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ABSTRACT

Among the reasons hindering the applications of reinforcement learning (RL) to
real-world problems, two factors are critical: limited data and the mismatch be-
tween the test environment (real environment in which the policy is deployed) and
the training environment (e.g., a simulator). This paper simultaneously addresses
these issues with offline distributionally robust RL, where a distributionally robust
policy is learned using historical data from the source environment by optimizing
against a worst-case perturbation thereof. In particular, we move beyond tabular
settings and design a novel linear function approximation framework that robusti-
fies the latent space. Our framework is instantiated into two settings, one where the
dataset is well-explored and the other where the dataset has weaker data coverage.
In addition, we introduce a value shift algorithmic technique specifically designed
to suit the distributionally robust nature, which contributes to our improved the-
oretical results and empirical performance. Sample complexities Õ(d1/2/N1/2)

and Õ(d3/2/N1/2) are established respectively as the first non-asymptotic results
in these settings, where d denotes the dimension in the linear function space and
N represents the number of trajectories in the dataset. Diverse experiments are
conducted to demonstrate our theoretical findings, showing the superiority of our
algorithms against the non-robust one.

1 INTRODUCTION

Unlike data-driven methods in supervised learning, reinforcement learning (RL) algorithms require
active interaction with the environment to learn a near-optimal policy, often involving online trial-and-
error. However, this approach can be impractical in real-world scenarios with limited or prohibited
data collection. To address the limitation of online RL, offline reinforcement learning (offline RL or
batch RL) (Lange et al., 2012; Levine et al., 2020), focuses on policy learning with only access to some
logged datasets and expert demonstrations. Due to its non-dependence on further interaction with the
environment, offline RL is increasingly appealing for various applications, including autonomous
driving (Yu et al., 2018; Yurtsever et al., 2020; Shi et al., 2021), healthcare (Gottesman et al., 2019;
Yu et al., 2021; Tang & Wiens, 2021) and robotics (Siegel et al., 2020; Zhou et al., 2021a; Rafailov
et al., 2021).

Despite the developments in the rich literature (Yu et al., 2020; Kumar et al., 2020; Yang et al.,
2021b; An et al., 2021; Cheng et al., 2022), offline RL has an implicit but questionable assumption:
the test environment is the same as the training one. This assumption can result in inadequate
performance of offline RL in uncertain environments since the optimal policy of a Markov decision
process (MDP) may be sensitive to the transition probabilities (Mannor et al., 2004; El Ghaoui &
Nilim, 2005; Simester et al., 2006). Including financial trading and robotics, many domains may
prefer a robust policy that remains effective in shifting distributions from the one in the training
environment. Thus, robust MDPs have been proposed to address this issue (Satia & Lave Jr, 1973;
Nilim & El Ghaoui, 2005; Iyengar, 2005; Wiesemann et al., 2013; Lim et al., 2013; Ho et al., 2021;
Goyal & Grand-Clement, 2022). Recent studies (Zhou et al., 2021b; Yang et al., 2021a; Shi & Chi,
2022; Panaganti et al., 2022a) demonstrate the potential of robust RL in the offline setting.
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In this paper, we aim to theoretically understand linear function approximation as an important
component in offline distributionally (DR) robust RL. Linear function approximation (Bertsekas
& Tsitsiklis, 1995; Schweitzer & Seidmann, 1985), which uses a linear combination of features
to approximate the value function, is one of the most widely used and studied solutions in high-
dimensional problems and serves as a cornerstone in the path toward large-scale real-world problems.

Developing a DRRL algorithm with linear function approximation is challenging. In contrast to
non-robust RL where transition kernel is fixed, DRRL assumes that the transition kernel of the MDP
belongs to an ambiguity set, which significantly impacts the computational feasibility of the robust
value function and policy performance. A common approach in this area is to construct the ambiguity
set for each state-action pair and then project the robust value function onto a lower-dimensional
subspace using linear function approximation, called Robustify-then-Approximate (RTA) approach
in this paper. Although RTA style algorithms (Wiesemann et al., 2013; Goyal & Grand-Clement,
2022; Panaganti et al., 2022a) have proven that their robust projected value iteration can converge to
a fixed point, as pointed out by our motivating example in Section 3, linear projection may conflict
with the non-linearity of the robust Bellman operator, which may consequently lead to suboptimal
decisions. Furthermore, none of these algorithms have been shown to be sample efficient under
weak data conditions, which is essential in real-world applications. Recently, a study by Goyal &
Grand-Clement (2022) proposes constructing the ambiguity set in the latent space (called Robustify-
the-Latent Space (RLS)), which is more compatible with the linear approximator. However, they
assume access to the true transition kernel, whereas in practice, we can only access data sampled
from some training environment. Therefore, developing a data-driven DRRL algorithm that directly
robustifies the latent space is yet to be explored.

