
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Conformal Graph-level Out-of-distribution Detection with
Adaptive Data Augmentation
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ABSTRACT

Graph-level out-of-distribution (OOD) detection, which attempts to

identify OOD graphs originated from an unknown distribution, is a

vital building block for safety-critical applications in Web and soci-

ety. Current approaches concentrate on how to learn better graph

representations, but fail to provide any statistically guarantee on

detection results, therefore impeding their deployments in the sce-

nario where detection errors would result in serious consequences.

To overcome this critical issue, we propose the Conformal Graph-

level Out-of-distribution Detection (CGOD), extending the theory

of conformal prediction to graph-level OOD detection with a rigor-

ous control over the false positive rate. In CGOD, we develop a new

aggregated non-conformity score function based on the proposed

adaptive data augmentation. Through the guidance from two de-

signed metrics, i.e., score consistency and representation diversity,

our augmentation strategy can generate multiple non-conformity

scores, and aggregating these generated non-conformity scores

together is robust to the misleading information. Meanwhile, our

score function can perceive the subsequent process of conformal

inference, enabling the aggregated non-conformity score to be adap-

tive to different input graphs and deriving a more accurate score

estimation.We conduct experiments onmultiple real-world datasets

with different empirical settings. Extensive results and model anal-

yses demonstrate the superior performance of our approach over

several competitive baselines.

CCS CONCEPTS

• Computing methodologies→ Neural networks; • Informa-

tion systems→ Data mining.

KEYWORDS

Graph-level out-of-distribution detection, conformal prediction,

graph neural networks
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1 INTRODUCTION

Graph-level applications are ubiquitous in diverse set of research

fields, such as social network analysis [22, 27, 41], molecular prop-

erty prediction [6, 33, 40] and intelligent traffic forecasting [9, 13,

39]. Recently, a significant amount of approaches for these graph-

level applications have been proposed [4, 44, 50], among which

graph neural networks (GNNs) have received a great deal of atten-

tion [11, 16, 35]. Typically, GNNs are trained with a closed-world

assumption that training graphs and test graphs follow the same

data distribution [5, 20, 42]. Nevertheless, many real-world situa-

tions violate this closed-world assumption and, instead, involve out-

of-distribution (OOD) graphs which have not been seen during the

training process [8, 21, 37]. In fact, for an ideal graph machine learn-

ing model, it should not only make predictions on in-distribution

(ID) graphs correctly, but also be able to detect such OOD samples

during the inference phase to mitigate some unexpected risks, when

being deployed on practical scenarios [14, 48].

On the basis of this high security demand, graph-level OOD

detection, which aims to determine whether an input graph is ID or

OOD, has become an important research direction. Previous works

adopt different learning paradigms, e.g., contrastive learning [28]

and prompt learning [23] to learn effective ID features, with the

goal of enlarging the score gap between ID and OOD graphs. For

example, GOOD-D [24] designs amethod of hierarchical contrastive

learning to capture the common patterns of ID graphs in different

granularities (node-, graph- and group-levels) so that OOD graphs

which violate these patterns can be easily exposed. AAGOD [10]

proposes a post-hoc method, enabling a pre-trained GNN to detect

OOD graphs without modifying model parameters. It leverages a

graph prompt on the adjacency matrix to amplify the structural

difference between ID and OOD graphs.

Despite their promising results, existing works of graph-level

OOD detection remain at designing more advanced models, but

fail to provide any statistically guarantee on detection results. Such

a lack of rigor impedes their applications in the scenario where

detection errors would result in serious consequences. In this pa-

per, we attempt to establish the connection between graph-level

OOD detection and conformal prediction (CP) [36] for filling this

important gap. CP is a useful tool of generating prediction sets

with a coverage guarantee that such sets cover the true label with a

user-specified threshold. To be specific, we propose the Conformal

Graph-level Out-of-distribution Detection named CGOD, a novel

framework that extends CP to graph-level OOD detection with a

rigorous control over the false positive rate (FPR). Additionally,

CGOD is a flexible and light-weighted architecture which can be

paired with different detection models to identify OOD graphs in a

post-processing manner.

The non-conformity score function, which quantifies how differ-

ent the input graph is from the training distribution, is the primary

1
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factor for CP [1]. However, when handling graph-level OOD detec-

tion, it suffers from two critical limitations: (1) It follows a single

point estimation of the non-conformity score, which is easily af-

fected by the misleading information including the high estimation

variance and the noise feature of recognizing OOD characteristics;

(2) It is a pre-determined function, which cannot make adaptive

adjustments to perceive the subsequent estimation process, lead-

ing to an inaccurate calculation. In this paper, we develop a new

aggregated non-conformity score function to overcome above

limitations, based on the proposed adaptive data augmentation.

Specifically, our method differentiates the process of conformal

inference. Through optimizing two designed metrics, i.e., score

consistency and representation diversity, CGOD can utilize our

augmentation strategy to generate multiple non-conformity scores.

By aggregating these scores together, CGOD derives an aggregated

non-conformity score to enhance the robustness of the misleading

information. Furthermore, due to the fact that our score function is

trainable, it can be aware of the calculation of the non-conformity

score, enabling the aggregated non-conformity score to be adap-

tive to different input graphs and deriving a more accurate score

estimation. In general, the main contributions of this paper are

summarized here:

• To the best of our knowledge, we are the first work that

attempts to formulate the task of graph-level OOD detection

from the perspective of CP, facilitating a rigorous control

over the FPR while ensuring detection performance.

• We design two novel metrics to guide the proposed adaptive

data augmentation to generate multiple non-conformity

scores leading to an aggregated non-conformity score func-

tion for boosting model performance effectively.

• Experiments are conducted on multiple real-world datasets

in different empirical settings. Extensive results and de-

tailed analyses validate the superiority of our method over

multiple strong counterparts
1
.

2 RELATEDWORK

2.1 Conformal Prediction on Graphs

CP [1, 36] is an uncertainty quantification framework which can

produce statistically valid prediction sets (or intervals) for any pre-

trained machine learning models, only assuming exchangeability

of the data. The basic idea of CP is to estimate the 𝑝-value for each

possible label of a new sample and exclude from the prediction set

those labels having a 𝑝-value less than a user-specified threshold

𝜖 . Similar to statistical hypothesis testing [15], CP aims to reject

the most unlikely labels at significance level 𝜖 . For estimating these

𝑝-values, CP leverages the non-conformity score function to measure

how different a given sample is relative to a set of training samples.

Thus, the non-conformity score function plays a crucial role of

determining the usefulness of CP.

CP has proven effective in numerous domains. For example,

ICAD [18, 19] exploits CP to detect anomalous trajectories. Re-

cent works investigate how to use CP to solve problems on graphs.

DAPS [47] and CF-GNN [12] study the exchangeability of GNNs un-

der the semi-supervised node classification, and propose different

1
The source code is available at https://anonymous.4open.science/r/CGOD/

Table 1: Used notations.

