

000 SSG-ECPE: SEMANTICS-STRUCTURED GENERATION 001 WITH ALIGNMENT FOR EMOTION-CAUSE PAIR EX- 002 TRACTION 003

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Emotion Cause Pair Extraction (ECPE) aims to jointly identify emotion clauses
014 and their corresponding cause clauses, forming emotion-cause pairs (ECPs). Ex-
015 isting approaches either rely on complex discriminative architectures to model pair
016 boundaries or adopt generic text-to-text frameworks that flatten ECPE into plain
017 sequence generation. Both paradigms overlook rich semantic dependencies, such
018 as clause roles, emotion types, and clue words, and struggle in multi-pair scenarios
019 with nested or overlapping structures. In this paper, we propose a task-adaptive
020 generative multi-task learning framework that rethinks ECPE as a structured text-
021 to-text generation task. We design semantics-structured output formats that ex-
022 plicitly encode clause roles, emotion types, and trigger words as semantic mark-
023 ers, allowing the model to capture inter-label dependencies and co-occurrence
024 patterns during generation. For emotion clause extraction (EE), outputs are for-
025 matted as $(\text{clause}, \text{emotion type}, \text{trigger words})$ triplets; for ECPE, emotion-cause
026 pairs are directly generated, enabling implicit modeling of emotional reasoning.
027 A shared encoder with task-specific decoders supports both clause- and pair-level
028 generation within a unified pipeline. To enhance reliability, we further introduce
029 a Clause Prediction Alignment (CPA) strategy that grounds generated clauses to
030 input spans, mitigating hallucinations and ensuring faithfulness. Extensive exper-
031 iments demonstrate that CPA is indispensable: without it, performance collapses,
032 whereas with it, our framework achieves consistent state-of-the-art results, includ-
033 ing a +21.3 F1 improvement on the English benchmark.

034 1 INTRODUCTION

035 Sentiment analysis (SA) is a fundamental topic in artificial intelligence and natural language pro-
036 cessing, aiming to identify and understand the emotions or opinions expressed in texts. Traditional
037 SA studies Li et al. (2015); Hu et al. (2022) focus on coarse-grained emotion categories, such as
038 sentiment polarity (positive, neutral, negative). However, such shallow classification often fails to
039 meet the demands of more complex analytical needs. As research progresses, increasing attention
040 has shifted toward Emotion Cause Analysis (ECA) Chen et al. (2020a); Weng et al. (2020), which
041 not only detects emotions but also identifies their underlying causes. This task is crucial for psycho-
042 logical research and has broad applications in sociology, marketing, and education. For example, it
043 aids in creating effective treatment plans in psychotherapy, helps companies understand consumer
044 behavior in marketing, and supports personalized instruction in education Weng et al. (2020).

045 Xia & Ding (2019) proposed the ECPE task, which simultaneously extracts all emotions and cor-
046 responding causes from the unannotated text. Specifically, the objective of the ECPE task is to
047 extract all the emotion and cause clauses from a given document at once and form ECPs. Figure 1
048 shows an example with 8 clauses. c_1 and c_8 express the emotions “disgust” and “surprise”, re-
049 spectively. c_1 has two causes: c_2 and c_3 , while c_8 is triggered by c_5 and c_7 . The desired ECPs
050 are $\{(c_1, c_2), (c_1, c_3), (c_8, c_5), (c_8, c_7)\}$. This example highlights the challenges of ECPE, including
051 multiple emotions, overlapping causes, and nested structures.

052 Existing ECPE methods can be categorized into 2-step pipeline Xia & Ding (2019), multi-task
053 learning Chen et al. (2022b); Zheng et al. (2022); Shang et al. (2023); Fu & Li (2024), sequence

labeling Fan et al. (2020); Cheng et al. (2021), graph-based Bao et al. (2022); Li et al. (2023b); Zhu et al. (2024); Li et al. (2024), question answering (QA) Nguyen & Nguyen (2023), machine reading comprehension (MRC) Zhou et al. (2022); Cheng et al. (2023); Mai et al. (2024), reinforcement learning (RL) framework Chen et al. (2023). Despite their diversity, most adopt a discriminative paradigm: they first generate candidate clause pairs and then classify them as valid or invalid through complex feature engineering or architectures.

