Under review as a conference paper at ICLR 2026

MIGRATE: MIXED-PoLICY GRPO FOR ADAPTATION
AT TEST-TIME

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) are increasingly being applied to black-box op-
timization tasks, from program synthesis to molecule design. Prior work typi-
cally leverages in-context learning to iteratively guide the model towards better
solutions. Such methods, however, often struggle to balance exploration of new
solution spaces with exploitation of high-reward ones. Recently, test-time train-
ing (TTT) with synthetic data has shown promise in improving solution quality.
However, the need for hand-crafted training data tailored to each task limits fea-
sibility and scalability across domains. To address this problem, we introduce
MIGRATE—a method for online TTT that uses GRPO as a search algorithm to
adapt LLMs at inference without requiring external training data. MIGRATE op-
erates via a mixed-policy group construction procedure that combines on-policy
sampling with two off-policy data selection techniques: greedy sampling, which
selects top-performing past completions, and neighborhood sampling (NS), which
generates completions structurally similar to high-reward ones. Together, these
components bias the policy gradient towards exploiting promising regions in the
solution space, while preserving exploration through on-policy sampling. We
evaluate MIGRATE on four challenging domains—word search, molecule opti-
mization, hypothesis+program induction on the Abstraction and Reasoning Cor-
pus (ARC), and natural-language hypothesis search on DiscoveryBench—and find
that it consistently outperforms both inference-only and TTT baselines, demon-
strating the potential of online TTT as a solution for complex search tasks without
curated training data.

1 INTRODUCTION

Large language models (LLMs) have emerged as general-purpose tools for solving a wide range of
black-box optimization problems (Boiko et al., 2023; [Ramos et al., 2023} [Liu et al., 2024). These
models offer a flexible interface for generating candidate solutions, both in structured tasks, e.g.,
molecule design (Rankovi¢ & Schwaller; [2023]; Kristiadi et al.l 2024} (Gruver et al.| [2024), and un-
structured, natural-language tasks, e.g., scientific hypothesis generation (Lu et al., 2024; Majumder
et al., [2025; |Agarwal et al., 2025b)).

Recent work has shown that in-context learning (ICL) (Brown et al.,|2020) can effectively be used to
steer LLMs toward higher-quality outputs in such tasks (Meyerson et al.,|2023} [Yang et al., [2024b;
Agarwal et all [2025a). However, ICL alone lacks a principled mechanism to balance exploration
of novel solution areas with exploitation of known high-reward ones (Krishnamurthy et al.| [2024)
based on simply injecting a history of candidates in-context. Without this balance, the model may
either get trapped in local optima or waste sampling budget on unpromising regions of the solution
space.

To improve LLM-based search, recent methods have explored test-time training (TTT) (Sun et al.,
2020; Hardt & Sun| 2024)—a paradigm inspired from the human ability to generalize from a few
examples (Yu et al., [2025a), in which the LLM is adapted at inference time for a specific prob-
lem instance before sampling a set of candidate solutions to evaluate. Similarly, some works have
explored the use of off-policy reinforcement learning to efficiently learn suitable sampling distri-
butions (Levine et al.l [2020; |Yan et al.| 2025). However, these approaches either rely on carefully
hand-crafted, task-specific data generation strategies or assume availability of expert demonstration

Under review as a conference paper at ICLR 2026

mo(- | “Generate a molecule with the highest docking score for the KDR protein.”)

y B A 4 . \
{ QT-) iﬂé-ls,/‘d,)\/O/\CL" 1‘/‘:f(j‘) —074)
Full Solution Space \

Figure 1: Overview of MIGRATE. Given a search problem, MIGRATE iteratively searches for op-
timal solutions by sampling candidates and updating its policy model 7}, using mixed-policy GRPO.
In each iteration, we combine online samples (o) from the current policy distribution, top-performing
past solutions (%) as greedy references, and samples drawn from the neighborhoods of greedy solu-
tions (o) to form a GRPO group. The resulting group is used to update 7}, and migrate towards a
sampling distribution that is likely to generate higher-quality solutions according to f(-).

data (Akytrek et al., 20255 [Li et al.,[2024), both of which limit the generality and scalability of such
solutions.

To address these shortcomings, we cast search as an online reinforcement learning problem and
leverage group relative policy optimization (GRPO) (Shao et al., 2024) to iteratively find promising
regions of the search space, balancing exploration and exploitation. In practice, this means itera-
tively optimizing a set of LoRA parameters added to a pre-trained LLM in order to improve the
instance-specific sampling distribution to generate better solutions. We, thus, propose MIGRATE
(Mixed-policy GRPO for Adaptation at Test-Time), a method for online TTT that enables adaptive
search with LLMs without requiring any external, handcrafted training data. Our method combines:

1. On-policy sampling, which ensures continual exploration of the solution space,

2. Greedy sampling, which reuses top-performing past completions to exploit known high-
reward regions, and

3. Neighborhood sampling (NS), which generates structurally similar variants of high-reward
completions to facilitate local exploration.

Crucially, all components in MIGRATE use only model-generated signals, eliminating the need
for any external training data. We perform experiments on four challenging domains with diverse
solution spaces and reward functions—word search, molecule optimization, hypothesis+program
induction using the Abstraction and Reasoning Corpus (ARC) (Chollet, [2019), and data-driven dis-
covery using DiscoveryBench (Majumder et al.,[2025)). Across all domains, we find that MIGRATE
outperforms both inference-only and TTT baselines, demonstrating the effectiveness of lightweight
parameter updates, using online TTT with mixed-policy guidance, in providing a generic approach
to LLM-based black-box optimization.

To summarize, our main contributions are as follows:

* We introduce MIGRATE, a method to search for optimal solutions with LLMs using an online
test-time training (TTT) algorithm without external demonstrations.

* We propose a mixed-policy group construction strategy that combines on-policy sampling with
two novel off-policy techniques—greedy sampling and neighborhood sampling.

* We conduct comprehensive experiments across four diverse domains, showing that MIGRATE
outperforms both inference-only and TTT baselines in complex black-box optimization tasks.

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Test-time training. Test-time training (TTT) aims to improve model performance on distribution
shifts by updating models at inference. Sun et al.| (2020) introduced TTT using a self-supervised
objective on images to adapt network weights at test time. [Hardt & Sun|(2024)) demonstrate that fine-
tuning LLMs on data closely related to each test prompt can yield large accuracy gains, extending
TTT to reasoning tasks. |Hiibotter et al. (2025) show that nearest-neighbor retrieval for test-time fine-
tuning often wastes effort on redundant examples, and instead propose an active-learning method
that chooses maximally informative examples to reduce model uncertainty.

Local-structure methods. Instance-based learning (or “local learning”) (Atkeson et al., [1997) is
a common framework in machine learning where local structure is exploited around a test point to
improve model accuracy, e.g., locally-weighted regression (Cleveland, |1979). In modern practice,
this manifests as retrieving nearest-neighbor examples to guide adaptation, referred to as retrieval-
augmented generation (RAG) or case-based reasoning (CBR) (Lewis et al., [2020; Das et al.| 2021}
Thai et al., 2023} |Agarwal et al.,|2024). In reinforcement learning, local policy search methods (e.g.,
off-policy local improvements, trust-region updates) behave like hill-climbers in the policy space.

Evolutionary computation. EvoTune (Surina et al.| [2025) uses an LLM as a policy-generating
operator in an evolutionary loop, then applies RL fine-tuning to iteratively improve it. AlphaEvolve
(Novikov et al.} 2025) similarly creates an agent that uses multiple LLMs and automated evaluators
to propose and refine codebases via an evolutionary framework. FunSearch (Romera-Paredes et al.,
2024) pairs a pre-trained LLM with an automated evaluator and repeatedly samples and scores code
functions, effectively evolving programs to solve mathematical problems. In these systems, the
“population” of programs or policies evolves over generations, often via an islands model or parallel
ensembles, to avoid local traps.

Bayesian optimization and LLMs. Bayesian optimization (BO) is an optimization approach that
consists of using a surrogate model and an acquisition function in an iterative process to optimize
some objective function. Recent works integrate LLMs at various stages of the BO process, leverag-
ing their semantic understanding and ability to encode information. LLAMBO (Liu et al.|[2024) uses
the natural language capabilities of LLMs to be surrogates for both parts of the BO framework by
having it generate and evaluate solution proposals. BOPRO (Agarwal et al.||[2025a)) embeds solutions
into a latent space and employs an acquisition function to adapt the proposal prompt for an LLM,
effectively steering the the model towards promising regions in the solution space. InstructZero
(Chen et al.,2023) uses BO to learn soft prompts, which are then converted into instruction prompts
to elicit better instruction following behavior from LLMs. Our work focuses on optimizing the LLM
as a proposal mechanism for generating optimal solutions with respect to a black-box function. In-
ternally, MIGRATE operates an acquisition-like strategy to formulate prompts that evoke higher
quality solutions from the LLM.

3 BACKGROUND

GRPO. Group relative policy optimization (Shao et al., 2024) is a reinforcement learning algo-
rithm used to fine-tune LLMs that replaces the value function in Proximal Policy Optimization
(PPO) training (Schulman et al.,[2017) with an estimate derived from Monte Carlo samples instead.
In particular, in each iteration of training, GRPO constructs a group G of N completions, typically
sampled from the current model, and calculates the advantage for every completion as a relative
comparison to the group. Let mg , and g denote the model policies (LLM parameters, in our case)
before and after taking a gradient step. Given a task prompt P7 and a set of completions sampled
from the current model {o; : 0; ~ mp,, }I¥;, the GRPO loss objective is defined as

N |oil

1 A .
- Z Z [Hlin (ri,0(0)A; 4, clip(ri (0),1 — 1w, 1 + 5high)Ai,t)} , (D

Lereo(0) = ~
Zi:l |0 i=1 t=1

Under review as a conference paper at ICLR 2026

7 P s U1)
where r;4(0) = mo(0it | Pr, 0i<t) , and A;; =r; —mean({f(0:)}},)

Toge(0irt | Pr,04 <t)

are the policy ratio and advantage estimates, respectively, for each token in each completion, f(-) is
a reward function that provides a scalar score for each completion, clip(-, -, -) is a clipping function
to prevent large updates during optimization, and €jowmigh are clipping hyperparameters.