Notation Description

P𝑖𝑛, P𝑜𝑢𝑡 ID and OOD distributions of graphs

D𝑖𝑛,D𝑜𝑢𝑡
ID and OOD datasets

D𝑡𝑟 ,D𝑡𝑒 training and test datasets

D𝑝𝑡𝑟 ,D𝑐𝑎𝑙 proper training and calibration dataset

D𝑐𝑎𝑙−𝑡𝑟 ,D′
𝑐𝑎𝑙

trainable and remaining calibration datasets

𝐺𝑖𝑛
and 𝐺𝑡𝑒 a ID graph from D𝑖𝑛

and a test graph from D𝑡𝑒

detect(·) detection function

𝐹 (·, ·) transformation function

Φ(·) a GNN encoder

𝑉 (·, ·) and 𝑠 non-conformity score function with its score

Ψ 𝑗,1:𝑘 𝑘 data augmentations of the 𝑗-th graph

𝑉 (·, ·; ·) aggregated non-conformity score function

𝑠 aggregated non-conformity score

𝒈𝑗 , �̂�𝑖𝑗 graph representation with its 𝑖-th augmentation

𝑝𝑡𝑒 , 𝑝𝑡𝑒 𝑝-value and aggregated 𝑝-value

strategies to improve efficiency. CoDrug [17] introduces conformal

molecular graph prediction, which adopts kernel density estima-

tion to handle the problem of covariate shift. Different from above

approaches, our method extends CP to graph-level OOD detection

and develops a new aggregated non-conformity score function to

improve model effectiveness.

2.2 OOD Detection on Graphs

OOD detection [29] attempts to identify OOD samples from ID data,

which is an essential problem for deploying machine learning mod-

els on safety-critical applications in social networks. Many methods

have studied the problem of OOD detection on graphs [43]. Among

them, GOOD-D [24] is the first work focusing on graph-level OOD

detection. As described in Introduction, GOOD-D designs a self-

supervised method that contrasts different granularities to capture

the ID patterns from both feature and structure views, so as to

detect OOD graphs based on the discrepancy in these granularities.

GOODAT [38] is one of follow-up works, which uses the informa-

tion bottleneck to capture informative sub-graphs for achieving

OOD detection in test time.

Graph-level anomaly detection [26] is a sub-area of graph-level

OOD detection, since anomaly or malicious graphs can be regarded

as a certain type of OOD data. There are many promising works

on graph-level anomaly detection. For instance, OCGIN [49] is an

end-to-end model which adopts GNNs to learn graph represen-

tations simultaneously optimizes an anomaly detection objective,

e.g., one-class classification or reconstruction loss function. GLo-

calKD [25] learns global- and local-sensitive graph normality to

detect anomalous graphs by the joint random distillation of graph

and node representations. However, all above works fall short in

providing any statistically guarantee on detection results.

3 PRELIMINARY

In this section, we first provide the preliminary in our paper and

the used notations are summarized in Table 1. Let 𝐺 = (V, E,X)
denote an undirected graph, and V and E represent the sets of

2
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nodes and edges. X ∈ R |V |×𝑑
represents the feature matrix, where

𝑑 is the feature dimension. A ∈ R |V |× |V |
is the adjacency matrix

and each element A𝑖, 𝑗 ∈ {0, 1} denotes the connectivity between

nodes 𝑖 and 𝑗 . Following the previous work [24], the definition of

graph-level OOD detection is given as follows,

Definition 1 (Graph-level OOD detection). Assuming
that we have an ID dataset D𝑖𝑛 where each input graph is originated
from the distribution P𝑖𝑛 and an OOD datasetD𝑜𝑢𝑡 where each input
graph is originated from the distribution P𝑜𝑢𝑡 . The training dataset
D𝑡𝑟 = {G𝑖𝑛

1
, . . . ,G𝑖𝑛

𝑛 } is a subset of D𝑖𝑛 which only includes ID
graphs (𝑛 is the size of D𝑡𝑟 ), while the test dataset D𝑡𝑒 is constituted
by two separated datasetsD𝑖𝑛

𝑡𝑒 ⊂ D𝑖𝑛 andD𝑜𝑢𝑡
𝑡𝑒 ⊂ D𝑜𝑢𝑡 , i.e.,D𝑡𝑒 =

D𝑖𝑛
𝑡𝑒 ∪ D𝑜𝑢𝑡

𝑡𝑒 and D𝑡𝑟 ∩ D𝑖𝑛
𝑡𝑒 = ∅. For an arbitrary test sample

𝐺𝑡𝑒 ∈ D𝑡𝑒 , the goal of graph OOD detection is to distinguish which
distribution (P𝑖𝑛 or P𝑜𝑢𝑡 ) 𝐺𝑡𝑒 belongs to.

Graph-level OOD detection typically follows an unsupervised set-

ting in which only unlabeled ID graphs are available for identifying

OOD graphs. Most current approaches focus on designing an effec-

tive GNN encoder Φ(·) to learn the graph representation 𝒈 ∈ R𝑐 ,
i.e., 𝒈 = Φ(𝐺), where 𝑐 denotes the representation dimension. After-

wards, a transformation function 𝐹 (·, ·) that transforms the graph

representation into the OOD detection score can be applied on 𝒈 to

identify its OOD-ness:

detect(𝐺) =
{
1 𝐹

(
Φ(𝐺),D𝑡𝑟

)
≥ 𝛾

0 𝐹
(
Φ(𝐺),D𝑡𝑟

)
< 𝛾 .

(1)

Here 0 and 1 indicate the ID sample and the OOD sample, respec-

tively. SSD [31] is a well-known transformation function for OOD

detection. It uses the 𝑘-means algorithm to group graph representa-

tions into 𝑇 clusters and adopts the Mahalanobis distance between

𝒈 and the nearest cluster center as the OOD detection score:

𝐹
(
Φ(𝐺),D𝑡𝑟

)
= 𝐹 (𝒈,D𝑡𝑟 ) = min

𝑡
(𝒈 − 𝝁𝑡 )T𝚺−1

𝑡 (𝒈 − 𝝁𝑡 ), (2)

𝝁𝑡 and 𝚺𝑡 are the sample mean and the sample covariance of the

cluster 𝑡 generated from D𝑡𝑟 .

4 METHODOLOGY

In this section, we first delve into how to achieve graph-level

OOD detection from the view of CP. This process follows a post-

processing manner that can be armed with different pre-trained

detection models to achieve prediction. We then introduce the key

component of CGOD: the aggregated non-conformity score func-

tion based on the proposed adaptive data augmentation. Figure 1

shows a sketch of CGOD. Model analysis including the theoretical

detection guarantee and time complexity is given in the end.

4.1 Model Overview

CGOD follows a most widely used case of CP, i.e., split conformal

prediction (SCP) [36] for model implementation. Specifically, CGOD

includes the following three steps: (1) Data split. For improving

computational efficiency, CGOD first splits D𝑡𝑟 into a proper train-
ing set D𝑝𝑡𝑟 = {𝐺𝑖𝑛

𝑗
}𝑚
𝑗=1

and a calibration set D𝑐𝑎𝑙 = {𝐺𝑖𝑛
𝑗
}𝑛
𝑗=𝑚+1,

i.e., D𝑡𝑟 = D𝑝𝑡𝑟 ∪ D𝑐𝑎𝑙 . (2) Non-conformity score function.