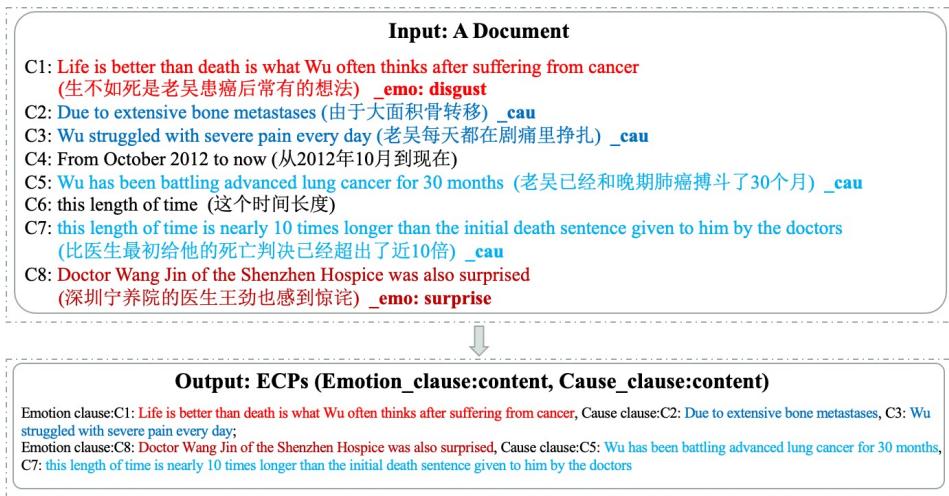


Figure 1: An example of an ECPE task based on generative framework from the Chinese dataset. Emotion clauses are shown in red, and cause clauses are shown in blue. Various shades of color distinguish different emotions and cause clauses.

However, these approaches still face several limitations. (1) they rely heavily on high-quality annotations and are sensitive to distributional shifts. (2) they lack a global view of clause-level semantics and inter-clausal dependencies, resulting in poor performance in cross-clause reasoning and difficulty in dealing with complex multiple ECPs. (3) these models ignore semantic labels, such as the emotion types, clause roles, and emotion trigger words. Encoding such semantic knowledge can significantly improve the modeling of documents with multiple ECPs. For example, as shown in Figure 1, recognizing that “disgust” is semantically associated with severe pathological conditions like “extensive bone metastasis” and enduring physical suffering such as “struggled with severe pain every day” allows the model to link c_1 to both c_2 and c_3 , leading to more accurate extraction of the set of ECPs $\{(c_1, c_2), (c_1, c_3)\}$.

Recent advances in generative models have shown strong performance in structured NLP tasks by reformulating them as text-to-text generation problems Lu et al. (2022); Wang et al. (2023a). Unlike discriminative models that make isolated decisions over candidate pairs, generative models naturally model inter-label dependencies through autoregressive decoding, making them well-suited for tasks with complex, structured outputs.

Inspired by this, we propose to rethink ECPE as a semantics-structured generation task. By explicitly encoding label semantics, such as emotion types (i.e., happiness), clause roles (i.e., emotion/cause clause), and emotion trigger words (i.e., surface expressions that signal or instantiate emotional states, such as: “surprised at”), into the output format, our model can leverage the meaning of labels to guide generation. For instance, the presence of the emotion “disgust” can prompt the model to seek clinically negative events as potential causes. This enables implicit modeling of emotional reasoning, going beyond mere pattern matching.

Our main contributions are summarized as follows:

- We reformulate ECPE as a structured text-to-text generation task, integrating clause roles, emotion types, and emotion trigger words into the output format to enable explicit modeling of semantic dependencies between emotions and causes.

- 108 • We design a multi-task generative framework (SSG-ECPE) with a shared encoder and task-
109 specific decoders, allowing joint training of EE and ECPE within a unified architecture to
110 enhance cross-task knowledge transfer.
- 111 • We introduce a clause prediction alignment strategy that constrains generated clauses to
112 match actual clauses in the input document, effectively reducing hallucinations and im-
113 proving faithfulness.
- 114 • Extensive experiments on benchmark datasets show that SSG-ECPE achieves state-of-the-
115 art performance, with significant gains over existing methods (e.g., +21.31 F1 on the En-
116 glish ECPE dataset).

118 2 RELATED WORK

121 **Discriminative Models for ECPE.** Most existing ECPE methods follow a discriminative paradigm,
122 aiming to identify valid ECPs by classifying candidate clause pairs using sophisticated feature engi-
123 neering or interaction modeling. Early approaches adopted pipeline frameworks Xia & Ding (2019),
124 where emotion and cause clauses are extracted separately and then paired. However, this paradigm
125 suffers from error propagation and fails to model inter-task dependencies.

