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Abstract

Policy gradient methods are a vital ingredient behind the success of modern reinforcement
learning. Modern policy gradient methods, although successful, introduce a residual error
in gradient estimation. In this work, we argue that this residual term is significant and
correcting for it could potentially improve sample-complexity of reinforcement learning
methods. To that end, we propose log density gradient to estimate the policy gradient,
which corrects for this residual error term. Log density gradient method computes policy
gradient by utilising the state-action discounted distributional formulation. We first present
the equations needed to exactly find the log density gradient for a tabular Markov Decision
Processes (MDPs). For more complex environments, we propose a temporal difference (TD)
method that approximates log density gradient by utilizing backward on-policy samples.
Since backward sampling from a Markov chain is highly restrictive we also propose a min-max
optimization that can approximate log density gradient using just on-policy samples. We also
prove uniqueness, and convergence under linear function approximation, for this min-max
optimization. Finally, we show that the sample complexity of our min-max optimization to
be of the order of m−1/2, where m is the number of on-policy samples. We also demonstrate
a proof-of-concept for our log density gradient method on gridworld environment, and
observe that our method is able to improve upon the classical policy gradient method by a
clear margin, thus indicating a promising novel direction to develop reinforcement learning
algorithms that require fewer samples.

1 Introduction

Policy gradient (PG) methods are a vital ingredient behind the success of modern reinforcement learning (Silver
et al., 2017; John Schulman et al., 2023; Haarnoja et al.; Kakade, 2001). The success of PG methods stems
from their simplicity and compatibility with neural network-based function approximations (Sutton et al.,
1999; Baxter & Bartlett, 2001). Although modern policy gradient methods like PPO and TRPO, have
achieved excellent results in various on-policy tasks (Schulman et al., 2017; 2015), they require extensive
hyper-parameter tuning. Additionally, it has been shown by Ilyas et al. (2020) that the estimation error
between policy gradient estimated by the methods like PPO and the true policy gradient increases significantly
during the training process. Classical policy gradient methods typically approximate gradient of the policy
using Q-function estimated with discount factor strictly less than 1, which leads to a error in gradient
estimation (Morimura et al., 2010). In this paper, we empirically demonstrate that this error in indeed
significant, in Figure 1. We further propose a novel algorithm to estimate policy gradient that corrects for
this residual error, which could potentially lead to sample efficient reinforcement learning, thus enabling their
deployment over a wide variety of complex scenarios. We call our method, log density gradient. We show that
log density gradient method can be used to estimate the policy gradient for all values of discounting factor –
including the average reward scenario. Log density gradient method is based on the average state-action
stationary distribution formulation of reinforcement learning, which allows for the estimation of policy gradient
as a multiplication of the gradient of log density and the reward function (Nachum et al., 2019; Uehara
et al.). This separation results in an improved correlation with the true policy gradient and requires fewer
hyperparameters. We show that our method is consistent with the classical policy gradient theorem (Sutton,
1988) and also prove convergence properties and sample complexity.
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Figure 1: For the average reward scenario, performance of classical policy gradient (blue) algorithm as
compared to log density gradient (green) algorithm over a n× n gridworld environment, for n = 5, 10. We
observe that log density gradient algorithm consistently converges to better policy performance. Theoretical
calculated solutions are used for implementation.

Our main contributions are as follows. 1. A novel method to provably calculate policy gradient by using the
average state-action discounted formulation for all values of the discounting factor. We will show that policy
gradient estimated in this manner for average reward scenario will correct for the residual error in policy
gradient estimation, which is widely ignored in empirical implementations of policy gradients (as shown in
Figure 1). 2. A model-free Temporal Difference (TD) method for approximating policy gradient. We provide
proof of contraction as well as convergence. However, there is a major drawback that it requires samples from
the backward Markov chain (described in detail in the paper) which motivates the next contribution. 3. A
min-max optimization which yields the gradient of log density for all values of the discounting factor including
the average reward scenario and a model free TD method to implement it, with proof of convergence. We also
show that this min-max optimization has a closed form solution under linear function class assumptions, thus
enabling their practical use with linear MDP problems (Zhang et al., 2022). We additionally show sample
complexity of the order O(m−1/2) for the projected version of the proposed TD method, where m is the
number of on-policy samples. Our method is competitive with the sample complexity of classical vanilla
policy gradient methods (Yuan et al., 2022).