Given an arbitrary graph𝐺 , CGODhas to define the non-conformity

score function 𝑉 (𝐺,D𝑝𝑡𝑟 ) = 𝑠 for testing whether 𝐺 conforms to

D𝑝𝑡𝑟 , where 𝑠 indicates how different 𝐺 is relative to the graph

samples in D𝑝𝑡𝑟 . A higher 𝑠 demonstrates that 𝐺 is more different

from D𝑝𝑡𝑟 . To be consistent with Eq.(1-2), we can set

𝑉 (𝐺,D𝑝𝑡𝑟 ) := 𝐹
(
Φ(𝐺),D𝑝𝑡𝑟

)
, (3)

where Φ(·) and 𝐹 (·, ·) can be pre-trained models. (3) 𝑷-value esti-
mation. The non-conformity score function then can be applied to

the calibration set D𝑐𝑎𝑙 for generating the non-conformity score

𝑠 𝑗 = 𝑉 (𝐺𝑖𝑛
𝑗
,D𝑝𝑡𝑟 ) of each graph 𝐺𝑖𝑛

𝑗
∈ D𝑐𝑎𝑙 . Likewise, the non-

conformity score of a test sample 𝐺𝑡𝑒 can be calculated as 𝑠𝑡𝑒 .

Building upon these non-conformity scores, the 𝑝-value of 𝐺𝑡𝑒

is estimated as the ratio of 𝑠𝑚+1, . . . , 𝑠𝑛 that are at least as large as

𝑠𝑡𝑒 :

𝑝𝑡𝑒 =
|{ 𝑗 =𝑚 + 1, . . . , 𝑛 : 𝑠 𝑗 ≥ 𝑠𝑡𝑒 }| + 1

𝑛 −𝑚 + 1

. (4)

When 𝑝𝑡𝑒 is smaller than a given OOD threshold 𝜖 ∈ (0, 1), 𝐺𝑡𝑒 is

identified as an OOD sample. As suggested by previous works [2],

the above process can be viewed as a statistical hypothesis testing
where the null hypothesis is that𝐺𝑡𝑒 is originated from the same dis-

tribution as the graph samples in D𝑝𝑡𝑟 , and 𝑝𝑡𝑒 can be interpreted

as the probability of rejecting this null hypothesis wrongly.

Furthermore, applying CP to graph-level OOD detection requires

a critical assumption that the condition of exchangeability
2
holds

for graph data [1, 12, 47]. We highlight that CGOD can satisfy ex-

changeability via meeting the following independence proposition:

Proposition 1. In the setting of graph-level OOD detection de-
scribed in Definition 1, the non-conformity score function 𝑉 (·, ·), the
calibration set D𝑐𝑎𝑙 and the test dataset D𝑡𝑒 are independent of each
other.

The corresponding proof is evident: the non-conformity score

function 𝑉 (·, ·) is built upon the proper training set D𝑝𝑡𝑟 . D𝑝𝑡𝑟

and D𝑐𝑎𝑙 are i.i.d. Meanwhile, D𝑡𝑒 is another independent fold of

the used graph data.

4.2 Aggregated Non-conformity Score Function

According to the above three steps, the non-conformity score func-

tion is the primary factor in CP, because it incorporates almost

all the information for determining whether the given graphs are

OOD samples. However, it still exists two critical limitations as

described in Introduction: First, 𝑉 (·, ·) follows a single point esti-
mation so that it is easily affected by the misleading information;

Second, 𝑉 (·, ·) is a pre-determine function which cannot perceive

the subsequent process of 𝑝-value estimation.

To overcome these limitations, we differentiate the process of
conformal inference and introduce a novel aggregated non-conformity
score function. In our score function, we propose the adaptive data

augmentation where each data augmentation captures different

representation diversities and corresponds to a non-conformity

score. Aggregating multiple non-conformity scores together can

reduce the high variance introduced by the single point estimation

and is robust to the noise feature of recognizing OOD characteristics.

Meanwhile, the proposed augmentation strategy is trainable, so our

score function can be aware of the follow-up 𝑝-value estimation,

2
Exchangeability. This condition requires the distribution to be invariant to permu-

tations of the elements in {𝐺1, . . . ,𝐺𝑛 }. More precisely, for each finite 𝑛, if 𝜋 is a

permutation of {1, . . . , 𝑛}, then: P(𝐺𝜋 (1) , . . . ,𝐺𝜋 (𝑛) ) = P(𝐺1, . . . ,𝐺𝑛 ) .
3
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𝑘
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2
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1

𝑠𝑗
𝑘

𝒈𝑗
1

𝒈𝑗
2

𝒈𝑗
𝑘

𝐺𝑗
𝑖𝑛

score consistency: ℒ𝑠 = 𝑠𝑗 − 𝑠𝑗
𝑖

𝑘

𝑖=1

 representation diversity: ℒ𝑟 = − 𝜅(𝒈𝑗
𝑖 ,𝒈𝑗

𝑖′ )

𝑘

𝑖′ ≠𝑖

𝑘

𝑖=1

 

𝑠𝑗 = 𝐹(𝒈𝑗 ,𝒟𝑝𝑡𝑟 )

𝒟𝑐𝑎𝑙 −𝑡𝑟

𝒈𝑗 = Φ 𝐺𝑗
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Figure 1: CGOD for graph-level OOD detection. In the training phase, we design the metrics of score consistency and repre-

sentation diversity to optimize our proposed adaptive data augmentation. In the inference phase, CGOD first calculates these

aggregated non-conformity scores of D′
𝑐𝑎𝑙

and 𝐺𝑡𝑒 ∈ D𝑡𝑒 , and then derives the 𝑝-value of 𝐺𝑡𝑒 for achieving OOD detection.

enabling the aggregated non-conformity score to be adaptive to

different input graphs and thereby deriving a more accurate score

estimation.

Specifically, given 𝑘 data augmentations Ψ1:𝑘 = (Ψ1, . . . ,Ψ𝑘 ),
CGOD first generates 𝑘 non-conformity scores 𝑠1:𝑘 = (𝑠1, . . . , 𝑠𝑘 )
for 𝐺 :

𝑠1:𝑘 =
(
𝑉 (Ψ1 (𝐺),D𝑝𝑡𝑟 ), . . . ,𝑉 (Ψ𝑘 (𝐺),D𝑝𝑡𝑟 )

)
. (5)

Afterwards, our score function 𝑉 = (𝐺,D𝑝𝑡𝑟 ;Ψ
1:𝑘 ) is set as an

element-wise strictly increasing function with the following aggre-

gated non-conformity score:

𝑠 = 𝑉 (𝐺,D𝑝𝑡𝑟 ;Ψ
1:𝑘 ) =

𝑘∑︁
𝑖=1

𝑉 (Ψ𝑖 (𝐺),D𝑝𝑡𝑟 ) . (6)

We explain why use this function setting in Model Analysis. In the

next, we describe how to optimize these data augmentations.