In this paper, we mainly address the question below building on insights from high-dimensional
statistics (Wainwright, 2019) to provide informative insights into the impacts of salient problem
parameters on the sample complexity, especially for applications with large state-action spaces:

Is it possible to design a sample-efficient algorithm using linear function approximation for offline
DRRL by robustifying the latent space, even with weaker data coverage conditions?

We give a positive response to this question. Specifically, our contributions are fourfold:

1. We point out potential conflicts between linear function approximation and robustness gain in
the Robustify-then-approximate (RTA) approach by constructing a motivating example. Then we
instantize the idea of robustifying the latent space (RLS) into a sample-efficient Distributionally
Robust Value Iteration with Linear function approximation (DRVI-L) algorithm for well-explored
datasets.

2. We prove a state-action space independent sample complexity guarantee for our DRVI-L algorithm
with a novel value shift technique to alleviate the magnification of the estimation error in the DR
optimization nature. This result can almost recover to the same dependence on d and N of that
from the non-robust counterpart (Yin et al., 2022), which has never been achieved by previous
literature.

3. We extend our algorithm by designing the Pessimistic Distributionally Robust Value Iteration
with Linear function approximation (PDRVI-L) algorithm, a pessimistic variant with our DRVI-L,
and prove the first sample-efficient bound beyond the well-explored condition. Such an extension
is the fruit of our RLS idea with delicate non-asymptotic analysis.

4. We establish theoretical guarantees for our two algorithms even when the MDP transition is
not perfectly linear, and conduct experiments to demonstrate the balance achieved by our linear
function approximation algorithm between optimality and computational efficiency.

2 PRELIMINARY

2.1 MDP STRUCTURE AND NOTATIONS

Consider an episode MDP (S,A, H, µ, P, r) where S and A are finite state and action spaces with
cardinalities S and A. P = {Ph}Hh=1 are state transition probability measures and r = {rh}Hh=1
are the reward functions, respectively. We assume that r is deterministic and bounded in [0, 1].
A (Markovian) policy π = {πh}Hh=1 maps, for each period state-action pair (s, a) to a probability
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distribution over the set of actionsA and induce a random trajectory s1, a1, r1, · · · , sH , aH , rH , sH+1

with s1 ∼ µ, ah ∼ π(·|sh)and sh+1 ∼ Ph(·|sh, ah) for h ∈ [H] for some initial state distribution µ.
For any policy π and any stage h ∈ [H], the value function V πh : S → R, the action-value function
Q : S×A → R, the expected returnR(π, P ) are defined as V πh (s) := EπP [

∑H
h=1 rh(sh, ah)|sh = s],

Qπh(s, a) := EπP [
∑H
h=1 rh(sh, ah)|sh = s, ah = a], andR(π, P ) := Es∼µ[V π1 (s)]. For any function

Q and any policy π, we denote 〈Q(s, ·), π(·|s)〉A =
∑
a∈AQ(s, a)π(a|s). For two non-negative

sequences {an} and {bn}, we denote {an} = O(bn) if lim supn→∞ an/bn <∞. We also use Õ(·)
to denote the respective meaning within multiplicative logarithmic factors in N , d, H and δ. We
denote the Kullback-Leibler (KL) divergence between two discrete probability distributions P and Q
over state space as DKL(P‖Q) =

∑
s∈S P (s) log(P (s)

Q(s) ).

2.2 DISTRIBUTIONALLY ROBUST MDPS

Before we present the DRRL setting, we first introduce the Distributionally Robust MDPs (DRMDPs).
DRMDPs assume that the probability P is not exactly known but lies within a so-called ambiguity
set P induced by a distribution distance measure, such as KL divergence. The return of any given
policy is the worst-case return induced by the transition model over the ambiguity set. We define
the DR value function, action-value function and expected return as V π,rob

h (s) = infP∈P V πh (s),
Qπ,rob
h (s, a) = infP∈P Qπh(s, a) and Rrob(π,P) = infP∈P R(π, P ), respectively. The optimal DR

expected return is defined as Rrob(π∗,P) := supπ∈ΠR
rob(π,P) over all Markovian policies. In the

sequel, we omit the superscript “rob”. In fact, by the work of Goyal & Grand-Clement (2022), we can
restrict to the deterministic policy class to achieve the optimal DR expected return. The performance
metric for any given policy π is the so-called suboptimality, which is defined as

SubOpt(π;P) = R(π∗,P)−R(π,P).