Section 2 starts with problem formulation and motivation behind this paper. Section 3, discusses prior work
in policy gradient methods, temporal difference methods, and min-max problems in off-policy evaluation
and compares our work with existing works to situate our paper in the literature. Our main contributions
are discussed in detail starting from Section 4 which starts with rigorously defining log density gradient.
Additionally we also propose a TD approach to estimate log density gradient under strict reversibility
assumptions, and we describe the issue caused by this assumption. In section 5, to overcome this issue to
propose a min-max variant that allows us to estimate log density gradient algorithm using empirical samples.
We finally demonstrate a proof-of-concept of our algorithm in Section 6 which shows that log density gradient
can be potentially sample efficient as compared to classical policy gradient methods.

2 Background and Motivation

Notation: we let (·)T denote matrix transpose, and let e represent the vector of ones, the size of which
would be clear from context.

We define Markov Decision Process (MDP) as a 6-tuple of (S,A,P, r, γ, d0). Here, S is a finite state space of
the MDP, A is a finite action space, P is the transition probability matrix, r is the reward function and d0
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is the initial distribution. The reinforcement learning problems is optimise for a policy π : S → ∆(A) that
maximizes Jγ(π), defined as

Jγ(π) := (1− γ)E[
∞∑

t=0
γtr(st, at)|s0 ∼ d0, at ∼ π(·|st), st+1 ∼ P(·|st, at)], for γ ∈ [0, 1)

J1(π) := lim
T →∞

E[ 1
T

T∑
t=0

γtr(st, at), s0 ∼ d0, at ∼ π(·|st), st+1 ∼ P(·|st, at)], for γ = 1,

where γ ∈ [0, 1] is the discounting factor which accounts for the impact of future rewards in present decision
making. When γ = 1, J1(π) the scenario is called the average reward formulation. Most practical problems
in reinforcement learning typically aim to solve for an optimal policy π∗ = arg maxπ J1(π)(See Figure 1
Haarnoja et al.). Modern reinforcement learning methods aim to parameterise policy with a set of parameters
θ ∈ Rn, where n is the dimensions of the parameter space. We refer to such paremterisation as πθ. This kind
of parameterisation enables us search for optimal set of parameters θ∗ instead of a search over S ×A which
in practice could be very large. We define

θ∗ := arg max
θ∈Rn

J1(πθ).

The Q-function Qπθ
γ is commonly used function used to describe the performance of an RL agent. Q-function

calculates the long term (discounted) rewards accumulated by an agent following a fixed policy πθ while
starting from a state s ∈ S and taking an action a ∈ A

Qπθ
γ (s, a) := E[

∞∑
t=0

γtr(st, at)|s0 = s, a0 = a, at ∼ πθ(·|st), st+1 ∼ P(·|st, at)] (1a)

= r(s, a) + γEs′∼P(·|s,a),a′∼πθ(·|s′)[Qπθ
γ (s′, a′)] (1b)

Where, equation 1b is called the Bellman Equation. Bellman equation is popularly used to estimate the Q-
function using just empirical data collected on the MDP. Q-function approximation methods typically use γ < 1
for stable estimation of the Q-function. We also similarly define value function V πθ

γ (s) = Ea∼πθ(·|s)[Qπθ
γ (s, a)].

Modern RL algorithms generally solve for θ∗ by estimating the gradient of policy performance Jγ(πθ) with
respect to policy parameters θ. This is also commonly referred to as the policy gradient theorem ∇θJ1(πθ)
(Sutton et al., 1999) which says

∇θJγ(πθ) = E(s,a)∼d
πθ
γ

[Qπθ
γ (s, a) · ∇θ log πθ(a|s)], γ ∈ [0, 1]. (2)

Here, dπθ
γ is the average state-action discounted stationary distribution, which is defined as the cumulative

sum of discounted state-action occupancy across the time horizon.

dπθ
γ (s, a) := (1− γ)

∞∑
t=0

γtP(st = s, at = a|s0 ∼ d0, at ∼ πθ(st), st+1 ∼ P(·|st, at), γ < 1) (3a)

dπθ
1 (s, a) := lim

T →∞

1
T

T∑
t=0

P(st = s, at = a|s0 ∼ d0, at ∼ πθ(st), st+1 ∼ P(·|st, at), γ = 1). (3b)

In this paper we make a standard assumption that the Markov chain induced by policy πθ is ergodic. In
particular, this implies that dπθ

γ (s, a) > 0 for all state action pairs (s, a) (Puterman, 2014). In scenarios
where we are trying to optimize for J1(π), estimating the policy gradient becomes difficult. This is because
the Bellman equation cannot be used to estimate Q-function for γ = 1. As a compromise policy gradient for
average reward scenarios are instead approximated by calculating the Q-function for a discounting factor
γ < 1, but close to 1, and using that estimate in the policy gradient equation 2

