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Abstract

Pruning is a commonly employed technique for deep neural networks (DNNs)
aiming at compressing the model size to reduce computational and memory costs
during inference. In contrast to conventional neural networks, large language
models (LLMs) pose a unique challenge regarding pruning efficiency due to their
substantial computational and memory demands. Existing methods, particularly
optimization-based ones, often require considerable computational resources in
gradient estimation because they cannot effectively leverage weight sparsity of
the intermediate pruned network to lower compuation and memory costs in each
iteration. The fundamental challenge lies in the need to frequently instantiate inter-
mediate pruned sub-models to achieve these savings, a task that becomes infeasible
even for moderately sized neural networks. To this end, this paper proposes a
novel pruning method for DNNs that is both computationally and memory-efficient.
Our key idea is to develop an effective reweighting mechanism that enables us to
estimate the gradient of the pruned network in current iteration via reweigting the
gradient estimated on an outdated intermediate sub-model instantiated at an earlier
stage, thereby significantly reducing model instantiation frequency. We further
develop a series of techniques, e.g., clipping and preconditioning matrix, to reduce
the variance of gradient estimation and stabilize the optimization process. We
conducted extensive experimental validation across various domains. Our approach
achieves 50% sparsity and a 1.58 x speedup in forward pass on Llama2-7B model
with only 6 GB of memory usage, outperforming state-of-the-art methods with
respect to both perplexity and zero-shot performance. As a by-product, our method
is highly suited for distributed sparse training and can achieve a 2 x speedup over
the dense distributed baselines.

1 Introduction

The explosive growth in the scale of deep neural networks (DNNs), especially large language models
(LLMs) [I1} 16} 48], has introduced practical challenges, including computational expense, memory
usage, and latency in inference. Model pruning [[13} 14} 21} 28| 341, particularly structured pruning,
has emerged as a promising solution, aiming to obtain a sparse neural network by removing redundant
components. For conventional DNNS, it has been reported that existing methods [8} 23] can enhance
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the inference efficiency and reduce the memory consumption by orders of magnitudes, with only a
slight performance degradation, facilitating the deployment of DNNs on low-power devices.

In contrast to conventional DNNs, LLMs have substantial computational and memory demands. The
users in downstream applications always have significantly less computational and data resources
for pruning compared to those used for training. Consequently, LLMs pose a unique challenge for
pruning. Metric-based pruning methods [2} 132} 55] are proposed to overcome this challenge; however,
their manually designed rules can adversely affect the performance of the pruned model, which is
more evident at higher sparsity levels. Moreover, due to the differing parameter redundancy across
layers, manually setting the pruning rate for each layer is almost impossible. Thus, these methods
struggle to achieve global heterogeneous pruning and are often forced to apply uniform pruning
across layers [3l146]]. Optimization-based pruning methods [18}153]], which better preserve model
performance, typically rely on training with backpropagation, making them difficult to apply in
resource-constrained applications [31157].
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Figure 1: (a) In the case of T iterations, vanila implementation need to instantiate sub-model 7 times.
In contrast, with the reweighting technique, a single sub-model can be used continuously for 7 steps.
This is a schematic; in practice, multiple sub-models can be sampled (see Algorithm [I). (b) With
our method, higher prune rates lead to lower training memory cost and faster forward computation.
Notably, with 50% prune rate, we prune Llama2-7B (12.6 GB in BF16) using only 6.3 GB memory,
while achieving 1.58 x speedup in the forward pass. (c) Circle size is proportional to pruned model’s
memory usage. We achieve substantial inference speedup while maintaining a low perplexity.

We argue that leveraging the sparse structure of the model is a natural idea to develop computationally
and memory-efficient pruning algorithms. This can be implemented by instantiating the sparse
subnetwork during pruning. However, as the subnetwork structure is updated in each iteration during
pruning, the model instantiation needs to be performed frequently, which could leads to unbearable
time cost. To this end, we propose a computationally and memory-efficient optimization-based prun-
ing algorithm with a novel reweighting technique to reduce the model instantiation frequency. This
approach effectively leverages the sparsity by completely discarding pruned parameters, preventing
them from participating in computation and storage. Our carefully designed reweighting mechanism
enables us to estimate the gradient of the pruned network in current iteration via simply reweighting
the gradient estimated on an outdated intermediate submodel instantiated at an earlier stage, in this
way the model instantiation frequency can be reduced. Our algorithm is illustratively shown in
Fig[Ta] We further integrate our reweighting technique with policy gradient estimator to bypass the
computationally expensive backpropagation to update the sparse sub-model structural parameters.
Finally, considering the additional variance introduced by reweighting and policy gradient estimator,
we develop a series of variance reduction techniques to stabilize training, including clipping and
preconditioning matrix, which are detailed in Section4.2]