Adaptive Data Augmentation. Instead of using some heuristic

augmentations working on graph structures and node features [30],

our augmentation strategy follows a trainable fashion which per-

turbs learned graph representations in the embedding space. This

approach has been demonstrated to be a simple yet effective way

of introducing noise to graphs [3]. To train these data augmen-

tations, we first split a small number of data from D𝑐𝑎𝑙 as the

trainable calibration set D𝑐𝑎𝑙−𝑡𝑟 = {𝐺𝑖𝑛
𝑗
}𝑛′
𝑗=𝑚+1, and the remaining

data D′
𝑐𝑎𝑙

= {𝐺𝑖𝑛
𝑗
}𝑛
𝑗=𝑛′+1 is still used as the calibration set, i.e.,

D𝑐𝑎𝑙 = D𝑐𝑎𝑙−𝑡𝑟 ∪ D′
𝑐𝑎𝑙

. We then design two metrics, i.e., score

consistency and representation diversity as the loss function to

train these data augmentations on D𝑐𝑎𝑙−𝑡𝑟 .
For an arbitrary graph 𝐺𝑖𝑛

𝑗
∈ D𝑐𝑎𝑙−𝑡𝑟 , each data augmenta-

tion would generate an augmented graph representation �̂�𝑖
𝑗
=

Ψ 𝑗,𝑖 (𝒈𝑗 ;𝜃𝑖 ), where 𝒈𝑗 denotes the original graph representation of

𝐺𝑖𝑛
𝑗
and 𝜃𝑖 denotes the model parameters. We parameterize each

data augmentation Ψ 𝑗,𝑖
as a masking operation that would mask

some inessential or redundant dimensions. To effectively determine

which dimensions should be masked, we first use the attention

mechanism att(𝒈𝑗 ;𝜃𝑖 ) to derive a weighted vector 𝒂𝑖
𝑗
∈ R𝑐 where

each element 𝒂𝑖,𝑧
𝑗

represents the importance of 𝑧-th dimension:

𝒂𝑖,𝑧
𝑗

=
exp(LeakyReLU(𝒈T

𝑗
𝑾𝑖𝒉𝑧))∑𝑐

𝑜=1 exp(LeakyReLU(𝒈T𝑗𝑾𝑖𝒉𝑜 ))
. (7)

Here𝑾𝑖
is a parameter matrix in Ψ 𝑗,𝑖

, and {𝒉𝑜 }𝑐
𝑜=1

represents a set

of dimension-wise trainable vectors. We then perform a discretiza-

tion operation on 𝒂𝑖
𝑗
, i.e., disc(𝒂𝑖

𝑗
; 𝜉) where the highest values are

discretized as ones and the others are discretized as zeros, with a

specific ratio 𝜉 for controlling the proportion of zeros. �̂�𝑖
𝑗
is finally

defined as

�̂�𝑖𝑗 = Ψ 𝑗,𝑖 (𝒈𝑗 ;𝜃𝑖 ) = disc

(
att(𝒈𝑗 ;𝜃𝑖 ); 𝜉

)
⊙ 𝒈𝑗 , (8)

where ⊙ denotes the element-wise multiplication. Once �̂�𝑖
𝑗
has been

generated, we can further derive its corresponding non-conformity

score 𝑠𝑖
𝑗
= 𝐹 (�̂�𝑖

𝑗
,D𝑝𝑡𝑟 ).

Designed Metrics. We design two metrics, i.e., score consistency

and representation diversity to train our augmentation strategy,

with the goal of improving the robustness of the noise feature of

recognizing OOD characteristics. Concretely, given 𝑘 augmented

graph representations �̂�1:𝑘
𝑗

= (�̂�1
𝑗
, . . . , �̂�𝑘

𝑗
), the score consistency

requires that their corresponding non-conformity scores 𝑠1:𝑘
𝑗

=

(𝑠1
𝑗
, . . . , 𝑠𝑘

𝑗
) are consistent with the original non-conformity score

𝑠 𝑗 of the input graph 𝐺𝑖𝑛
𝑗
. Meanwhile, representation diversity

encourages �̂�1:𝑘
𝑗

to be dissimilar from each other. Combining these

two metrics together, we can define the following loss function:
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L = L𝑠 + 𝜆L𝑟 =

𝑘∑︁
𝑖=1

| |𝑠 𝑗 − 𝑠𝑖𝑗 | |︸          ︷︷          ︸
score consistency

−𝜆
𝑘∑︁
𝑖=1

𝑘∑︁
𝑖′≠𝑖

𝜅 (�̂�𝑖𝑗 , �̂�
𝑖′
𝑗 )︸               ︷︷               ︸

representation diversity

,
(9)

whereL𝑠 andL𝑟 denote the loss functions of score consistency and

representation diversity, 𝜆 is a harmonic factor, and 𝜅 represents a

distance function for measuring the distance between two graph

representations. In fact, each non-conformity score corresponds to

a 𝑝-value:

𝑝𝑖𝑗 =
|{ 𝑗 ′ = 𝑛′ + 1, . . . , 𝑛 : 𝑠 𝑗 ′ ≥ 𝑠𝑖

𝑗
}| + 1

𝑛 − 𝑛′ + 1

. (10)

But directly optimizing the consistency of the 𝑝-values generated

by these augmented graph representations is non-differentiable due

to Eq.(10). So we minimize the loss function of score consistency to

ensure 𝑝-value consistency for overcoming the second limitation

mentioned in Section 4.2.

Overall, through optimizing these two metrics, CGOD can be

aware of the downstream of conformal inference, generating the

augmented graph representations that own a high-level consistency

of 𝑝-value estimation with the original graph representation while

incorporating as much representation diversity as possible. More-

over, our proposed adaptive data augmentation is not limited to

the graph-level representation. It is a general augmentation strat-

egy, which can be armed with different level representations, e.g.,

the sub-graph level to calculate the corresponding non-conformity

scores. Due to this property, CGOD can be combined with different

detection models to recognize OOD graphs.

4.3 Model Analysis

4.3.1 Detection Guarantee. According to the standard principle of

CP [7, 36], these generated 𝑘 non-conformity scores are required to

be exchangeable random variables. To approximate this condition,

we parameterize a set of graph data augmentations S via learned

graph representations and the attention mechanism as described in

Eq.(7). In this way, each data augmentation can be regarded as one

data point which is randomly and independently sampled from S.
For avoiding ties, we assume that these aggregated non-conformity

scores of an arbitrary test sample and of the samples inD𝑐𝑎𝑙−𝑡𝑟 are
distinct with probability 1. To comply with this assumption, we set

the aggregated non-conformity score function as an element-wise

strictly increasing function, and suppose that the data distribution

is absolutely continuous w.r.t Lebesgue measure.