∇̂θJ1(πθ) = E(s,a)∼d
πθ
1

[Qπθ
1 (s, a) · ∇θ log πθ(a|s)], (4a)

≈ E(s,a)∼d
πθ
1

[Qπθ
γ (s, a) · ∇θ log πθ(a|s)], γ < 1. (4b)
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In this paper we argue that the policy gradient calculated in this manner induces a significant residual error,
which keeps on compounding as the reinforcement learning training proceeds even leading to a sub optimal
solution. The following equation, derived in Proposition 2 characterizes that error,

∇θJ1(πθ) = E(s,a)∼d
πθ
1

[Qπθ
γ (s, a)·∇θ log πθ(a|s)] + (1− γ)E(s,a)∼d

πθ
1

[∇θ log dπθ
1 (s) · V πθ

γ (s)]︸ ︷︷ ︸
Residual Error

(5)

In this paper, we prove that this residual error is significant. What more, we also propose another method
to exactly obtain the policy gradient, for all values of the discounting factor including γ = 1 which we call
as the log density gradient. Our estimation of log density gradient utilises average state-action discounted
distributional formulation of a reinforcement learning problem which re-states Jγ(π) as expectation under
dπθ

γ (Nachum et al., 2019; Uehara et al.) as

Jγ(π) = E(s,a)∼d
πθ
γ

[r(s, a)].

Under this formulation, policy gradient can similarly be obtained using log derivative trick as follows,

∇θJγ(π) = E(s,a)∼d
πθ
γ

[∇θ log dπθ
γ (s, a) · r(s, a)]. (6)

We refer to ∇θ log dπθ
γ as the log density gradient. A key advantage of log density gradient is that it would

allow us to approximate policy gradient for average reward scenarios in a provable manner. In this work, we
show that log density gradient can be approximated even under average reward scenarios (γ = 1). To that
end, we first propose a model based approach to approximate the log density gradient for tabular scenarios.
Under reversibility assumptions we then show that this log density gradient can also be approximated using
TD method. Since reversibility assumption is highly restrictive, we finally propose a min-max version of log
density gradient which allows to approximate ∇θ log dπθ using empirical samples. Our experimental further
show that this manner of policy gradient estimation can potentially make reinforcement learning sample
efficient, thus helping them scale.

3 Survey of Related Work and Comparison

In this section we will discuss existing studies in policy gradient methods including the framework of log
density gradient first introduced by Morimura et al. (2010). We also briefly discuss density ratio learning
methods which have been very popular in off-policy evaluation. A short discussion on Temporal Difference
(TD) learning methods may be found in Appendix 8.1.

3.1 Policy Gradient Methods

Literature survey: Policy gradient methods are a widely studied topic in reinforcement learning. One
of the earliest works in this area proposed a closed-form solution for evaluating policy gradients called the
policy gradient theorem (Sutton et al., 1999). Initially implementations for policy gradient methods used
episodic estimates to update policy parameters (Williams, 1992) and GPOMDP (Baxter & Bartlett, 2001).
Unfortunately this way of implementing policy gradient suffered from high variance, thus inhibiting scalability
to large problem spaces (Schulman et al., 2016). To address this problem, actor-critic methods approximate
the Q-function or advantage function using an additional neural network, which are then used to update the
policy (Mnih et al., 2016; Schulman et al., 2016). Furthermore policy gradient methods are also designed to
be compatible with deterministic policies (Lillicrap et al., 2016; Silver et al., 2014). Recently Trust region
methods, such as Trust Region Policy Optimization (TRPO) Schulman et al. (2015) and Proximal Policy
Optimization (PPO) Schulman et al. (2017) have been introduced which update policies while ensuring
monotonic performance improvement. To the best of our knowledge, Log density gradient has only been
discussed in Morimura et al. (2010) in which a TD method to estimate log density gradient for average
reward scenarios by using reversible backward Markov chain is proposed.

Comparison: In our paper, we re-introduce the idea of log density gradient introduced by Morimura et al.
(2010) for estimating gradient in the average reward scenario. Morimura et al. (2010) was also the first
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work to find out the residual error in policy gradient approximation (Proposition 2). Additionally, this work
proposes estimating log density gradient specifically for average reward scenarios (γ = 1) using a TD update,
with additional extensions for linear function approximation.