As the transition models and the policies are sequences corresponding to all horizons in the episode
MDP, following Iyengar (2005), we assume that P can be decomposed as the product of the ambiguity
sets in each horizon, i.e., P =

∏H
h=1 Ph. For stage h, each transition model Ph, lies within the

ambiguity set Ph.

2.3 LINEAR MDP

Our main task in this paper is to compute the optimal policy using linear function approximation
with the possible lowest suboptimality. We parameterize the Q-function, value function, and optimal
policy for each horizon h ∈ [H] using νh ∈ Rd, given the feature map φ : S ×A → Rd, as follows:

Qνh(s, a) := φ(s, a)>νh, Vνh(s) := max
a∈A

Qνh(s, a), πνh(s) := arg max
a∈A

Qνh(s, a). (1)

To study the linear function approximation, various assumptions on the MDP have been proposed
in the literature (Jiang et al., 2017; Yang & Wang, 2019; Jin et al., 2020; Modi et al., 2020; Zanette
et al., 2020; Wang et al., 2021). In particular, we consider the soft state aggregation of d factors, i.e.,
the transition model in each stage h can be represented using a known feature map φ : S ×A → Rd
over the d latent factor spaces defined by ψh : S → Rd. Such a assumption has been widely adopted
in the literature (Singh et al., 1994; Duan et al., 2019; Zhang & Wang, 2019; Zanette et al., 2021). We
also assume the reward functions admit linear structure w.r.t. φ, following the linear MDP protocol
from Jin et al. (2021; 2020). Formally, we have the following definition for the soft state aggregation.
Definition 2.1 (Soft State Aggregation MDP). Consider an episode MDP instance M =
(S,A, H, P, r) and a feature map φ : S × A → Rd. We say the transition model P admit a
soft state aggregation w.r.t. φ (denoted as P ∈ Span(φ)) if for every s ∈ S, a ∈ A, s′ ∈ S and every
h ∈ [H], we have

Ph(s′|s, a) = φ(s, a)>ψh(s′),
for some factors ψh : S → Rd. Moreover, ψ satisfies,∫

s

ψh,i(s)ds = 1,∀i ∈ [d], h ∈ [H].

We say the reward functions r admit a linear representation w.r.t. φ (denoted as r ∈ Span(φ))
if for all s ∈ S and a ∈ A and h ∈ [H], there exists θh ∈ Rd satisfying ‖θh‖ ≤

√
d and

rh(s, a) = φ(s, a)>θh.
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3 MOTIVATING EXAMPLE
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Figure 1: Motivating example. See Appendix B
for the detailed experiment setup.

Computing an optimal robust policy for a gen-
eral ambiguity set is proven to be strongly NP-
Hard, as demonstrated by Wiesemann et al.
(2013). To ensure computational tractabil-
ity, Nilim & El Ghaoui (2005) and Iyengar
(2005) introduce the (s, a)-rectangular ambi-
guity set. This set assumes that the pertur-
bation of the transition probability for each
(s, a) pair is independent of others, denoted
as Ph =

∏
(s,a)∈S×A Ph(s, a). However, this

assumption can be computationally expensive
when dealing with large state or action spaces
since it requires solving a robust optimization
problem for each (s, a) pair. Moreover, it may
exhibit over-conservatism, particularly when the
transition probabilities possess inherent struc-
ture (Wiesemann et al., 2013; Goyal & Grand-
Clement, 2022).

Before this work, the only attempts in linear function approximation for the robust RL are Tamar
et al. (2014); Badrinath & Kalathil (2021). Both approaches follow the same idea: first obtaining
robust values for each (s, a)-pair and then approximating robust values for the entire state-action
space using a linear function. We refer to this as robustify-then-approximate (RTA). In contrast, our
proposed algorithm directly robustifies the latent space (RTS). We illustrate the limitations of RTA
using a continuous bandit case, which corresponds to the offline DRRL scenario with H = 1 and
S = 1, where the action set is [0, 1]. When selecting action a = 0, the reward r0 is drawn from a
normal distribution with mean 1 and variance 1. If the action a = 1 is chosen, the reward r1 follows
a normal distribution with mean 0 and variance 0.5. When a ∈ (0, 1), the reward distribution ra is a
mixture of r0 and r1, with a probability of (1− a) and a, respectively.