126 To address these issues, joint learning frameworks were proposed to unify emotion clause extraction
127 (EE), cause clause extraction (CE), and ECPE format within a single model Chen et al. (2022b);
128 Shang et al. (2023); Li et al. (2023a). While enabling task interaction, these methods often face task
129 imbalance and insufficient semantic alignment. Alternative views regard ECPE as a sequence labeling
130 problem using hand-crafted tagging schemes (e.g., BIOE or pair-level tags) Fan et al. (2021);
131 Cheng et al. (2021). However, such approaches struggle with generalization due to heuristic design.
132 Graph-based methods enhance clause interaction modeling by representing documents as structured
133 graphs. For instance, Fan et al. (2020) converts the ECPE task to a directed graph construction,
134 while Chen et al. (2020b); Liu et al. (2022) explicitly model ECP relations. However, they often under-
135 perform in long-range scenarios unless augmented with external knowledge (e.g., commonsense,
136 clause dependencies) Bao et al. (2022); Li et al. (2023b). Multi-granularity models Chen & Mao
137 (2023) integrate word-, clause-, and document-level semantics but still struggle with complex relational
138 structures. Other works explore question answering (QA) or machine reading comprehension
139 (MRC) paradigms, treating ECPE as a query-based extraction task Zhou et al. (2022); Cheng et al.
140 (2023); Mai et al. (2024); Nguyen & Nguyen (2023). Despite competitive performance, these meth-
141 ods are constrained by predefined templates and exhibit limited effectiveness on long documents.

141 **Generative Models for ECPE.** Inspired by the success of structured text-to-text generation in in-
142 formation extraction Lu et al. (2022); Wu et al. (2022); Wang et al. (2023a), recent studies have ex-
143 plored generative formulations for ECPE, which naturally model inter-label dependencies through
144 autoregressive decoding. Zheng et al. (2022) propose a multi-task prompt framework that decom-
145 poses ECA tasks into sub-prompts for unified modeling. However, this approach relies on manually
146 designed templates, limiting its flexibility and generalization. With the rise of large language models
147 (LLMs), zero-shot and few-shot ECPE has gained attention. Wang et al. (2023b) apply ChatGPT to
148 ECPE, leveraging its semantic understanding, but suffer from uncontrolled outputs and weak task-
149 specific adaptation. DECC Wu et al. (2024) introduces a chain-of-thought strategy to decompose
150 ECPE into sub-tasks, yet faces high computational costs and suboptimal performance in complex,
151 multi-pair scenarios.

152 However, they still face some issues: (1) hallucination: generating non-existent clauses, (2) failing
153 to fully leverage label semantics (e.g., emotion types, clause roles). Our work addresses these limita-
154 tions by introducing a semantics-structured output format and a clause-level alignment mechanism,
155 ensuring more reliable and coherent predictions.

156 3 METHOD

157 We propose Semantics-Structured Generation with Alignment (SSG-ECPE), a generative framework
158 for Emotion-Cause Pair Extraction (ECPE). As illustrated in Figure 2, our method reformulates
159 ECPE and its auxiliary task, Emotion Clause Extraction (EE), into conditional sequence generation
160 problems. Specifically, SSG-ECPE is built upon a shared encoder and two task-specific decoders,

