Published as a conference paper at ICLR 2025

Do LLMS “KNOW” INTERNALLY WHEN THEY FOLLOW
INSTRUCTIONS?

Juyeon Heo" Christina Heinze-Deml’ Oussama Elachqar’ Kwan Ho Ryan Chan®* Shirley Ren’
Udhay Nallasamy®> Andy Miller? Jaya Narain®

'University of Cambridge 2Apple 3University of Pennsylvania

jh2324@cam.ac.uk Jjnarain@apple.com

ABSTRACT

Instruction-following is crucial for building Al agents with large language mod-
els (LLMs), as these models must adhere strictly to user-provided constraints and
guidelines. However, LLMs often fail to follow even simple and clear instruc-
tions. To improve instruction-following behavior and prevent undesirable outputs,
a deeper understanding of how LLMs’ internal states relate to these outcomes
is required. In this work, we investigate whether LLMs encode information in
their representations that correlates with instruction-following success—a prop-
erty we term “knowing internally”. Our analysis identifies a direction in the in-
put embedding space, termed the instruction-following dimension, that predicts
whether a response will comply with a given instruction. We find that this dimen-
sion generalizes well across unseen tasks but not across unseen instruction types.
We demonstrate that modifying representations along this dimension improves
instruction-following success rates compared to random changes, without com-
promising response quality. Further investigation reveals that this dimension is
more closely related to the phrasing of prompts rather than the inherent difficulty
of the task or instructions. This work provides insight into the internal workings
of LLMs’ instruction-following, paving the way for reliable LLM agentsp_-]

1 INTRODUCTION

Given the potential of large language models (LLMs), there has been significant interest in utilizing
these models to build personal Al agents. For instance, one could imagine deploying an LLM as
a personal healthcare assistant, such as a fitness or nutrition planner, or for psychological counsel-
ing (Li et al.|, [2024bj Wang et al., 2023} |Tu et al.,|2024). Compared to traditional machine learning-
based Al agents, LLMs offer the advantage of being easily adaptable through prompting, allowing
users to provide guidelines and personal information without the need to retrain model weights.

Instruction-following is critical in the development of personal Al agents with LLMs through
prompts because these models must adhere to the constraints and guidelines to ensure safe and
trustworthy interactions. For example, suppose an LLM is building a personal fitness plan for a user
with knee problems. To avoid knee problems for the user, the LLM must follow the instruction of
not recommending knee-intensive movements or any exercises that could lead to potential injury.
Similarly, in a nutrition planner, the LLM should avoid generating harmful recommendations, such
as suggesting inappropriate food for pregnant women or children with diabetes.

However, LLMs often fail to follow even unambiguous and simple instructions (Zhou et al.|, 2023;
Qin et al.l 2024} Xia et al) 2024; |[Kim et al., [2024; [Yan et al., |2024) like including keywords or
following formatting guidelines. GPT-4 achieves around an 80% success rate on IFEval (Zhou
et al., 2023)), an instruction-following benchmark dataset, while smaller models have success rates
around 30% to 40%. This raises the question: why do LLMs fail to follow instructions, even when
those instructions are clear and familiar?

To gain a better understanding of instruction-following outcomes, we analyze the internal state
of LLMs, focusing on the differences in representations between success and failure cases of

* Work done while at Apple.
!Code and data are available at https://github.com/apple/ml-internal-lims-instruction-following

Published as a conference paper at ICLR 2025

Example of Al agent Linear probes: Instruction-following dimension Representation Engineering

Task: Please generate a warm-up plan for 50 year old
female with a knee problem

Instructions: Do not include knee-required positions

(&

WARM-UP PLAN

=

WARM-UP PLAN

Train-Test data split

1x March on the spot 1x March on the spot

R

2 x Heel digs 5 # of Instructions types 5 # of Instructions types update

=R, yigina + @ XD

2 x Knee lfts
2 x Shoulder rolls R : represenation
\) D : Instruction following direction
a : scaling factor

Success case Failure case

2 x Heel digs
2 Stretch high

2 x Shoulder rolls

100 # of tasks

Figure 1: Overview of our paper. Left: Success and failure cases in a personalized Al fitness planner.
The task is to generate a warm-up plan while avoiding knee-required positions. The success case
follows the instruction, while the failure case violates it. Middle: Linear probing is applied to an-
alyze internal representations from success and failure cases, identifying the instruction-following
dimension. The probe is tested on unseen tasks (e.g., writing a CV) and instruction types (e.g.,
include/exclude keywords). Right: Representation engineering is used to shift failure cases into
success by adjusting the representations along the instruction-following dimension, improving ad-
herence without compromising task quality.

instruction-following across different tokens and layers. Our approach involves disentangling the
effects of tasks and instructions in input prompts, where the instruction specifies the action (e.g.,
‘please do not use keywords’) and the fask provides the context for executing the instruction (e.g.,
‘please write a resume’). By applying linear probing—a widely used method for interpreting model
representations (Alain & Bengiol 2016; Belinkovl, |[2022; |[Elazar et al.| [202 1))—we identify a specific
dimension within the input embedding space that is strongly associated with instruction-following.
While previous work has primarily used linear probing to explore representations related to truthful-
ness and reducing hallucinations (Azaria & Mitchell, 2023} |Marks & Tegmark, [2023; [MacDiarmid
et al.| [2024), our study extends this method to investigate instruction-following. We demonstrate
that this dimension generalizes to unseen tasks, however not to unseen instruction types.

To validate the significance of the instruction-following dimension, we applied representation engi-
neering techniques to enforce instruction-following based on insights from our linear probes. Our
experiments show that adjustments along this specific dimension are more effective in enhancing
instruction-following success rates than random modifications, while maintaining the overall qual-
ity of the generated responses. These results indicate that the instruction-following dimension plays
a crucial role in shaping the model’s behavior, toward better adherence to instructions.

To further interpret the meaning of this dimension, we conduct a sensitivity analysis based on three
key perturbations to the input prompt: task familiarity, instruction difficulty, and phrasing. Our
findings reveal that this dimension is more related to the rephrasing of prompts rather than the
inherent difficulty of the task or instructions. This suggest that the way a prompt is encoded within
the model’s input representation space plays a significant role in whether the instruction is followed
correctly. This observation not only provides a deeper understanding of why LLMs sometimes fail to
adhere to straightforward instructions but also offers an explanation for the effectiveness of prompt
engineering, even when the content of the prompt remains largely unchanged.

Overall, this work sheds light on the underlying mechanisms of instruction-following in LLMs by
uncovering a critical dimension in the model’s representation space. These insights enhance our
understanding of LLM behavior and offer practical approaches to improving instruction adherence,
bringing us closer to developing more reliable and trustworthy Al agents.

1.1 CONTRIBUTIONS

* We identify a specific dimension within the input embeddings space of LLMs that is closely linked
to instruction-following, using linear probes, by carefully designing our setting to disentangle the
effects of tasks and instructions in input prompts.

Published as a conference paper at ICLR 2025

* We demonstrate that this dimension generalizes to unseen tasks and that modifying representa-
tions along this dimension effectively converts instruction-following failures into successes with-
out compromising response quality.

» Through a sensitivity analysis, our findings reveal that this dimension is linked to how prompts
are rephrased, underscoring that instruction-following in LLMs is influenced by how prompts are
encoded within the model’s input embeddings. This explains why LLMs sometimes fail to follow
clear, simple instructions and why prompt engineering can enhance instruction adherence, even
when the content remains largely unchanged.

2 Do LLMS KNOW WHEN THEY SUCCEED OR FAIL TO FOLLOW
INSTRUCTIONS?

In this section, we aim to identify the dimension within the models’ representation space that is
closely associated with instruction-following. We use linear probes to determine the internal signals
that separate successful instruction-following from failures and examine whether this dimension
generalizes to different tasks and instruction types. By exploring different tokens and layers within
the models, we seek to understand how and when instruction-following information is encoded.