Given the linear structure of the problem, it is desirable to use linear function approximation to
maintain a low-dimensional representation. However, as shown in Figure 1, the projected robust
values using Tamar et al. (2014); Badrinath & Kalathil (2021)’s methods are irrational due to the
nonlinear nature of the (s, a)-uncertainty set. Specifically, the projected algorithm behaves more
pessimistically than the (s, a)-rectangular method for actions close to 0 or 1. It even fails to preserve
the order relationship between the robust values of actions 0 and 1, as the robust value of action
0 is higher than 1 in the (s, a)-rectangular but becomes lower after projection. This loss of order may
lead to suboptimal decisions, while our proposed algorithm, based on the d-rectangular ambiguity
set (defined in Section 4), recovers the robust values for action 0 and 1 while avoiding the over-
conservatism for action in between.

4 LINEAR FUNCTION APPROXIMATION: ROBUSTIFY THE LATENT SPACE

In this section, we assume the MDP enjoys the soft state-aggregation structure and introduce the
concrete approach to robustify the latent space, i.e., the so-called d-rectangular ambiguity set. We then
propose our first algorithm, Distributional Robust Value Iteration with Linear function approximation
(DRVI-L) with corresponding sample complexity results.

Assumption 4.1 (State-Aggregation MDP). The true transition models are soft state-aggregation
w.r.t. φ and the reward functions admit linear representation w.r.t. φ (Definition 2.1).

4.1 AMBIGUITY SET STRUCTURE: ROBUSTIFY THE LATENT SPACE

To robustify the latent factor space, we assume each factor lies in an ambiguity set, which is formally
stated in the Assumption 4.2.
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Assumption 4.2 (d-rectangular). For each h ∈ [H], we assume the ambiguity set Ph with radius ρ
admits the following structure for some probability distance D : Rd × Rd → R≥0,

Ph(ρ) = {(
∑

i∈[d]

φi(s, a)ψ′h,i(s
′))sas′ : ∀D(ψ′h,i, ψh,i) ≤ ρ}.

Under Assumption 4.2, each factor ψh,i is assumed to be independent, and thus can be chosen
arbitrarily within the set P(ψh; ρ) := {ψ′h,i : D(ψ′h,i, ψh,i) ≤ ρ} without affecting other factors. We
formulate our offline DRRL problem with d-rectangular as:

R(π;P) = inf
P∈P(ρ)=

∏H
h=1 Ph(ρ)

R(π, P ). (2)

To facilitate algorithm design and suboptimality analysis, we choose the KL divergence as the
probability distance function D. The corresponding KL ambiguity set for a horizon h and the
i-th factor is denoted as PKL(ψh,i; ρ), while the ambiguity set for the horizon h is denoted as
PKL
h (ρ) :=

∏
i∈[d] PKL(ψh,i; ρ). To ensure computational tractability, we use Lemma 4.1, a strong

duality result proven by Hu & Hong (2013), which allows us to solve the primal problem over the KL
ambiguity set by solving the one-dimensional dual problem over the dual function σ(Z, β).
Lemma 4.1 (Hu & Hong (2013)). Suppose X ∼ P has finite moment generating function in the
neighborhood of zero. We denote Z := EP [e−X/β ] and the dual function σ(Z, β) := −β log(Z)−
β · ρ, then,

inf
P ′:DKL(P ′‖P )≤ρ

EP ′ [X] = sup
β≥0

σ(Z, β). (3)

As ρ → 0, the LHS of the dual equation degrades to the non-robust view, i.e., EP [X], and the
optimum β∗ = arg supβ≥0 σ(Z, β) approaches infinity.

Based on Lemma 4.1 and Assumption 4.1, we can derive the following DR Bellman operator:

(BhV )(s, a) = rh(s, a) + inf
Ph∈PKL

h (ρ)
Es′∼Ph(·|s,a)[V (s′)] = φ(s, a)>(θh + wh), (4)

where wh,i = supβ≥0 σ(µh,i, β) and µh,i := Eψh,i [e−V (s′)/β ] =
∫
s′
ψh,i(s

′)e−V (s′)/βds′.

The preceding result indicates that the DR Bellman operator using the d-rectangular ambiguity set
can maintain φ representation. We formally state it in Lemma 4.2.
Lemma 4.2. For any policy π and any epoch h ∈ [H], the DR Q-function is linear w.r.t. φ. Moreover,
d(BhF ,F) = 0, where d(BhF ,F) = supg∈F inff∈F‖f − Bhg‖ is the Bellman error (Munos &
Szepesvári, 2008) and F =

{
φ(·, ·)>w : ∀w ∈ Rd

}
is a set containing all the possible function using

φ as the feature map.