Theorem 4.1. Given thatS represents a set of graph data augmen-
tations, the aggregated non-conformity score of an arbitrary graph
𝐺𝑖𝑛
𝑗

∈ D′
𝑐𝑎𝑙

is denoted as

𝑠 𝑗 = 𝑉 (𝐺𝑖𝑛
𝑗 ,D𝑝𝑡𝑟 ;Ψ

𝑗,1:𝑘 ) =
𝑘∑︁
𝑖=1

𝑉 (Ψ 𝑗,𝑖 (𝐺𝑖𝑛
𝑗 ),D𝑝𝑡𝑟 ), (11)

where Ψ 𝑗,𝑖 is sampled from S independently. The aggregated non-
conformity score 𝑠𝑡𝑒 of the test graph 𝐺𝑡𝑒 follows the same computa-
tional procedure with 𝑠 𝑗 . If 𝐺𝑡𝑒 belongs to the distribution P𝑖𝑛 , then

its 𝑝-value is defined as

𝑝𝑡𝑒 =
|{ 𝑗 = 𝑛′ + 1, . . . , 𝑛 : 𝑠 𝑗 ≥ 𝑠𝑡𝑒 }| + 1

𝑛 − 𝑛′ + 1

, (12)

which follows a discrete uniform distribution:

𝑝𝑡𝑒 ∼ Uniform
({

1

𝑛 − 𝑛′ + 1

,
2

𝑛 − 𝑛′ + 1

, . . . , 1

})
. (13)

Here we denote the new 𝑝-value of 𝐺𝑡𝑒 as the aggregated 𝑝-

value, i.e., 𝑝𝑡𝑒 to distinguish from the original 𝑝-value 𝑝𝑡𝑒 in Eq.(4).

The corresponding proof has been provided in Appendix A.1. If

𝑝𝑡𝑒 is smaller than a given OOD detection threshold 𝜖 , then𝐺𝑡𝑒 is

recognized as an OOD sample. Based on Theorem 4.1, we have the

following detection guarantee:

Theorem 4.2. Suppose the calibration set D′
𝑐𝑎𝑙

sampled from
the distribution P𝑖𝑛 , the test dataset D𝑡𝑒 and the aggregated non-
conformity score function 𝑉 (·, ·; ·) are independent of each other.
Given a test graph 𝐺𝑡𝑒 ∈ D𝑡𝑒 with its aggregated 𝑝-value 𝑝𝑡𝑒 calcu-
lated by Eq.(12) and a specified OOD threshold 𝜖 , then we have the
following upper bound:

Pr

(
𝑝𝑡𝑒 < 𝜖 |𝐺𝑡𝑒 ∼ P𝑖𝑛

)
≤ 𝜖. (14)

Theorem 4.2 demonstrates that our proposed aggregated non-

conformity score function can control the type I error rate guaran-

teeing a bounded FPR for graph-level OOD detection. The corre-

sponding proof is provided in Appendix A.2.

4.3.2 Time Complexity. Appendix A.3 shows the training and in-

ference pseudo-codes of CGOD. CGOD is a light-weighted architec-

ture, which adopts the batch manner for model training and infer-

ence. The time complexity of model training is 𝑂
(
𝐵( |D′

𝑐𝑎𝑙
|𝑘 (𝑐2 +

𝑐) + 𝑘2 + 𝑐)
)
, where 𝐵 denotes the batchsize. In the inference

phase, we can calculate these aggregated non-conformity scores

of D′
𝑐𝑎𝑙

in advance, which largely reduces the time complexity.

Based on this operation, the time complexity of model inference

is 𝑂
(
𝐵(𝑘 (𝑐2 + 𝑐) + |D′

𝑐𝑎𝑙
|)
)
. Since the above parameters typically

take small values, so CGOD keeps good model efficiency. In Appen-

dix A.8, we provide the concrete runtime comparison.

5 EXPERIMENTS

In this section, we conduct extensive experiments to answer the

following research questions (RQs):

• RQ1: Can our method be combined with different detection

models to improve empirical performance?

• RQ2: Can our method provide a rigorous control over the

false positive rate?

• RQ3: Does our method achieve the supreme performance

in comparison with multiple strong baselines?

• RQ4: What are the contributions of the proposed different

components in our method?

• RQ5: How sensitive is our method with respect to different

hyper-parameters?

To answer these above questions, we conduct a detailed comparative

analysis.
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Table 2: OOD performance comparison (%) of adapting different detection methods (GIND, IGD and GOOD-D) to our framework

on six ID & OOD datasets.

ID OOD Metric GIND GIND+CP CGODS IGD IGD+CP CGODU GOOD-D GOOD-D+CP CGODE

IMDB-M IMDB-B

AUC 74.43 74.08 77.07 74.39 74.27 75.81 77.40 77.06 79.02
AUPR 65.05 64.32 69.08 68.08 68.12 66.78 67.84 70.29 71.95
FPR95 69.20 65.16 45.12 54.44 54.00 45.00 52.44 62.24 47.71

ClinTox LIPO

AUC 52.40 52.19 58.60 48.63 46.04 53.09 62.17 61.99 65.13
AUPR 45.15 48.78 52.97 42.73 43.97 50.41 57.49 55.69 62.41
FPR95 92.09 93.07 82.88 90.46 93.92 88.42 79.28 75.70 70.72

BBBP BACE

AUC 76.88 75.35 78.61 78.18 78.16 78.51 79.72 79.35 81.97
AUPR 68.33 67.83 72.00 69.44 69.37 69.34 72.18 71.59 79.65
FPR95 68.44 68.06 65.98 65.20 63.13 62.85 59.80 54.31 53.61

Esol MUV

AUC 84.43 83.98 85.59 80.61 79.67 82.41 87.43 86.86 89.68
AUPR 78.80 78.62 81.68 72.53 72.36 75.19 86.81 86.70 90.74
FPR95 46.90 50.65 44.63 51.43 55.03 47.72 65.19 58.99 48.09

AIDS DHFR

AUC 95.41 95.04 96.04 93.51 93.42 96.28 96.06 96.02 98.17
AUPR 91.32 93.10 95.20 90.24 91.81 94.78 89.96 95.82 98.07
FPR95 12.53 13.73 15.67 22.85 23.39 13.83 6.83 12.11 7.08

ENZYMES PROTEIN

AUC 54.69 54.55 57.81 57.60 57.75 60.42 58.73 56.78 61.53
AUPR 60.34 63.44 67.93 63.40 63.00 66.57 61.89 64.15 68.98
FPR95 97.06 97.22 93.53 95.00 94.31 93.02 92.78 93.82 92.50

5.1 Experimental Setting

5.1.1 Datasets. According to previous works [24], we use six pairs
of graph datasets as ID and OOD data respectively, i.e., IMDB-

M & IMDB-B, ClinTox & LIPO, BBBP & BACE, Esol &MUV,

AIDS & DHFR, and ENZYMES & PROTEIN. The descriptions

of these dataset pairs are provided in Appendix A.4. Each dataset

pair comes from the same domain and has a moderate domain shift

between them. For each dataset pair, we treat the first dataset as

the ID dataset and the second dataset as the OOD dataset. 60%

of and 10% of graphs from the ID dataset are used for training

and calibration respectively, i.e., D𝑝𝑡𝑟 and D𝑐𝑎𝑙 . The remaining

30% of ID graphs and the same number of OOD graphs from the

second dataset are used for constructingD𝑡𝑒 .D𝑐𝑎𝑙 is further evenly

divided intoD𝑐𝑎𝑙−𝑡𝑟 andD′
𝑐𝑎𝑙

.D𝑝𝑡𝑟 is used to derive a pre-trained

OOD detection model.