On-, off-, and mixed-policy optimization. Typically, reinforcement learning (including GRPO)
operates in an on-policy manner, where new solutions are sampled using 7y (i.e., the policy being
trained) to estimate the loss for the next training step. On the other hand, some works have argued
that on-policy training may constrain learning to only the capabilities of the base LLM itself, re-
sulting in echo chambers (Zhao et al., 2025} Yue et al.,|2025) that prevent novel task generalization.
This problem is further exacerbated in the sparse reward scenario, where the base model is unable
to generate solutions that elicit non-zero reward, thus leading to degenerate policy gradients. To
address this, off-policy optimization (Levine et al., 2020) has been proposed as an effective strat-
egy that leverages previously collected expert demonstrations for training instead of online samples.
However, a purely offline strategy can result in learning policies that are unable to generalize at
inference time (Fujimoto et al., |2019; Kumar et al.| [2019). Consequently, recent work (Yan et al.,
20235)) shows that a combination of online and offline samples, called mixed-policy optimization, can
outperform either strategy used in isolation.

4 MIGRATE: METHODOLOGY

The focus in this work is on finding optimal solutions with respect to a black-box objective function
f(-) under a finite sampling budget B. To this end, we are interested in using GRPO as a search
algorithm, wherein a single example query is used as the input for a search task across multiple
sampling iterations. The goal, then, is to learn query-specific parameters that shift the model’s
sampling distribution iteratively, improving the quality of solutions that are generated

Overcoming sparse rewards in search. As described earlier, purely on-policy learning is often
unable to find an appropriate sampling distribution for a single query within a limited budget due to
sparse rewards, i.e., when solutions sampled from the current policy do not result in useful policy
gradients to make progress. At the same time, both off- and mixed-policy strategies require access
to known expert demonstrations, which we assume are not available in our setting. We, therefore,
present MIGRATE—a mixed-policy optimization strategy for GRPO that generates off-policy data
via (a) selecting high-performing solutions from the model’s own sampling history, and (b) sam-
pling variations from the neighborhoods of observed high-performing solutions. In each iteration,
MIGRATE “mixes” on- and off-policy samples to construct a group of completions G, which is then
used to compute the policy gradient with respect to the loss function in Equation 1| This process is
repeated until either the optimal solution is found or the sampling budget is exhausted.

4.1 MIXED-PoLICY GROUP CONSTRUCTION FOR SEARCH

Given a search task 7 and a corresponding task prompt Py for the LLM, our goal is to construct
a new group G; composed of N completions in each search iteration ¢ to compute a policy gradi-
ent via GRPO. We introduce two off-policy data selection techniques—greedy and neighborhood
sampling (NS)—which we combine with on-policy sampling to generate test-time training data.
Intuitively, both techniques are designed to bias policy gradients to exploit known high-quality solu-
tions sampled thus far, while on-policy sampling encourages exploration. In experiments (§ [3), we
find that the simultaneous application of greedy and NS off-policy data selection (i.e., MIGRATE;
Algorithm [T) results in the best performance.

IThis is in contrast to the more typical setting of training a generalizable model with multiple examples.
See the appendix for a complete description of modifications we incorporate from previous work beyond the
original formulation from [Shao et al.|(2024).

2Note that throughout this work, we use LoRA fine-tuning (Hu et al., [2022) instead of full-model training.

Under review as a conference paper at ICLR 2026

On-policy sampling. Let o (<) be the number of completions sampled from the current policy
model, i.e., at timestep ¢, we generate on-policy completions (or observations) Oonline := {0; : 0; ~
7i7 (| Pr)}$, using temperature-based ancestral sampling.

Greedy sampling. Let D be a database of completions, which may be composed both of any
candidate solutions available a priori as well as all attempts sampled from the model in previ-
ous search iterations. In greedy off-policy data selection, if D # (), we sample 3 (< N) known
completions from D that are high-quality. In particular, we first greedily select the top-k comple-
tions from D with respect to f(-) and then randomly sample 5 completions from the top-k, i.e.,
Ogreedy 1= {0; : 0; ~ topk f(D)}le, where topk ; (D) returns the best-k completions from D with
respect to f.

°
S

Neighborhood sampling. While greedy sampling ex-
plicitly encourages the exploitation of high-quality sam-
ples, it limits exploration of the solution space and is
prone to optimizing for local optima (Krishnamurthy
et al.| [2024; Agarwal et all 2025a). To mitigate this,
we incorporate a complementary off-policy sampling
strategy grounded in a continuity assumption—namely, 0021 -
that small variations in a model’s parameter space yield
small shifts in the average quality of sampled solutions e e e
(see Fig.). This assumption motivates exploration e
within neighborhoods of known high-quality candidates
by prompting the model to generate stochastic variations
of greedy samples, thereby producing new solutions that
may both provide useful variations for better policy gra-
dients as well as solutions that may outperform previ-
ous samples. In practice, we construct a single neighbor-
hood sampling prompt Pys composed of 3 greedy sam-
ples along with an instruction to generate v (< V) to con-
struct the NS set of solutions Ons = {0; : 0; ~ 7 ' (- |
B NS)}z:r

o o
= o
£ 3

Avg. Reward Difference
°
S
4

Difference in Iteration

Figure 2: Visualizing parameter space
continuity. Each point is a pairwise compar-
ison between two sets of LoORA parameters,
indicating distance (x-axis) and average dif-
ference in sample quality (y-axis), over 100
search iterations on Semantle. Performance
converges with a decrease in pairwise dis-
tances, whereas at larger distances, perfor-
mance varies, indicating the variability en-
countered when exploring.

MIGRATE. To balance exploration and Algorithm 1 Solution search with MIGRATE

exploitation during test-time training with
GRPO, MIGRATE integrates both off-
policy techniques with on-policy sampling
by combining Ogniine; Ogreedy, and Ons
into a single group G;, with the constraint

that @ + v + 8 = N in each iteration [

(see Algorithm [T). We compute the loss
on G; with respect to the task prompt P,
irrespective of how the sample was gen-
erated. While on-policy sampling encour-
ages exploration of new solutions, greedy
sampling promotes exploitation by reusing
high-quality completions from a running
database, and neighborhood sampling in-
troduces structured exploration via local
variations of the greedy samples. Empir-
ically, we find that this combination pro-
duces higher-quality search results than
any single strategy alone.

Input: Task 7, black-box function f, budget B
Parameters: GRPO group size N, « on-policy samples, /3
greedy samples, v neighborhood samples
Output: Best solution opest
1: Initialize: Policy 7 < LLM, task prompt Pr,
database D < (), timestep ¢ < 0, Opest < 0
2: while |D| < B do
30 tet+1
4: Oonline <~ {Oi L0; 77271(‘ | PT)}?:I
5 Ogeety < {0: 1 0; ~ topk, (D)},
6: Pys < Build NS prompt using Ogreedy
7: Ons < {0i s 0 ~ 77 (- | Prs)}oy
8: gt <~ Oonline &® Ogreedy @ ONS
9: D < D @ Oonline B Ons

10: Obest ¢ ArgmMax, ep f(0s)
11: if opest 1s optimal then

12: return Opeg

13: end if

14: w5 + Update using GRPO with G; (Eq.
15: end while
16: return opeg

3We keep constant the number of new solutions sampled from the LLM for fair comparison with baselines.

Under review as a conference paper at ICLR 2026

5 EXPERIMENTS

5.1 SEARCH TASKS

We evaluate MIGRATE by conducting experiments on four text-based search tasks—Semantle
(word search), Dockstring (molecule optimization), ARC (hypothesis + program search), and Dis-
coveryBench (data-driven hypothesis search).

Semantle. Semantle (Agarwal et al., [2025a) is a word-search task, where the goal is to identify
a held-out English word (e.g., “polyethylene”) within a limited number of guesses. The black-box
function used indicates how semantically close a guessed word is to the target, which is computed
using cosine similarities over SimCSE (Gao et al., 2021) embeddings, following prior work. Each
search problem is initialized with a warmstart set of 20 words (randomly sampled from the word2vec
index (Mikolov et al.,|2013))) and corresponding black-box scores. We conduct evaluation using 10
hidden words and 5 warmstart sets for each of them, resulting in a total of 50 problem instances.

Dockstring. |Garcia-Ortegon et al| (2022)) provides a suite of challenging molecule optimization
tasks that reflect real-world problems in drug discovery. We focus on a multi-objective optimization
task: generating molecules, represented as SMILES strings (Weininger, |1988), that simultaneously
maximize druglikeness and binding affinity, quantified by QED (Bickerton et al., |2012) and nega-
tive Vina scores (Trott & Olson, |2010), respectively. We use a scalarized multi-objective black-box
function (Equation [2) that places a greater weight on Vina scores than QED, reflecting the com-
mon prioritization of binding affinity over druglikeness when evaluating a molecule’s drug efficacy
(Hughes et al., [2011} [Wenlock et al., 2003). Following prior works (Yuksekgonul et al.| [2024)), we
run our evaluation with 58 pharmaceutically-relevant protein targets.

ARC. The Abstraction and Reasoning Corpus (ARC) (Chollet, 2019) is a benchmark of 400 grid-
based puzzles that involves inferring the transformation logic from a small set of input-output grid
pairs and applying it to a held-out test grid. Recent methods improve performance via data aug-
mentation with invertible transformations (Akyiirek et al.; 2025)) or by combining program synthesis
with transductive strategies (L1 et al.l 2024). We take an inductive hypothesis + program search
approach (Wang et al., 2024), where natural language transformation algorithms are hypothesized
and translated into Python programs. We report two accuracy metrics: pass@2, which measures
whether any of the top-2 common outputs from the programs that solve the train set matches the test
grid, and oracle, which provides credit if any of the sampled programs solves the test grid. Note
that oracle accuracy reflects a coarse ability to find a distribution that can generate the correct solu-
tion. We follow prior work (Agarwal et al.l [2025a) and use a Hamming-distance based black-box
function.