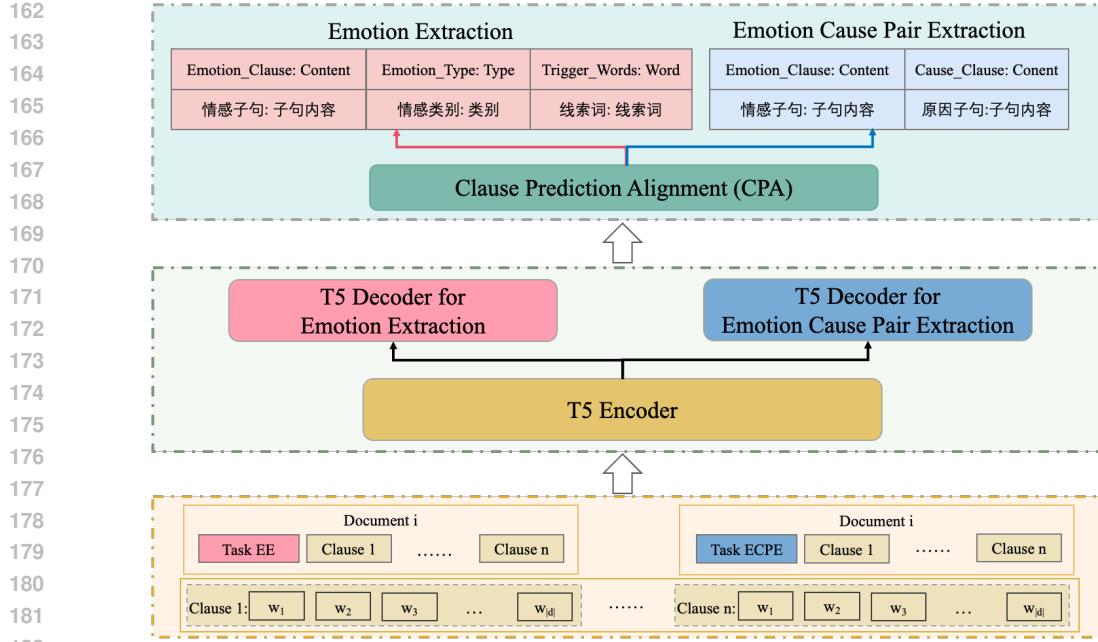


Figure 2: An example of an ECPE task based on generative framework from the Chinese dataset.

allowing knowledge sharing across tasks while maintaining task-level specialization. To ensure the generated outputs remain faithful to the input document, we introduce two key components: (1) a semantics-structured generation format, which explicitly incorporates clause roles, emotion types, and trigger words into the target sequences; and (2) a clause prediction alignment (CPA) strategy, which aligns generated spans with the closest input clauses to mitigate hallucinations and guarantee clause-level consistency. This design enables SSG-ECPE to handle complex phenomena in ECPE, such as multiple causes for one emotion, overlapping relations, and self-referential ECPs, while producing interpretable and semantically grounded outputs.

3.1 PROBLEM FORMULATION

Given a document with n clauses $D = \{c_1, c_2, \dots, c_n\}$, each clause contains multiple words $c_i = \{w_{i,1}, w_{i,2}, \dots, w_{i,|c_i|}\}$. The ECPE task aims to extract all valid ECPs (c_i, c_j) , where clause c_i expresses an emotion and c_j provides its cause:

$$y_{ECPE} = \{(c_i, c_j)\}_{(i,j) \in \mathcal{P}} \quad (1)$$

where \mathcal{P} denotes the set of valid clause index pairs.

Unlike traditional formulations that treat ECPE as a classification or matching problem, we reformulate it under a structured generation paradigm. Specifically, the task is cast as a constrained text generation problem: given the input document D , the model generates a structured sequence that encodes all valid ECPs in a predefined format. This formulation not only accommodates many-to-many relationships but also naturally handles cases where an emotion clause also functions as its own cause clause.

3.2 MULTI-TASK GENERATIVE FRAMEWORK

Shared Encoder. To jointly capture the semantic dependencies across emotion extraction (EE) and emotion-cause pair extraction (ECPE), we adopt a multi-task generative framework built on the T5 architecture. A shared encoder is employed to encode the entire document with explicit clause boundary markers. The input sequence is constructed as:

$$X = [\text{TASK}] \oplus c_1 \oplus \langle c \rangle \oplus c_2 \oplus \langle c \rangle \oplus \dots \oplus \langle c \rangle \oplus c_n \oplus \langle c \rangle \quad (2)$$

216	Input:
217	Task Descriptions: c1: The family currently relies on her for more than 2,000 yuan in wages to live, c2: the
218	medical treatment has been heavily indebted, c3: if I disappeared, c4: and my wife did not have a Shenzhen
219	household registration, c5: the days would be even more difficult, c6: it is helpless and heartbreaking, c7: but
220	I also appreciate the netizens who help me, c8: and the family's unwavering commitment, c9: now I can only
221	grit my teeth and continue to hold on, c10: and I hope to achieve the wish.
222	Ground Truth:
223	Emotion Clauses: c7: but I also appreciate the netizens who help me
224	Cause Clauses: c7: but I also appreciate the netizens who help me
225	c8: and the family's unwavering commitment
226	Emotion Types: happiness
227	ECPs: {c7, c7}, {c7, c8}
228	Target:
229	EE Target: [emotion clause: c7: but I also appreciate the netizens who help me, emotion type: happiness, keywords: appreciate]
230	ECPE Target: [emotion clause: c7: but I also appreciate the netizens who help me, cause clause: c7: but I
231	also appreciate the netizens who help me, c8: and the family's unwavering commitment]

Table 1: Example of EE and ECPE tasks. The input is task description and all clauses. The target is the ECPs or emotion clauses.

where \oplus denotes concatenation, and $\langle c \rangle$ is a special token marking clause boundaries. [TASK] is a task-specific prefix (e.g., “EE:” or “ECPE:”). The shared encoder $\mathcal{E}_\theta^{\text{shared}}$ produces contextualized token-level representations:

$$H = \mathcal{E}_\theta^{\text{shared}}(X) \in \mathbb{R}^{L \times d} \quad (3)$$

where L is the sequence length, and d is the hidden dimension.