Extensive experiments on LLM demonstrate that our method reduces memory requirements during
the pruning process and provides substantial computational speedup, particularly under high pruning
rate. On the Llama2-7B model, our algorithm achieved 50% sparsity with only 6 GB of memory
usage and delivered a 1.58 x speedup in forward pass, as shown in Fig. [Tb] while maintaining
state-of-the-art performance in terms of perplexity and zero-shot capabilities. In Fig. we present a
visual comparison of the model’s speed and perplexity after pruning with different methods.

Additionally, our algorithm is highly compatible with distributed sparse training [4]. In this setting,
we can send the instantiated sub-models to the respective clients. With the reweighting technique,
each client can work on its sub-model for a long period, reducing the frequency of model weights
transmission. During training, by passing only two real numbers, i.e., the reweighting value and



the training loss, we can provide clients with essential structural information and update structural
parameters on the server based on the latest client results in real time.

Our main contributions can be summarized as follow:

* We propose a novel pruning approach that, for the first time, instantiates intermediate pruned
sub-models throughout the pruning process. This technique effectively reduces compu-
tational and memory costs by limiting the frequency of instantiation, thereby enhancing
overall efficiency in pruning.

* Our reweighting technique enables unbiased policy gradient estimation based on outdated
structural information and reduces instantiation frequency. In addition, we design variance
reduction techniques to stabilize the pruning process.

* Our approach achieves 50% sparsity and a 1.58 x speedup in forward pass on Llama2-7B
with only 6 GB of memory usage, outperforming state-of-the-art methods with respect to
both perplexity and zero-shot performance.

* As a byproduct, our algorithm is inherently well-suited for distributed sparse training,
reducing communication overhead during training process.

2 Related Work

2.1 Conventional Neural Network Pruning

Neural network pruning [20] is a technique aimed at reducing model parameters, focusing on reducing
storage costs and inference time. Conventional pruning algorithms [[13} [19} 29} [38| 51]] generally
operate on traditional network, establishing criteria (e.g. weight magnitude, importance score) to
assess and prune the parameters or modules, while minimizing performance degradation. These
pruning methods make the deployment of some neural networks on resource-limited devices possible.

2.2 LLM Pruning

For LLMs, due to the large number of parameters and the resource mismatch between training and
pruning, the discussed conventional pruning algorithms are often difficult to apply. An increasing
variety of pruning algorithms are being designed specifically for LLMs, which can be divided into
two main types based on whether structural parameters optimization is involved: metric-based
[46 149,160, 163, 165]] and optimization-based [[7, 17, 27, 31]].

Metric-Based Pruning. Metric-based pruning is similar to traditional methods mentioned above
but is tailored to accommodate specific characteristics of LLMs, such as large number of parameters
and the outlier activation in certain channels [[11}|59]. These metrics are often more meticulously
designed: for instance, Wanda [46]] incorporates activations into the importance score; SparseGPT
[L5]] efficiently calculates Hessian’s inverse to set up metrics and parameter reconstruction; LLM-
Pruner [34] groups the module by graph information, and deletes them together after obtaining
the scores; FLAP [2] extends the metric globally through score normalization. These methods are
typically limited to layers or matrix, and their performance often deteriorates under high sparsity.

Optimization-Based Pruning. By training the structural parameters, the optimization-based prun-
ing algorithm can learn a more effective sparse structure. For instance, [54} 57] employs reparameter-
ization to learn masks, pruning the model down to a fixed size, [57]] additionally continues pretraining
to restore model capability; APT [66] introduces a dynamic low-rank structure similar to LoRA [25]],
allowing adaptive fine-tuning and pruning. NutePrune [31] employs the model with lower sparsity as
a teacher for distillation during pruning. Overall, optimization-based LLM pruning methods typically
require gradient computation through the chain rule, which inevitably demands higher computational
costs, making practical application more challenging.

Most LLM pruning methods fail to leverage sparse structures, and the resource mismatch between
training and pruning calls for a computationally and memory-efficient algorithm.