DiscoveryBench. DiscoveryBench (Majumder et al., 2025)) is a benchmark to evaluate hypothesis
search ability in data-driven scientific discovery. It includes a set of discovery tasks extracted from
real-world scientific publications, each represented by a research query and a corresponding dataset,
aiming to find statistically verifiable natural-language hypotheses that can answer the given queries.
We assume oracle feedback in each iteration to help guide search (akin to feedback from a human
researcher) using a scalar score representing the degree to which a generated hypothesis matches
the gold hypothesis using a Beta belief distribution elicited from an LLM (Agarwal et al., [2025b).
We evaluate performance using both the belief-based black-box function (average belief and % of
queries where the belief was maximized) as well as the hypothesis match score (HMS) from |Ma-
jumder et al.| (2025), which provides an LLM-judge evaluation of hypotheses based on contexts,
variables, and relationships. Additionally, our analyses found that the HMS tends to score hypothe-
ses with even minor deviation from the gold context as zeros. Therefore, we introduce HMS-p, a
relaxation of HMS that allows an LLM to provide partial scores for the context, i.e., {0,0.5,1.0}
instead of {0, 1} only, in order to lend graded improvement information.

“Due to hardware limitations, we truncate prompts at 2048 tokens in all experiments. As a result, only 200
out of 400 tasks in ARC-Full could be evaluated with their full context.

Under review as a conference paper at ICLR 2026

5.2 BASELINES

Inference-only. We evaluate five inference-only sampling strategies (Random, NS, OPRO,
Evolvution, and BOPRO) for Semantle, Dockstring, and ARC, and use Reflexion (following |Ma-
jumder et al.| (2025)) as the baseline for DiscoveryBench:

* Random, which generates completions by sampling from the base model using the task prompt.

* Neighborhood Sampling (NS), which samples completions from a prompt that includes top-
performing solutions from previous iterations to encourage local exploration.

¢ OPRO (Yang et al.,2024b), which generates completions using a prompt that builds a trajectory
of top-performing solutions as a textual gradient to discover improved solutions.

* Reflexion (Shinn et al., 2024)), which iteratively improves LLM performance by generating
natural-language feedback (“self-reflection”) using solutions from past iterations.

* Evolution, which iteratively optimizes generated solutions by mutating sampled solutions ac-
cording to an evolutionary pipeline

* BOPRO (Agarwal et al.| 2025a)), which uses latent space Bayesian optimization over solution
embeddings to search for better sampling distributions via context engineering over past solu-
tions.

Test-time training. Beyond inference-only methods, we evaluate three variants of our GRPO-
based test-time training (TTT) approach:

* GRPO is the base algorithm, using a fixed task prompt and sampling /N on-policy completions
from the model as it is being trained (i.e., « = N, 8 =0,y = 0).

¢ GRPO-Greedy augments GRPO by using greedy oft-policy sampling to select 3 previous com-
pletions to place in the group at each iteration (i.e., a, 5 > 0 and v = 0).

* Online DPO (Guo et al.} [2024) samples N on-policy completions in each iteration, which
are used to construct preference pairs and calculate a policy gradient using the standard DPO
objective (Rafailov et al.,[2023)).

* MIGRATE is our full method, combining on-policy exploration, greedy sampling of top com-
pletions, and neighborhood sampling for local exploration (i.e., each of «, B,y > 0).

We provide complete details of our experimental settings in Appendix[A.1] including the values used
for «, 3, and ~y for different tasks, and sensitivity analyses of these choices in Appendix

Additional baselines. We also evaluate MIGRATE (OPRO), a variant of MIGRATE that replaces
the neighborhood sampling (NS) prompt with the OPRO prompting strategy for local exploration
(Appendix , as well as explore an alternative strategy for selecting Ogreeay Using an islands-based
evolutionary search method (Appendix [B.T).

Models. Our main results on Semantle and Dockstring are presented using LLaMA-3.2-3B-
Instruct (Al@Meta, |2024). For ARC, we use LLaMA-3.1-ARC-Potpourri-Induction-8B (L1 et al.,
2024), a fine-tuned version of LLaMA-3.1-8B-Instruct (Al@Meta, 2024)) trained on synthetic
Python programs that solve ARC training tasks. The latter decision is driven by the bespoke na-
ture of the ARC challenge, where base models are entirely unable to generate valid solutions. For
DiscoveryBench, we use Qwen2.5-7B-Instruct (Yang et al.,[2024al)) for generating experiment plans
and GPT-5-nano (OpenAl, 2025)) for the remainder of the agentic loop (code, reviews, and analy-
ses). We use Qwen2.5-7B-Instruct for belief elicitation during search, but report final accuracy using
GPT-4o0 (as inMajumder et al.| (2025)).

6 RESULTS AND DISCUSSION

MIGRATE outperforms both inference-only and TTT baselines. Across tasks, we run each
method until either the correct solution is found or a pre-defined budget of solution candidates

SWe use OpenEvolve for our implementation (Novikov et al.||2025; |Sharmal [2025)).

Under review as a conference paper at ICLR 2026

Scalarzed Overall Score (1)

—— GRPO-Greedy —— GRPO-Greedy
—— MIGRATE .. —— MIGRATY

Words Guessed

(a) Semantle (b) Dockstring (d) DiscoveryBench

Figure 3: Best-so-far performance results. (a) On Semantle, MIGRATE outperforms all baselines,
improving the second-best (NS) by 25%. (b) In Dockstring, MIGRATE surpasses baselines after 50
proposals. (c) On ARC, MIGRATE solves more tasks than baselines at the full budget. (d) On
DiscoveryBench, MIGRATE outperforms Reflexion after 65 experiments.

is proposed and evaluated (1000 for Semantle, 200 for Dockstring, 1024 for ARC, and 200 for
DiscoveryBench). We report our results on each search task in Table[T]and provide a best-so-far plot
to trace search behavior across sampling budgets in Figure[3] We find that mixed-policy GRPO via
MIGRATE outperforms each inference-only baseline and TTT ablation.

On Semantle, MIGRATE outperforms baselines except for BOPRO by > 21 percentage points.
As shown in Figure [3{(a), across the 50 problem instances averaged over 3 repeat runs, MIGRATE
surpasses inference-only NS after 200 guesses (~20 MIGRATE iterations), pointing to the effec-
tiveness of explicit gradient updates in finding high-quality solutions versus in-context optimization
alone. BOPRO’s better performance suggests that incorporating a BO strategy into MIGRATE to
construct the NS prompt could be beneficial.

Semantle Dockstring ARC
Method % Found QED (1) Vina Score ({) Overall Score (1) Pass@2 (%) Oracle (%)
Random 2.00 + 1.63 0.91 &+ 0.00 —9.92 +0.15 0.73 + 0.00 20.75 28.00
NS 45.30 £ 2.49 0.87 £ 0.01 —9.65 +0.21 0.71 £ 0.00 20.25 29.50
OPRO 40.70 £ 1.89 0.90 £ 0.00 —9.94 4+ 0.06 0.74 + 0.00 20.75 27.75
Evolution 49.33 + 4.11 0.89 £ 0.03 —9.56 £ 0.09 0.72 £ 0.01 - -
BOPRO 84.67 + 0.94 0.89 £+ 0.00 —10.28 £ 0.04 0.77 £ 0.00
Online DPO 4.00 £+ 4.90 0.90 £+ 0.02 —9.41 £ 0.09 0.71 4+ 0.01 - -
GRPO 10.00 + 4.32 0.91 £ 0.00 —10.09 £ 0.05 0.73 £ 0.00 17.75 27.00
GRPO-Greedy 12.70 +£ 0.94 0.90 £+ 0.01 —10.80 + 0.19 0.77 4+ 0.00 21.00 30.00
MIGRATE 71.30 £4.11 0.90 £ 0.00 —11.00 + 0.07 0.79 £ 0.00 22.25 30.00

DiscoveryBench

Method Belief % Found (Belief) HMS % Found (HMS) HMS-p % Found (HMS-p)
Reflexion 0.758 + 0.022 17.00 £ 3.78 0.293 13.00 7.00 0.273
MIGRATE 0.795 &+ 0.018 20.00 + 4.13 0.285 11.00 13.00 0.268

Table 1: Search performance. Results are averaged over three random seeds for Semantle and
Dockstring, with standard deviations reported. For ARC and DiscoveryBench, we report using sin-
gle runs (due to expense) but report standard deviation via bootstrapping. Top-2 results in each col-
umn are marked with bold and underline, respectively. MIGRATE outperforms on all but one metric
(QED) on Semantle, Dockstring, and ARC’l On DiscoveryBench, MIGRATE finds hypotheses that
are more similar to the gold as measured by the belief-based black-box function and HMS-p, while
showing marginally lower performance using HMS.

On Dockstring, Table|I| shows that MIGRATE synthesizes molecules with higher scalarized scores
(according to Equatior%, i.e., jointly optimizing for QED and Vina. Further, in Figure[3(b), we see
that MIGRATE outperforms all baselines on average after 50 molecule proposals. We also show the
search trace of different methods in Figure f]

On ARC, we report performance over a single run (due to hardware constraints), and report standard
deviation via bootstrapping. From Figure[3{c) and Table[I] we find that MIGRATE does outperform

Due to hardware limitations, we only evaluated Evolution and BOPRO on a subset of the ARC benchmark

in [B3]

Under review as a conference paper at ICLR 2026

Binding Affinity (vina sc

Protein Target: KDR

51 —— GRPO-Greedy
—— MIGRATE
0 Trace start

A Trace end

Token length

~— Reflection
—— MIGRATE

‘Dvughkenes“s‘(QED) (O] '

(a) Dockstring search trace

T
Experiments Sampled

(b) SMILES distribution (KDR) (c) DiscoveryBench Token Length

Figure 4: Search behaviors. (a) Vina and QED scores for best molecules found as search pro-
gresses. Each trace starts from 3 fragments (acetamide, pentane, and benzene). (b) Distribution of
binding affinity and druglikeness for KDR target. MIGRATE explores a broader region of chemical
space, including low-affinity and low-druglikeness. (c) Experiments generated by Reflexion mono-
tonically increase in token length with time, while those by MIGRATE remain stable on average.

SEERES SR =
(a) Semantle (b) Dockstring (c) ARC (d) DiscoveryBench

Figure 5: Relative to the best-so-far. Percentage difference between samples from MIGRATE
(versus inference-only NS) relative to their best-so-far scores during optimization. Across search
iterations, MIGRATE generates solutions (a) with higher quality on average (as indicated by the
higher mean; except on Dockstring), and (b) those that show greater jumps in performance over the
best-so-far (i.e., the outliers), indicating better search and exploration ability.

baselines, though, with modest gains akin to behavior reported by prior work on LLM-based pro-
gram search. We do, however, find that MIGRATE solves all but two tasks also solved by baselines.
We note that MIGRATE also outperformed Evolution and BOPRO on a subset of the ARC bench-
mark in Appendix [B-3]

On DiscoveryBench, we evaluate 100 tasks from the test set, ensuring a balanced distribution of
domains and question types. The Reflexion baseline solves 44 queries, while MIGRATE solves 48,
crucially, without any natural language feedback. As shown in Figure3[d), MIGRATE outperforms
Reflexion after proposing 65 experiment plans, which corresponds to 13 training iterations.