5.1.2 Baselines. To fully evaluate our method, we compare CGOD

with the following three compared categories:

• Supervisedmethodwith detector. This branch owns two

stages. At the first stage, it would train some powerful graph

encoders, such as graph kernels and GNNs in a supervised

manner. Based on the learned graph representations, these

methods adopt an OOD or anomaly detector to identify

OOD graphs at the second stage.

• Unsupervised method with detector. This branch also

owns two stages. The only difference is that this branch

adopts the unsupervised or self-supervised manner to train

graph encoders. Hence, graph contrastive learning models,

such as InfoGraph [34] and GraphCL [46] can be well used

at the first stage.

• End-to-endmethod. Current state-of-the-art (SOTA)mod-

els belong to this branch, e.g., GOOD-D [24]. In addition,

some promising graph anomaly detection methods, such

as GLocalKD [25] are also end-to-end methods.

The description of these used baselines is provided in Appendix A.5.

5.1.3 Implementation. There are four main hyper-parameters in

our model: the learning rate for training the proposed adaptive data

augmentation, i.e., lr, the number of data augmentations, i.e., k, the

discretization ratio used in Eq.(8), i.e., 𝜉 , and the harmonic factor

used in Eq.(9) i.e., 𝜆. We adopt the grid search to find their optimal

values. The search intervals of these hyper-parameters are reported

in Appendix A.6. For a fair comparison, all baselines and CGOD

share the same hidden dimensional size. In addition, since D𝑐𝑎𝑙 is

not used in all baselines, we integrateD𝑐𝑎𝑙 into the training dataset

for their model training.

5.1.4 Evaluation Metrics. Following previous works [10, 43], we
adopt four OOD detection metrics: AUC, AUPR, FPR95 and FPR.

The first three metrics are used for evaluating detection results.

A higher AUC, AUPR and a lower FPR95 indicate better model

performance. FPR is used for testing whether our method can effec-

tively control FPR within a user-specified threshold 𝜖 . The detailed

descriptions of these metrics are provided in Appendix A.7.

5.2 Model Adaptation (A1)

In this section, we test whether CGOD can be armed with different

detection models to achieve prediction. Three representative meth-

ods from the above categories in Section 5.1.2 are selected: GIN,

InfoGraph and GOOD-D. GIN and InfoGraph are classic GNNs in

supervised and unsupervised settings. We arm them with SSD to

achieve detection which are denoted as GIND and IGD. GOOD-D

is a classic end-to-end detection model. We denote these methods

armed with CGOD as CGODS, CGODU and CGODE, respectively.

We also combine them with the traditional CP framework, and
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Figure 2: In our method, the FPR is upper bounded by 𝜖 on six ID & OOD datasets.

"+CP" is added after the model name. Table 2 shows their empirical

results. The best performance is in boldface. From it, we have the

following conclusions:

• CGOD can further improve the performance of different

detection methods. Compared with three detection meth-

ods, the most obvious improvement is that CGODU reduces

FPR95 by 39.47% on AIDS & DHFR.

• The comparison between CGOD and those armed with the

traditional CP framework demonstrates the effectiveness

of our proposed aggregated non-conformity score function.

The most obvious improvement is that CGODU reduces

FPR95 by 40.87% on AIDS & DHFR.

• Through optimizing the metrics of score consistency and

representation diversity, our proposed adaptive data aug-

mentation can better capture the intrinsic features among

ID graphs. Therefore, CGOD can not only control the type I

error rate, but also reduce the type II error rate and improve

the detection performance.

5.3 FPR Controlling (A2)

In this section, we investigate whether the FPR can be controlled

by CGOD. The user-specified threshold 𝜖 is selected from 0.01 to

0.15 with the step size 0.02. For each 𝜖 , we perform 10 random splits

of D𝑐𝑎𝑙−𝑡𝑟 and D′
𝑐𝑎𝑙

. We select CGODE as the test model. The

empirical results of all datasets are shown in Figure 2. Besides the

theoretical result of Theorem 4.2, Figure 2 shows that the FPR can

be empirically upper bounded by 𝜖 for all datasets in our method.

Table 3: Ablation study on six ID & OOD datasets w.r.t. AUC.

Linear L𝑠 L𝑟
IMDB-M ClinTox BBBP Esol AIDS ENZYMES

IMDB-B LIPO BACE MUV DHFR PROTEIN

✓ ✓ - 77.39 62.85 80.07 87.49 96.21 58.20

✓ — ✓ 76.08 60.62 78.43 85.18 95.51 56.33

✓ ✓ ✓ 78.53 67.08 81.26 88.12 96.44 59.88

- ✓ ✓ 79.02 65.13 81.97 89.68 98.17 61.53

Moreover, for different datasets, the bounded difficulty is different.

The upper bounds in the sub-figures (a), (c), (d) and (e) are more

relaxed than those in the sub-figures (b) and (f).

5.4 Performance Comparison (A3)

To further validate the effectiveness of CGOD, we also compare

CGODE with eight SOTA graph-level OOD detection models which

are described in Appendix A.5. We conduct experiments on all

datasets and select AUC as the evaluation metric. The empirical

results are provided in Figure 3. From it, we can conclude that

CGODE consistently achieves the best detection performance on

all datasets. Particularly, the most significant improvement is 4.76%

increase in AUC of CGODE compared to the SOTA baseline on

ClinTox & LIPO. It is a non-trivial improvement because CGODE

uses 10% less training data. It also demonstrates the effectiveness

of our framework with the proposed aggregated non-conformity

score function.
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Figure 3: Performance (%) comparison on six ID & OOD datasets w.r.t. AUC.

5.5 Ablation Study (A4)

In this section, we perform the ablation study to valid the effective-

ness of different components in CGOD. Specifically, we consider

three model variants: 1) the one uses the linear operation to gener-

ate the weighted vector 𝒂𝑖
𝑗
instead of the attention mechanism in

Eq.(7); 2) the one only uses the loss function of score consistency,

i.e., L𝑠 ; 3) the one only uses the loss function of representation

diversity, i.e., L𝑟 . We select CGODE as the backbone, and we de-

note three model variants as CGODE-ls, CGODE-lr and CGODE-lsr

sequentially.