Our work not only fixes many technical gaps evident in the theory of log density gradient as proposed by
Morimura et al. (2010) but also builds on them to make log density gradient practical. We first define log
density gradient (equation 10) over a range of discounting factor γ ∈ [0, 1], which also includes the average
reward scenario. Using Lemma 2 and 3 we then prove mathematical conditions under which the log density
gradient is unique and can be exactly calculated. We further use this relation to propose a TD form of
updates (equation 13) for log density gradient estimation for all values of discounting factor γ ∈ [0, 1] as
against the average reward scenario proposed by Morimura et al. (2010). In Lemma 4 we further prove
that these TD updates converge to a unique solution for all values of discounting factor γ except 1. Thus,
effectively demonstrating that TD-updates proposed by Morimura et al. (2010) does not converge to the
true log density gradient, further limiting their use for large scale problems. Additionally, to make log density
gradient estimation viable for practical problems, we propose a min-max optimization approach (equation 16)
that allows us to estimate log density gradient using empirical samples. We also demonstrate that under linear
function approximation settings, this min-max optimization not only has a closed form but also converges to
a unique solution (Theorem 1). Under weighted updates, as proposed in algorithm 1 we also show a bound
on sample complexity of log density gradient estimation of the order of O( 1√

n
).

3.2 Density Ratio Learning

Literature survey: Off-policy evaluation estimates the performance of a target policy π using an offline
dataset generated by a behavior policy µ (Voloshin et al., 2019; Katdare et al.). This is done by estimating
the average state-action density ratio dπ

γ

dµ , which allows approximation of the target policy’s performance. In
this work, we are primarily interested in the DICE class of off-policy evaluation algorithms (Zhang et al.,
2020b; Nachum et al., 2019; Zhang et al., 2020a). These algorithms typically approximate the divergence
(for some f−divergence of their choice) between the two distributions dπ and dµ in their convex dual form,
eliminating the need to obtain samples from dπ, which results in a min-max form optimization problem.

Comparison: Inspired by the DICE class of algorithms we too propose a min-max form of estimating the
log density gradient. We show that such a method of estimating log density gradient converges to the true
policy under linear function approximations assumptions. We also show that the sample complexity of such
an estimator is of the order (n−1/2), with n being the number of on-policy samples.

4 Log Density Gradient

In this section, we introduce log density gradient and further show that classical policy gradient typically
ignores a residual error which may be significant. We then propose a TD version of our log density gradient
method that estimates the policy gradient without a need to account for this error.

4.1 Model Based Log Density Gradient

The log density gradient method attempts to estimate the gradient of log of average state-action discounted
stationery distribution dπθ

γ . We start by observing that dπθ
γ satisfies an identity called the Bellman flow

equation Liu et al. (2018).
Lemma 1. The average state-action density distribution satisfies the following identity for all γ ∈ [0, 1],

dπθ
γ (s′) = (1− γ)d0(s′) + γ

∑
s,a

dπθ
γ (s, a)P(s′|s, a) (7)

We prove this result in the appendix 8.3. Note that this equation is similar to the Bellman equation but
in a backward manner, which means, we need samples from the backward conditional distribution (defined
rigorously in Section 4.2). It can also be understood as a form of flow conservation, wherein the flow out of
state s′ (LHS) would be equal to the flow into s′ (RHS).
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Lemma 2. For all γ ∈ [0, 1] the solution to the following optimisation is unique and equal to dπθ
γ .

arg min
w:S→R

∑
s′

(
w(s′)− (1− γ)d0(s′) + γ

∑
s,a

w(s)πθ(a|s)P(s′|s, a)
)2

+ λ

2 (
∑

s

w(s)− 1)2 (8)

Detailed proof can be found in the appendix 8.4. Intuitively speaking, the term λ
2 (
∑

s w(s)− 1)2 is redundant
for γ < 1. It becomes useful for average reward scenarios wherein γ = 1 ensures uniqueness. Although it is
hard to estimate a closed form solution for ∇θ log dπθ

γ , it is still possible to estimate it numerically. Using
equation 7 we can similarly calculate an equivalent identity for ∇θ log dπθ

γ

dπθ
γ (s′)∇θ log dπθ

γ (s′) = γ
∑
s,a

dπθ
γ (s, a)P(s′|s, a)∇θ log dπθ

γ (s, a). (9)

Multiplying both sides by πθ(a′|s′) and recalling that dπθ
γ (s, a) = dπθ

γ (s)πθ(a|s), we obtain

dπθ
γ (s′, a′)(∇θ log dπθ

γ (s′, a′)−∇θ log π(a′|s′)) = γ
∑
s,a

dπθ
γ (s, a)∇θ log dπθ

γ (s, a)P(s′|s, a)πθ(a′|s′) (10)

Similar to Lemma 2 we can estimate ∇θ log dπθ
γ by solving for the equation 10 above. To that end, we propose

the following optimization (where λ > 0 is a fixed regularizer)

min
w:S×A→Rn

{
E(s′,a′)∼d

πθ
γ
∥ν(s′, a′)∥2 + λ

2

∥∥∥E(s,a)∼d
πθ
γ

[w(s′, a′)]
∥∥∥2
}

(11)

ν(s′, a′) := dπθ
γ (s′, a′)(w(s′, a′)−∇θ log πθ(a′|s′))− γ

∑
s,a

dπθ
γ (s, a)P(s′|s, a)πθ(a′|s′)w(s, a)

Lemma 3. The solution to equation 11 is unique and equal to ∇θ log dπθ
γ for all γ ∈ [0, 1].