Lemma 4.2 forms the basis for our function approximation algorithmic design. Unlike previous
literature, such as Panaganti et al. (2022a), which assumes the completeness of the function class
with respect to the φ representation without verification, our approach addresses the incompleteness
issue observed in Section 3 by robustifying the feature space.

4.2 DISTRIBUTIONALLLY ROBUST VALUE ITERATION WITH VALUE SHIFT

The key challenge in offline (DR)RL problem is that the computation of the DRRL policy is restricted
to only utilize a logged dataset, rather than having access to the exact transition probability or
interaction with the environment. As a result of the lack of ongoing interaction with the environment,
the performance of the offline RL algorithm is adversely affected by the insufficient coverage of the
offline dataset. As a starting point, we consider a robust-variant of the uniform "well-exploration"
condition, which is widely adopted in many offline RL works (Jin et al., 2021; Duan et al., 2019; Xie
et al., 2021).
Assumption 4.3 (Uniformly Well-explored Dataset). Suppose D consists of N trajectories
{(sτh, aτh, rτh)}N,Hτ,h=1 independently and identically induced by a fixed behavior policy π in the linear
MDP. Meanwhile, suppose there exists an absolute constant c > 0 such that at each step h ∈ [H]
and any P ∈ P(ρ)

λmin(ΣPh ) ≥ c, where ΣPh = EP,π[φ(sh, ah)φ(sh, ah)>].
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Such an assumption requires the behavior policy to explore each feature dimension well, even in the
worst-case transition model, which might need to explore some state-action pairs that the optimal
policy has seldom visited. Similar assumption has appeared in (Shi & Chi, 2022) in the tabular
setting.

To approximate the true Bellman operator, we construct the empirical version of Equation 4, particu-
larly, to approximate µh,i. Notably,

EPs,a [e−V (s′)/β ] =

∫

s′
e−V (s′)/βP (s′|s, a)ds′ = φ(s, a)>µh,

where samples from Ps,a can be obtained, motivating us to approximate µh by linear regression
to obtain the estimator µ̂h. Note that µh,i and µ̂h,i could be very close to zero, and further cause
σ(µ̂h,i, β) to approach infinity and damage the estimation. To address this issue, we propose a novel
value shift technique by defining a new dual function σ̃(Z, β) by changing Z to Z + 1,

σ̃(Z, β) = −β log(Z + 1)− β · ρ. (5)

This ensures that log(Z + 1) remains valid even Z approaches zero. Accordingly, we adopt the
shifted variant of the regression objective by subtracting 1 from the regression target, defined as

Ẽh(µ) =

N∑

τ=1

((e−V (sτh+1)/β − 1)− φ(sτh, a
τ
h)>µ)2,

µ̂h = arg min
µ∈Rd

Ẽh(µ) + λ · ‖µ‖2, ŵh,i = sup
β≥0

σ̃(min{(µ̂h,i)+, 1}, β). (6)

We define Λh =
∑N
τ=1 φ(sτh, a

τ
h) + λ · I . θ̂h and ŵh have the closed form as

θ̂h = Λ−1
h (

N∑

τ=1

φ(sτh, a
τ
h)rτh), µ̂h = Λ−1

h (

N∑

τ=1

φ(sτh, a
τ
h)(e−V (sτh+1/β) − 1)).

Our value shifting technique ensures that ŵh maintains a valid value regardless of the estimator’s
quality, which is essential for achieving the desired suboptimality that can nearly recover to that of
the non-robust setting. We summarize our algorithm as Distributional Robust Value Iteration with
Linear function approximation (DRVI-L) in Algorithm 1.

Prior to presenting the suboptimality analysis for our Algorithm 1, we introduce Assumption 4.4,
which assumes a known, common lower bound for the optimum of the KL optimization problem in
Lemma 4.1. This assumption is also necessary in the tabular case (Zhou et al., 2021b; Panaganti &
Kalathil, 2022).
Assumption 4.4. For each h ∈ [H] and each i ∈ [d], we denote β∗h,i = arg supβh,i≥0 σ(µh,i, βh,i).
We assume there exists a known β s.t. 0 < β ≤ minh∈[H],i∈[d] β

∗
h,i.