Task-Specific Decoders. On top of the shared encoder, we employ task-specific decoders to generate structured outputs for different tasks. Specifically, two separate decoders, $\mathcal{D}_\phi^{\text{EE}}$ and $\mathcal{D}_\psi^{\text{ECPE}}$, are responsible for EE and ECPE respectively. Each decoder conditions on the shared representation H to produce task-specific sequences:

$$Y^{\text{EE}} = \mathcal{D}_\phi^{\text{EE}}(H), \quad Y^{\text{ECPE}} = \mathcal{D}_\psi^{\text{ECPE}}(H) \quad (4)$$

3.3 SEMANTICS-STRUCTURED GENERATION FORMAT

To unify EE and ECPE within a single generative framework, we design a *semantics-structured generation format* that explicitly incorporates rich label semantics into the model outputs. These semantics include emotion types, clause roles (i.e., *emotion* vs. *cause* clauses), and emotion trigger words, allowing the model to produce outputs that are both structured and interpretable. Our framework naturally supports self-referential ECPs (c_i, c_i), which occur when a single clause simultaneously expresses an emotion and its underlying cause, as in self-reflective statements (e.g., “I am happy because I am grateful”).

EE Generative Paradigm. For the EE task, the goal is to identify all clauses expressing emotions and determine their corresponding emotion type and trigger words. We define the generative target as:

$$G_{\text{EE}} = [\text{emotion clause} : c_i, \text{emotion type} : \text{emo}, \text{keywords} : \text{kw}] \quad (5)$$

where $c_i \in D$ is an emotion clause, $\text{emo} \in \varepsilon = \{\text{anger, disgust, fear, happy, sad, surprise}\}$, kw is a salient token or phrase indicating the emotional expression. This structured output explicitly encodes emotion semantics and facilitates modeling co-occurrence patterns between emotion types and their lexical triggers. Table 1 is an illustrative example of EE tasks.

ECPE Generative Paradigm. The ECPE task aims to identify all valid ECPs in a document. The generation target is defined as:

$$G_{\text{ECPE}} = [\text{emotion clause} : c_i, \text{cause clause} : c_j] \quad (6)$$

When an emotion clause c_i is associated with multiple causes $\{c_{j_1}, c_{j_2}, \dots, c_{j_k}\}$, we aggregate them in a single structured entry:

$$[\text{emotion clause} : c_i, \text{cause clause} : c_{j_1}, c_{j_2}, \dots, c_{j_k}] \quad (7)$$

which preserves the natural clustering of causal information. As shown in Table 1, this format supports scenarios where the emotion clause is also its own cause (e.g., clause c7) while accommodating additional external causes.

270 3.4 OUTPUT DECODING STRATEGY
271

272 Given an input document, the generative model produces a target sequence Y' following the pre-
273 defined semantics-structured schema. Each output entry is enclosed within square brackets [] to
274 provide explicit boundaries, which facilitates automated parsing and reduces ambiguity in the gen-
275 erated sequences.

276 For the ECPE task, we adopt an *emotion-centric causal clustering* strategy. Concretely, for each
277 unique emotion clause c_i that corresponds to one or more cause clauses, the model generates a
278 single structured entry of the form: [emotion clause: <content>, cause clause:
279 <cause_1>, <cause_2>, ..., <cause_k>]. This design naturally supports: (1) multiple
280 causes for a single emotion clause, and (2) self-referential pairs where the emotion clause itself
281 also serves as its own cause (c_i, c_i). All entries in a document are concatenated and separated by
282 semicolons ;, as exemplified in Table 1.

283 Similarly, for the EE task, the output consists of one or more entries formatted as: [emotion
284 clause: <content>, emotion type: <type>, keywords: <kw>]. Multiple
285 entries are also separated by semicolons ;.

286 The parsing process is as follows: (1) Split the generated sequence by ; to extract individual
287 emotion-centric entries. (2) For each entry, extract the emotion clause content. (3) For ECPE,
288 split the content following cause clause: by , to obtain all associated cause clauses. (4) Form
289 ECPs by pairing the emotion clause with each listed cause clause.