We describe the proof for this Lemma in the appendix 8.5. Similar to Lemma 11, the constraint
λ
2 ∥E(s,a)∼d

πθ
γ

[w(s′, a′)]∥2 is only useful for average reward scenarios γ = 1. The proof follows from the
fact that the solution to the equation 11 can be written in a linear form A · w = b and showing that A is
invertible. It is worth reiterating that, once we have an estimate ∇θ log dπθ

γ , we can use this estimate to
approximate the policy gradient using equation 6. We will now recall two important properties of log density
gradient.
Proposition 1. The policy gradient method as mentioned in equation 6 is exactly equal to the classical policy
gradient (Sutton et al., 1999) as mentioned in equation 2.

Detailed proof for this proposition can be found in Appendix 8.2. In essence this means that log density
gradient calculates the same policy gradient but using a different formulation. We show next that this
formulation allows us to correct for the residual error in policy approximation which is typically ignored in
many actor-critic implementations of policy gradient methods.
Proposition 2. The following identity, stated in equation 5, is true

∇θJ1(πθ) = E(s,a)∼d
πθ
1

[Qπθ
γ (s, a)·∇θ log πθ(a|s)] + (1− γ)E(s,a)∼d

πθ
1

[∇θ log dπθ
1 (s) · V πθ

γ (s)]︸ ︷︷ ︸
Residual Error

Proof. From the definition of log density gradient equation 6 we have ∇θJ1(πθ) = E(s,a)∼d
πθ
1

[∇θ log dπθ
1 (s, a) ·

r(s, a)]. Let γ < 1, and we use the Bellman equation 1b to obtain

∇θJ1(πθ) = E(s,a)∼d
πθ
1

[∇θ log dπθ
1 (s, a) · (Qπθ

γ (s, a)− γEs′∼P(·|s,a)[V πθ
γ (s′)])] (12a)

= E(s,a)∼d
πθ
1

[(∇θ log dπθ
1 (s) +∇θ log πθ(a|s)) · (Qπθ

γ (s, a)− γEs′∼P(·|s,a)[V πθ
γ (s′)])] (12b)

= E(s,a)∼d
πθ
1

[Qπθ
γ (s, a) · ∇θ log πθ(a|s)] + (1− γ)Es∼d

πθ
1

[∇θ log dπθ
1 (s, a) · V πθ (s)] (12c)
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Here, we go from equation 12a to 12b by utilizing ∇θ log dπθ
γ (s, a) = ∇θ log dπθ

γ (s) +∇θ log πθ(a|s). We finally
go from 12b to 12c by using a key identity of log density gradient equation 10.

using identity for log density gradient as shown in the equation 9. Note that the first term in equation 12b is the
practical instantiation of classical policy gradient theorem, while the second term (1−γ)Es∼d

πθ
1

[∇θ log dπθ
1 (s) ·

V πθ
γ (s)] being the residual error. This completes the proof.

Actor-Critic implementation of policy gradient methods first approximate the Q-function using a discounting
factor γ strictly less than 1 and then approximate the policy gradient ∇θJ1(πθ) using equation 4b. This leads
to a residual error in policy gradient approximation as shown in Proposition 2. We believe that correcting
for this gradient estimation can potentially make policy gradient algorithms sample efficient and scalable to
complex problems.

Although the solution to equation equation 11 is unique, solving it requires access the transition matrix P
which is impractical for complex environments. Additionally, the log density gradient estimation also becomes
computationally infeasible with exponential scaling of state-action. We thus propose a temporal difference
approach to estimate log density gradient from empirical data next .

4.2 Temporal Difference Log Density Gradient

To propose an update equation for temporal difference (TD) method, we first begin with re-arranging few
terms in equation 10 for log density gradient.