By Proposition 2 in Hu & Hong (2013), β∗h,i = 0 when the worst case happens with sufficient large
probability w.r.t. ρ. In practice, it is typical to employ a small value of ρ to adapt to the problem
without incurring over-conservatism (Ben-Tal & Nemirovski, 1998; 2000; Duchi & Namkoong, 2021).
Thus β∗h,i would rarely be zero and enjoy a common non-zero lower bound.

Theorem 4.1. We set λ = 1 in Algorithm 1. Under the Assumption 4.1, Assumption 4.3 and
Assumption 4.4, when N ≥ 40/c · log(4dH/δ), we have the following holds with probability at least
1− δ,

SubOpt(π̂;P) ≤ c1β(eH/β − 1)d1/2ζ
1/2
1 H/N1/2 + c2β

1/2(eH/β − 1)ζ
1/2
2 H3/2/N1/2.

Here ζ1 = log(2N + 16Nd3/2H2eH/β), ζ2 = log( 2dNH3

δρ ) and c1 and c2 are some absolute
constants that only depend on c.

It is worth noting that the suboptimality of Algorithm 1 primarily depends on the dimension d rather
than the size of the state-action space. In contrast to tabular cases, such as Zhou et al. (2021b); Yang
et al. (2021a), which focus on bounding the finite sample error for individual (s, a) pairs, Theorem 4.1
is derived by exploiting the linear structure shared by various (s, a) pairs, creating a novel ε-net to
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Algorithm 1 DRVI-L

1: Input: β, D = {(sτh, aτh, rτh)}N,Hτ,h=1.

2: Init: V̂H = 0, ŵH = 0.
3: for step h = H to 1 do
4: Λh =

∑N
τ=1 φ (sτh, a

τ
h)φ (sτh, a

τ
h)
>

+ λI , θ̂h = Λ−1
h

[∑N
τ=1 φ(sτh, a

τ
h)rτh

]

5: if h < H then
6: Update ŵh,i with Equation 6.
7: end if
8: ν̂h = min(θ̂h + ŵh, H − h+ 1)+, Q̂h(·, ·) = φ(·, ·)>ν̂h
9: π̂h(· | ·) = arg maxπh〈Q̂h(·, ·), πh(· | ·)〉A, V̂h(·) = 〈Q̂h(·, ·), π̂h(· | ·)〉A

10: end for

control the finite sample error for the entire linear function space, and utilizing the power of our value
shift algorithmic ingredient. These techniques are novel compared to the non-robust counterpart.

Specifically, when β is relatively small, i.e., when the algorithm tends to learn a pessimistic view,
we have SubOpt = Õ(d1/2H3/2β1/2eH/β/N1/2). When β → ∞, i.e., when the algorithm is
learning a nearly non-robust view, our bound reduces to Õ(d1/2H2/N1/2), which recovers the same
dependence on H as the non-robust PEVI algorithm in Jin et al. (2021) and achieves the optimal
dependence on N and d in Yin et al. (2022). The suboptimality in the H dependency arises as the
result of our relatively simple algorithmic design to outline the first step in DRRL with linear function
approximation. Adopting the advanced techniques of Yin et al. (2022) could potentially address the
discrepancy, and we leave it as a future direction.

5 EXTENSIONS

5.1 BEYOND UNIFORMLY WELL-EXPLORED DATASET

In practical applications, the data coverage may not satisfy Assumption 4.3, which requires the
behavior policy to explore all feature dimensions with a sufficiently high exploration rate. Instead, we
only need the behavior policy to adequately cover the features that the optimal policy will visit. To
address this, we propose a pessimistic variant of our Algorithm 1, called Pessimistic Distributionally
Robust Value Iteration with Linear function approximation (PDRVI-L), inspired by the approach in
Jin et al. (2021). Under a weaker data coverage condition, sample efficiency can be achieved as long
as the dataset sufficiently covers the trajectory induced by the optimal policy π∗. We formalize this
condition in Assumption 5.1.

Assumption 5.1 (Robust Sufficient Coverage of the Optimal Policy). Suppose there exists an absolute
constant c† > 0 such that for any P ∈ P(ρ),

Λh ≥ I + c† ·N · d · EP,π∗ [(φi(sh, ah)1i)(φi(sh, ah)1i)
>|s1 = s],

∀s ∈ S, h ∈ [H], i ∈ [d], holds for probability at least 1− δ.