TTT methods produce qualitatively different solutions than inference-only methods. On Se-
mantle, across all runs, we find that MIGRATE is the only method to find all 10 hidden words.
Although BOPRO achieves a higher average accuracy, it fails to every find one of the ten hid-
den words. Furthermore, only MIGRATE and its ablations can optimize for specific words, like
“birthstone,” demonstrating the ability to navigate the unique search landscape for such terms. On
Dockstring, as shown in Figure[d[a), the best-performing SMILES strings found using TTT methods
(MIGRATE and its ablations) show a distinct optimization pattern, focusing more on Vina scores
than those from inference-only methods. While MIGRATE is capable of generating molecules with
high QED scores (> 0.8), optimization prefers to reduce QED to below 0.3 in exchange for better
Vina scores. This reflects the multi-objective function in Equation[2] which weighs Vina scores more
than QED. On DiscoveryBench, the lengths of experiment plans from Reflexion monotonically in-
crease over time, while plans from MIGRATE remain stable on average (Figure f]c)). Notably, the
best plans are consistently shorter (<115 tokens), suggesting MIGRATE is able to prioritize these
during search.

What search behaviors are observed with MIGRATE? We analyze the quality of samples gen-
erated by MIGRATE and NS (inference-only) and compare them in Figure [5] We measure the

Under review as a conference paper at ICLR 2026

relative difference between the scores of each solution and the best-so-far performance when that
solution is sampled, then compare the distributions of these differences between the two methods.
On Semantle and ARC, MIGRATE demonstrates the ability to improve upon its previously best-
found solution in contrast to the behavior seen with the inference-only strategy, which often samples
solutions with no improvement. In Dockstring, MIGRATE generates more invalid molecules than
inference-only approaches, suggesting broader exploration of the solution space (Figure [4[a) and
(b)). Many of the proposed molecules are also longer and more complex SMILES strings, evi-
denced by a 44% increase in average length. Despite proposing more invalid molecules, MIGRATE
still finds molecules that improve upon the best-so-far with larger gains than with inference-only.

7 CONCLUSION

We introduced MIGRATE, a method for online test-time training of LLMs that enables efficient
search in black-box optimization tasks without requiring handcrafted training data. By leveraging
Group Relative Policy Optimization (GRPO) along with a novel mixed-policy group construction
strategy—comprising on-policy, greedy, and neighborhood sampling—MIGRATE effectively bal-
ances exploration and exploitation. Our experiments across four text-based domains demonstrate
the efficacy of MIGRATE to improve LLM-based search. Future work may include scaling online
TTT to multi-step decision-making and integrating stronger uncertainty-aware acquisition strategies
to further improve sample efficiency.

8 REPRODUCIBILITY STATEMENT

We include the source code along with instructions to reproduce our experiments as part of the
supplementary material. We also provide the specific hyperparameters used in Appendix

REFERENCES

Dhruv Agarwal, Rajarshi Das, Sopan Khosla, and Rashmi Gangadharaiah. Bring your own KG:
Self-supervised program synthesis for zero-shot KGQA. In Kevin Duh, Helena Gomez, and
Steven Bethard (eds.), Findings of the Association for Computational Linguistics: NAACL 2024,
pp. 896-919, Mexico City, Mexico, June 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.findings-naacl.57. URL https://aclanthology.org/2024.
findings—-naacl.57/.

Dhruv Agarwal, Manoj Ghuhan Arivazhagan, Rajarshi Das, Sandesh Swamy, Sopan Khosla, and
Rashmi Gangadharaiah. Searching for optimal solutions with LLMs via bayesian optimization.
In The Thirteenth International Conference on Learning Representations, 2025a. URL https:
//openreview.net/forum?id=avVfDrl17xDV.

Dhruv Agarwal, Bodhisattwa Prasad Majumder, Reece Adamson, Megha Chakravorty,
Satvika Reddy Gavireddy, Aditya Parashar, Harshit Surana, Bhavana Dalvi Mishra, Andrew Mc-
Callum, Ashish Sabharwal, et al. Open-ended scientific discovery via bayesian surprise. arXiv
preprint arXiv:2507.00310, 2025b.

Al@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/
llama3/blob/main/MODEL CARD.md.

Ekin Akyiirek, Mehul Damani, Adam Zweiger, Linlu Qiu, Han Guo, Jyothish Pari, Yoon Kim, and
Jacob Andreas. The surprising effectiveness of test-time training for few-shot learning, 2025.
URLhttps://arxiv.org/abs/2411.072709.

Christopher G Atkeson, Andrew W Moore, and Stefan Schaal. Locally weighted learning. Lazy
learning, pp. 11-73, 1997.

G Richard Bickerton, Gaia V Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L Hopkins.
Quantifying the chemical beauty of drugs. Nature chemistry, 4(2):90-98, 2012.

Daniil A Boiko, Robert MacKnight, Ben Kline, and Gabe Gomes. Autonomous chemical research
with large language models. Nature, 624(7992):570-578, 2023.

10

https://aclanthology.org/2024.findings-naacl.57/
https://aclanthology.org/2024.findings-naacl.57/
https://openreview.net/forum?id=aVfDrl7xDV
https://openreview.net/forum?id=aVfDrl7xDV
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2411.07279

Under review as a conference paper at ICLR 2026

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Lichang Chen, Jiuhai Chen, Tom Goldstein, Heng Huang, and Tianyi Zhou. Instructzero: Efficient
instruction optimization for black-box large language models. arXiv preprint arXiv:2306.03082,
2023.

Frangois Chollet. On the measure of intelligence. arXiv preprint arXiv:1911.01547, 2019.

William S Cleveland. Robust locally weighted regression and smoothing scatterplots. Journal of the
American statistical association, 74(368):829-836, 1979.

Michael Han Daniel Han and Unsloth team. Unsloth, 2023. URL http://github.com/
unslothai/unsloth.

Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya Godbole, Ethan Perez, Jay Yoon Lee, Lizhen
Tan, Lazaros Polymenakos, and Andrew McCallum. Case-based reasoning for natural language
queries over knowledge bases. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and
Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 9594-9611, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.755. URL
https://aclanthology.org/2021.emnlp—-main.755/.

Jordan S. Ellenberg, Cristofero S. Fraser-Taliente, Thomas R. Harvey, Karan Srivastava, and An-
drew V. Sutherland. Generative modeling for mathematical discovery, 2025. URL https:
//arxiv.org/abs/2503.11061.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052-2062. PMLR, 2019.

Tianyu Gao, Xingcheng Yao, and Danqgi Chen. Simcse: Simple contrastive learning of sentence
embeddings. arXiv preprint arXiv:2104.08821, 2021.

Miguel Garcia-Ortegén, Gregor NC Simm, Austin J Tripp, José Miguel Herndndez-Lobato, Andreas
Bender, and Sergio Bacallado. Dockstring: easy molecular docking yields better benchmarks for
ligand design. Journal of chemical information and modeling, 62(15):3486-3502, 2022.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
Guzman, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
soo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,
Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew

11

http://github.com/unslothai/unsloth
http://github.com/unslothai/unsloth
https://aclanthology.org/2021.emnlp-main.755/
https://arxiv.org/abs/2503.11061
https://arxiv.org/abs/2503.11061

Under review as a conference paper at ICLR 2026

Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Celebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng
Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vitor Albiero, Vladan Petrovic, Weiwei
Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smoth-
ers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
son Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
driguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,

12

Under review as a conference paper at ICLR 2026

Shishir Patil, Shiva Shankar, Shugiang Zhang, Shugiang Zhang, Sinong Wang, Sneha Agarwal,
Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

Nate Gruver, Anuroop Sriram, Andrea Madotto, Andrew Gordon Wilson, C. Lawrence Zitnick,
and Zachary Ward Ulissi. Fine-tuned language models generate stable inorganic materials as
text. In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=vN9fpfgoP1l

Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe Llinares, Alexandre
Rame, Thomas Mesnard, Yao Zhao, Bilal Piot, et al. Direct language model alignment from
online ai feedback. arXiv preprint arXiv:2402.04792, 2024.

Moritz Hardt and Yu Sun. Test-time training on nearest neighbors for large language models.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=CNL2bkudra.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYfO.

Jonas Hiibotter, Sascha Bongni, Ido Hakimi, and Andreas Krause. Efficiently learning at test-time:
Active fine-tuning of LLMSs. In The Thirteenth International Conference on Learning Represen-
tations, 2025. URL https://openreview.net/forum?id=NS1G1Uhny3.

JP Hughes, S Rees, SB Kalindjian, and KL Philpott. Principles of early drug discovery.
British Journal of Pharmacology, 162(6):1239-1249, 2011. doi: https://doi.org/10.1111/
j-1476-5381.2010.01127.x. URL https://bpspubs.onlinelibrary.wiley.com/
doi/abs/10.1111/7.1476-5381.2010.01127.x.

Akshay Krishnamurthy, Keegan Harris, Dylan J Foster, Cyril Zhang, and Aleksandrs Slivkins. Can
large language models explore in-context? arXiv preprint arXiv:2403.15371,2024.

Agustinus Kristiadi, Felix Strieth-Kalthoff, Marta Skreta, Pascal Poupart, Alan Aspuru-Guzik, and
Geoff Pleiss. A sober look at LLMs for material discovery: Are they actually good for Bayesian
optimization over molecules? In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian
Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st
International Conference on Machine Learning, volume 235 of Proceedings of Machine Learning
Research, pp. 25603-25622. PMLR, 21-27 Jul 2024. URL https://proceedings.mlr.
press/v235/kristiadi24a.htmll

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
g-learning via bootstrapping error reduction. Advances in neural information processing systems,
32,20109.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

13

https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=vN9fpfqoP1
https://openreview.net/forum?id=vN9fpfqoP1
https://openreview.net/forum?id=CNL2bku4ra
https://openreview.net/forum?id=CNL2bku4ra
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=NS1G1Uhny3
https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/j.1476-5381.2010.01127.x
https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/j.1476-5381.2010.01127.x
https://proceedings.mlr.press/v235/kristiadi24a.html
https://proceedings.mlr.press/v235/kristiadi24a.html

Under review as a conference paper at ICLR 2026

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktédschel, et al. Retrieval-augmented gener-
ation for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:

9459-9474, 2020.