3 Preliminary

Framework of Probabilistic Masking for Pruning. We adopt the sparse training framework for
neural networks proposed in [67]]. Given a neural network parameterized by W = {w; } X |, where
K is the number of modules and w; represents the parameter matrix of a module within the network,
e.g., a head in Attention, or a channel in CNNs. Let . = [my, ..., mg]| denotes the corresponding
binary mask for W. The module w; is pruned when m,; = 0 and retained when m,; = 1. By further
reparameterizing the mask m with Bernoulli random variabels, i.e., m; ~ Bernoulli(s;) with
the probability of s; to be 1, the structured pruning framework can be formalized as follows:

mlnEp(m‘s)C(Wom NZ f(xi; Wom),y;), )

s.t.|slly < (1 —p)K and s € [0, 1]

where {(x;,y;)} Y, are the training samples, p denotes the prune rate, f(-; W o m) represents the
sparse neural network, £(-, -) is the loss function. Here, the optimization of W is omitted as we focus
on pruning instead of training.

The base solver proposed in [67] optimizes above problem using policy gradient estimator, which
enables unbiased gradient estimation of s using only forward propagation. After sampling a mini
batch B and m from p(mys), the specific update procedure for each iteration is as follows:

s < projs(s — ngs), where gs = Lz(m)Vlog(p(m|s)), )

where S = {s : [|s|1 < (1 — p)K and s € [0,1]%} is the feasible domain and projg(-) is the
projection operatmﬂ on S. Notably, Vs log(p(m|s)) = (1 s) can be computed explicitly and thus
the entire process is more efficient compared to traditional backpropagation-based algorithms.

4 Method

In this section, we introduce our method in three parts: the reweighting technique to reduce the
instantiation frequency in Section .1} the detailed framework of efficient pruning in Section 4.2} and
finally, the extension to distributed sparse training in Section .3

4.1 Reweighted Policy Gradient Estimator

Sub-model Instantiation. We first give the definition of instantiation as follows:

Definition 4.1. Given the parameters W of a DNN and the corresponding masks m, we instantiate
a compact sub- model by creating a new neural network to delete the pruned modules, which can be
written as f(-; Wyy,) with the parameters Wy, = {w; bicrand I ={i :m; =1,i=1,...,K}.

It can be seen that if we utilize 1 to instantiate a compact sub-model at each step, we can reduce mem-
ory consumption and accelerate forward speed. However, frequent instantiations lead to unbearable
time costs. Considering this issue, we propose a new reweighting technique to reduce instantiation
frequency, allowing to use outdated compact sub-model to optimize the structural parameters s.

Basic Idea. Our reweighting technique is inspired by importance sampling, and its general form is:

wer0 01 = [ 76mx = [ ) 5002 dx = By [f(x)p(")] R

£ ¢(x) ¢(x)

This equation indicates that the expectation of f(x) over distrbution p(-) equals to that of f(x )q(xg
p(x) .

over ¢(-). The item 2 > is the importance weight. This means one can estimate the mean of a random
variable in another probability space by choosing a proper distribution.

'The computation of the projection operator is detailed in Appendix @



Reweighting Technique Derivation. Based on the above analysis, we develop our reweighted
policy gradient estimator below. Firstly, we have

VSIEp(m|.:‘~x)‘C( )

:Vs/p(m|s) m)dm = /E Vsp(m|s )+p(m|s)_VOS£(m) dm
/.c p(m]$)V, log(p(m]s)) dm'/c )V, log(p (m|s))pEZ:2p(m§)dm
=E,(m|5)L(m)V log(p(m|s))w(m), 4)

where 5 € S is the outdated structural parameter. w(m) = Z EZ}Z% denotes the reweighting function

that transforms the measure p(m/|s) to p(m|3). Therefore,

gs = w(m)Lp(m)V;log(p(ms)) ©)

is an unbiased estimator of VK, (,,5)£(m). m is sampled from the outdated distribution p(m|3).

Discussion. Let § and s be the outdated and current structural parameters, respectively. Eqn.(3)
demonstrates that we can estimate the gradient of s in current iteration via reweigting the gradient es-
timated on an intermediate sub-model m instantiated at an earlier stage from an outdated distribution
p(m|§). In this way, we can reduce the instantiation frequency. Moreover, the estimation of g5 can
be computationally and memory-efficient due to the compactess of sub-model f(-; Wi,).