290 To address potential generation errors or malformed outputs, we implement a *recovery strategy*
291 that identifies the longest well-formed substring within brackets. Only valid entries are parsed,
292 while malformed segments are ignored, ensuring that extraction remains robust and faithful to the
293 original document. This mechanism guarantees the reliability of the final ECPs even under imperfect
294 generation conditions, accommodating multi-cause scenarios and self-referential ECPs.

295 3.5 CLAUSE PREDICTION ALIGNMENT
296

297 Generative models occasionally produce clauses with minor lexical variations or paraphrasing,
298 which may deviate from the original document clauses. To enforce faithful clause-level predic-
300 tions, we introduce **Clause Prediction Alignment (CPA)** as a simple yet effective post-processing
301 step. Formally, for each generated clause c , we search for the most similar clause $c^* \in D$ within the
302 original document by maximizing a normalized sequence similarity:

$$303 c^* = \arg \max_{c' \in D} \text{Sim}(c, c'), \quad (8)$$

304 where $\text{Sim}(c, c') \in [0, 1]$ is computed using the SequenceMatcher algorithm (based on longest
305 common subsequence matching). If the highest similarity exceeds a threshold τ , we replace c with
306 c^* ; otherwise, we retain the original prediction. This thresholding mechanism prevents overcorrec-
307 tion and ensures only reliable alignments are applied.

308 Compared to exact edit-distance matching, the LCS-based similarity measure is more tolerant to
309 minor rephrasings while preserving sequence-level fidelity. This ensures that all final predictions
310 are grounded in the predefined clause set D , with a threshold τ tuned on the validation set to avoid
311 overcorrection. Please refer to Appendix B for the detailed implementation.

312 3.6 MULTI-TASK LEARNING OBJECTIVE
313

314 Our framework jointly models EE and ECPE in a multi-task generative setting. To this end, we
315 employ a shared encoder \mathcal{E}_θ to capture common contextual representations, while task-specific de-
316 coders $\mathcal{D}_\phi^{\text{EE}}$ and $\mathcal{D}_\psi^{\text{ECPE}}$ generate outputs for their respective tasks. This design enables knowledge
317 transfer between EE and ECPE: emotion semantics captured in EE can guide ECPE in identifying
318 causal relationships, and vice versa.

319 For the EE task, given the input $x_{\text{EE}} = \text{EE} : \oplus D$ and encoder output $H = \mathcal{E}_\theta(x_{\text{EE}})$, the training
320 objective maximizes the likelihood of the target token sequence:

$$321 \mathcal{L}_{\text{EE}}(x) = -\frac{1}{N_x} \sum_{i=1}^{N_x} \log P_\phi(y_i^{\text{EE}} | H_x, y_{<i}^{\text{EE}}) \quad (9)$$

324 where $y_{<i}^{\text{EE}} = \{y_1^{\text{EE}}, \dots, y_{i-1}^{\text{EE}}\}$ denotes the tokens generated before step i , and N is the length of the
 325 EE target sequence.

326 Similarly, for the ECPE task with input $x_{\text{ECPE}} = \text{ECPE} : \oplus D$, the negative log-likelihood loss is:
 327

$$\mathcal{L}_{\text{ECPE}} = -\frac{1}{M} \sum_{j=1}^M \log P_{\psi}(y_j^{\text{ECPE}} | H, y_{<j}^{\text{ECPE}}) \quad (10)$$

331 where M is the length of the ECPE target sequence. The overall training objective is a weighted
 332 combination of the two losses:
 333

$$\mathcal{L} = \lambda_{\text{EE}} \cdot \mathcal{L}_{\text{EE}} + \lambda_{\text{ECPE}} \cdot \mathcal{L}_{\text{ECPE}} \quad (11)$$

335 where λ_{EE} and λ_{ECPE} are task-balancing hyperparameters, tuned on the validation set.
 336

337 By sharing the encoder, our model leverages cross-task information, allowing EE to inform the
 338 model about salient emotional content, while ECPE benefits from capturing causal dependencies
 339 among clauses. At the same time, the task-specific decoders retain flexibility to specialize in their
 340 respective outputs.

341 4 EXPERIMENTS

343 4.1 EXPERIMENTAL SETTINGS

345 **Dataset.** We evaluate our **SSG-ECPE** framework on two widely-used benchmark datasets: (1)
 346 *Chinese ECPE Dataset* Xia & Ding (2019): A clause-level annotated Chinese corpus specifically
 347 designed for ECPE. (2) *NTCIR-13 English Emotion Corpus* Gao et al. (2017): An English dataset
 348 extracted from novels. Comprehensive dataset statistics are provided in the Appendix D.