The empirical results are shown in Table 3. From it, we can

see that among three model variants CGODE-lsr achieves the best

performance. But CGODE-lsr is still inferior to CGODE, which

illustrates the effectiveness of the attention mechanism in our data

augmentation. In addition, compared with CGODE and CGODE-

lsr, the performance of CGODE-ls and CGODE-lr has significantly

declined. For CGODE-ls, there may be redundant features among

the augmented graph representations without L𝑟 . For CGODE-lr,

the augmented graph representations may deviate too far from the

original graph representation, resulting in the introduction of noisy

information in model prediction.

5.6 Hyper-parameter Sensibility (A5)

Figure 4 shows the hyper-parameter sensitivity of CGOD in terms

of four hyper-parameters as mentioned in Section 5.1.3. We select

CGODE as the test case. From it, we have the following observations:

A reasonable hyper-parameter setup is to set the learning rate and

𝜆 to the smaller values for better designing and optimizing the

loss function; 𝑘 and 𝜉 are suitable to assign the larger values for
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Figure 4: Hyper-parameter sensitivity of CGOD.

improving model expressiveness, but setting them to an excessively

large value can also increase the risk of overfitting.

6 CONCLUSION

In this paper, we present the CGOD, a novel framework that ex-

tends the theory of CP to graph-level OOD detection for providing

a rigorous control over detection results. CGOD differentiates the

process of conformal inference and proposes a trainable augmenta-

tion strategy, i.e., adaptive data augmentation to generate multiple

non-conformity scores. Building on this, CGOD further introduces

a new aggregated non-conformity score function that can aggregate

these generated scores to improve the robustness and accuracy of

the non-conformity score estimation. Extensive experiments show

that CGOD outperforms many strong baselines and guarantees a

bounded FPR effectively.
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A APPENDIX

A.1 Proof of Theorem 4.1

Given a probability space (Ω, F , P), the set of graph data augmen-

tations S is a subset of all augmentations on the feature space X.

Both S and X are equipped with respective 𝜎-algebras FS and FX .
Sampling a random data augmentation Ψ ∈ S corresponds to a

measurable function Ψ̃ : X × Ω → S, which allocates an element

𝜔 ∈ Ω to a specific graph data augmentation Ψ = Ψ̃(·;𝜔). The
distribution of Ψ̃(·;𝜔) denoted as PΨ is a probability measure on

(S, FS). Based on this, we can construct the product measure for

sampling i.i.d data augmentations for graphs.

First, we have that the proper training set D𝑝𝑡𝑟 and the calibra-

tion set D′
𝑐𝑎𝑙

are i.i.d:

D𝑝𝑡𝑟
i.i.d∼ D′

𝑐𝑎𝑙

i.i.d∼ P𝑖𝑛, (15)

which follow the same distribution P𝑖𝑛 . When the test graph𝐺𝑡𝑒 is

from P𝑖𝑛 , we then have that

(𝐺𝑡𝑒 ,Ψ
𝑡𝑒,1:𝑘 ) i.i.d∼ {(𝐺𝑖𝑛

𝑗 ,Ψ 𝑗,1:𝑘 ) |𝐺𝑖𝑛
𝑗 ∈ D′

𝑐𝑎𝑙
}𝑛𝑗=𝑛′+1

i.i.d∼ P𝑖𝑛 × PΨ .
(16)

Meanwhile, the aggregated non-conformity score function 𝑉 (·, ·; ·)
relies on D𝑝𝑡𝑟 , the transformation function 𝐹 (·, ·) in Eq.(2), and the

sampled data augmentations, i.e., Ψ𝑡𝑒,1:𝑘 ∪ {Ψ 𝑗,1:𝑘 }𝑛
𝑗=𝑛′+1. Hence,

the generated 𝑘 non-conformity scores 𝑠1:𝑘𝑡𝑒 of 𝐺𝑡𝑒 and those for

the graphs in D′
𝑐𝑎𝑙

, i.e., {𝑠1:𝑘
𝑗

}𝑛
𝑗=𝑛′+1 are also i.i.d conditioned on

𝑉 (·, ·; ·), D𝑝𝑡𝑟 and Ψ𝑡𝑒,1:𝑘 ∪ {Ψ 𝑗,1:𝑘 }𝑛
𝑗=𝑛′+1.

Due to the fact that 𝑉 (·, ·; ·) is an aggregation function of the

generated non-conformity scores for guaranteeing that it is an

element-wise strictly increasing function, so these 𝑛 − 𝑛′ + 1 aggre-

gated non-conformity scores (𝑠𝑡𝑒 , 𝑠𝑛′+1, . . . , 𝑠𝑛) are also i.i.d:

𝑠𝑡𝑒
i.i.d∼ 𝑠𝑛′+1

i.i.d∼ ...
i.i.d∼ 𝑠𝑛 . (17)

Following the above formulation, we can regard these aggregated

non-conformity scores (𝑠𝑡𝑒 , 𝑠𝑛′+1, . . . , 𝑠𝑛) as i.i.d 𝑛 − 𝑛′ + 1 random

variables with their corresponding continuous densities. Summing

up the above, we can derive that

|{𝑠𝑡𝑒 ≤ 𝑠 𝑗 | 𝑗 = 𝑛′ + 1, . . . , 𝑛}| ∼ Uniform({1, . . . , 𝑛 − 𝑛′ + 1}) .
(18)

Therefore, the aggregated 𝑝-value in Eq.(12), i.e., 𝑝𝑡𝑒 is uniformly

distributed over { 1

𝑛−𝑛′+1 ,
2

𝑛−𝑛′+1 , . . . , 1}, and this proof is com-

pleted. In addition, besides the strictly increasing constraint, we

can also add a small amount of random noise to these aggregated

non-conformity scores.

A.2 Proof of Theorem 4.2

The independence between D′
𝑐𝑎𝑙

, D𝑡𝑒 and 𝑉 (·, ·; ·) is easily to be

satisfied. If the test graph 𝐺𝑡𝑒 is sampled from P𝑖𝑛 , then its corre-

sponding aggregated 𝑝-value 𝑝𝑡𝑒 follows a discrete uniform distri-

bution based on Theorem 4.1, i.e., 𝑝𝑡𝑒 is uniformly distributed over

{ 1

𝑛−𝑛′+1 ,
2

𝑛−𝑛′+1 , . . . , 1}. The probability of the event that𝐺𝑡𝑒 ∼ P𝑖𝑛

Algorithm 1: Training and inference procedures of CGOD.

1: #Training Procedure:
2: Input: training set D𝑡𝑟 .

3: Output: learned adaptive data augmentations.

4: Split D𝑡𝑟 into D𝑝𝑡𝑟 and D𝑐𝑎𝑙 , and further split D𝑐𝑎𝑙 into

D𝑐𝑎𝑙−𝑡𝑟 and D′
𝑐𝑎𝑙

.

5: Pre-train an OOD detection model on D𝑝𝑡𝑟 .

6: while not done do
7: for randomly sampling a graph 𝐺𝑖𝑛

𝑗
∈ D𝑐𝑎𝑙−𝑡𝑟 do

8: for each data augmentation Ψ 𝑗,𝑖 ∈ Ψ 𝑗,1:𝑘
do

9: Generate the augmented representation �̂�𝑖
𝑗
by Eq.(7-8).