4.2 Framework of Efficient Pruning

Variance Reduction. Before giving the framework of our efficient pruning method, we need to
address the issue of high variance in our reweighted policy gradient estimator in Eqn.(5) as follows:

(1) Variance of w(m): The reweighting function w(m) can be unstable due to large divergence
between the two different distributions p(m|s) and p(m|§). We clip w(m) to [1 — €, 1]
following PPO [42], and abbreviate it as clip(w(m)).

s

(2) Variance of Lz(m): The training loss L£3(m)’s variation comes from the randomness
of the mask m. We minus Lg(m)Vlog(p(m|s)) by a highly correlated and several
zero meaned items in form of Lz(m/)Vlog(p(ml|s)), where the mask m/ is sampled
independently with m.

(3) Variance of V;log(p(m|s)): The potentially small denominator in Vlog(p(mls)),
which takes the form of Vlog(p(m|s)) = 5(1—sy> could introduce additional variance.

We multiply the gradient with a preconditioning matrix H* = diag(s o (1 — s))* with
o € [3,1) to offset this impact.

After applying these variance reduction techniques, our reweighted policy gradient estimator becomes:

gl = _1Zchp o(m!") (Lam) fchB ) H(5) V. ogp(m ). (0

where the masks (), i = 1, ..., M are sampled independently from the distribution p(m|3).

We have the following theoretical guarantee for our variance reduced gradient gz " . Detailed theoreti-
cal explanation is provided in the Appendix [E]

Theorem 1. Suppose the masks {m(i) YM . are independently sampled from the distribution p(m/|3),
then for any o € [%, 1) and s € [0, 1)%, the variance of g°" is bounded.

Pruning Algorithm. Finally, we present the complete algorithm in Algorithm Based on
reweighted policy gradient estimator with variance reduction, this algorithm enables efficient prun-
ing using only the forward pass of the completely sparsified model, thereby avoiding the need for
expensive backpropagation.



Remark 1. Though we have M sub-models, during implementation, they can be processed se-
quentially in order to save the memory cost. Concurrently, we assign distinct mini batches to each
sub-model to ensure equitable allocation of computational resources with the baselines. See Appendix
[A2|for details. Experiments under such fair setting verify the superiority of our approach.

Algorithm 1 Efficient Pruning with Reweighted Policy Gradient Estimator

Input: prune rate p, structural parameters s, instantiation steps 7, dense DNN W, learning rate .
1: Initialize s with certain method.
2: fort=1,2,...,Tdo
3. Set s = s, sample masks {m)}M, from p(m|5), instantiate sub-model f(-; W,,,c:)).
4 forr=1,2,....,7do
5 Sample a mini batch B = {(x1,y1),...,(x5,y5)}.
6: Get £(m(?) from each sub-model f(-; W,,, ) and compute w(m(?)) = 2mls)
7
8
9
0
1

p(m|3)
Calculate g¥" according to Eqn.(6).
Update s < projg(s — ng?™).
end for
: end for
: return Pruned DNN W,,,, where mask m is sampled from the distribution p(m/|s).

Discussion. We aummarize the appealing features of our algorithm as follows:

* Instantiating a compact sub-model loads only active components into memory, reducing
memory usage and accelerating forward passes, unlike existing methods [|57, 154} 58] that
merely mask parameters with zeros and miss the full benefits of sparsity.

* If we consider training model weights through backpropagation:
W W — nygw, Where gy = Ep(m5w(m)Vw L(m) = w(m)VwLs(m), (7)

the instantiation method ensures that gradient information maintains a sparsity level of p,
granting an efficient backpropagation.

* We find that our algorithm is inherently well-suited for distributed sparse training. Through
the use of reweighting technique, it reduces the overhead caused by frequent communication
of model parameters in training process. Therefore, we present the application of our
algorithm within the framework of distributed sparse training below.

4.3 Extension to Distributed Sparse Training

Distributed training requires the frequent passing of gradients and parameters between the server and
clients, which imposes high demands on transfer efficiency. As discussed above, our algorithm is
inherently well-suited for extending to distributed sparse training. During training process, the server
updates the structural parameters based on policy gradient and the client is responsible for training
its own sub-model, which only requires the latest structural information from the server. Since the
weight parameters are trainable now, we use clearer notation £z(W,,, ) instead of Lz(m?) to
distinguish this setting from the pruning task above. Our training process can be divided into four
stages:

(1) Instantiating sub-models. To start the training round, the server samples {m ()} from
p(m|s) to instantiate { f(-; W,,,»)) }}£, and sends them to each client.