∇θ log dπθ
γ (s′, a′) = ∇θ log πθ(a′|s′) + γ

∑
s,a

dπθ
γ (s, a)P(s′|s, a)πθ(a′|s′)

dπθ
γ (s′, a′) ∇θ log dπθ

γ (s, a)

We define the backward distribution of (s, a) given (s′, a′) as

Pb(s, a|s′, a′) :=
dπθ

γ (s, a)P(s′|s, a)πθ(a′|s′)
dπθ

γ (s′, a′) =
dπθ

γ (s, a)Pπθ (s′, a′|s, a)
dπθ

γ (s′, a′)

which is a consequence of Bayes’ rule. The summation therefore becomes an expectation under Pb. The
log density gradient is therefore said to follow a backward recursion and it requires samples from backward
conditional probability Pb to estimate log density gradient1. We first generalize algorithm of Morimura et al.
(2010), who do it only for γ = 1, to estimate log density gradient w for all discounting factor γ ∈ [0, 1] in
form of a temporal difference (TD(0)) method where our update equation is

w(s′, a′)← w(s′, a′) + α[γw(s, a) + g(s′, a′)− w(s′, a′)] (13)

with (s′, a′) ∼ dπθ
γ , (s, a) ∼ Pb(·|s′, a′) and g(s′, a′) := ∇θ log πθ(a′|s′). Define operator Yγ to capture the

behaviour of update rule equation 13 after taking expectation,

(Yγ · w)(s′, a′) := γE(s,a)∼d
πθ
γ

[w(s, a)|(s′, a′)] + g(s′, a′).

We can write this in matrix form as follows,

Yγ ·W = γD−1
πθ
P⊤

πθ
Dπθ

W + G (14)

where, W ∈ R|S|·|A|×n is the matrix with every row corresponding to w(s, a) for each state-action pair (s, a).
Similarly, G ∈ R|S|·|A|×n has its rows as ∇θ log πθ for each state-action pair. Let Pπθ

, Dπθ
∈ R|S|·|A|×|S|·|A|

where (Pπθ
)((s,a),(s′,a′)) = Pπθ (s′, a′|s, a) and Dπθ

is a diagonal matrix whose every element correspond to dπθ
γ

for each state-action pair. We use this matrix form for the operator Yγ in the proof of the following lemma.
Lemma 4. Let w0 ∈ ∆(S,A) be an arbitrary initial guess. Let wk = Yγ ·wk−1 for all natural numbers k ≥ 1.
For γ ∈ [0, 1), the operator Yγ is a contraction, and {wk}k≥0 converges to a unique fixed point ∇θ log dπθ

γ .
1Although for γ = 1 we can use samples from P as well (Morimura et al., 2010)
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Detailed proof of Lemma 4 can be found in Appendix 8.6. Extension of Lemma 4 to linear function
approximation, and proof of convergence for the same, can be found in the Appendix 8.7. Although TD
methods are known to converge, they still suffer from two problems. One, the access to samples from
backward conditional probability. Two, scalability to large problem spaces. We attempt to solve both of
these problems in the next section where we propose a min-max optimization procedure for estimating the
log density gradient.

5 Min-Max Log Density Gradient

In this section, we propose another approach for evaluating the log density gradient which uses the min-max
form for optimization which does not need samples from the backward distribution. Min-max optimizations
also allow us to use a large variety of function classes like neural networks to estimate log density gradient.

Let us return to the loss function that we initially propose in equation 11. Classical machine learning
algorithms typically require loss function in the form of an expectation under a distribution. These kind of
algorithms are often called as Empiricial Risk Minimization, which allows us to approximate the loss using
samples from that distribution. Consider a modified form of the optimization proposed in equation 11 (the
modification is that δ(s′, a′) is divided by dπθ

γ (s′, a′) where the ergodicity assumption ensures this operation
is well defined),

arg min
w∈S×A→Rn

E(s′,a′)∼d
πθ
γ

[∥∥∥∥ ν(s′, a′)
dπθ

γ (s′, a′)

∥∥∥∥2
]

+ λ

2 ∥E(s,a)∼d
πθ
γ

[w(s, a)]∥2 (15)

ν(s′, a′) := dπθ
γ (s′, a′)(w(s′, a′)−∇θ log πθ(a′|s′))− γ

∑
s,a

dπθ
γ (s, a)P(s′|s, a)π(a′|s′)w(s, a)

The denominator term dπθ
γ is added to simplify the final optimization, which we shall see soon. We

also add the term λ
2 ∥E(s,a)∼d

πθ
γ

[w(s, a)]∥2 to satisfy one of the properties of the gradient of log density
E(s,a)∼d

πθ
γ

[∇θ log dπθ
γ (s, a)] = 0.