Wen-Ding Li, Keya Hu, Carter Larsen, Yuqing Wu, Simon Alford, Caleb Woo, Spencer M. Dunn,
Hao Tang, Michelangelo Naim, Dat Nguyen, Wei-Long Zheng, Zenna Tavares, Yewen Pu, and
Kevin Ellis. Combining induction and transduction for abstract reasoning, 2024. URL https:
//arxiv.org/abs/2411.02272,

Tennison Liu, Nicolas Astorga, Nabeel Seedat, and Mihaela van der Schaar. Large language models
to enhance bayesian optimization. In The Twelfth International Conference on Learning Repre-
sentations, 2024. URL https://openreview.net/forum?id=00xotBmGoll.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective, 2025. URL https://arxiv.
org/abs/2503.20783.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scien-
tist: Towards fully automated open-ended scientific discovery. arXiv preprint arXiv:2408.06292,
2024.

Bodhisattwa Prasad Majumder, Harshit Surana, Dhruv Agarwal, Bhavana Dalvi Mishra, Abhijeets-
ingh Meena, Aryan Prakhar, Tirth Vora, Tushar Khot, Ashish Sabharwal, and Peter Clark. Dis-
coverybench: Towards data-driven discovery with large language models. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=vyflgpwfJW.

Elliot Meyerson, Mark J Nelson, Herbie Bradley, Adam Gaier, Arash Moradi, Amy K Hoover, and
Joel Lehman. Language model crossover: Variation through few-shot prompting. arXiv preprint
arXiv:2302.12170, 2023.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Alexander Novikov, Ngan Vi, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt
Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco JR Ruiz, Abbas Mehrabian,
et al. Alphaevolve: A coding agent for scientific and algorithmic discovery. arXiv preprint
arXiv:2506.13131, 2025.

OpenAlL Introducing gpt-5, 2025. URL |https://openai.com/index/
introducing—-gpt-5/.

OpenAl, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden
Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko,
Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally
Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich,
Andrey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghor-
bani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao Hao,
Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaresi, Cary
Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong Zhang,
Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts, Daniel
Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David Robinson,
Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong, Eliz-
abeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan Wang,
Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred
von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace
Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart An-
drin, Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan,
Ian O’Connell, Ian Osband, Ignasi Clavera Gilaberte, Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever,
Irina Kofman, Jakub Pachocki, James Lennon, Jason Wei, Jean Harb, Jerry Twore, Jiacheng Feng,
Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quifionero Candela, Joe Palermo, Joel Parish,

14

https://arxiv.org/abs/2411.02272
https://arxiv.org/abs/2411.02272
https://openreview.net/forum?id=OOxotBmGol
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2503.20783
https://openreview.net/forum?id=vyflgpwfJW
https://openreview.net/forum?id=vyflgpwfJW
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-gpt-5/

Under review as a conference paper at ICLR 2026

Johannes Heidecke, John Hallman, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan
Ward, Joost Huizinga, Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Karina Nguyen, Karl
Cobbe, Katy Shi, Kayla Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu,
Kevin Stone, Kevin Yu, Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam
Fedus, Lilian Weng, Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kon-
draciuk, Lukasz Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen,
Marko Tintor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet
Yatbaz, Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael
Lampe, Michael Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles
Wang, Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat McAleese, Neil
Chowdhury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir Nachum, Oleg
Boiko, Oleg Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter Zhokhov,
Rachel Dias, Rahul Arora, Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Miyara, Reimar
Leike, Renny Hwang, Rhythm Garg, Robin Brown, Roshan James, Rui Shu, Ryan Cheu, Ryan
Greene, Saachi Jain, Sam Altman, Sam Toizer, Sam Toyer, Samuel Miserendino, Sandhini Agar-
wal, Santiago Hernandez, Sasha Baker, Scott McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu,
Shibani Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Steph
Lin, Suchir Balaji, Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao Wang, Tay-
lor Gordon, Ted Sanders, Tejal Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas Dimson,
Tianhao Zheng, Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peterson, Tyna
Eloundou, Valerie Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi
Zheng, Wenda Zhou, Wes McCabe, Wojciech Zaremba, Yann Dubois, Yinghai Lu, Yining Chen,
Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng Shao, and Zhuohan Li.
Openai ol system card, 2024. URL https://arxiv.org/abs/2412.16720.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=HPuSIXJaa?l.

Mayk Caldas Ramos, Shane S Michtavy, Marc D Porosoff, and Andrew D White. Bayesian opti-
mization of catalysts with in-context learning. arXiv preprint arXiv:2304.05341, 2023.

Bojana Rankovi¢ and Philippe Schwaller. Bochemian: Large language model embeddings for
bayesian optimization of chemical reactions. In NeurIPS 2023 Workshop on Adaptive Experi-
mental Design and Active Learning in the Real World, 2023. URL https://openreview.
net/forum?id=A1RVnlm3J3.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468-475, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proxi-
mal policy optimization algorithms. ArXiv, abs/1707.06347, 2017. URL https://api.
semanticscholar.org/CorpusID:28695052.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Asankhaya Sharma. Openevolve: an open-source evolutionary coding agent, 2025. URL https:
//github.com/algorithmicsuperintelligence/openevolvel

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time train-

ing with self-supervision for generalization under distribution shifts. In International conference
on machine learning, pp. 9229-9248. PMLR, 2020.

15

https://arxiv.org/abs/2412.16720
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=A1RVn1m3J3
https://openreview.net/forum?id=A1RVn1m3J3
https://api.semanticscholar.org/CorpusID:28695052
https://api.semanticscholar.org/CorpusID:28695052
https://github.com/algorithmicsuperintelligence/openevolve
https://github.com/algorithmicsuperintelligence/openevolve

Under review as a conference paper at ICLR 2026

Anja Surina, Amin Mansouri, Lars Quaedvlieg, Amal Seddas, Maryna Viazovska, Emmanuel Abbe,
and Caglar Gulcehre. Algorithm discovery with llms: Evolutionary search meets reinforcement
learning. arXiv preprint arXiv:2504.05108, 2025.

Dung Thai, Dhruv Agarwal, Mudit Chaudhary, Wenlong Zhao, Rajarshi Das, Jay-Yoon Lee, Han-
naneh Hajishirzi, Manzil Zaheer, and Andrew McCallum. Machine reading comprehension using
case-based reasoning. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the
Association for Computational Linguistics: EMNLP 2023, pp. 8414-8428, Singapore, December
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.564.
URLhttps://aclanthology.org/2023.findings—emnlp.564/.

Oleg Trott and Arthur J Olson. Autodock vina: improving the speed and accuracy of docking with
a new scoring function, efficient optimization, and multithreading. Journal of computational
chemistry, 31(2):455-461, 2010.

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement
learning. https://github.com/huggingface/trl} 2020.

Ruocheng Wang, Eric Zelikman, Gabriel Poesia, Yewen Pu, Nick Haber, and Noah Goodman. Hy-
pothesis search: Inductive reasoning with language models. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
G7Ut IGOmIm.

David Weininger. Smiles, a chemical language and information system. 1. introduction to method-

ology and encoding rules. Journal of chemical information and computer sciences, 28(1):31-36,
1988.

Mark C Wenlock, Rupert P Austin, Patrick Barton, Andrew M Davis, and Paul D Leeson. A com-
parison of physiochemical property profiles of development and marketed oral drugs. J. Med.
Chem., 46(7):1250-1256, March 2003.

Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang.
Learning to reason under off-policy guidance. arXiv preprint arXiv:2504.14945, 2025.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
technical report. arXiv preprint arXiv:2407.10671, 2024a.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Twelfth International Conference on Learning
Representations, 2024b. URL |https://openreview.net/forum?id=Bb4VGOWELI.

Haizi Yu, Igor Mineyev, Lav R Varshney, and James A Evans. Learning from one and only one shot.
npj Artificial Intelligence, 1(1):13, 2025a.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi
Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi
Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying
Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. Dapo: An open-
source llm reinforcement learning system at scale, 2025b. URL https://arxiv.org/abs/
2503.14476.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
inforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

16

https://aclanthology.org/2023.findings-emnlp.564/
https://github.com/huggingface/trl
https://openreview.net/forum?id=G7UtIGQmjm
https://openreview.net/forum?id=G7UtIGQmjm
https://openreview.net/forum?id=Bb4VGOWELI
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2503.14476

Under review as a conference paper at ICLR 2026

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and
James Zou. Textgrad: Automatic” differentiation™ via text. arXiv preprint arXiv:2406.07496,
2024.

Rosie Zhao, Alexandru Meterez, Sham Kakade, Cengiz Pehlevan, Samy Jelassi, and Eran Malach.
Echo chamber: RI post-training amplifies behaviors learned in pretraining. arXiv preprint
arXiv:2504.07912, 2025.

17

Under review as a conference paper at ICLR 2026

A APPENDIX A

A.1 EXPERIMENTAL SETTINGS

Semantle. The black-box function we use is the cosine similarity of vector representations generated
using the SimCSE|Gao et al.|(2021) sentence embedding model, where the score for a proposed word
x for a hidden target word y is computed by comparing the embeddings for the sequences “What is
a {x}?” and "What is a {y}?”. The number of warmstart candidates is 20. Our main results with
NS and MIGRATE selects Ogreeqy by uniformly sampling among the top-3 completions found so far
according to their black-box scores.

In MIGRATE, we execute GRPO for 100 generation steps where we sample a batch of 10 words in
each step for a total sampling budget of 1000 words. In each step, we sort the generated batch of
words by their scores and construct a group of 5 completions, each consisting of 2 words each. Each
completion is assigned the maximum score of the two words as its reward.

For the Random baseline, we sample 1000 words using the task prompt. For the NS baseline, we
sample 10 words using the NS prompt for 100 iterations. Similarly, for the OPRO baseline, we also
sample 10 words using the OPRO prompt for 100 iterations. We provide, in-context, the top-10
words found so far for every OPRO-based method.