(2) Updating sub-model paras. At each iteration, client; receives reweighting value w(m(i))

from the server, which provides real-time structural information and is used for updating the
current parameters W, ) via Eqn.(7).

(3) Updating structural paras. Each client returns the loss Lz(W,,, ) ). By collecting these
losses, the server estimates the policy gradient g2” via Eqn.(6) and updates s.

(4) Aggregating updates. Repeat (2) and (3) for 7 steps. Then each client returns the parameter
updates AW, ;) and the server aggregates them to update the full model.



Throughout the training process, only two scalars, the reweighting function w(m () and the training
loss Lg(W,,,:y) of each client are communicated in real time, while the model weight parameters
are passed only after every 7 steps. Therefore, in this framework, the communication costs between
the server and clients, as well as the instantiation overhead, are greatly reduced. Fig. [] visually
illustrates the flow of our algorithm. The detailed algorithm is shown in Appendix B}

Discussion. We genuinely believe that the distributed sparse training extension we propose is highly
non-trivial and elegant. However, its advantages are challenging to fully convey through text alone.
We strongly encourage readers to dedicate additional time to review its details along with Fig. {4|and
Algorithm [2]in appendix.

S Experiments

We conduct extensive experiments in this section, which demonstrate the superior performance of
our algorithm. In Section[5.1] we introduce the experimental setups. In Section[5.2] we compare our
method with other pruning methods for LLMs and conduct several ablation experiments in Section
Section [5.4] presents experiments using vision models in distributed sparse training scenario.

5.1 Experimental Setups

Model Configuration. We utilize the Llama and OPT families including Llama2-(7B, 13B) [48]],
Llama3\3.1-8B [[12], Llama3.2-3B, and OPT-(2.7B, 6.7B) [64]. We apply our pruning algorithm
across various structural granularities of the model, including attention heads and MLP channels.

Prune Rate. We target high sparsity levels (30%—50%) to better highlight our method’s advantages.
Under these settings, our instantiated method achieves higher acceleration and memory efficiency.

Baseline. Due to resource limits, we only include limited comparisons with optimization-based
methods (e.g., Compresso [18]], NutePrune [31]) in Section@ Our main focus is on metric-based
SOTA methods, including LLM-Pruner [34]], SliceGPT [3]], Wanda-sp, and FLAP [2]. No weight
fine-tuning is performed post-pruning for fairness.

Training Details. We follow [34]], using C4 [40] for training and Wikitext2 [36]], PTB [35] for
testing, which reflect the generalization of the pruned model. Adam [26] is used to optimize structural
parameters s with a learning rate of 5e-3 and batch size 8. Training is conducted for one epoch with
frozen model weights. Further details are provided in Appendix

5.2 Pruning Results on LLMs

The main experimental results are presented in Table [T} At various sparsity levels, our pruning
algorithm achieves lower perplexity compared to other state-of-the-art methods. This advantage is
even more pronounced at 50% sparsity, highlighting the superior performance of our optimization-
based algorithm over other metric-based methods.

Table 1: Performance comparison across methods and models under different prune rates. The lowest
and second lowest PPL are in bold and underlined, respectively. - denotes unsupported model types.

