN MIGRATE?

We experiment with the alternative of using OPRO in place of neighborhood sampling (NS) in
MIGRATE. Our results in Table. 6 and Fig. 9 show similar results between MIGRATE and MI-
GRATE (OPRO) on Dockstring and more favorable results towards MIGRATE on Semantle and
ARC-Small. Compared to other baselines in Table 1, MIGRATE (OPRO) only underperforms rel-
ative to MIGRATE on Semantle and Dockstring. Notably, on ARC-Small, incorporating TTT into
OPRO substantially degrades performance compared to inference-only OPRO. We also observe that
OPRO achieves better performance than NS across most metrics. The varying performance of MI-
GRATE (OPRO) across domains suggests that NS is more compatible than OPRO with MIGRATE.
In addition, the greater improvement achieved by using NS over OPRO suggests that the NS strat-
egy of generating diverse variations may be better suited to TTT than OPRO, which focuses more
on direct improvement of previous solutions.
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C APPENDIX C: LLM PROMPTS

C.1 SEMANTLE: TASK PROMPT

Your task is to guess a hidden word from the English
dictionary. Stick to proper, single-word English words.
Now, guess exactly n=%s new word(s) that could be the
hidden word. Be creative! (Note: give only a list of word(s)
in the provided JSON format, e.g. "response": ["word1",
"word2",...])

C.2 SEMANTLE: NEIGHBORHOOD SAMPLING PROMPT

Your task is to guess words related to a word from the
English dictionary. Stick to proper, single-word English
words. Now, guess exactly n=%s new word(s) that could be
related to the word(s):

Word: %s

Be creative! (Note: give only a list of word(s) in
the provided JSON format, e.g. "response": ["word1",
"word2",...])

C.3 DOCKSTRING: TASK PROMPT

Your task is to find the optimal drug molecule that has
both a high druglikeness (QED) as well as a strong binding
affinity (vina) with the protein %s. For docking, lower
is better (less than --10 is considered good) and for
druglikeness, 1 is the best and 0 is the worst (greater
than 0.8 is considered good). While both properties are
important, the docking score is 10 times as important as the
druglikeness score. If you propose an invalid molecule or
make a repeat guess, you will get no score, so stick to valid
SMILES strings.

Now, guess exactly n=%s new molecule(s).

(Note: give only a list of SMILES string(s) in the provided
JSON format, e.g. "response": ["SMILES1", "SMILES2", ...])

C.4 DOCKSTRING: NEIGHBORHOOD SAMPLING PROMPT

Your task is to find the optimal drug molecule that has
both a high druglikeness (QED) as well as a strong binding
affinity (vina) with the protein %s. For docking, lower
is better (less than --10 is considered good) and for
druglikeness, 1 is the best and 0 is the worst (greater
than 0.8 is considered good). While both properties are
important, the docking score is 10 times as important as the
druglikeness score. If you propose an invalid molecule or
make a repeat guess, you will get no score, so stick to valid
SMILES strings!
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Here is my guess for a molecule:
SMILES: %s

Now, guess exactly n=%s new variation(s) of my molecule that
could improve the scores to reach the optimal molecule.

(Note: give only a list of SMILES string(s) in the provided
JSON format, e.g. "response": ["SMILES1", "SMILES2", ...])

C.5 ARC: TASK PROMPT

Given input-output grid pairs as reference examples,
carefully observe the patterns to predict the output grid
for new test input. Each pair follows the same transformation
rule. Grids are 2D arrays represented as strings, with cells
(colors) separated by spaces and rows by newlines. Here are
the input and output grids for the reference examples:

Example 1:
Input:
[[1,1,1,...,1]]
Output:
[[2,2,2,...,2]]

Example 2:
Input:
[[2,2,2,...,2]]
Output:
[[3,3,3,...,3]]

...

Here is the input grid for the test example:
Input:
[[3,3,3,...,3]]

Write a Python function ‘transform‘ that can convert any
given input grid to its corresponding output grid based on
the pattern observed in the reference examples.

C.6 ARC: NEIGHBORHOOD SAMPLING PROMPT

Given input-output grid pairs as reference examples,
carefully observe the patterns to predict the output grid
for new test input. Each pair follows the same transformation
rule. Grids are 2D arrays represented as strings, with cells
(colors) separated by spaces and rows by newlines.

Here are the input and output grids for the reference
examples:

Example 1:
Input:
[[1,1,1,...,1]]
Output:
[[2,2,2,...,2]]

...

Here is the input grid for the test example:

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Input:
[[3,3,3,...,3]]

The goal is to write a Python function ‘transform‘ that can
convert any given input grid to its corresponding output
grid based on the pattern observed in the reference examples.

Here is my guess for the function:
‘‘‘python
def transform(input: np.ndarray) -> np.ndarray:

# Code
‘‘‘

Provide a variation of my guess that could be the correct
answer.

C.7 DISCOVERYBENCH: TASK PROMPT

You are a research scientist who is interested in data-driven
research using the provided dataset(s) and query. Be creative
and think of an interesting new experiment to help answer
the provided scientific query. Explain in natural language
the experiment plan that the programmer should follow (do not
provide the code yourself). Here are a few instructions that
you must follow:

1. Strictly use only the dataset(s) provided and do not
simulate dummy/synthetic data or columns that cannot be
derived from the existing columns.