2.1 IFEVAL-SIMPLE

To objectively evaluate LLMs with simple and verifiable instructions, we select IFEval (Zhou et al.,
2023) as our base dataset. The motivation is that, while complex and multi-purpose instruction
prompts are more realistic, they require using LLM-based evaluators that may induce further errors
and biases in assessing success or failure. To avoid this potential issue, we focus on simple, single-
purpose and verifiable instructions from IFEval, such as “Please do not include keywords: ...” or
“answer in lower-case only”, that can be automatically validated with deterministic programs like
string-matching, thereby minimizing uncertainties from ambiguous evaluation criteria. We provide

a more detailed justification in Appendix

The IFEval dataset comprises 25 instruction types under 9 categories, with each instruction type
paired with a distinct set of tasks — approximately 20 tasks per instruction type. Furthermore, due
to the relatively small number of tasks per instruction type, internal model states resulting from
these prompts contain a mix of both instruction-following and task-specific details. To isolate the
dimension related specifically to instruction-following, we generated a modified version of the IFE-
val data, called IFEval-simple First, we selected 5 instruction types that are likely to be used in
real-world applications for Al agents. For example, ensuring the inclusion (keywords:existence) or
exclusion (keywords:forbidden) of specific keywords, specifying the frequency of certain keywords
(keywords:frequency), generating responses with placeholders (detectable_content:place_holders),
and requiring responses to end with predefined sentences (startend:end checker). We excluded more
complex or impractical instructions, such as those requiring omission of punctuation, as they are
less relevant for practical use cases.

Second, we generated 100 tasks using GPT-4, similar to the original tasks in IFEval, where each
instruction type is paired with the same set of 100 tasks. By pairing each instruction type with the
same set of 100 tasks, we ensure that linear probes trained on the model’s representations are more
likely to capture information solely related to instruction-following, without the confounding influ-
ence of varying tasks. The instructions assigned to each task vary in detail based on the context. For
example, for an instruction type focused on keyword inclusion or exclusion, a resume-writing task
might require keywords like ‘skills’ and ‘career’, while a joke about a programmer might involve
terms like ‘syntax’ or ‘code’. These variations introduce diverse challenges, testing the model’s
adaptability in following instructions. Example tasks are provided in Appendix Table[5]and Table[d]
The instruction-following accuracy for IFEval-simple datasets is presented in Appendix Table[TT]

2.2 METHODS

Representations We analyzed four language models: LLaMA-2-7B-chat (Touvron et al., [2023),
LLaMA-2-13B-chat (Touvron et al., |2023), Mistral-7B-Instruct-v0.3 (Jiang et al., 2023), and Phi-

’The IFEval-simple data is available at https:/github.com/apple/ml-internal-llms-instruction-following.

Published as a conference paper at ICLR 2025

\ Task generalization \ Instruction-type generalization
Model | First token Middle token Last token | First token Middle token Last token

LLaMA-2-chat-7B (14 lyr) 0.77£0.04 055+£007 073+£0.04 | 052+0.03 0.50+0.07 0.5240.05
LLaMA-2-chat-13B (16 lyr) | 0.83 £0.03 0.58 £0.06 0.824+0.03 | 0.56 = 0.06 0.58 £0.06 0.53 £ 0.03
Mistral-7B-inst-v0.3 (14 1yr) | 0.74 £0.02 0.54 £0.05 0.72+0.04 | 0.50 £0.05 051 £0.05 0.51 £0.05
Phi-3-mini-128k (14 lyr) 0.88+0.03 056+004 086+003 | 055+004 048+0.03 0.504+0.03

Table 1: Task and instruction-type generalization AUROC scores for task and instruction-type
generalization using a 70-30 train-test split for task generalization on unseen tasks, and leave-one-
out cross-validation for instruction-type generalization across different instruction types. Standard
deviation is calculated from five runs with different random seeds for task generalization and across
instruction types for instruction-type generalization.

| Early layers | Middle layers | Last layers
Model | First token Middle token Last token | First token Middle token Last token | First token Middle token Last token
LLaMA-2-chat-7B 0.77 £ 0.04 0.55 £ 0.07 0.73 £0.04 | 0.75£0.05 0.51+0.04 0.76 £0.04 | 0.73 £0.03 0.54 +0.02 0.70 £ 0.02
LLaMA-2-chat-13B | 0.83 +0.03 0.58 + 0.06 0.82+£0.03 | 0.81 £0.02 0.56 + 0.05 0.80 £0.04 | 0.78 £0.04 0.49 +0.03 0.79 £ 0.05

Mistral-7B-inst-v0.3 | 0.74 £0.02 0.54 £ 0.05 0.72+£0.04 | 0.71 £0.05 0.51 £0.03 0.67 £0.04 | 0.71 £0.03 0.49 £ 0.04 0.70 £ 0.03
Phi-3-mini-128k 0.88 + 0.03 0.56 4 0.04 0.86 4 0.03 | 0.85+0.03 0.56 & 0.03 0.83+0.02 | 0.65+0.05 0.53 4+ 0.03 0.63 £ 0.04

Table 2: Task generalization (detailed across layers) AUROC scores for the first, middle, and last
tokens across early, middle, and last layers of various models. The layers selected for LLaMA-2-
13B-chat are 16, 32, and 40, while for the other three models, the layers used are 14, 26, and 32.

3-mini-128k-instruct (Abdin et al., 2024). For each model, we looked at the representations on

three tokens: (1) first token, LLM (x1, xa, ..., x,), where x; are the n tokens in the input prompt;
(2) middle token, LLM (21,22, ..., Tn,Y1,Y2; - - -, Ym/2), Where y; are the first m/2 tokens of the
response; and (3) last token, LLM (21,2, ..., Zn,Y1, Y2, - - -, Ym), representing the full input and

response. We also examined three layers (early, middle, last) to identify where instruction-following
information is encoded within the models’ internal state. Specifically, we used layers 16, 32, and
40 and for LLaMA-2-13B-chat and 14, 26, and 32 for other three models. To avoid randomness in
decoding, we employed greedy decoding without sampling.

Linear Probes We trained linear probes on the representations to identify the instruction-following
dimension. A simple linear model was trained on instruction-following success outcome, optimized
for 1000 epochs with AdamW, a 0.001 learning rate, and 0.1 weight decay.

Train-test split and metric We assessed task generalization and instruction-type generalization by
splitting the data into training and testing sets, as shown in Figure |} IFEval-simple has 5 instruc-
tion types, each paired with the same set of 100 tasks. To evaluate task generalization, we split
the data by the task dimension, using a 70-30 train-test split across the 100 tasks. To evaluate
instruction-type generalization, we applied a leave-one-out approach, over the instruction-type di-
mension. To evaluate performance, we use the Area Under the Receiver Operating Characteristic
Curve (AUC)(Pedregosa et al., 2011), assessing the accuracy of binary predictions for each model
on unseen tasks and instruction types.

2.3 RESULTS

Linear probes generalize across unseen tasks The task generalization results in Table [I] show
that linear probes performed well across different tasks when the instruction type remains consis-
tent. The AUROC scores, which range from 0.7 to 0.8 using the first token, suggest that the input
embeddings of these models possess a shared geometry related to instruction-following that gener-
alizes well across varied tasks. This is particularly beneficial in the context of buliding Al agents,
where a pre-defined consistent set of instructions needs to be followed across different tasks. For
example, if a probe is trained on examples of an instruction type like “Please do not include these
keywords” using examples from resume writing and nutrition coaching, the linear probe can predict
if the model follows the same instructions type even unseen tasks, such as creating a warm-up plan
without knee-intensive exercises. Additionally, we plot the principal components analysis (PCA)
using representations from the first token and early layers, fitting the PCA on the training split and
visualizing the results on the test split (unseen tasks) in Figure[2| They show clear separability, sup-

Published as a conference paper at ICLR 2025

Instructions | LLaMA-2-chat-7B | LLaMA-2-chat-13B | Mistral-7B-inst-v0.3 | Phi-3-mini-128k
| Earlylyr Middlelyr Lastlyr | Earlylyr Middlelyr Lastlyr | Earlylyr Middlelyr Lastlyr | Earlylyr Middlelyr Lastlyr

key:forbidden 0.52 0.51 0.56 045 0.45 0.44 0.44 0.41 0.46 0.52 0.54 0.53
key:exist 0.50 0.50 0.51 0.67 0.68 0.66 0.55 0.50 0.50 0.63 0.67 0.68
key:freq 0.57 0.59 0.59 0.57 0.57 0.57 0.56 0.56 0.56 - - -
number_placeholders 0.56 0.54 0.52 0.58 0.58 0.54 0.50 0.49 0.50 0.50 0.53 0.46
end_checker 0.48 0.46 0.47 0.55 0.57 0.56 0.44 0.42 0.45 0.55 0.59 0.57
AVERAGE ‘ 0.52 0.52 0.53 ‘ 0.56 0.57 0.55 ‘ 0.50 0.48 0.49 ‘ 0.55 0.58 0.56

Table 3: Instruction-type generalization (detailed) AUROC across different models and selected
layers on first token representations. A leave-one-out approach was employed, and the standard
deviation from training a linear probe is small enough to be omitted from the table. The ‘-* mark
in ‘keywords:frequency’ instruction type is due to an insufficient number of data points caused by a
100% success rate, making it impossible to compute reliable AUC scores.