Prune rate Method Llama2-7B Llama2-13B Llama3-8B Llama3.1-8B Llama3.2-3B OPT-2.7B OPT-6.7B
|} WikiText2 Ptb  WikiText2 Ptb  WikiText2 Ptb  WikiText2 Ptb  WikiText2 Ptb  WikiText2 Ptb  WikiText2 Ptb
0% Dense 5.47 8.39 4.88 7.67 6.14 10.60 6.24 10.59 7.81 12.65 12.37 15.16 10.92 13.17
LLM-Pruner 27.13 111.16 15.19 125.96 20.18 30.37 19.23 31.50 - -
SliceGPT 23.31 88.74 17.85 72.38 50.88 75.37 - - - - - - 19.70 25.49
30% Wanda-sp 23.00 37.53 11.48 15.97 3433 50.74 27.15 36.86 41.76 91.43 32.60 39.33 56.33 58.12
FLAP 23.76 30.93 11.12 14.10 26.68 30.94 25.61 33.59 40.00 74.09 54.60 54.60 45.26 43.87
Ours 10.80 15.85 9.75 15.24 17.78 29.50 17.89 25.88 22.71 39.61 21.05 25.39 19.47 2385
LLM-Pruner 43.79 173.51 23.53 183.98 45.30 49.43 43.27 48.66 - -
SliceGPT 41.16 148.59 33.30 108.46 89.07 126.08 - - - - - - 32.04 44.10
40% Wanda-sp 39.57 71.72 24.63 50.08 74.57 128.06 61.62 90.66 76.47 137.37 70.11 74.63 148.41 108.58
FLAP 48.12 81.70 19.01 27.37 70.63 84.47 54.72 68.52 126.06 185.33 90.02 87.25 102.00 95.82
Ours 19.51 35.64 12.61 17.40 30.91 46.88 29.77 63.90 50.18 73.76 33.11 46.70 28.77 35.81
LLM-Pruner 178.32 424.44 48.94 269.79 129.16  200.27 141.25 153.84 - -
SliceGPT 71.72 237.90 53.14 161.87 155.70 186.02 - - - - - - 60.57 89.41
50% ‘Wanda-sp 101.72 112.80 103.90 16222 92.73 160.47 71.92 115.90 89.04 176.88 173.51 163.00  295.15 184.70
FLAP 105.90 231.26 51.70 117.19 138.51 220.25 78.77 132.87 161.58  323.84 168.17 143.85  286.07 196.62
Ours 26.83 44.23 21.21 44.47 57.14 74.13 57.80 78.35 83.88 116.41 65.86 90.02 53.75 65.86




We evaluate the generalization performance of our pruned models based on the settings from [34]],
using five zero-shot tasks from LM Evaluation Harness [16]: PIQA [5], HellaSwag [62], ARC-e,
ARC-c [9], and OBQA [37], and recorded their average performance. We use Llama2-7B and
Llama3-8B as baseline models. As shown in the Table 2] structured pruning does have a significant
impact on the model’s generalization ability. At high sparsity levels, datasets like ARC-e and ARC-c
show a notable performance decline. However, our algorithm still maintains the best among all
methods, demonstrating its effectiveness in preserving model capacity.

Table 2: Comparison of zero-shot performance between Llama2-7B and Llama3-8B.

P Nrer 1 Llama2-7B | Llama3-8B
rune rate

1TPIQA HellaSwag ARC-e ARC-c OBQA Average | PIQA HellaSwag ARC-e ARC-c OBQA Average
0% Dense 78.74 76.00 74.62 46.33 44.20 63.98 ‘ 80.79 79.19 77.69 53.41 45.00 67.22
LLM-Pruner  72.69 58.51 57.07 33.45 38.60 52.06 69.37 44.63 54.08 30.63 31.20 45.98
30% SliceGPT 73.39 60.41 52.36 3225 32.80 50.24 70.02 57.34 49.54 30.20 32.00 47.82
Ours 73.61 63.06 58.46 34.90 38.80 53.76 72.74 58.58 56.52 30.89 33.60 50.47
LM-Pruner 67.19 45.22 4339 2730  31.80 4298 63.55 36.28 4196  23.63 27.60 38.60
40% SliceGPT 66.81 48.98 41.88 25.94 27.00 42.12 64.20 44.54 37.63 24.49 28.00 39.71
Ours 68.99 53.89 4870  29.69  32.20 46.69 65.94 45.03 46.13  26.02  30.40 42.70

To demonstrate the effectiveness of our algorithm in reducing memory usage and accelerating the
forward pass during the pruning process, we present the instantiated model parameter nums, multiply-
accumulate counts (MAC), memory usage, and inference speed at different prune rates in Table 3] It
is clear that the resource savings achieved by our algorithm are proportional to the model’s sparsity.

Table 3: Statistics on pruned model. Inference Speed is Table 4: Comparison of initialization

evaluated by generating 400 tokens. methods for s on Llama2-7B, using PPL.