Compared to the sufficient coverage condition in Jin et al. (2021), our Assumption 5.1 requires the
collected samples Λh to cover each dimensions i ∈ [d] uniformly well. This requirement arises from
the ambiguity set constructed in the latent factor space. Moreover, we require this condition to hold
uniformly across all the transition model within the ambiguity set, motivated by Blanchet et al. (2023).
We summarize our algorithmic design in Appendix C and present it as Algorithm 2. In contrast to
Algorithm 1, we subtract a pessimistic term γh

∑d
i=1‖φi(s, a)1i‖Λ−1

h from the estimated Q-value
in Algorithm 2. This discourages our algorithm from selecting the action with less confidence.
Compared to Jin et al. (2021), which uses γh‖φ(s, a)‖Λ−1

h
as the pessimistic term in the non-robust

setting, our approach provides a larger penalization and adapts to the distributionally robust nature.
Under the partial coverage condition for our dataset, Algorithm 2 achieves sample efficiency, as
shown in the following theorem.
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Theorem 5.1. In Algorithm 2 we set λ = 1 and

γh = c1β(e
H−h
β −1)dζ

1/2
3 + c2β

1/2(e
H−h
β −1)H1/2ζ

1/2
2 ,

where ζ2 is the same as in Theorem 4.1 and ζ3 = log(2N + 32N2H3d5/2ζe2H/β) for some absolute
constant c1 and c2 that are only dependent on c†. Then under the Assumption 4.1, 4.4 and 5.1, our
algorithm 2 has the following guarantee with probability at least 1− δ,

SubOpt(π̂;P) ≤c1β(eH/β − 1)d3/2Hζ
1/2
3 /N1/2 + c2β

1/2(eH/β − 1)d1/2H3/2ζ
1/2
2 /N1/2.

Our bound incurs an additional factor of d compared to Theorem 5.2 as a price of the weaker data cov-
erage condition Specifically, the suboptimality for the Algorithm 2 is Õ(d3/2H3/2β1/2eH/β/N1/2)
when β is relatively small. When β →∞, i.e., the algorithm is learning a nearly non-robust view, the
suboptimality reduces to Õ(d3/2H2/N1/2), which recovers the same dependence on d, H , and N as
Jin et al. (2021). Recently, Yin et al. (2022) improves the suboptimality bound to Õ(d1/2H3/2/N1/2)
with a more complex algorithmic design. As our paper is the first attempt to design linear function
approximation to solve the offline DRRL problem, we leave the improvement towards the optimal
rate as a future direction.

5.2 MODEL MISSPECIFICATION

The assumption of state aggregation may not be realistic when applied to real-world datasets. In this
subsection, we relax the soft state-aggregation MDP assumption to allow for the possibility of a true
transition kernel that is nearly a state-aggregation transition.
Assumption 5.2 (Model Misspecification in Transition Model). We assume that for all h ∈ [H],
there exists P̃h ∈ Span(φ) and ξ ≥ 0 such that each (s, a), the true transition kernel Ph(·|s, a)

satisfies ‖Ph(·|s, a)− P̃h(·|s, a)‖1 ≤ ξ. For the reward functions, we still assume that rh ∈ Span(φ)
for all h ∈ [H].
Theorem 5.2 (Model Misspecification). We set λ = 1 in Algorithm 1. Under the Assumption 4.3, 4.4
and 5.2, when N ≥ 40/c · log(4dH/δ), we have the following holds with probability at least 1− δ,

SubOpt(π̂;P) ≤ c1β(eH/β − 1)(ξd1/2 + d1/2ζ
1/2
1 )H/N1/2 + c2β

1/2(eH/β − 1)H3/2ζ
1/2
2 /N1/2 + ξH2/2.

Here ζ1 and ζ2 are the same in Theorem 4.1 and c1 and c2 are some absolute constants that only
depend on c.

Theorem 5.3 (Model Misspecification with Sufficient Coverage). In Algorithm 2 we set λ = 1 and

γh = c1β(e
H−h
β −1)dζ

1/2
3 + c2β

1/2(e
H−h
β −1)H1/2ζ

1/2
2 ,

where ζ2 and ζ3 are the same as in Theorem 5.1 and c1, c2 ≥ 1 are some absolute constants that only
involve c†. Then based on Assumptions 4.4, 5.1 and 5.2, our Algorithm 2 has the following guarantee
with probability at least 1− δ,

SubOpt(π̂;P) ≤ c1β(eH/β − 1)(ξd+ d3/2ζ
1/2
3 )H/N1/2 + c2β

1/2(eH/β − 1)d1/2H3/2ζ
1/2
2 /N1/2 + ξH2/2.