(a) Llama-2-13b-chat-hf ~ (b) Llama-2-7b-chat-hf (c) Mistral-7B-Inst-v0.3 (d) Phi-3-128k-inst

Figure 2: PCA plot of first token representations from early layers across four LLMs. PCA is fitted
on the training split and visualized on the test split (unseen tasks). The PCA shows separability,
suggesting the consistent capture of the instruction-following dimension across tasks. The analysis
includes three instruction types from the keyword category in IFEval-simple. Additional PCA results
for all five instruction types across different categories are provided in Appendix Figure@

porting the idea that the instruction-following dimension is consistently represented across different
tasks. Further PCA analysis is provided in Figure [f]in the Appendix.

Linear probes do not generalize across unseen instruction types In contrast to task generaliza-
tion, the models exhibit no clear generalization when tested across unseen instruction types. The
AUROC scores for instruction-type generalization are notably lower, ranging from 0.50 to 0.55,
close to chance (Table[T)). A potential explanation for this poor generalization could be the limited
number of instruction types used during training, where the linear probe was trained on just 4 in-
struction types. To investigate, we expanded the dataset to include 25 instruction types, each paired
with 20 tasks. However, as shown in Appendix in Table (8] this expanded experiment yielded similar
results, with models still failing to generalize well across unseen instruction types. This indicates
that models struggle to generalize instruction-following across different instruction types, implying
the absence of a ‘global’ instruction-following dimension that can be leveraged regardless of the
instruction type, which may be due to varying representation geometries.

First token is as informative as last token Interestingly, the first and last tokens—representing
the model’s state before and after response generation—show high AUROC scores, implying that
LLMs may already “know” whether they will follow instructions even before they start generating
their responses. This early indication of instruction following is valuable, since early intervention
or correction could be applied. In contrast, the middle tokens showed lower AUROC scores, likely
because the representation contains information about next token generation more than information
about instruction-following.

Layer-wise performance is similar, with early layers slightly better for task generalization The
performance across different layers shows only slight variations, with early layers marginally out-
performing middle and last layers, as detailed in Table 2] For example, in the 13B model, the early
layers achieve an AUROC of 0.83 for the early token, which is slightly better than the performance
of middle and last layers. This suggests that the instruction-following dimension may be more
prominently represented in the earlier stages of the model’s processing. However, for instruction-
type generalization, there is no clear pattern across layers (Table [3)), indicating that the challenges
associated with generalizing across different instruction types are pervasive throughout layers.

Published as a conference paper at ICLR 2025

Model \ Original SR Random SR Inst-follow SR \ Original QR Random QR Inst-follow QR

LLaMA-2-chat-7B 0.57+0.00 0.55+0.00 0.59 + 0.00 0.87£0.09 0.85+0.10 0.87 £ 0.08
LLaMA-2-chat-13B | 0.61 £0.00 0.54 +£0.12 0.65 + 0.02 0.92£0.00 091+0.02 0.94 + 0.00
Mistral-7B-inst-v0.3 | 0.58 £0.00 0.56 +0.02 0.64 + 0.02 0.95+0.02 0.86 4+ 0.02 0.98 & 0.06
Phi-3-mini-128k 0.71 £0.00 0.63+=0.04 0.74 = 0.01 0.76 £ 0.01 0.76 = 0.01 0.78 £+ 0.00

Table 4: Representation Engineering results on the last layer across four models. Success rate
(SR) for instruction-following and quality ratio (QR) for task quality are compared across the orig-
inal outputs, outputs using the instruction-following dimension, and outputs using a random direc-
tions. RE along the instruction-following dimension improves SR while maintaining or enhancing
QR, unlike random adjustments which often reduce both SR and QR. Standard deviations are across
three runs with different random seeds.

oes Success Rates (SR) Success Conversion Ratio (SCR) Lo Success Preservation Ratio (SPR)
0.30
095
0.60
0.25 0.90
0.55 0.20 0.85
o
o
] a 080
wn " o0.1s
0.50 0.75
010
0.70
045
0.05 0.65
0.40 0.00 0.60
Llama2-chat-7B Llama2-chat-138 Mistral-v0.3 Phi-3-mini Llama2-chat-78 Llama2-chat-138B Mistral-v0.3 Phi-3-mini Llama2-chat-7B Llama2-chat-13B Mistral-v0.3 Phi-3-mini
Model Model Model
Il Original s Random Inst-follow

Figure 3: Transition metric for Representation Engineering on the last layer of four models
Success rate (SR) only on high quality responses in task execution (scoring above 7 by GPT-4,
scale from 0 to 9). The Success conversion ratio (SCR) indicates the proportion of originally failed
responses that became successful after modification, while Success preservation ratio (SPR) reflects
the proportion of originally successful responses that remained successful.

3 REPRESENTATION ENGINEERING

We identified a dimension within the input embedding space associated with instruction-following.
To evaluate whether this dimension significantly impacts the models’ behavior, we manipulated the
representations along this direction using representation engineering (Marks & Tegmarkl 2023 Zou
et al.| |2023). An increase in the models’ instruction-following success rate tied to manipulations
along the identified direction validates the role of the dimension in shaping the models’ generation
outcomes toward instruction adherence.

3.1 SETTINGS

Method For each input representation Roriginat, We applied a transformation in the identified di-
rection D using the formula Rpdated = Roriginal + & X D, where « is a scaling hyper-parameter.
We applied this transformation to all input representations, including both success and failure cases,
to evaluate whether RE could improve instruction following universally, without disrupting cases
where the model was already successful. This adjustment was applied to the representations in the
last layer of the model, as it was more robust to variations in «. We focused on the representation
of the first token, which corresponds to the input embedding before any response generation, since
the goal of representation engineering (RE) is to adjust internal representations before the response
is generated to improve the model’s instruction adherence. The direction D is the weight of a linear
probes trained on all IFEval-simple dataset. E|

Metric We evaluated the success rate (SR) of instruction-following using predefined evaluation
functions from the IFEval (Zhou et al.l[2023). Additionally, we assessed the quality of the responses

3We also experimented with training the linear probe on 70% of the IFEval-simple dataset and applying
RE to the remaining 30% test set. The results were similar but slightly worse than when the linear probe was
trained and RE was applied to the entire dataset. Since our primary focus is on analyzing the variance caused
by RE itself, rather than variance from train-test splits, we present the results using the full dataset here.

Published as a conference paper at ICLR 2025

using GPT-4, scoring each response on a scale from 0 to 9 based on its relevance to the given
task. We defined quality ratio (QR) as the number of responses scoring above 7 divided by the
total number of responses that successfully follow instructions (this cutoff was defined based on the
distribution of quality scores). F2T (False to True) and T2T (True to True) show how many failed
responses became successful and how many successful ones remained so after modification. The

Success conversion ratio (SCR) := % indicates the proportion of originally failed responses
that became successful after modification, while Success preservation ratio (SPR) = %

reflects the proportion of originally successful responses that remained successful.

Baseline and hyperparameter selection To demonstrate the effectiveness of the identified
instruction-following dimension, we compared it against random directions. Each model and in-
struction type required a different o value based on their specific geometry. If « is too large, it can
degrade the quality of responses; if too small, it may not effectively improve instruction-following.
We selected a for each model and instruction type using a validation set comprising 10% of the
instruction data. The selected o values were: 0.3 for Llama-2-chat-13b and Llama-2-chat-7b, 0.1
for Phi-3, and 0.15 for Mistral-7B.

Prompt for scoring task quality

You are a helpful assistant in evaluating the quality of the outputs for a given instruction.
Your goal is to score a given output for the given instruction. You should give an overall score
(an integer) on a scale of 0 to 9, where a higher score indicates better overall performance.
Do NOT provide any explanation for your evaluation.

Instruction: {Task-only-input}
Output:{Response }
Score of the Output (Your response should be ONLY the score, an integer between 0-9):

3.2 RESULTS

RE on instruction-following direction improves success rate while maintaining quality Our ex-
periments demonstrate that applying the RE direction generally improves the instruction-following
success rate (SR) across most models and instruction types. As shown in Table] the SR with the
instruction-following direction usually outperforms the original success rate and is lower bounded
by the the original SR — that is, the instruction-following dimension does not lead to worse than
original SRs. Additionally, the QR remains equal to or higher than the original, indicating that RE
can be applied with minimal risk of reducing response quality. Figure [5|in the Appendix provides
an illustrative example of modified responses. In this case, the task was to write a resume with the
instruction to include three specific keywords. The original response only included one keyword,
whereas the modified response, guided by the instruction-following direction, successfully incorpo-
rated all three keywords, demonstrating the effectiveness of RE in enhancing instruction adherence.