In our Online DPO baseline, we used the same training hyperparameters as GRPO. In each training
iteration, we generate 10 words which equates to 5 preferences. Here, words with the higher score
are preferred (ranked) over those with lower scores.

Dockstring. The black-box function we use is a linear function of the binding affinity (Vina) and
druglikeness (QED). We use RDKit’s MolFromSmiles to sanitize a given generated SMILES string.
If this process fails due to an invalid format structure or molecule, we assign the generated molecule
a score of 0. If the molecule is valid, we compute the QED and Vina scores on the given protein
target. We then compute the overall score of these two metrics as follows:

Soveral(Molecule, protein) = 1 — A(Vina(molecule, protein) 4+ (1 — QED(molecule)) (2)

Where A denotes min-max normalization to the range [0,1]. The QED score is bounded between 0
and 1, and we assume the Vina score to be between 0 and -13.0 kcal/mol. In practice, the binding
affinity is a much higher priority than the druglikeness. Given our equation and the value ranges for
computing Soyerall, OUr black-fox function accurately emphasizes the Vina score about 10 times more
than the QED score.

For the Random baseline, we sample 200 molecules using the task prompt. For the NS baseline, we
sample 3 molecules using the task prompt and 2 molecules using the NS prompt in each iteration
for 40 iterations. We select Ogeedy from the top-1 molecule found so far in NS and MIGRATE. For
the OPRO baseline, we sample 5 molecules using the OPRO prompt for 40 iterations. We provide,
in-context, the top-5 molecules proposed so far for every OPRO-based method.

In our Online DPO baseline, we used the same training hyperparameters as GRPO. In each training
iteration, we generate 5 molecules and create 10 pairwise preferences. Here, molecules with a higher
overall score according to Eq.[2] are preferred (ranked) over those with lower scores.

ARC. The black-box function we use is a hamming-distance based metric. We run all input grids
with the sampled program and compute the proportion of cells in the ground-truth grid that matches
the output grid. We assign a reward of O if the program does not terminate within 10 seconds of
execution. During training, the reward is given by averaging the score across all training input grids
of the given ARC task. If the output grid is larger than the ground-truth, then we assign a score of 0.

For the Random baseline, we sample 1024 programs using the task prompt. For the NS baseline, we
sample 12 programs using the task prompt and 4 programs using the NS prompt for 64 iterations.
We note that this Random baseline is equivalent to the main evaluations ran by|Li et al.| Additionally,
our TTT baselines on ARC in the inductive setting are not an entirely fair comparison to prior works
that do TTT in the transductive setting. We select Ogreeqy as the top-1 program found so far for

18

Under review as a conference paper at ICLR 2026

Hyperparameter Value

Model Llama 3.2 3B Instruct
Grattafiori et al.[(2024)

Learning rate le-5

Group size 5

LoRA rank 64

LoRA alpha 16

Training steps 100

Iterations per step 2

GRPO [« v,] 0,

[5,0,0]
GRPO-Greedy [a, v, 8] [4,0,1]
MIGRATE [a, 7, 3] [0,4,1]

Table 2: MIGRATE hyperparameters for Semantle

Hyperparameter Value

Model Llama 3.2 3B Instruct
Grattafiori et al.[(2024)

Learning rate Se-5

Group size 5

LoRA rank 64

LoRA alpha 16

Training steps 40

Iterations per step 1

GRPO [«, v, 5] [5,0,0]

GRPO-Greedy [«, v, 81 [4,0,1]

MIGRATE [«, 7, S] [2,2,1]

Table 3: MIGRATE hyperparameters for Dockstring

both NS and MIGRATE. Similarly, for the OPRO baseline, we sample 12 programs using the task
prompt and 4 programs using the OPRO prompt for 64 iterations. Due to hardware limitations and to
maintain a fair comparison with MIGRATE, we only provide one program in-context for the OPRO
prompt.

Discoverybench. The main black-box function we use is a belief-based score which represents the
extent a model believes a generated hypothesis matches the gold hypothesis. In our implementation,
we create a Beta belief distribution from 10 samples from a base Qwen 2.5 7B-Instruct model |Yang
et al.| (2024a)). We observed that using the Qwen model for this task performed similarly to sampling
from GPT-40|OpenAl et al.| (2024). During Reflextion and MIGRATE, we perform early stopping
once a hypothesis with a belief score greater than 0.8 is found.

For the Reflextion baseline, we perform 40 iterations where we sample 5 experiments in each iter-
ation. We evaluate and generate a reflection for the 5 experiments in each iteration to pass into the
next. Similarly, in MIGRATE, we perform 40 training iterations where each iteration generates 5
experiments.

A.2 GRPO FORMULATION

We remove the KL term in the original GRPO objective. Following DAPO |Yu et al.| (2025b)), we
utilize token-level normalization, which assigns more balanced rewards to individually generated
tokens—alleviating the bias towards longer responses. We also set €, = 0.2 and g}y, = 0.28
which DAPO finds to promote exploration of low-probability tokens that perform well. Dr. GRPO
Liu et al.| (2025) also divides the sum of loss by a constant instead of the total sequence length

19

Under review as a conference paper at ICLR 2026

Hyperparameter Value

Model BARC|Li et al.| (2024)
Learning rate le-5

Group size 16

LoRA rank 128

LoRA alpha 32

Training steps 64

Iterations per step 1

GRPO [« v,] 0,

[1
GRPO-Greedy [a, 7, 8] [1
MIGRATE [«, 7, S] 1

= oo
~ O O
=P

Table 4: MIGRATE hyperparameters for ARC

Hyperparameter Value

Model Qwen 2.5 7B Instruct |Yang et al.| (2024a)
Learning rate le-5

Group size 5

LoRA rank 128

LoRA alpha 32

Training steps 40

Iterations per step 2

MIGRATE [, v,] [2,2,1]

Table 5: MIGRATE hyperparameters for Discoverybench

to completely remove any completion length bias. Although we did not use this formulation in
our experiments, there should be no substantial differences since there is not high variability in the
solution lengths in the domains we studied. Following Dr. GRPO, we do not scale the advantage by
the standard deviation of the group’s rewards. By doing so, we avoid biasing weight optimization on
groups that perform extremely well or poorly on a given prompt. While our online prompt always
remains constant, this bias is relevant for our NS prompt which can vary across iterations.

A.3 COMPUTATIONAL RESOURCES

All experiments were conducted on a cluster of NVIDIA GPUs. We utilize a mixture of A100 (40GB
and 80GB), L40S, and A40 GPUs. TTT methods on ARC-Full were run with A100 (80GB) GPUs
due to the higher memory requirements. Our implementation of MIGRATE is based on the TRL
0.19.0 implementation of GRPO from HuggingFace von Werra et al.|(2020). We also utilize Unsloth
Daniel Han & team|(2023)) and vLLM Kwon et al.|(2023) to enable higher sampling throughput and
lower memory usage.

Runtimes. The average runtime for MIGRATE on each Semantle problem was 93 seconds on an
A100 GPU, while for NS, it is 83 seconds for each problem. On Dockstring, the average runtime
across all GPU types on each molecule optimization task was 7.5 minutes for MIGRATE and 8.2
minutes for NS. The average runtime on each ARC task with early stopping is 51 minutes for MI-
GRATE and 47 minutes for NS on an A100 GPU. The average runtime for on each DiscoveryBench
query with early stopping is 61 minutles for MIGRATE and 46.6 minutes for Reflexion.

As seen from these runtimes, test-time training with MIGRATE does not add substantial latency
over inference-only methods. Most of the latency can be attributed to routines common to both
optimization strategies. For example, in ARC, the primary source of latency is solution (program)
sampling, where in Dockstring, the main source is the black-box function, i.e., simulating whether
the proposal molecule can dock onto the target protein.

20

Under review as a conference paper at ICLR 2026

B APPENDIX B: ADDITIONAL EXPERIMENTS

B.1 ISLAND-BASED EVOLUTION ALGORITHM

We implement an island-based evoluationary algorithm as an alterative to top-£ for selecting Ogreedy-
We created a database inspired by Ellenberg et al.| (2025) to store generated solutions and sample
them for constructing neighborhood sampling. The island model organizes the solutions into isolated
islands of solutions that are evolved independently.

At every training step, we iterate to another “island” in the database in a cyclic order. We then
sample a solution stored at this island to construct our neighborhood sampling prompt. We note
that unlike prior works [Ellenberg et al|(2025); |Surina et al.| (2025)) we do not construct additional
subclusters of solutions within each island. This was done due to the low sampling constraints of
our experiments but can also be seen as using a single cluster per island. Sampling from an island is
carried out by an exploitation strategy with probability p and an exploration strategy with probability
1 — p. With the exploitation strategy, we randomly select a top solutions on the island that is also
considered a globally top-£ solution across all islands. If the island does not have a solution that is in
the top-k solution for all islands then we fall back on the exploration strategy. With the exploration
strategy, we randomly select among the top solutions on the island that are not one of the globally
top-k solutions.

We periodically migrate a percentage of the top-performing solutions from each island to their neigh-
boring islands according to a ring topology. This maintains a balance of exploring diverse solutions
in isolation and preventing the algorithm from spending too much time on low-performing solutions.

We conduct a comparison of using NS and MIGRATE with three different strategies for selecting the
solution to sample neighbors from: Top-1, Top-3, and Evolution. For each of these configurations
we use 10 neighborhood samples, 0 online samples, and 0 greedy samples. Fig. [6] shows that Top-3
outperforms Top-1 and that using our evolution-based strategy outperforms Top-3 in both NS and
MIGRATE methods. While Top-3 shows the better initial gains in both NS and MIGRATE, the
evolution-based strategy narrowly outperforms it by 1000 samples. Much like our other results in
Table. [T} we also observe that the MIGRATE equivalent of each NS variation performs better —
reinforcing the pattern that TTT improves search performance.

% Found

—— NS (Top-1)
NS (Top-3)

—— NS (Evolution)

—— MIGRATE (Top-1)

—— MIGRATE (Top-3)

—— MIGRATE (Evolution)

T T T T ; T
0 200 400 600 800 1000
Words Guessed

Figure 6: Comparing selection methods for NS. Evolution-based selection shows slower initial
gains but results in more consistent improvements than using a top-k sampling strategy—resulting in
better final performances.

B.2 CAN RELATED TASKS BOOTSTRAP SEARCH?