Prune rate Params(B) MACs(G) Memory(MiB) Speed(x) Dataset Prunerate Random 1-p Wanda-sp FLAP
30% 16.10 12.51 10.80 13.72

0% 6.61 845.71 12607.57 1.00 WikiTex2 40% 3281 2230 1951 18.10

30% 466 596.06 888824 124 SR L UL

35% 432 552.57 8239.75 1.30 Average 39.03 29.19 19.05 21.89

40% 4.01 512.85 7648.47 1.43 GO By S SR B

45% 3.67 469.90 6999.97 1.55 Pib 50% 11733 7351 423 6122

50% 335 429.09 6389.62 1.58 Average 6935 4675 3191 3647

5.3 Furthur Analysis

We conduct further studies on the following aspects: 1) different initialization methods for the
structural parameters s; 2) effectiveness of the reweighting and instantiation technique; 3) ablation
study for the variance reduction techniques; 4) comparison with the optimization-based methods.

Initialization Methods Comparsion. Four methods are employed to initialize the structural param-
eters s, including: 1) Uniform(0, 1) random values; 2) 1 — p directly; 3) the Wanda-sp score; 4) the
FLAP scoreﬂ From the results in Table it can be observed that using Wanda-sp initialization yields
the best performance, followed closely by FLAP initialization. This indicates that initializing the
structural parameters s with heuristic metrics can facilitate the optimization process. Additionally,
we find that random initialization is already sufficient to surpass metric-based pruning algorithms.

Effects of Reweighting and Instantiation. As shown in Fig. [2] as the number of instantiation steps
T increases, perplexity gradually rises due to the accumulation of errors from the outdated sub-model
W,, and gradients g;. However, by using the reweighting function, this issue can be effectively
alleviated. Even with 100 steps, the perplexity on WikiText2 still reaches 71.01, which is better
than SliceGPT’s 71.72. Meanwhile, in (c), we observe that after applying reweighting, all models in
the experiment exhibit a significant reduction in perplexity. Therefore, we believe the reweighting
function makes infrequent instantiation possible, which helps us fully leverage the sparse structure,
resulting in memory savings and forward acceleration.

'Since the scores of Wanda-SP and FLAP do not fall within the range (0, 1), we normalize these scores to
form a probability distribution. For different prune rates, we scale them to the desired sparsity level.
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Figure 2: (a) For different instantiation step 7, reweighted version consistently outperforms the w/o
reweighted baseline. Considering the trade-off between instantiation time and pruning performance,
we fix 7 = 10 throughout all experiments. (b) Under our fixed setting 7 = 10 for all experiments,
reweighting technique improves pruning across all models. Notably, on OPT-2.7B, the impact of
reweighting can reach up to 11.7 compared to w/o reweighting case. (c) Reweighting technique
stabilizes the training process, leading to better pruning. (a), (b), (c) are based on the 50% prune rate.

Variance Reduction. We employ clipping and preconditioning matrix H to stabilize the training
process and conducted ablation experiments to verify their contribution. The results in Table [5] shows
that omitting either the clipping or the preconditioning matrix negatively impacts the performance of
the pruned model. Among these, the clipping has a more evident effect on performance. Compared
to our final algorithm, not using clipping increases the perplexity on the Wikitext2 dataset by 12.44,
indicating that our variance reduction techniques enhance the stability of the training process. Details
of the variance reduction analysis can be found in Appendix[C|

Table 5: Variance reduction study, 50% Llama2-7B. Table 6: Overhead test, 50% Llama2-7B.

Method | | WikiText2 Ptb | 1PIQA HellaSwag ARC-e ARC-c Average Method WikiText2 Forward(s) Backward(s) Memory(MiB)
Ours | 2683 4423 | 6289 40.19 3998 2500 4202 Ours 2683 0.015 None 639021
wio H 3275 5701 | 6148 38.21 3729 2440 4035 Compresso 4928 0024 0.041 3329874
w/o clip 39.27 69.28 60.83 39.11 38.68 23.04 40.42 NutePrune* 24.89 0.049 0.051 37460.78
Note: evaluation metrics: Perplexity (WikiText2, PTB) and zero-shot accuracy Note:  pruning with LoRA adaption. I co-training the
(PIQA, HellaSwag, ARC-e, ARC-c and their average). masks and LoRA modules, also involves distillation.

Comparison with optimization-based methods. Our method outperforms other optimization-
based pruning algorithms by significantly reducing memory usage and training time. To demonstrate
the superiority of our algorithm, we select Compresso [[18] and NutePrune [31] for comparison. Since
these methods use different training settings, we focus on memory usage and time consumption in a
single optimization iteration. Table [6] shows that our algorithm achieves comparable performance
while consuming less memory, offering faster forward time, and requiring no backpropagation.