Instruction-following direction is better than random directions When comparing RE direction
to random directions, RE consistently outperforms random directions in increasing the success rate
across all instruction types and models, as illustrated in Table [4| and Figure [3| The ratios of True-
to-True (T2T) and False-to-True (F2T) transitions are typically larger for the instruction-following
direction than for random directions, indicating a more reliable improvement in success rates.

4 INTERPRETING THE INSTRUCTION-FOLLOWING DIMENSION

While manipulating representations along the instruction-following dimension reveals that it influ-
ences a model’s behavior, the meaning behind this manipulation remains unclear. To interpret the
meaning of the instruction-following dimension, we conduct a sensitivity analysis to investigate the
relative of perturbations on the internal state of LLMs, compared to our identified direction. We
consider three perturbation types: task familiarity, instruction difficulty, and phrasing. We (1) sys-
tematically alter the original input prompts in IFEval-simple dataset for each perturbation, (2) com-
pute the resulting difference in internal state representation space before and after the perturbation,

Published as a conference paper at ICLR 2025

and (3) compute the cosine similarity between the perturbation-induced difference vector and the
instruction-following dimension we identified. We designed prompt changes for each perturbation:

(1) Task Familiarity: We investigated whether the instruction-following dimension might be re-
lated to how familiar the model is with a given task. For example, the task “Write a resume for soft-
ware engineer” might be more familiar to the model than “Write a summary about current events”,
if it was more common in the data used to train the LLMs. If a task is more familiar to a model, it
may be easier for the model to follow instructions regarding that task. To perturb the model on task
familiarity, we kept the instruction constant while changing the task to one with lower perplexity
(Jelinek et al.l [1977). Perplexity measures the probability of tokens in generation, reflecting task
familiarity (Gonen et al.,|2022), where high perplexity indicates a familiar task and vice versa.

(2) Instruction Difficulty: We investigated the relationship of the instruction-following dimension
with the complexity of the instructions. We perturbed the instruction difficulty by simplifying in-
structions by relaxing instruction-related constraints. For example, in the original instruction “Please
include keywords: coding, Python, computer, experience”, we reduced the complexity by reducing
the number of keywords required in the instruction to “Please include the keywords: coding”.

(3) Phrasing Modification: Finally, we examined whether the instruction-following dimension was
correlated to how the prompt is phrased. We rephrased the prompts while keeping the meaning of
the task and the instruction unchanged. For example, we modified “Write a resume for software
engineer. Please include keywords such as coding, Python, computer, experience” to “I want you
to write about software engineer resume including four words coding, Python, computer, or expe-
rience”. We used GPT-4 to rephrase both the task and instruction in the input prompt, and applied
GPT-4 again to validate that the meaning of the contents remained the same after rephrasing.

We selected 20 prompts, each containing a task and an instruction from the ‘forbidden keyword’
instruction type in IFEval-simple dataset. For each perturbation type, we created five modified
versions of each prompt. We then averaged the representations of these modified prompts and cal-
culated the difference between this averaged representation and the representation of the original
prompt. Finally, we assessed how well this difference vector aligned with the instruction-following
dimension by computing the cosine similarity.

Our findings, illustrated in Figure [show the sensitivy analysis results for two models: Llama-2-
13b-chat and Llama-2-7b-chat. In both models, the results indicated that phrasing modifications
have a stronger correlation with the instruction-following dimension than task familiarity or instruc-
tion difficulty. These results support the hypothesis that the instruction-following dimension is more
closely tied to how prompts are phrased rather than the inherent difficulty of the task or the complex-
ity of the instruction. This suggests that how prompts are phrased plays a critical role in determining
whether LLMs will successfully follow the instructions, aligned to observations [Lu et al.| (2023);
Sclar et al.| (2023) showing LLMs are sensitive to prompt formatting.

5 RELATED WORK

Instruction-following in LL.Ms Recent research has introduced various benchmark datasets to eval-
uate the instruction-following capabilities of LLMs across different contexts(Zhou et al., |2023}; |Qin
et al., |2024; |Yan et al.| [2024; [Xia et al.l |2024). Beyond evaluation, several approaches have been
proposed to improve instruction-following performance, such as modifying attention mechanisms
(Zhang et al.,|2023) and applying fine-tuning strategies (He et al.l 2024; Sun et al.l |2024). In con-
trast to prior work that primarily focuses on evaluating or enhancing instruction-following, our study
aims to understand why LLMs sometimes fail to follow instructions by analyzing internal represen-
tations.

Linear Probing and Representation engineering on LLMs Linear probes have been widely used
for interpreting and analyzing the representations of neural networks (Alain & Bengiol [2016) and
language models (Belinkov, 2022} [Elazar et al., 2021)). Specifically, probing for the trustworthiness
of LLMs has been an active area of research (Azaria & Mitchell, 2023} Marks & Tegmark, 2023
MacDiarmid et al., 2024 L1 et al., | 2024a; Burns et al., 2022; Zou et al., 2023} Rimsky et al.| 2023;
Li et al., [2022; [Nanda et al., 2023} [Subramani et al., 2022} Tigges et al.| [2023} [Todd et al., 2023
Farquhar et al., 2024} |Ahdritz et al.| 2024} Duan et al.| [2024). These probing methods are closely
related to representation engineering and editing techniques aimed at modifying model knowledge

Published as a conference paper at ICLR 2025

Sensitivity analysis of three types of perturbations on instruction-following dimension

°e
o~

-01

Alignment (Cosine Similarity)
N

Task Modification Instruction Difficulty Phrasing Modification Task Modification Instruction Difficulty Phrasing Modification

Modification Modification

Figure 4: Cosine similarity alignment for modified data in the ‘forbidden keyword’ instruction
type across two models (Llama-2-7b-chat (Left) and Llama-2-13b-chat (Right)). The figure shows
the cosine similarity between the instruction-following dimension and the difference vector (com-
puted as the difference between the original prompt’s representation and the average representation
of five modified prompts) across 20 sampled prompts. Modifications include changes in task fa-
miliarity, instruction difficulty, and phrasing. The results indicate that phrasing modifications align
more closely with the instruction-following dimension, suggesting that how prompts are phrased
plays a crucial role in determining instruction adherence.

and behavior (Zou et al.,2023; Rimsky et al.,[2023; [Li et al., 2024a; |Park et al., 2023} |(Chen & Yang,
2023} [Luo et al.| 2024} Turner et al.| 2023)). Our work is distinct from these previous efforts, which
primarily focus on representations related to truthfulness and reducing hallucinations. In contrast,
our study centers on representations related to instruction-following, highlighting the importance of
understanding how models internally handle instructions.

6 DISCUSSION AND CONCLUSION

6.1 LLMS INTERNALLY RECOGNIZE WHETHER THEY WILL FOLLOW INSTRUCTIONS

Our findings suggest that LLMs may possess an inherent ability to predict whether they will success-
fully follow instructions, even before the generation process begins . This capability is supported by
several key observations:

LLMs generalize well across tasks but struggle with different instruction types We find that
while LLMs can generalize across different tasks, they struggle with generalization across different
instruction types. This suggests that distinct instruction categories may have unique geometries
within the models’ internal representation space, making it more challenging to generalize across
them.

LLMs can predict instruction success from the first token We observe that the model’s inter-
nal representations are separable from the very first token, which corresponds to the embedding of
the input prompt. This indicates that the likelihood of instruction-following success can be deter-
mined early in the process, before the model generates any responses. This highlights the critical
role of how the input prompt is encoded and the importance of input representations in predicting
instruction-following outcomes.

Representation engineering increases instruction-following success We further validate the sig-
nificance of the identified instruction-following dimension by adjusting the model’s representations.
By moving failure cases into the success class along this dimension and comparing the results to ran-
dom adjustments, we observe a significant increase in the success rate while keeping the task quality.
This demonstrates that the identified dimension is both meaningful and can be used practically.

The instruction-following dimension is closely tied to prompt phrasing Our findings, in Figure
reveal that the instruction-following dimension is most closely associated with the phrasing of
prompts, rather than the inherent difficulty of the task or the specific details of the instructions. This
suggests that how instructions are phrased plays a crucial role in whether LLMs will follow them
and is consistent with our finding on the separability of representations from the early token.