We investigate whether fine-tuned weights from TTT can generalize to other tasks. After running
MIGRATE on every task, we perform TTT again on unsolved tasks and bootstrap the method with
the learned weights of its “nearest” solved task.

In this experiment, we attempt to solve ARC tasks that were not solved by MIGRATE. For each
unsolved task, we determine its “nearest” solved task by evaluating this task using the solution

21

Under review as a conference paper at ICLR 2026

program from every solved task. We pass the training inputs of the unsolved task into each program
and determine the nearest solved task to be the one whose solution program achieve the highest
reward from our hamming distance-based reward function.

Once the nearest solved task is identified, we use its fine-tuned weights from MIGRATE as the
initializing point for solving the unsolved task. This procedure aims to transfer inductive biases
that may have been learned from structurally similar tasks, enabling the model to efficiently explore
more viable programs on the unsolved task. This tests whether there is an advantage to initializing
search via TTT from a more informed starting point on problems where starting with the base model
fails.

We see marginal improvements from bootstrapping search with learned weights from MIGRATE.
Fig. [7] shows that initializing Random Sampling and MIGRATE with the nearest solved task’s
weights allowed each respective method to solve tasks that were initially unsolvable by the base
model. Notably, bootstrapping Random Sampling with nearest weights was able to solve more tasks
than executing MIGRATE on the base model.

ARC Accuracy

B Pass@2 Accuracy 35.25%

35% - W Oracle Accuracy 33.00%

Solve Rate

Random©Base Random@Nearest-TTT ~ MIGRATEOBase ~ MIGRATE@Nearest-TTT

Figure 7: Bootstrapping with nearest weights on ARC-Full. Bootstrapping Random and MI-
GRATE with initial weights learned from one round of MIGRATE shows slight improvement on
total tasks solved.

B.3 HYPERPARAMETER SENSITIVITY ANALYSES

B.3.1 VARYING o AND v SAMPLES

We conduct experiments on Semantle, Dockstring, and ARC-Small to investigate the tradeoff in-
volved in varying the ratio of online to neighborhood samples within a GRPO group in MIGRATE.
ARC-Small is a subset consisting of 54 tasks with grids up to a maximum of 64 cells, created to
measure variance across search methods via repeat runs

Throughout these experiments, we fix the number of greedy samples at 3 = 1. The results in Fig. [§]
reveals that the optimal configuration of online sand NS samples vary across domains. Particu-
larly, Semantle benefits from more NS samples, Dockstring performs the best with an equal ratio
of samples, while ARC prefers a higher proportion of online samples. These results highlights the
importanced of tuning « and v when applying MIGRATE to different domains.

B.3.2 VARYING 8 SAMPLES

We explore varying the number of greedy samples on Semantle. In these experiments, we run
MIGRATE with @ = 0 onlines amples, 5 greedy samples, and N — /3 neighborhood sampless. As
shown in Fig. @ performance remains relatively similar over = 0,1,5,10 with a small trend

"Note that we ensure ARC-Small maintains the same difficulty distribution as ARC-Full.

22

Under review as a conference paper at ICLR 2026

% Found

—— MIGRATE

Scalarized Overall Score (1)

(
2% —— MIGRATE (a = 4,7 =0) MIGRATE (;
10% MIGRATE (a = 2) 0% —— MIGRATE (a
- —— MIGRATE (a = 1) —— MIGRATE (a = ¢
Words Guessed Molecules Proposed Programs Sampled
(a) Semantle (b) Dockstring (c) ARC-Small

Figure 8: Varying o and . We vary the number of online and NS samples per group in MIGRATE.
(a) On Semantle, we found that the strategy of using no online samples to be the most successful
by a significant margin. (b) On Dockstring, we found that using only NS samples yield better
performances at smaller budgets and a configuration of equal amounts of online and NS samples to
achieve the best final performance. (¢) On ARC-Small, we found the mixed configuration of o« = 11
and y = 4 to perform the best.

% Found
Solve Rate

—— MIGRATE

MIGRATE
—— MIGRATE
—— MIGRATE

=0)
-
_5)

=10)

—— MIGRATE (a = 16, = 0)

MIGRATE (a = 15,7 = 1)
—— MIGRATE (a = 8,6 =8)
—— MIGRATE (a = 1,4 = 15)

(¢
(¢
(¢
(¢

‘‘‘‘‘

i a0 ED w0 o m n e
Words Guessed Programs Sampled

(a) Semantle (b) ARC-Small

Figure 9: Comparing $ on Semantle and ARC. MIGRATE shows a bias towards smaller /3 for
better performance on Semantle and ARC-Small.

of better performance with smaller 5. In tandem with the results on varying -y, this supports the
potential of more off-policy methods of performing TTT with GRPO.

B.4 VARYING REWARD FUNCTION SPARSITY

To investigate the impact of reward function sparsity on the performance of MIGRATE, we conduct
experiments on Semantle and systematically vary the sparsity of the reward signal. Specifically, we
modify the reward function such that rewards below a certain threshold are rounded down to zero,
thereby introducing sparsity into the reward signal. Let f(o;) be the original value from a black-box
function for a solution o;. We introduce a sparsity threshold T € [0, 1] and define the modified

reward function f(-) as follows:

. {0 iff(0;) <T)

floi) = f(o;) otherwise.

Next, we apply this sparsity function to MIGRATE and OPRO on Semantle to evaluate the effect
of sparsity on search performance. We test with 7' = [0, 0.25,0.5,0.75,1.0]. Specifically, 7' = 0
corresponds to the original reward function f(-) and 7' = 1.0 results in a binary reward function
where only the oracle solution maps to a non-zero reward.

As expected, in Figure @ka,b), both MIGRATE and OPRO show a decline in performance as the
reward sparsity increases. Interestingly, however, Figure [[0fc) demonstrates that MIGRATE shows
higher robustness to sparse rewards than the purely in-context OPRO baseline, with the gap between
MIGRATE and OPRO progressively increasing with higher sparsity.

23

Under review as a conference paper at ICLR 2026

- GRATE
80% |- = OPRO (0.0 threshold) 80% OPRO
~—— OPRO (0.25 threshold)
“7 —— OPRO (050 threshold)
4 | —— OPRO (0.75 threshold) oot
—— OPRO (1.0 threshold)

—— MIGRATE (0.0 threshold)
& (0.25 threshold)
& (0.50 threshold)
® (0.75 threshold)
CE (1.0 threshold)

o%
100 0 1000] 20 a0 6o 00 1000 10 (Binary) 075, 050 025 00 (Dense)
Words Guessed

(a) OPRO (b) MIGRATE (c) Best Results

Figure 10: Impact of reward sparsity on MIGRATE and OPRO. (a,b) MIGRATE and OPRO
see similar decreases in performance on Semantle as reward sparsity increases. (¢) MIGRATE
also shows more robustness to the reward sparsity by scaling better to denser rewards than OPRO.
Notably, MIGRATE matches the best OPRO performance at the second highest sparsity setting.

Semantle Dockstring
Method % Found QED (1) Vina Score (}) Overall Score (1)
NS 45.30 + 2.49 0.87 £0.01 —9.65 +0.21 0.71 +0.00
OPRO 40.70 +1.89 0.90 +0.00 —9.94 +0.06 0.74 + 0.00
MIGRATE 71.30 £4.11 0.90 £0.00 —11.00 % 0.07 0.79 £ 0.00
MIGRATE (OPRO) 65.3% +2.49 0.90 & 0.00 —10.80 £0.10 0.78 + 0.00
ARC-Small

Method Pass@2 (%) Oracle (%)

NS 48.15 +£0.00 55.56 + 1.51

OPRO 50.62 +1.75 59.26 £+ 0.00

Evolution 44.44 £ 1.51 57.41 + 0.00

BOPRO 22.22 + 0.80 22.22 + 0.80

MIGRATE 51.23 +3.49 62.35 + 0.87

MIGRATE (y-OPRO) 44.44% + 3.02 55.56 £ 0.04
MIGRATE (y-Evolution) 45.68 4 0.01 46.30 £ 0.00

Table 6: Comparing alternative sampling strategies. We compare the inference-only and MI-
GRATE (TTT) performance of different sampling techniques. All results are averaged over three
random seeds, with the standard deviation reported. The best result in each column is marked in
bold and the second best result is underlined. Despite OPRO showing better performance over NS
when comparing with the inference-only strategy, we see that NS demonstrates higher performance
than OPRO when combined with MIGRATE.

—— Random

- — NS

GRPO
GRPO-Greedy

—64 —— MIGRATE
MIGRATE (OPRO)

—— Random
— NS

OPRO
GRPO
GRPO-Greedy -101
—— MIGRATE

Druglikeness (QED) (1)
Binding Affinity (vina score) (1)

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Molecules Proposed Molecules Proposed

(a) Best-so-far QED (b) Bset-so-far Vina

Figure 11: QED and Vina Score plots for Dockstring.

24

Under review as a conference paper at ICLR 2026

B.5 ALTERNATIVE LOCAL STRUCTURE SAMPLING IN MIGRATE?

We experiment with the alternative of using OPRO in place of neighborhood sampling (NS) in MI-
GRATE. Our results in Table. [6]show similar results between MIGRATE and MIGRATE (OPRO) on
Dockstring and more favorable results towards MIGRATE on Semantle and ARC-Small. Compared
to other baselines in Table |I} MIGRATE (OPRO) only underperforms relative to MIGRATE on
Semantle and Dockstring. Notably, on ARC-Small, incorporating TTT into OPRO substantially de-
grades performance compared to inference-only OPRO. We also observe that OPRO achieves better
performance than NS across most metrics. The varying performance of MIGRATE (OPRO) across
domains suggests that NS is more compatible than OPRO with MIGRATE. In addition, the greater
improvement achieved by using NS over OPRO suggests that the NS strategy of generating diverse
variations may be better suited to TTT than OPRO, which focuses more on direct improvement of
previous solutions.

25

Under review as a conference paper at ICLR 2026

C APPENDIX C: LLM PROMPTS

C.1 SEMANTLE: TASK PROMPT

~
Your task is to guess a hidden word from the English
dictionary. Stick to proper, single-word English words.

Now, guess exactly n=%s new word(s) that could be the

hidden word. Be creative! (Note: give only a list of word(s)
in the provided JSON format, e.g. "response": ["wordl",
"word2", ...])