2. The experiment plan should be creative, independent, and
self-contained.

3. Use the prior experiments (if any) as inspiration to think
of an interesting and creative new experiment. However, do
not repeat the same experiments.

Here is a possible approach to coming up with a new
experiment plan:

1. Find an interesting context: this could be a specific
subset of the data. E.g., if the dataset has multiple
categorical variables, you could split the data based on
specific values of such variables, which would then allow
you to validate a hypothesis in the specific contexts defined
by the values of those variables.

2. Find interesting variables: these could be the columns
in the dataset that you find interesting or relevant to the
context. You are allowed and encouraged to create composite
variables derived from the existing variables.

3. Find interesting relationships: these are interactions
between the variables that you find interesting or relevant
to the context. You are encouraged to propose experiments
involving complex predictive or causal models.

4. You must require that your proposed experiment plan is
based on robust statistical tests. Remember, your programmer
can install python packages via pip which can allow it to
write code for complex statistical analyses.
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5. Multiple datasets: If you are provided with more than one
dataset, then try to also propose an experiment that utilize
contexts, variables, and relationships across datasets, e.g.,
this may involve using join or similar operations.

"Generally, in typical data-driven research, you will need
to explore and visualize the data for possible high-level
insights, clean, transform, or derive new variables from the
dataset to be suited for the investigation, deep-dive into
specific parts of the data for fine-grained analysis, perform
data modeling, and run statistical tests.

Examples of valid experiment plans:

Experiment plan #1:

1. Merge the datasets offshore, immigration, and
native employment on the common columns ’year’ and ’beaind’.

2. Replace infinite values with NaNs and drop rows with NaNs
in any column.

3. Independent variables: ’iv offshoring 1’, ’penetration’

4. Fit the OLS regression modela

Experiment plan #2:

1. Chose BMI as dependent variable.

2. Time preference (independent) variables as ’DISSAVED’ and
’SAMESAVE’.

3. Fit an OLS regression model and returned the model
summary.

Plan an experiment to answer the question about the following
dataset.

{dataset metadata}
Now create exactly {n} new experiment plans that could
answer the scientific question. Note: give only a list
of experiment plans in the provided JSON format, e.g.
{"response": ["experiment plan 1", "experiment plan 2", ...]})

C.8 DISCOVERYBENCH: NEIGHBORHOOD SAMPLING PROMPT

You are a research scientist who is interested in data-driven
research using the provided dataset(s) and query. Be creative
and think of an interesting new experiment to help answer
the provided scientific query. Explain in natural language
the experiment plan that the programmer should follow (do not
provide the code yourself). Here are a few instructions that
you must follow:

1. Strictly use only the dataset(s) provided and do not
simulate dummy/synthetic data or columns that cannot be
derived from the existing columns.

2. The experiment plan should be creative, independent, and
self-contained.
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3. Use the prior experiments (if any) as inspiration to think
of an interesting and creative new experiment. However, do
not repeat the same experiments.

Here is a possible approach to coming up with a new
experiment plan:

1. Find an interesting context: this could be a specific
subset of the data. E.g., if the dataset has multiple
categorical variables, you could split the data based on
specific values of such variables, which would then allow
you to validate a hypothesis in the specific contexts defined
by the values of those variables.

2. Find interesting variables: these could be the columns
in the dataset that you find interesting or relevant to the
context. You are allowed and encouraged to create composite
variables derived from the existing variables.

3. Find interesting relationships: these are interactions
between the variables that you find interesting or relevant
to the context. You are encouraged to propose experiments
involving complex predictive or causal models.

4. You must require that your proposed experiment plan is
based on robust statistical tests. Remember, your programmer
can install python packages via pip which can allow it to
write code for complex statistical analyses.

5. Multiple datasets: If you are provided with more than one
dataset, then try to also propose an experiment that utilize
contexts, variables, and relationships across datasets, e.g.,
this may involve using join or similar operations.

"Generally, in typical data-driven research, you will need
to explore and visualize the data for possible high-level
insights, clean, transform, or derive new variables from the
dataset to be suited for the investigation, deep-dive into
specific parts of the data for fine-grained analysis, perform
data modeling, and run statistical tests.

Examples of valid experiment plans:

Experiment plan #1:

1. Merge the datasets offshore, immigration, and
native employment on the common columns ’year’ and ’beaind’.

2. Replace infinite values with NaNs and drop rows with NaNs
in any column.

3. Independent variables: ’iv offshoring 1’, ’penetration’

4. Fit the OLS regression modela

Experiment plan #2:

1. Chose BMI as dependent variable.

2. Time preference (independent) variables as ’DISSAVED’ and
’SAMESAVE’.

3. Fit an OLS regression model and returned the model
summary.

Plan an experiment to answer the question about the following
dataset.
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{dataset metadata}
PRIOR EXPERIMENTS

Now create exactly {n} new experiment plans that could
answer the scientific question and are **similar** to the
prior experiments. Note: give only a list of experiment
plans in the provided JSON format, e.g. {"response":
["experiment plan 1", "experiment plan 2", ...]})
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