It is worth noting that equation 15 is just a re-weighting of equation 11 with the 1
d

πθ
γ (s,a) . This implies

that the optimal solution for the both the equation is the same because the minimum value for both the
optimization can only be reached when w(s, a) = ∇θ log dπθ

γ (s, a). By exploiting the Fenchel-duality, we can
re-write this optimization in the minimax form (Rockafellar, 2015; Zhang et al., 2020b).

arg min
w:S×A→Rd

max
f :S×A→Rd,τ∈Rd

Lγ(w, f, τ) :=
{
E(s′,a′)∼d

πθ
γ

[f(s′, a′) · w(s′, a′)]

− E(s′,a′)∼d
πθ
γ

[f(s′, a′) · ∇θ log πθ(a′|s′)]− γE(s,a)∼d
πθ
γ

[Es′∼P(·|s,a),a′∼πθ(·|s′)[f(s′, a′)] · w(s, a)]

− 1
2E(s,a)∼d

πθ
γ

[∥f(s′, a′)∥2] + λ(τ · E(s,a)∼d
πθ
γ

[w(s, a)]− 1
2∥τ∥

2)
}

(16)

In many cases searching over all set of functions is not possible, hence we search over tractable function
classes W,F and the aim is to approximate

∇θ log dπθ
γ ≈ arg min

w∈W
max

f∈F,τ∈Rn
Lγ(w, f, τ).

Such a practical consideration allows us to use different types of function approximators like linear function
approximation, neural networks, and reproducible kernel Hilbert spaces (RKHS). We will now provide an
update rule to solve equation 16 under linear function approximation. For that we choose a feature map
Φ : S ×A → Rd and parameters α, β ∈ Rd×n that need to be learnt, so that we can approximate the optima
of equation 16, w∗(s, a) and f∗(s, a) with αT Φ(s, a), and βT Φ(s, a) respectively, for each state action pair

8
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(s, a). The update rule is

δt = ΦtΦT
t − γΦt(Φ′

t)T (17a)
αT

t+1 = αT
t − εt(βT δt + λ(τΦT

t )) (17b)
βT

t+1 = βT
t + εt(αT

t δt − gtΦT
t − βT

t ΦtΦT
t ) (17c)

τt+1 = τt + εt(λ(αT
t Φt − τt)) (17d)

where, Φt := Φ(st, at) is the feature encountered at time t, gt := ∇θ log πθ(at|st), and Φ′
t := Φt(s′

t, a′
t)

for (st, at) ∼ dπθ
γ , s′

t ∼ P(·|st, at), a′
t ∼ πθ(a′

t|s′
t). We first re-write the updates in equation 17 in form of

dt = [αt, βt, τT
t ] so that the updates can be written in matrix form dt+1 = dt + εt(Gt+1dt + ht+1), where,

Gt+1, ht+1 are as follows,

Gt+1 :=

 0 −At −λΦt

At −Ct 0
λΦT

t 0 −λ

 , ht+1 :=

 0
−Bt

0


and At := (ΦtΦT

t − γΦt(Φ′
t)T ), Bt := ΦgT

t , Ct := ΦtΦT
t . We can calculate the expectation for each of these

matrices as follows,

G := Ep[Gt+1] =

 0 −A −λΨDπθ
e

A C 0
λeT Dπθ

ΨT 0 −λ

 , h := E(s,a)∼d
πθ
γ

[ht+1] =

 0
−B
0


Here, each column of Ψ ∈ R|S|·|A|×n is the feature vector Φ(s, a), for each (s, a) ∈ S×A and e ∈ Rn is a vector
of 1’s at every element. We can similarly write A = ΨDπθ

(I − γPπθ
)ΨT , B = ΨDπθ

GT , C = ΨDπθ
ΨT and

Ep[·] := E(s,a)∼d
πθ
γ ,s′∼P(·|s,a),a′∼πθ(·|s′)[·]. We can now prove the convergence of linear function approximation

under the following key assumptions.
Assumption 1. 1. The matrix Ψ has linearly independent columns.

2. The matrix A is non-singular or the regularizer λ > 0.

3. The feature matrix Φ has uniformly bounded second moments.
Theorem 1. Under the assumptions 1, the update equation 17 converges in probability to a unique solution.
That is, limt→∞ dt = G−1h in probability.

The detailed proof is provided in Appendix 8.8. The proof is similar to (Zhang et al., 2020b, Theorem 2)
and invokes theorem 2.2 Borkar & Meyn (2000).