Published as a conference paper at ICLR 2025

6.2 THE ROLE OF INPUT PROMPT REPRESENTATION IN INSTRUCTION-FOLLOWING FAILURES

Our findings highlight the role of representation of the input prompt in determining instruction-
following success in LLMs. We discover that the instruction-following dimension identified in our
analysis is sensitive to changes in how the input prompt is phrased. This sensitivity explains several
behaviors of LLMs:

Why LLMs fail in following instructions LLMs may fail to follow even simple, clear instructions
because the encoding of the input prompt within the models’ internal representation space can be
easily disrupted. Our findings suggest that small variations in how a prompt is phrased can result in
significant differences in how the model processes the instruction, leading to failures in adherence.
This issue arises not from ambiguity in the instruction itself, but from the LLM’s sensitivity to the
exact structure and phrasing of the input, which influences how the instruction is embedded and
processed internally. As a result, the model might not consistently follow instructions, even when
they are clear and familiar.

Why Prompt Engineering (PE) works PE operates by slightly altering the phrasing of a prompt,
which in turn changes how the input is encoded within the model. This subtle shift in encoding
can move a representation from a failure class to a success class in terms of instruction-following
within the input embedding space. Our work with representation engineering achieves a similar
outcome, but instead of modifying the input text, we make adjustments directly in the representation
space. Both approaches influence the model’s internal states, highlighting the importance of the
input encoding process. Our observations align with prior research showing LLM sensitivity to
prompt formatting (Lu et al.l 2023} Sclar et al.||2023; Gonen et al., 2022).

Semantic sensitivity of LLM input embedding space The fact that instruction-following success
or failure can be altered by slight prompt rephrasing shows that the LLM’s input embedding space is
semantically sensitive. This sensitivity suggests that the model’s internal representation of prompts
is brittle, making LLMs vulnerable to small changes in how an input is framed or phrased. This
fragility, likely driven by the model’s large size and the complexity of its training dynamics, creates
challenges in ensuring robust instruction adherence. Given this sensitivity, future efforts should
focus on making LLMs’ input embedding space more robust and reliable. One potential approach
is to fine-tune models with an explicit focus on stabilizing instruction-following by utilizing the
identified instruction-following dimension.

Our findings highlight the crucial role of prompt encoding in instruction-following success for
LLMs. The sensitivity of the input embedding space to slight changes in phrasing explains why
LLMs may fail to follow even clear instructions and why prompt engineering is effective. By ad-
justing the representations directly, as we did with representation engineering, we show that it is
possible to significantly improve instruction adherence. Going forward, improving the robustness
of LLMs’ input embeddings through training can make models more reliable and consistent in fol-
lowing instructions across a variety of tasks. This is crucial for building trustworthy Al systems,
especially in real-world applications where accuracy and reliability are essential.

6.3 LIMITATIONS AND FUTURE WORK

Our analysis was primarily focused on a specific set of tasks and models. Although our current
results are consistent across the models we studied, future work could extend these findings by
evaluating additional models to determine whether the identified instruction-following dimension
generalizes across different LLM architectures. Additionally, expanding the dataset to include a
wider variety of instruction-following cases could enrich the analysis and improve the generaliz-
ability of our findings. We focused our investigation on simple modeling approaches to identify
an instruction-following dimension and evaluate its practical significance. Future work could in-
clude additional methods train linear probes, particularly in handling domain shifts. Similarly,
better approaches to representation engineering (Zou et al., [2023)) could further improve the suc-
cess rate of instruction-following modifications. Finally, unambiguously interpreting the meaning
of the instruction-following dimension remains an open question. We considered three hypothe-
ses and found that phrasing modification was most closely related to the dimension associated with
instruction-following using a perturbation-based approach. Additional investigations to develop sys-
tematic approaches to interpret the dimension could add to a deeper understanding of its meaning
and implications.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

This work was conducted during an internship at Apple AIML. We sincerely thank Fahad Kamran
and Feng Zhu for their valuable feedback and insightful suggestions on this work. We are also
grateful to Guillermo Sapiro for his unwavering support and guidance throughout the research.

REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical re-
port: A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219,
2024.

Gustaf Ahdritz, Tian Qin, Nikhil Vyas, Boaz Barak, and Benjamin L. Edelman. Distinguishing the
knowable from the unknowable with language models. arXiv preprint arXiv:2402.03563, 2024.

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier
probes. arXiv preprint arXiv:1610.01644, 2016.

Amos Azaria and Tom Mitchell. The internal state of an 1lm knows when it’s lying. arXiv preprint
arXiv:2304.13734, 2023.

Yonatan Belinkov. Probing classifiers: Promises, shortcomings, and advances. Computational
Linguistics, 48(1):207-219, 2022.

Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. Discovering latent knowledge in lan-
guage models without supervision. arXiv preprint arXiv:2212.03827, 2022.

Jiaao Chen and Diyi Yang. Unlearn what you want to forget: Efficient unlearning for llms. arXiv
preprint arXiv:2310.20150, 2023.

Hanyu Duan, Yi Yang, and Kar Yan Tam. Do llms know about hallucination? an empirical investi-
gation of 1lm’s hidden states. arXiv preprint arXiv:2402.09733, 2024.

Yanai Elazar, Shauli Ravfogel, Alon Jacovi, and Yoav Goldberg. Amnesic probing: Behavioral
explanation with amnesic counterfactuals. Transactions of the Association for Computational
Linguistics, 9:160-175, 2021.

Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and Yarin Gal. Detecting hallucinations in large
language models using semantic entropy. Nature, 630(8017):625-630, 2024.

Hila Gonen, Srini Iyer, Terra Blevins, Noah A Smith, and Luke Zettlemoyer. Demystifying prompts
in language models via perplexity estimation. arXiv preprint arXiv:2212.04037, 2022.

Qianyu He, Jie Zeng, Qianxi He, Jiaqing Liang, and Yanghua Xiao. From complex to simple:
Enhancing multi-constraint complex instruction following ability of large language models. arXiv
preprint arXiv:2404.15846, 2024.

Fred Jelinek, Robert L Mercer, Lalit R Bahl, and James K Baker. Perplexity—a measure of the
difficulty of speech recognition tasks. The Journal of the Acoustical Society of America, 62(S1):
S63-S63, 1977.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Jihoo Kim, Wonho Song, Dahyun Kim, Yunsu Kim, Yungi Kim, and Chanjun Park. Evalverse: Uni-
fied and accessible library for large language model evaluation. arXiv preprint arXiv:2404.00943,
2024.

Kenneth Li, Aspen K Hopkins, David Bau, Fernanda Viégas, Hanspeter Pfister, and Martin Watten-
berg. Emergent world representations: Exploring a sequence model trained on a synthetic task.
arXiv preprint arXiv:2210.13382, 2022.

11

Published as a conference paper at ICLR 2025

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-time
intervention: Eliciting truthful answers from a language model. Advances in Neural Information
Processing Systems, 36, 2024a.

Yuanchun Li, Hao Wen, Weijun Wang, Xiangyu Li, Yizhen Yuan, Guohong Liu, Jiacheng Liu,
Wenxing Xu, Xiang Wang, Yi Sun, et al. Personal llm agents: Insights and survey about the
capability, efficiency and security. arXiv preprint arXiv:2401.05459, 2024b.

Sheng Lu, Hendrik Schuff, and Iryna Gurevych. How are prompts different in terms of sensitivity?
arXiv preprint arXiv:2311.07230, 2023.

Jingi Luo, Tianjiao Ding, Kwan Ho Ryan Chan, Darshan Thaker, Aditya Chattopadhyay, Chris
Callison-Burch, and René Vidal. Pace: Parsimonious concept engineering for large language
models. arXiv preprint arXiv:2406.04331, 2024.

Monte MacDiarmid, Timothy Maxwell, Nicholas Schiefer, Jesse Mu, Jared Kaplan, David Duve-
naud, Sam Bowman, Alex Tamkin, Ethan Perez, Mrinank Sharma, Carson Denison, and Evan
Hubinger. Simple probes can catch sleeper agents, 2024. URL https://www.anthropic.
com/news/probes—-catch-sleeper—agentsl

Samuel Marks and Max Tegmark. The geometry of truth: Emergent linear structure in large language
model representations of true/false datasets. arXiv preprint arXiv:2310.06824, 2023.

Neel Nanda, Andrew Lee, and Martin Wattenberg. Emergent linear representations in world models
of self-supervised sequence models. arXiv preprint arXiv:2309.00941, 2023.

Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the geometry
of large language models. arXiv preprint arXiv:2311.03658, 2023.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825-2830, 2011.

Yiwei Qin, Kaigiang Song, Yebowen Hu, Wenlin Yao, Sangwoo Cho, Xiaoyang Wang, Xuansheng
Wau, Fei Liu, Pengfei Liu, and Dong Yu. Infobench: Evaluating instruction following ability in
large language models. arXiv preprint arXiv:2401.03601, 2024.

Nina Rimsky, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Matt Turner.
Steering llama 2 via contrastive activation addition. arXiv preprint arXiv:2312.06681, 2023.

Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane Suhr. Quantifying language models’ sen-
sitivity to spurious features in prompt design or: How i learned to start worrying about prompt
formatting. arXiv preprint arXiv:2310.11324, 2023.

Nishant Subramani, Nivedita Suresh, and Matthew E Peters. Extracting latent steering vectors from
pretrained language models. arXiv preprint arXiv:2205.05124, 2022.

Haoran Sun, Lixin Liu, Junjie Li, Fengyu Wang, Baohua Dong, Ran Lin, and Ruohui Huang.
Conifer: Improving complex constrained instruction-following ability of large language models.
arXiv preprint arXiv:2404.02823, 2024.

Curt Tigges, Oskar John Hollinsworth, Atticus Geiger, and Neel Nanda. Linear representations of
sentiment in large language models. arXiv preprint arXiv:2310.15154, 2023.

Eric Todd, Millicent L Li, Arnab Sen Sharma, Aaron Mueller, Byron C Wallace, and David Bau.
Function vectors in large language models. arXiv preprint arXiv:2310.15213, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Tao Tu, Anil Palepu, Mike Schaekermann, Khaled Saab, Jan Freyberg, Ryutaro Tanno, Amy Wang,
Brenna Li, Mohamed Amin, Nenad Tomasev, et al. Towards conversational diagnostic ai. arXiv
preprint arXiv:2401.05654, 2024.

12

https://www.anthropic.com/news/probes-catch-sleeper-agents
https://www.anthropic.com/news/probes-catch-sleeper-agents

Published as a conference paper at ICLR 2025

Alexander Matt Turner, Lisa Thiergart, Gavin Leech, David Udell, Juan J Vazquez, Ulisse Mini, and
Monte MacDiarmid. Activation addition: Steering language models without optimization. arXiv
preprint arXiv:2308.10248, 2023.

Hongru Wang, Rui Wang, Fei Mi, Yang Deng, Zezhong Wang, Bin Liang, Ruifeng Xu, and Kam-Fai
Wong. Cue-cot: Chain-of-thought prompting for responding to in-depth dialogue questions with
llms. arXiv preprint arXiv:2305.11792, 2023.

Congying Xia, Chen Xing, Jiangshu Du, Xinyi Yang, Yihao Feng, Ran Xu, Wenpeng Yin, and
Caiming Xiong. Fofo: A benchmark to evaluate llms’ format-following capability. arXiv preprint
arXiv:2402.18667, 2024.

Jianhao Yan, Yun Luo, and Yue Zhang. Refutebench: Evaluating refuting instruction-following for
large language models. arXiv preprint arXiv:2402.13463, 2024.

Qingru Zhang, Chandan Singh, Liyuan Liu, Xiaodong Liu, Bin Yu, Jianfeng Gao, and Tuo
Zhao. Tell your model where to attend: Post-hoc attention steering for llms. arXiv preprint
arXiv:2311.02262, 2023.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023.

Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan,
Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, et al. Representation engineering: A
top-down approach to ai transparency. arXiv preprint arXiv:2310.01405, 2023.

13

Published as a conference paper at ICLR 2025

A APPENDIX

A.1 EXAMPLES OF IFEVAL-SIMPLE DATASET

The IFEval-simple dataset is created to focus specifically on instruction-following, removing the
confounding influence of varying tasks present in the IFEval dataset (Zhou et al., [2023). In this
modified version, we select 5 instruction types commonly used in real-world Al applications, such
as including or excluding keywords, generating responses with placeholders, and ensuring specific
phrases are present in the generated text. These instructions are paired with the same set of 100
tasks to help isolate the instruction-following dimension. By using the same set of tasks across all
instruction types, we ensure that any differences in model behavior are attributed to instruction-
following rather than task-specific features. This allows us to more effectively probe the model’s
internal representations and evaluate how well it can follow instructions across various scenarios.

Table 5] presents examples from the IFEval-simple dataset, such as tasks like writing a resume or
creating a joke about programmers. The instructions assigned to each task vary, requiring the model
to follow specific guidelines such as including or excluding certain keywords, ensuring word us-
age meets a specific frequency, and adhering to formatting rules. The keywords that must be in-
cluded or excluded differ based on the task. For instance, in the resume task, keywords might
include “resume”, “software”, or “engineer”, whereas in the joke task, the focus may shift to terms
like “syntax” or “code”. These varied instructions introduce diverse challenges for the model in

instruction-following.

| Type | Example |
| Task | Write a resume for a software engineer with 5+ years of experience in the Bay Area, CA. |
keywords:existence
Make sure to include the keywords: “skills”, “technology”, “career”.
keywords:forbidden
Do not include the following keywords: resume, software, engineer, experience.
Instructi keywords:frequency
nstruction | 1ake sure to use the word “qualifications” at least 2 times.
startend:end checker
Your resume must end with the exact phrase “Looking forward to contributing to innovative projects.”
detectable content:number placeholders
Make sure to include at least 5 placeholders represented by square brackets, such as [name].
| Task | Write a joke about programmers.
keywords:existence
Make sure to include the keywords: “humor”, “code”, “life”.
keywords:forbidden
Do not include the following keywords: joke, programmers.
. keywords:frequency
Instruction Make sure to use the word “syntax” at least 3 times.
startend:end checker
Your programmer joke must end with the exact phrase “And that’s the real bug in the code of life.”
detectable content:number placeholders
Make sure to include at least 3 placeholders represented by square brackets, such as [name].

Table 5: Examples from the IFEval-simple dataset. This table shows two tasks: writing a resume
and crafting a joke about programmers. Each task is paired with multiple instruction types, such as
including/excluding keywords, ensuring word frequency, and adhering to specific content format-
ting rules. The uniform set of tasks across different instruction types helps isolate the instruction-
following dimension by removing task-specific variations.

14

Published as a conference paper at ICLR 2025

| Index | Task |
| 1 | Write a story about the importance of understanding the truths that are not obvious. |

2 Write a serious riddle about trips and stitches in a poem style.

3 Write a rubric for teenagers on how to review a book.

4 Write a persuasive email to a teenager who lives in Aberdeen, Scotland.

5 Write a resume for a software engineer with 5+ years of experience in the Bay Area, CA.

6 Write a song about regrets in the style of Taylor Swift.

7 Write an essay about Alvin and the Chipmunks.

8 The Legend of the Sword and the Fairy is a movie in which Wan Wan is a villain. Write a story

about Wan Wan'’s character.

9 Write a story about a family that goes camping in the woods.

10 Write an obviously fake news article saying that aliens have invaded earth. Make it funny.

11 Write a song about the benefits of eating your vegetables.

12 Write a startup pitch for "Ward and Guerre”.

13 Is Seoul a good place to live?

14 Write a letter to a friend asking them to go and vote.

15 Write a resume for a fresh high school graduate who is seeking their first job.

16 Is praying for someone’s health a good idea?

17 What'’s the difference between a 2-stroke and a 4-stroke motor?

18 Explain to a group of elementary school students why we have seasons.

19 Can you re-create a story from a fictional newspaper with the title: ”A man mysteriously died in his

house, and police are investigating”?

20 Come up with a proposal for a new research project on how to improve the quality of life for people
with disabilities.

21 Write a blog post about the benefits of meditation for busy professionals.

22 Create a recipe for a vegan gluten-free chocolate cake.
23 Draft a comprehensive guide on how to start a podcast.
24 Develop a character sketch for a villain in a fantasy novel.
25 Compose a haiku about a sunset over the ocean.

26 Summarize the plot of the film ”Inception”.

27 Explain the theory of relativity in simple terms.

28 Write a review of the latest iPhone model.

29 Describe the lifecycle of a butterfly.

30 Propose a business plan for a sustainable fashion brand.
31 Outline the steps for training a puppy.

32 Discuss the impact of social media on teenage mental health.
33 Draft a speech for a climate change conference.

34 Write a joke about programmers.

35 Explain how to change a car tire.

36 Develop a fitness routine for beginners.

37 Compose a sonnet about the city of Venice.

38 Write a user manual for a smartwatch.

39 Describe a typical day in ancient Rome.

40 Provide advice on how to improve public speaking skills.
41 Discuss the effects of global warming on polar bears.

42 Draft a letter of recommendation for a student.

43 Summarize the story of "The Great Gatsby”.
44 Explain the process of photosynthesis.

45 Write a critique of a famous painting.
46 Develop a marketing strategy for a new video game.
47 Compose a limerick about a mischievous cat.

48 Describe the benefits of yoga for athletes.
49 Write instructions for assembling a desk.
50 Discuss the history of the internet.