According to Theorem 5.2, when the soft-state aggregation model is inaccurate up to ξ total variation,
the policy’s performance incurs an approximation gap of O(ξ · (β(eH/β − 1)d1/2 + H2)) and
O(ξ · (β(eH/β − 1)d+H2)) for our DRVI-L and PDRVI-L algorithms, respectively. The extent of
degradation depends on the total-variation divergence of the empirical transition distribution from the
true transition distribution, and the desired level of robustness.

6 EXPERIMENT

We evaluate the robustness and sample efficiency of our algorithms through numerical experiments in
two well-known environments from the robust RL literature: the American put option environment
(Tamar et al., 2014; Zhou et al., 2021b) and the CartPole environment in OpenAI Gym (Brockman
et al., 2016). The American put option environment showcases the robustness and the impact of
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different linear approximators, while the CartPole environment allows us to compare our algorithm
with previous methods in a challenging setting with complex dynamics and a higher-dimensional,
continuous state space. Additional experimental setup details can be found in Appendix D.

American Put Option: We compare Algorithm 2 with its non-robust counterpart, Pessimistic Value
Iteration (PEVI) (Jin et al., 2021). Both algorithms are trained in an environment with p0 = 0.5 and
evaluated in a perturbed environment with varying p0. The results, shown in Figure 2(a), demonstrate
that the robust agent, particularly with a suitable radius ρ = 0.01, outperforms the non-robust agent
in the perturbed environment with p > 0.55, with a slight performance degradation at p0 = 0.5. Next,
we investigate the impact of dimension d on suboptimality (‖V̂1 − V ∗1 ‖) and computational time.
Figure 2(b) reveals that a smaller d leads to lower estimation error and higher approximation error,
given the same amount of data. The misspecification of the linear transition model introduces intrinsic
bias to value estimation, but an appropriate bias reduces the estimation error with limited data, which
is crucial for offline learning. Furthermore, Figure 2(c) demonstrates that the computational cost
increases linearly with the dimension, rather than the size of the state-action space, indicating the
potential of our algorithm for deployment in large-scale problems.

0.3 0.4 0.5 0.6 0.7

p0

1

2

3

4

5

6

7

A
ve

ra
ge

T
ot

al
R

et
u

rn

non robust

ρ = 0.01

ρ = 0.02

ρ = 0.05

ρ = 0.10

(a) Average Return

2.0 2.5 3.0 3.5

lgN

0.05

0.10

0.15

0.20

0.25

0.30

0.35

‖V̂
1
−
V
∗ 1
‖

d = 31

d = 61

d = 121

d = 301

d = 601

(b) ‖V̂1 − V ∗1 ‖

2.0 2.5 3.0 3.5

lgN

0

1

2

3

4

5

6

7

T
im

e
(s

)

d = 31

d = 61

d = 121

(c) Execution time

Figure 2: Results in American Option Experiment. (a) Average total return of different KL radius ρ in
the perturbed environments (N = 1000, d = 61). (b) Estimation error with different linear function
dimension d’s and the sizes of dataset N ’s (ρ = 0.01). (c) Execution time for different d’s.

CartPole: We compare our PDRVI algorithm with several representative offline RL algorithms in
the CartPole environment: (a) RFQI (Panaganti et al., 2022b), known for its capacity for non-linear
approximation and superior performance; (b) RAPI (Tamar et al., 2014), further validating our
message about the limitations of the RTA approach; (c) PEVI (Jin et al., 2021) as a non-robust
benchmark. A summary of their features can be found in Table 3. To evaluate the algorithms’
robustness, we introduce different levels of action perturbations and assess their performance in the
perturbed environments. Our PDRVI algorithm demonstrate superior robust performance compared
to non-robust PEVI and comparable performance to RFQI, despite using a simpler approximator.
Notably, our algorithm enjoys theoretical guarantees through the DR variant of pessimism, while
RFQI relies on a batch-constrained Q-learning algorithm that may not converge optimally under
weak data coverage conditions. In contrast, RAPI performs poorly compared to other algorithms in
all cases, supporting our claim in Section 3 that the RTA design can lead to suboptimal decisions.
Despite using the more conservative R-contamination (R-con) ambiguity set, RAPI’s significant
performance gap compared to other algorithms confirms the ineffectiveness of the RTA approach.

Algo Representation. Pessimism. Ambiguity.

PDRVI (Ours) Linear Yes KL
RFQI NN Yes TV
RAPI Linear No R-con
PEVI Linear Yes None
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Figure 3: Experiment Results for the CartPole environment. (Left) Summary of the algorithms’
features. (Right) Average return of different algorithms in the perturbed environments over 10 random
seeds shadowed with standard deviation.
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