349 **Evaluation Metrics.** For the evaluation metrics, similarly to the prior work Xia & Ding (2019),
 350 we report the Precision, Recall, and F1-score for the main ECPE task, as well as for the auxiliary
 351 sub-tasks of emotion clause extraction (EE) and cause clause extraction (CE).

352 **Baselines** To comprehensively evaluate the effectiveness of our proposed **SSG-ECPE** framework,
 353 we compare it against a wide range of representative baselines on both Chinese and English datasets.
 354 Unless otherwise specified, all supervised fine-tuning (SFT) baselines are implemented with BERT-
 355 based encoders to ensure fair comparison. We group the baselines into the following categories:

356 **(1) Discriminative SFT Models.** These methods formulate ECPE as a discriminative clause-pair
 357 classification or tagging task. Representative works include Indep/Inter-CE/Inter-EC Xia & Ding
 358 (2019), RANKCP Wei et al. (2020), ECPE-2D Ding et al. (2020a), PairGCN Chen et al. (2020b),
 359 ECPE-MLL Ding et al. (2020b), Tagging Yuan et al. (2020), and subsequent refinements such as
 360 UTOS Cheng et al. (2021), Refinement Fan et al. (2021), and CD-MRC Cheng et al. (2023). **(2)**
 361 **Graph- and Multi-task-based Models.** These approaches exploit syntactic/semantic graphs or
 362 auxiliary tasks to enhance representation learning. Examples include PairGCN Chen et al. (2020b),
 363 KMPG Zong et al. (2024), RSN Chen et al. (2022a), MGSAG Bao et al. (2022), A²Net Chen
 364 et al. (2022b), ECPE-MTL Li et al. (2023a), and MMN Shang et al. (2023). **(3) Generative and**
 365 **Prompt-based Models.** Recent work explores generative paradigms or prompting strategies, includ-
 366 ing UECA-Prompt Zheng et al. (2022), DECC Wu et al. (2024), and LLM-based approaches such
 367 as GPT-3.5 Wang et al. (2023b) and DeepSeek-V3 DeepSeek-AI et al. (2024). **(4) English-specific**
 368 **Baselines.** For the NTCIR-13 English dataset, in addition to the above, we include E2E-PExtE Singh
 369 et al. (2021) and IA-ECPE Huang et al. (2023), which are tailored to English corpora.

370 **Implementation Details** All experiments are conducted under the T5 framework. Specifically, we
 371 adopt Randeng-T5-77M-MultiTask-Chinese for the Chinese dataset and T5-base for the
 372 English dataset. For the Chinese dataset, we consider two widely-used experimental setups for fair
 373 and comprehensive comparison: **Setting 1:** Following Xia & Ding (2019), the dataset is split into
 374 90% training and 10% testing. **Setting 2:** Following Fan et al. (2020), the dataset is divided into
 375 80%/10%/10% for training/validation/testing, where the model is fine-tuned on the validation set
 376 and evaluated on the test set. For the English dataset, we followed Singh et al. (2021) with an
 377 80%/10%/10% split. In both datasets, we employ AdamW as the optimizer with a learning rate of
 3×10^{-4} , batch size of 24, and train for 20 epochs. Detailed experimental configurations can be
 378 found in the Appendix C.