N)
C.2 SEMANTLE: NEIGHBORHOOD SAMPLING PROMPT

e N\
Your task is to guess words related to a word from the

English dictionary. Stick to proper, single-word English
words. Now, guess exactly n=%s new word(s) that could be
related to the word(s):

Word: %s

Be creative! (Note: give only a list of word(s) in

the provided JSON format, e.g. "response": ["wordl",

"word2", ...])

N J
C.3 DOCKSTRING: TASK PROMPT
e N

Your task is to find the optimal drug molecule that has

both a high druglikeness (QED) as well as a strong binding
affinity (vina) with the protein %s. For docking, lower

is better (less than --10 is considered good) and for
druglikeness, 1 is the best and 0 is the worst (greater

than 0.8 is considered good). While both properties are
important, the docking score is 10 times as important as the
druglikeness score. If you propose an invalid molecule or
make a repeat guess, you will get no score, so stick to wvalid
SMILES strings.

Now, guess exactly n=%s new molecule(s).

(Note: give only a list of SMILES string(s) in the provided

JSON format, e.g. "response": ["SMILES1", "SMILES2", ...1])
\ J

C.4 DOCKSTRING: NEIGHBORHOOD SAMPLING PROMPT

e ™
Your task is to find the optimal drug molecule that has

both a high druglikeness (QED) as well as a strong binding
affinity (vina) with the protein %s. For docking, lower

is better (less than --10 is considered good) and for
druglikeness, 1 is the best and 0 is the worst (greater

than 0.8 is considered good). While both properties are
important, the docking score is 10 times as important as the
druglikeness score. If you propose an invalid molecule or
make a repeat guess, you will get no score, so stick to wvalid
SMILES strings!

26

Under review as a conference paper at ICLR 2026

Here is my guess for a molecule:
SMILES: %s

Now, guess exactly n=%s new variation(s) of my molecule that
could improve the scores to reach the optimal molecule.

(Note: give only a list of SMILES string(s) in the provided
JSON format, e.g. "response": ["SMILES1", "SMILES2", ...])
N

C.5 ARC: TASK PROMPT

p
Given input-output grid pairs as reference examples,
carefully observe the patterns to predict the output grid

for new test input. Each pair follows the same transformation
rule. Grids are 2D arrays represented as strings, with cells
(colors) separated by spaces and rows by newlines. Here are
the input and output grids for the reference examples:

Example 1:
Input:
(r1,1,1,...,11]
Output:
(12,2,2,...,2]]

Example 2:
Input:
((2,2,2,...,2]]
Output:
(03,3,3,...,31]]

Here is the input grid for the test example:
Input:
[[3,3,3,...,311]

Write a Python function ‘transform‘ that can convert any
given input grid to its corresponding output grid based on
the pattern observed in the reference examples.

N

C.6 ARC: NEIGHBORHOOD SAMPLING PROMPT

p
Given input-output grid pairs as reference examples,
carefully observe the patterns to predict the output grid

for new test input. Each pair follows the same transformation
rule. Grids are 2D arrays represented as strings, with cells
(colors) separated by spaces and rows by newlines.

Here are the input and output grids for the reference
examples:

Example 1:
Input:

(1, 1,1,...,11]
Output:
((z,2,2,...,2]]

Here is the input grid for the test example:

27

Under review as a conference paper at ICLR 2026

Input:
(03,3,3,...,311]

The goal is to write a Python function ‘transform' that can
convert any given input grid to its corresponding output
grid based on the pattern observed in the reference examples.

Here is my guess for the function:

YY'python

def transform(input: np.ndarray) -> np.ndarray:
Code

ANAURY

Provide a variation of my guess that could be the correct

answer.
. J

C.7 DISCOVERYBENCH: TASK PROMPT

s N
You are a research scientist who is interested in data-driven
research using the provided dataset (s) and query. Be creative
and think of an interesting new experiment to help answer

the provided scientific query. Explain in natural language

the experiment plan that the programmer should follow (do not
provide the code yourself). Here are a few instructions that
you must follow:

1. Strictly use only the dataset(s) provided and do not
simulate dummy/synthetic data or columns that cannot be
derived from the existing columns.

2. The experiment plan should be creative, independent, and
self-contained.

3. Use the prior experiments (if any) as inspiration to think
of an interesting and creative new experiment. However, do
not repeat the same experiments.

Here is a possible approach to coming up with a new
experiment plan:

1. Find an interesting context: this could be a specific
subset of the data. E.g., if the dataset has multiple
categorical variables, you could split the data based on
specific values of such variables, which would then allow

you to validate a hypothesis in the specific contexts defined
by the values of those variables.

2. Find interesting variables: these could be the columns
in the dataset that you find interesting or relevant to the
context. You are allowed and encouraged to create composite
variables derived from the existing variables.

3. Find interesting relationships: these are interactions
between the variables that you find interesting or relevant
to the context. You are encouraged to propose experiments
involving complex predictive or causal models.

4. You must require that your proposed experiment plan is
based on robust statistical tests. Remember, your programmer
can install python packages via pip which can allow it to
write code for complex statistical analyses.

28

Under review as a conference paper at ICLR 2026

5. Multiple datasets: If you are provided with more than one
dataset, then try to also propose an experiment that utilize
contexts, variables, and relationships across datasets, e.g.,
this may involve using Jjoin or similar operations.

"Generally, in typical data-driven research, you will need

to explore and visualize the data for possible high-level
insights, clean, transform, or derive new variables from the
dataset to be suited for the investigation, deep-dive into
specific parts of the data for fine-grained analysis, perform
data modeling, and run statistical tests.

Examples of valid experiment plans:
Experiment plan #1:

1. Merge the datasets offshore, immigration, and
native_employment on the common columns ’year’ and ’'beaind’.

2. Replace infinite values with NaNs and drop rows with NaNs
in any column.

3. Independent variables: ’"iv_offshoring.l’, ’penetration’
4. Fit the OLS regression modela

Experiment plan #2:

1. Chose BMI as dependent variable.

2. Time preference (independent) variables as ’'DISSAVED’ and
" SAMESAVE' .

3. Fit an OLS regression model and returned the model
summary.

Plan an experiment to answer the gquestion about the following
dataset.

{dataset _metadata}

Now create exactly {n} new experiment plans that could
answer the scientific question. Note: give only a list
of experiment plans in the provided JSON format, e.g.

{"response": ["experiment_plan_.1", "experiment_plan2", ...]})
N J
C.8 DISCOVERYBENCH: NEIGHBORHOOD SAMPLING PROMPT
e N\

You are a research scientist who is interested in data-driven
research using the provided dataset (s) and query. Be creative
and think of an interesting new experiment to help answer

the provided scientific query. Explain in natural language
the experiment plan that the programmer should follow (do not
provide the code yourself). Here are a few instructions that
you must follow:

1. Strictly use only the dataset (s) provided and do not
simulate dummy/synthetic data or columns that cannot be
derived from the existing columns.

2. The experiment plan should be creative, independent, and
self-contained.

29

Under review as a conference paper at ICLR 2026

3. Use the prior experiments (if any) as inspiration to think
of an interesting and creative new experiment. However, do
not repeat the same experiments.

Here is a possible approach to coming up with a new
experiment plan:

1. Find an interesting context: this could be a specific
subset of the data. E.g., if the dataset has multiple
categorical variables, you could split the data based on
specific values of such variables, which would then allow

you to validate a hypothesis in the specific contexts defined
by the values of those variables.

2. Find interesting variables: these could be the columns
in the dataset that you find interesting or relevant to the
context. You are allowed and encouraged to create composite
variables derived from the existing variables.

3. Find interesting relationships: these are interactions
between the variables that you find interesting or relevant
to the context. You are encouraged to propose experiments
involving complex predictive or causal models.

4. You must require that your proposed experiment plan is
based on robust statistical tests. Remember, your programmer
can install python packages via pip which can allow it to
write code for complex statistical analyses.

5. Multiple datasets: If you are provided with more than one
dataset, then try to also propose an experiment that utilize
contexts, variables, and relationships across datasets, e.g.,
this may involve using Jjoin or similar operations.

"Generally, in typical data-driven research, you will need

to explore and visualize the data for possible high-level
insights, clean, transform, or derive new variables from the
dataset to be suited for the investigation, deep-dive into
specific parts of the data for fine-grained analysis, perform
data modeling, and run statistical tests.

Examples of valid experiment plans:
Experiment plan #1:

1. Merge the datasets offshore, immigration, and
native_employment on the common columns ’year’ and ’'beaind’.

2. Replace infinite values with NaNs and drop rows with NaNs
in any column.

3. Independent variables: ’"iv_offshoring.1l’, ’penetration’
4. Fit the OLS regression modela

Experiment plan #2:

1. Chose BMI as dependent variable.

2. Time preference (independent) variables as ’'DISSAVED’ and
" SAMESAVE' .

3. Fit an OLS regression model and returned the model
summary.

Plan an experiment to answer the question about the following
dataset.

30

Under review as a conference paper at ICLR 2026

{dataset _metadata}
PRIOR EXPERIMENTS

Now create exactly {n} new experiment plans that could
answer the scientific question and are x*similarxx to the
prior experiments. Note: give only a list of experiment
plans in the provided JSON format, e.g. {"response":
["experiment plan_1", "experiment_plan2", ...]})

&

31

	Introduction
	Related Work
	Background
	MiGrATe: Methodology
	Mixed-Policy Group Construction for Search

	Experiments
	Search Tasks
	Baselines

	Results and Discussion
	Conclusion
	Reproducibility Statement
	Appendix A
	Experimental Settings
	GRPO Formulation
	Computational Resources

	Appendix B: Additional Experiments
	Island-based Evolution Algorithm
	Can related tasks bootstrap search?
	Hyperparameter Sensitivity Analyses
	Varying and Samples
	Varying Samples

	Varying Reward Function Sparsity
	Alternative local structure sampling in MiGrATe?

	Appendix C: LLM Prompts
	Semantle: Task Prompt
	Semantle: Neighborhood Sampling Prompt
	Dockstring: Task Prompt
	Dockstring: Neighborhood Sampling Prompt
	ARC: Task Prompt
	ARC: Neighborhood Sampling Prompt
	DiscoveryBench: Task Prompt
	DiscoveryBench: Neighborhood Sampling Prompt