10: Calculate its non-conformity score 𝑠𝑖
𝑗
by Eq.(3).

11: end for

12: Calculate the loss function L in Eq.(9), and update model

parameters by Adam optimizer.

13: end for

14: end while

15: #Inference Procedure:
16: Input: test dataset D𝑡𝑒 ; learned adaptive data augmentations.

17: Output: detection results of D𝑡𝑒 .

18: for each test graph 𝐺𝑡𝑒 ∈ D𝑡𝑒 do

19: for each data augmentation Ψ𝑡𝑒,𝑖 ∈ Ψ𝑡𝑒,1:𝑘
do

20: Generate the augmented representation �̂�𝑖𝑡𝑒 by Eq.(7-8).

21: Calculate its non-conformity score 𝑠𝑖𝑡𝑒 by Eq.(3).

22: end for

23: Calculate its aggregated non-conformity score 𝑠𝑡𝑒 by Eq.(6).

24: Derive its 𝑝-value 𝑝𝑡𝑒 with D′
𝑐𝑎𝑙

by Eq.(12).

25: If I(𝑝𝑡𝑒 < 𝜖): 𝐺𝑡𝑒 is an OOD graph; otherwise, it is not.

26: end for

and 𝑝𝑡𝑒 < 𝜖 is

Pr(𝑝𝑡𝑒 < 𝜖 |𝐺𝑡𝑒 ∼ P𝑖𝑛) =
(𝑛−𝑛′+1)𝜖∑︁

𝑗=1

1

𝑛 − 𝑛′ + 1

=
⌊(𝑛 − 𝑛′ + 1)𝜖⌋
𝑛 − 𝑛′ + 1

≤ 𝜖.

(19)

If 𝑝𝑡𝑒 is smaller than 𝜖 , then 𝐺𝑡𝑒 is recognized as the OOD graph.

Hence, if 𝐺𝑡𝑒 ∼ P𝑖𝑛 , the probability of the event that CGOD falsely

recognizes 𝐺𝑡𝑒 as the OOD graph is upper bounded by 𝜖 .

A.3 Pseudo-code Description

Algorithm 1 illusrates the training and inference procedures of

CGOD. From it, we can see that our model follows a simple compu-

tational process.

A.4 Dataset Description

We adopt six pairs of real-world datasets from three domains:

• Social networks datasets: IMDB-M & IMDB-B. They are

movie collaboration datasets, where nodes denote actors

and an edge is drawn between two actors if they appear in

the same movie.

10
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• Molecule datasets: ClinTox & LIPO, BBBP & BACE, Esol

&MUV, andAIDS&DHFR. For each dataset, nodes denote

atoms and an edge connecting two nodes is a chemical bond

of molecule graphs.

• Bioinformatics datasets: ENZYMES& PROTEIN. They are

macromolecule datasets, where nodes denote secondary

structure elements and an edge represents that two nodes

are neighbors along the amino acid sequence or one of three

nearest neighbors in space.

A.5 Baseline Description

We compare our method with the following strong baselines:

• WL [32] represents the Weisfeiler-lehman graph kernel,

which processes a graph by re-labeling each node with a

new label compressed from a multiset label consisting of

its original label and the sorted labels of its neighbors.

• GIN [45] is a representative work of supervised GNNs,

which designs the new neighbor aggregation and readout

functions to improve GNN expressiveness.

• InfoGraph [34] is a representative work of unsupervised

GNNs. It designs a self-supervised objective tomaximize the

mutual information between the graph-level representation

and the sub-structure representations.

• OCGIN [49] is a one-class anomaly detection model for

recognizing abnormal graphs, which adopts GIN and SVDD

(support vector data description) as the encoder and the

objective at the output layer, respectively.

• GLocalKD [25] is a popular method of graph-level anom-

aly detection. It performs the joint random distillation of

graph and node representations to capture local- and global-

patterns to detect anomalous graphs.

• GOOD-D [24] is the first work to solve graph-level OOD

detection, which proposes a hierarchical graph contrastive

learning framework to identify OOD graphs via different

granularity scores.

• AAGOD [10] is a post-hoc method which designs an am-

plifier as prompts for recognizing the key information from

the graph structure, enabling a well-trained GNN to achieve

OOD detection.

• GOODAT [38] considers how to achieve graph-level OOD

detection at the test time. It leverages the information bot-

tleneck to learn informative subgraphs for enlarging the

gap between ID and OOD graphs.

We use the implementations of GIN and InfoGraph in a well-

known GNN library
3
. For WL

4
, OCGIN

5
, GLocalKD

6
, GOOD-D

7
,

AAGOD
8
and GOODAT

9
, we adopt their public implementations

and adapt them into our training and inference pipelines. Accord-

ing to the relevant literature, we respectively arm WL, GIN and

InfoGraph with the local outlier factor (LOF), SSD and SSD as the

transformation function.

3
https://www.pyg.org/

4
https://ysig.github.io/GraKeL/0.1a8/

5
https://github.com/LingxiaoShawn/GLOD-Issues

6
https://github.com/RongrongMa/GLocalKD

7
https://github.com/yixinliu233/G-OOD-D

8
https://github.com/BUPT-GAMMA/AAGOD

9
https://github.com/Ee1s/GOODAT

Table 4: Search intervals of hyper-parameters.

Hyper-parameter Search Interval

learning rate lr {0.0001, 0.0005, 0.001, 0.005, 0.01}

augmentation number 𝑘 {2, 3, 4, 5, 6}

discretization ratio 𝜉 {0.1, 0.2, 0.3, 0.4, 0.5}

harmonic factor 𝜆 {0.2, 0.4, 0.6, 0.8, 1.0}
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Figure 5: Training time comparison (in seconds).

A.6 Hyper-parameter Setting

As described in Section 5.1.3, there are four hyper-parameters in

our method: lr, 𝑘 , 𝜉 and 𝜆. Their corresponding search intervals are

given in Table 4.

A.7 Metric Description

• AUC refers to area under the receiver operating character-

istic curve, which summarizes the ROC curve into a single

value to demonstrate the model performance with different

thresholds.

• AUPR refers to area under the precision-recall curve. Com-

pared with AUC, AUPR can adjust different positive and

negative class rates to alleviate the problem of imbalanced

class.

• FPR95 is the false positive rate at 95% true positive rate.

It is a commonly used metric to evaluate the performance

of classification models, especially in the tasks of binary

classification and anomaly or OOD detection.

• FPR is a statistical measure that represents the proportion

of actual negative samples that are incorrectly classified as

positive by a detection model.

A.8 Runtime Comparison

We compare the training runtime between CGODE and three end-

to-end detection methods including OCGIN, GLocalKD and GOOD-

D in an epoch. The experiments are conducted on a Linux server

with Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz, 128G RAM and

NVIDIA Tesla V100. IMDB-M & IMDB-B and ClinTox & LIPO are

selected datasets. Figure 5 shows the concrete results. From it, we

conclude that CGOD keeps a good training efficiency.
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