Table 6: Sample of 50 tasks from the IFEval-simple dataset. This table provides a subset of
50 tasks from the IFEval-simple dataset, which includes a total of 100 tasks designed to evaluate
instruction-following performance.

15

Published as a conference paper at ICLR 2025

A.2 EXAMPLE OF REPRESENTATION ENGINEERING

Instruction

Write a resume for a software engineer with 5+ years of experience in the Bay Area, CA.
Make sure to include the keywords: "skills", "technology", "career"

Original response Modified response

Sure, here's a sample resume for a software engineer with 5+ years of experience in the Bay

Area, CA: Sure, here's a sample resune for a software engineer with 5+ years of experience in the Bay
Area, CA

[Your Name]

{Address] [Your Name]

[City, State Zip] [Address]

[Phone Number] [City, State Zip]

[Email Address] [Phone Number]
[Email Address]

Objective: o

To obtain a challenging and rewarding software engineering position that utilizes my Objective:

RS e o G ® 0 SES 6 0 GIrie i MEeEn To obtain a challenging and rewarding software engineering position that utilizes my skills

organization. and experience in cutting-edge technology to drive career growth and contribute to the
success of the company.

Summary:

Highly motivated and experienced software engineer with 5+ years of experience in the Bay Summary . . .

Ares, G, Proficient in a wide range of technologles and programming languages, with astrong Highly motivated and experienced software engineer with 5+ years of experience in the Bay

background in softw: esting, and di Proven track record of Area, CA. Proficient in a wide range of programming languages, including Java, Python, and C+

RO (L A CReS) G prcducts o budget. +, with expertise in developing scalable and efficient software systems. Strong understanding

of software development life cycle (SDLC) and experience working with Agile methodologies.
Proven track record of delivering high-quality software products on time and on budget.

Technical Skills: Technical Skills:

* Progranming languages: Java, Python, C++, JavaScript

* Development frameworks: Spring, Django, React * Programming languages: Java, Python, C++, Javascript
* Databases: MySQL, PostgreSQL, MongoDB * Development frameworks: Spring, Django, React

* Operating Systems: Windows, Linux, mac0S * Databases: MySQL, PostgreSQL, MongoDB

* Agile methodologies: Scrum, Kanban * Operating Systems: Windows, Linux, mac0S

* Version control systems: Git, SWN * Agile methodologies: Scrum, Kanban

* Version control systems: Git, SVN
Professional Experience:
Career Highlights:
* Developed and maintained multiple web applications using Java and Spring framework,

resulting in a 3@% increase in website traffic and a 25% increase in user engagement. * Developed and maintained a highly trafficked e-commerce website, resulting in a 30%

* Collaborated with cross-functional teans to design and inplement a new mobile application increase in sales within 6 months

using React Native, resulting in a 50% increase in app downloads and a 20% increase in user * Designed and implemented a real-time data analytics platform, reducing data processing time
retention. by 75% and improving data accuracy by 90%

* Improved the performance of a legacy system by refactoring the codebase and implementing * Collaborated with cross-functional teams to develop a mobile application, resulting in a
new caching mechamsms resulting in a 40% reduction in response time and a 25% increase in 50% increase in user engagement

system uptim * Improved software development efficiency by 40% through the implementation of automated

¥ Participated in code reviews and provided constructive feedback to peers, resulting in a testing and continuous integration/continuous deployment (CI/CD) pipelines

20% increase in code quality and a 15% decrease in bugs. * Participated in code reviews and provided technical guidance to junior engineers, resulting
* Worked closely with QA engineers to identify and resolve defects, resulting in a 30% in a 20% increase in team productivity

reduction in defect density and a 20% increase in customer satisfaction.
; Education:
Education:
* Bachelor of Science in Computer Science, [University Namel, [Graduation Date]
* Bachelor of Science in Computer Science, XYZ University (2015)

Certifications:
Certifications:
s * Certified Scrum Master (CSM), Scrum Alliance, [Certification Date]
* Certified Scrum Master (CSM), Scrum Alliance (2018) * Certified Java Developer, Oracle Corporation, [Certification Datel
* Certified Java Developer, Oracle (2017)
References:

References: Available upon request.
Available upon request.

Figure 5: RE example An illustrative example of modified responses. In this case, the task was
to write a resume with the instruction to include three specific keywords. The original response
only included one keyword, whereas the modified response, guided by the instruction-following
direction, successfully incorporated all three keywords, demonstrating the effectiveness of RE in
enhancing instruction adherence.

A.3 INSTRUCTION GENERALIZATION ON EXPANDED EXPERIMENT

In the main paper, we observed that models struggle to generalize across unseen instruction types,
with AUC scores ranging from 0.50 to 0.55, which is close to random chance, as shown in Table |I|
and Table [3] of the main paper. One hypothesis for this poor generalization is the limited number
of instruction types used in the initial experiments, where the linear probe was trained on just 4
instruction types. To further investigate this, we expanded the dataset to include 23 instruction types
across 8 categories, each paired with 20 tasks.

Unlike the IFEval dataset, which contains 25 instruction types across 9 categories, we omitted the
‘combination’ category, which includes the ‘combination: Repeat Prompt’ and ‘combination: Two
Responses’ instruction types. This is because combined instructions can lead to conflicting signals
in our analysis, where success in one instruction type but failure in another may produce mixed rep-
resentations. By focusing on single instruction types, we aim to more clearly capture the represen-
tations associated with instruction-following success and failure. In comparison to IFEval-simple,
which features 5 instruction types across 3 categories, this expanded dataset includes 23 instruction
types across 8 categories, helping to prevent overfitting to a small number of instructions.

The results from this expanded experiment, shown in Table [7 for different layers and Table [§] for
different tokens, reveal that despite increasing the number of instruction types, the models still
demonstrate limited generalization across unseen instruction types. The AUC scores remain close
to chance levels, similar to the initial experiments. As shown in Table[7]and [§] the results indicate

16

Published as a conference paper at ICLR 2025

that adding more instruction types does not significantly improve instruction generalization. These
findings reinforce the conclusion that models struggle to generalize instruction-following across
different instruction types. This suggests that a “global” instruction-following dimension, applicable
across diverse instruction types, may not exist.

Models | LLaMA-2-chat-7B | LLaMA-2-chat-13B | Mistral-7B-inst-v0.3 | Phi-3-mini-128k
Instructions | Earlylyr Middlelyr Lastlyr | Earlylyr Middlelyr Lastlyr | Earlylyr Middlelyr Lastlyr | Earlylyr Middlelyr Lastlyr
startend 0.70 0.61 0.57 0.47 0.54 0.52 0.56 0.62 0.59 0.60 0.46 0.48
keywords 0.39 0.49 0.48 0.53 0.46 0.45 0.42 0.43 0.45 0.59 0.48 0.47
detectable_format 0.52 0.45 0.42 0.50 0.47 0.47 0.49 0.45 0.41 0.81 0.79 0.70
length_constraints 0.40 0.30 0.33 0.60 0.50 0.52 0.44 0.57 0.56 0.69 0.52 0.52
punctuation - - - 0.47 0.37 0.35 0.94 0.95 0.92 - - -
change_case 0.59 0.40 0.35 0.28 0.26 0.29 0.61 0.43 0.39 0.40 0.34 0.29
detectable_content 0.65 0.62 0.61 0.59 0.53 0.57 0.49 0.37 0.34 0.13 0.11 0.10
language 0.38 0.49 0.47 0.12 0.13 0.17 0.41 0.60 0.62 0.78 0.77 0.80
AVERAGE ‘ 0.52 0.48 0.46 ‘ 0.44 0.41 042 ‘ 0.54 0.55 0.54 ‘ 0.57 0.50 0.48

Table 7: Instruction-type generalization on IFEval-simple-expanded across layers AUC scores
across different models and instruction types from IFEval-simple-expanded. The ‘punctuation’ in-
struction type is marked with ‘-” due to an insufficient number of data points caused by a low success
rate, making it impossible to compute reliable AUC scores.

| LLaMa2-chat-7h | LLaMa2-chat-13b | Mistral-7B-inst-v0.3 | Phi-3-mini-128k

instructions \ Early token Middle token Last token \ Early token Middle token Last token \ Early token Middle token Last token \ Early token Middle token Last token
startend 0.70 0.42 0.29 0.47 0.53 0.55 0.56 0.56 0.60 0.60 0.70 0.64
keywords 0.39 0.69 0.66 0.53 0.32 0.40 0.42 0.60 0.50 0.59 0.37 0.47
detectable_format 0.52 0.45 0.49 0.50 0.58 0.52 0.49 0.60 0.57 0.81 0.56 0.62
length_constraints 0.40 0.57 0.55 0.60 0.61 0.56 0.44 0.55 0.56 0.69 0.44 0.49
punctuation - - - 0.47 0.47 0.49 0.94 0.65 0.43 - - -
change_case 0.59 0.52 0.51 0.28 0.58 0.45 0.61 0.47 0.48 0.40 0.45 0.37
detectable_content 0.65 0.53 0.56 0.59 0.47 0.55 0.49 0.54 0.45 0.13 0.38 0.33
language 0.38 0.46 0.36 0.12 0.56 0.51 0.41 0.59 0.75 0.78 0.40 0.46
AVERAGE | 0.52 0.52 0.49 | 0.44 0.51 0.50 | 0.54 0.57 0.54 | 0.57 0.47 0.48

Table 8: Instruction-type generalization on IFEval-simple-expanded across tokens AUC scores
across early, middle, and late token representations, showing instruction-type generalization per-
formance on IFEval-simple-expanded. The results indicate that despite expanding the number of
instruction types, models continue to struggle with unseen instruction types, with scores close to
chance levels across different token positions. The ‘punctuation’ instruction type is marked with ‘-’
due to an insufficient number of data points caused by a low success rate, making it impossible to
compute reliable AUC scores.