We provide a sample complexity analysis for a projected version of the update rule equation 17. To that end,
we propose Algorithm 1 called the Projected Log Density Gradient. We choose closed, bounded and convex
sets X ⊂ Rd×n, Y ⊂ Rd×n, Z ⊂ R1×n and define a projection operator ΠX , ΠY , ΠZ that project our variables
αt, βt, τt onto X, Y, Z respectively. Moreover, we choose a learning rate {εt}m

t=1 where we run the algorithm
for m steps. The details of the choice of learning rate are found in Appendix 8.9.
Theorem 2. Under assumptions 1 for (ᾱ, β̄, τ̄) obtained from Algorithm 1 after m steps, the optimality gap
ϵg(ᾱβ̄, τ̄) (defined below) is bounded with probability 1− δ as follows,

ϵg(ᾱ, β̄, τ̄) := max
(β,τ)∈Y ×Z

L(ᾱ, β, τ)− min
α∈X

L(α, β̄, τ̄) ≤ C0

√
5
m

(8 + 2 log 2
δ

) w.p. 1− δ

where, C0 is a constant which is a function of the sets X, Y, Z, and the second moment of Φ.

We present the proof of this result in appendix 8.9. This result essentially shows us that the upper-bound
for log density gradient estimation requires O( 1√

m
) (where m is the number of steps the algorithm runs for)

samples to learn an accurate estimation.

9
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Algorithm 1 Projected Log Density Gradient
1: for t = 1, 2, ..., m do:
2: δt = ΦtΦT

t − γΦt(Φ′
t)T

3: αT
t+1 = ΠX(αT

t − εt(βT δt + λ(τΦT
t )))

4: βT
t+1 = ΠY (βT

t + εt(αT
t δt − gtΦT

t − βT
t ΦtΦT

t ))
5: τt+1 = ΠZ(τt + εt(λ(αT

t Φt − τt)))
6: Return ᾱ, β̄, τ̄

Where, ᾱ =
∑n

i=1
εiαi∑n

i=0
εi

, β̄ =
∑n

i=1
εiβi∑n

i=0
εi

, τ̄ =
∑n

i=1
εiτi∑n

i=0
εi

6 Experiments

In this section, we present a proof of concept for our log density gradient estimation on two sets of environments
5× 5 and 3× 3 gridworld environment (Towers et al., 2023). For the gridworld experiments, we approximate
log density gradient by using linear function approximation. Here, the features are ϕ : S ×A → R|S|·|A| such
that it maps every state to the corresponding standard basis vector. Our results for 5× 5 are in Figure 2 and
for 3× 3 in Figure 3.

We compare our algorithm against 3 different baselines. The first is theoretical log density gradient as
described in Lemma 3. The second baseline implements REINFORCE algorithm, which is the practical
rendition of the policy gradient theorem (Williams, 1992). The third is theoretical policy gradient method
which exactly computes the classical policy gradient theorem, as in equation 4b (Sutton et al., 1999).

We observe in that both log density gradient approaches are more sample efficient than both policy gradient
approaches. This is because policy gradient methods approximate the gradient for average reward scenarios
(γ = 1) by estimating a Q-function for a discounting factor less than 1. Moreover, we observe that our
method tends to outperform REINFORCE with much reduced variance. Our approach is always very close
in performance to the theoretical log density gradient which serves to validate correctness of our algorithm.
In 5 × 5 gridworld we also observe our algorithm to outperforms theoretical log density gradient. This is
because, theoretical log density gradient suffers from some numerical computation issues arising from average
reward scenarios.
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Figure 2: For 5× 5 gridworld, comparison of Log Density Gradient algorithms (in light green) as compared
to REINFORCE (light red), theoretical policy gradient (gray) and theoretical log density gradient (blue). We
observe that our empirical algorithm comfortably outperforms the other baselines.
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Figure 3: For 3× 3 gridworld, comparison of Log Density Gradient algorithms (in light green) as compared
to REINFORCE (light red), theoretical policy gradient (gray) and theoretical log density gradient (blue). We
observe that our empirical algorithm comfortably outperforms the other baselines.

7 Conclusion and Future Work

We present log density gradient algorithm that estimates policy gradient using state-action discounted
formulation of a reinforcement learning problem. We observe that policy gradient estimated in this manner,
corrects for a residual error common in many reinforcement learning tasks. We show that with a known
model, we can exactly calculate the gradient of the log density by solving two sets of linear equations. We
further propose a TD(0) algorithm to implement the same, but it needs samples from the backward Markov
chain, which becomes too restrictive. Therefore, we propose a min-max optimization that estimates log
density gradient using just on-policy samples. We not only prove theoretical properties like convergence and
uniqueness but also experimentally demonstrate that our method is sample efficient as compared to classical
policy gradient methods like REINFORCE. This approach looks promising, and further studies of log density
gradient will focus on scaling their performance to complex tasks.
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