5.4 Distributed Sparse Training

Based on the method described in Section|4.3] we conduct extensive experiments within the framework
of distributed sparse training. We use gloo [43] as the distributed backend and built an 8-node cluster
for training on the ImageNet-1K dataset [41] (each node equipped with a GPU). The worker nodes
are connected via a 40 Gbps (5000 Mb/s) Ethernet interface. The baseline algorithms include
LocalSGD [45], PowerSGD [50], TSNNS [10], and our base solver EffTrain [[67]] (which performs
sparse training locally without using reweighting techniques, described in Section[3). We set the
instantiation sampling interval 7 to 20 steps. The detailed experimental configuration and baseline
description can be found in Appendix[A] The specific comparison results are shown in Table[7}

Table 7: Comparison of methods across ResNet-50, MobileNet-V1 and DeiT-Base on ImageNet-1K.

Method ResNet-50 MobileNet-V1 [24] DeiT-Base [47]
Acc(%)t Params(%)] FLOPs(%)| Timel Acc(%) Params(%) FLOPs(%) Time Acc(%) Params(%) FLOPs(%) Time
Dense Dist. 76.9 100 100 23.00 72.0 100 100 8.66 81.8 100 100 53.05
Local SGD 75.0 100 100 20.52 715 100 100 6.15 80.6 100 100 40.41
PowerSGD 76.0 100 100 19.25 71.3 100 100 5.50 79.5 100 100 38.28
TSNNS 74.5 63.2 774 19.49 70.4 88.5 82.9 5.69 78.5 80.3 794 39.37
EffTrain 76.1 482 46.8 11504 715 68.1 69.2 6136 80.1 67.1 68.2 288.24
Ours 752 48.1 46.5 9.79 71.6 67.4 68.9 4.15 80.9 66.5 67.3 26.70

Our method achieves excellent performance across three different models, surpassing other distributed
training algorithms, while also reducing model params and FLOPs. The base solver EffTrain also



achieves superior performance and model compression; however, due to the frequent instantiation
operations, its training time is significantly longer compared to distributed algorithms. In conclu-
sion, our algorithm integrates well into the framework of distributed sparse training. By using the
reweighting technique to reduce instantiation frequency, it achieves promising results in less time.

6 Conclusion

This paper introduces a novel DNN pruning algorithm that is computationally and memory-efficient.
For the first time in pruning research, we define model instantiation to leverage sparsity for memory
savings and forward acceleration. Additionally, we propose a reweighting technique that reduces
instantiation frequency, making it feasible to prune LLMs under resource constraints. As a byprod-
uct, our algorithm seamlessly integrates into distributed sparse training environments. Extensive
experiments demonstrate the excellent practical performance of our pruning algorithm, and numerous
ablation studies validates our proposed techniques’ effectiveness. Besides, we also provide thorough
theoretical analysis to support our algorithm.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main contributions of this paper are the high-performance and high-
efficiency pruning method, which is elaborated in detail in the method section. Additionally,
extensive experimental validation has been conducted, effectively reflecting the contributions
of this paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitations of our work in Section[H.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We provide a full derivation of our theoretical results, including assumptions
and proofs, in the appendix.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed descriptions of all experimental configurations, and we
believe the results can be reproduced regardless of whether the code and data are provided.
Additionally, we will make our experimental code available in the supplementary materials.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, we will make our experimental code available in the supplementary
materials. The data used in our experiments is open source.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental configuration has been thoroughly described throughout the
manuscript and supplementary materials (see Section [5.1] and Appendix [A] for complete
details).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: The statistical metrics we used are all officially defined and well-established.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computing platform and training resources employed in our experiments
have been thoroughly documented (See Appendix [A|for details).

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This work has been conducted in full accordance with the NeurIPS Code of
Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discussed the broader impacts in Section [G]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our study does not carry these risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We used public data and models under the license and terms, which were also
properly cited.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We did not release any new assets in this work.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our experiments didn’t include the crowdsourcing and research with human
subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our experiments did not include the crowdsourcing and research with human
subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: LLMs serve as the primary experimental subjects in our study. As detailed in
Section [5] we provide comprehensive documentation on: (1) the methodology for pruning
LLMs, (2) evaluation protocols for pruned models, and (3) performance analysis of the
models’ generative capabilities post-pruning.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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