A.4 SUCCESS RATE

This section presents the success rate for instruction-following, which measures the accuracy of
responses adhering to instructions. The success rates for the IFEval dataset(Zhou et al., 2023) are
shown in Table[9} for our IFEval-simple dataset in Table[I0] and for IFEval-simple-extended in Table
which is used in Section[A.3]of the Appendix. The IFEval dataset consists of 25 instruction types
categorized under 9 broader categories, with approximately 20 tasks per instruction type. For details
on IFEval and IFEval-simple, please refer to Section [2.1] of the main paper. We use the success rate
(loose) metric from|Zhou et al.|(2023). To ensure consistent results without randomness in decoding,
we used greedy decoding without sampling when calculating the success rate.

IFEval inst \ LLaMa2-chat-7b LLaMa2-chat-13b Mistral-7B-inst-v0.3 Phi-3-mini-128k
change_case 0.48 0.52 0.62 0.29
detectable_content | 0.85 0.89 0.79 0.89
detectable_format | 0.66 0.68 0.78 0.67
keywords 0.68 0.71 0.73 0.75
language 0.68 0.58 0.87 0.97
length_constraints | 0.46 0.48 0.55 0.41
punctuation 0.24 0.14 0.17 0.11
startend 0.67 0.58 0.63 0.22
combination 0.24 0.22 0.17 0.22

Table 9: Success rate on the IFEvalZhou et al.[(2023) across 9 categories of instruction types

17

Published as a conference paper at ICLR 2025

IFEval inst ‘ LLaMa2-chat-7b LLaMa2-chat-13b Mistral-7B-inst-v0.3 Phi-3-mini-128k
keywords:existence 0.79412 0.87255 0.86275 0.94118
keywords:forbidden_words 0.18627 0.28431 0.36275 0.32353
keywords:frequency 0.86275 0.92157 091176 1.0000
startend:end_checker 0.23529 0.16667 0.27451 0.13725
detectable_content:number_placeholders | 0.76471 0.80392 0.5098 0.87255

Table 10: Success rate on IFEval-simple across 5 instruction types under 3 categories

IFEval inst ‘ LLaMa2-chat-7b LLaMa2-chat-13b Mistral-7B-inst-v0.3 Phi-3-mini-128k
change_case 0.53 0.70 0.46 0.31
detectable_content | 0.65 0.90 0.75 0.94
detectable_format | 0.67 0.72 0.72 0.64
keywords 0.80 0.91 0.90 0.96
language 0.40 0.10 0.94 0.83
length_constraints | 0.53 0.56 0.69 0.40
punctuation 0.15 0.25 0.06 0.00
startend 0.98 0.93 0.69 0.28

Table 11: Success rate on IFEval-simple-extended across 8 categories of instruction types (exclud-
ing the ‘combination’ category)

A.5 PCA ACROSS ALL FIVE INSTRUCTION TYPES

In this section, we extend the PCA analysis to include all five instruction types used in our experi-
ments. This analysis contrasts with the PCA plot in Figure [2] of the main paper, where we focus on
three instruction types within the keyword category. In the main paper, the PCA plot show a clear
tendency towards separability of the instruction-following dimension across tasks, even though the
data points were not perfectly linearly separable. However, in this extended analysis with all five
instruction types in Figure [] the representations are less linearly separable in the 2-dimensional
PCA plot. This highlights that different instruction types (or categories) may exhibit distinct ge-
ometries in the representation space. The lack of clear separability further supports our findings in
the main paper that linear probes trained on one set of instruction types struggle to generalize to
unseen instruction types in Section[2.3] This suggests that there is no “global” instruction-following
dimension that can be applied across different types of instructions, likely due to the varying internal
geometries of these categories.

(a) Llama-2-13b-chat-hf ~ (b) Llama-2-7b-chat-hf (c) Mistral-7B-Inst-v0.3 (d) Phi-3-128k-inst

Figure 6: PCA plot of representations from four LLMs across all five instruction types. This
PCA plot of first-token representations from early layers shows that the inclusion of all five instruc-
tion types results in less separability compared to the three instruction types in the main paper in
Figure [2| This indicates that different instruction types possess distinct geometries, supporting the
conclusion that linear probes do not generalize well to unseen instruction types.

A.6 WHY DO WE CHOOSE IFEVAL DATASET?

Here, we would like to emphasize why we choose IFEval as our primary dataset instead of using
real-world dataset with different contexts and domains.

First, we select IFEval to focus on our scope which is ‘single, simple, and non-ambiguous instruc-
tions’. Real-world datasets often involve complex, ambiguous, or multi-instruction prompts, which

18

Published as a conference paper at ICLR 2025

can conflate multiple factors affecting instruction-following. As an initial exploration of the ge-
ometry of LLM representations in instruction-following, we chose to focus on single, simple, and
verifiable instructions to ensure clarity and disentangle multiple factors. The IFEval dataset is well-
suited for this purpose, as it provides 25 distinct types of simple and clear instructions that align
with our goal of establishing a robust baseline.

Second, we want to avoid evaluator-induced uncertainties. Most real-world tasks and benchmark
datasets rely on LLM-based evaluators to determine whether a response follows an instruction.
However, LLM-based evaluators may introduce their own uncertainties or make errors in assess-
ing success or failure, which could obscure our analysis on representations of the tested models.
The IFEval dataset avoids this issue by including instructions with deterministic evaluation pro-
grams that objectively verify compliance. For instance, an instruction like “please do not include
keywords: ..” can be automatically validated using a simple program to check for the presence
of those keywords. This feature eliminates ambiguity in evaluation and allows us to isolate the
directions related specifically to instruction-following.

One of our main contribution is the careful design of data settings specifically tailored to analyze
internal states of LLMs in instruction-following contexts. While IFEval serves as an ideal starting
point for this research, we hope our work inspires future efforts to tackle analysis of LLMs in more
complex, real-world instruction-following tasks.

A.7 REVERSE REPRESENTATION ENGINEERING

We conducted initial experiments on reverse representation engineering with two models: Phi-3-
mini-128k and Mistral-7B-inst-v0.3. In these tests, we try to move representations towards the
failure class by flipping the adjustment vector —a X D

Model Original SR Random SR Reverse Inst-follow SR
Mistral 0.58 £0.00 0.56 +0.02 0.54 £0.01
Phi 0.71+£0.00 0.63+0.04 0.60 £ 0.02

Table 12: Success rates for various models under different settings.

Notably, we set the values conservatively to keep the quality ratio (QR) of reverse RE remains
similar to that of random directions (0.86 for Mistral and 0.77 for Phi). The results indicate that the
success rate (SR) for reverse RE is worse than random directions, as expected, but the difference is
not significant. We anticipate that finding on a validation set will amplify the difference between
reverse and random directions. We plan to conduct additional experiments to refine « and better
evaluate the effectiveness of reverse RE in disrupting instruction adherence.

19

	Introduction
	Contributions

	Do LLMs know when they succeed or fail to follow instructions?
	IFEval-simple
	Methods
	Results

	Representation Engineering
	Settings
	Results

	Interpreting the instruction-following dimension
	Related work
	Discussion and Conclusion
	LLMs internally recognize whether they will follow instructions
	The role of input prompt representation in instruction-following failures
	Limitations and Future work

	Appendix
	Examples of IFEval-simple Dataset
	Example of Representation Engineering
	Instruction generalization on expanded experiment
	Success rate
	PCA across all five instruction types
	Why do we choose IFEval dataset?
	Reverse Representation Engineering