Approach	Main Task			Auxiliary Task					
	Emotion-Cause Pair Extraction			Emotion Clause Extraction			Cause Clause Extraction		
	P	R	F1	P	R	F1	P	R	F1
Setting 1: 90% for training, 10% for testing									
Indep	0.6832	0.5082	0.5818	0.8375	0.8071	0.8210	0.6902	0.5673	0.6205
Inter-CE	0.6902	0.5153	0.5901	0.8494	0.8122	0.8300	0.6809	0.5634	0.6151
Inter-EC	0.6721	0.5705	0.6128	0.8364	0.8107	0.8230	0.7041	0.6083	0.6507
EDSECPET [†]	0.7822	0.7417	0.7614	0.9243	0.9115	0.9179	0.7981	0.7821	0.7900
RANKCP [†]	0.7119	0.7630	0.7360	0.9123	0.8999	0.9057	0.7461	0.7788	0.7615
ECPE-2D [†]	0.7292	0.6544	0.6889	0.8627	0.9221	0.8910	0.7336	0.6934	0.7123
PairGCN [†]	0.7692	0.6791	0.7202	0.8857	0.7958	0.8375	0.7907	0.6928	0.7375
ECPE-MLL [†]	0.7700	0.7235	0.7452	0.8608	0.9191	0.8886	0.7382	0.7912	0.7630
RSN [†]	0.7601	0.7219	0.7393	0.8614	0.8922	0.8755	0.7727	0.7398	0.7545
MGSAG [†]	0.7743	0.7321	0.7521	0.9208	0.8211	0.8717	0.7979	0.7468	0.7712
A ² Net [†]	0.7503	0.7780	0.7634	0.9067	0.9098	0.9080	0.7762	0.7920	0.7835
PBJE [†]	0.7922	0.7384	0.7637	0.9077	0.8691	0.8876	0.8179	0.7609	0.7878
ECPE-MTL [†]	0.7548	0.7557	0.7503	0.9093	0.8922	0.9004	0.7769	0.7739	0.7749
MMN [†]	0.7611	0.7396	0.7502	0.9037	0.8785	0.8907	0.7901	0.7554	0.7721
EPO-ECPE [†]	0.7900	0.6021	0.6824	0.9780	0.7848	0.8702	0.7961	0.6039	0.6848
GAT-ECPE	0.7265	0.7752	0.7492	0.9098	0.9103	0.9099	0.7617	0.7872	0.7734
TransECPE [†]	0.7708	0.6532	0.7072	0.8879	0.8315	0.8588	0.7874	0.6689	0.7233
UTOS [†]	0.7389	0.7062	0.7203	0.8815	0.8321	0.8556	0.7671	0.7320	0.7471
Refinement [†]	0.7746	0.7199	0.7463	0.8711	0.8178	0.8436	0.7947	0.7404	0.7666
Guided-QA [†]	0.7710	0.6920	0.7290	0.8470	0.9080	0.8760	0.7190	0.7920	0.7540
MM-R [†]	0.8218	0.7927	0.8062	0.9738	0.9038	0.9370	0.8328	0.7964	0.8135
CD-MRC [†]	0.8333	0.7800	0.8013	0.9692	0.9398	0.9537	0.8101	0.8068	0.8077
CFC-ECPE [†]	0.8249	0.8125	0.8187	0.9708	0.9332	0.9512	0.8409	0.8116	0.8247
RL-TSM	0.7604	0.7584	0.7590	0.8843	0.8334	0.8564	0.7965	0.7739	0.7848
MV-SHIF	0.8500	0.8070	0.8280	0.9670	0.9070	0.9360	0.8410	0.7940	0.8170
EoCP	0.7920	0.7694	0.7842	0.9796	0.8523	0.9113	0.8240	0.7418	0.7921
UECA-Prompt	0.7182	0.7799	0.7470	0.8475	0.9195	0.8816	0.7624	0.7916	0.7755
GPT3.5	0.4074	0.6754	0.5082	-	-	-	-	-	-
GPT3.5 DECC	0.6123	0.8156	0.6995	-	-	-	-	-	-
SSG-ECPE	0.9947	0.9924	0.9936	0.9995	0.9972	0.9983	0.9952	0.9929	0.9940
SSG-ECPE-(w/o CPA)	0.5571	0.5545	0.5559	0.7952	0.7915	0.7932	0.6190	0.6161	0.6175
Setting 2: 80% for training, 10% for validation, 10% for testing									
Tagging [†]	0.7243	0.6366	0.6776	0.8196	0.7329	0.7739	0.7490	0.6602	0.7018
TransECPE [†]	0.7374	0.6307	0.6799	0.8716	0.8244	0.8474	0.7562	0.6471	0.6974
UTOS [†]	0.7104	0.6812	0.6907	0.8649	0.8293	0.8491	0.7418	0.7084	0.7281
RANKCP [†]	0.6575	0.7305	0.6915	0.8936	0.8948	0.8942	0.6940	0.7471	0.7191
Refinement [†]	0.7377	0.6802	0.7078	0.8593	0.7993	0.8282	0.7614	0.7039	0.7315
PairGCN [†]	0.7672	0.6791	0.7202	0.8857	0.7958	0.8375	0.7907	0.6928	0.7375
ECPE-MLL [†]	0.7488	0.6976	0.7220	0.8465	0.8990	0.8717	0.7051	0.7704	0.7358
MM-R [†]	0.7897	0.7532	0.7706	0.9609	0.8809	0.9188	0.8090	0.7621	0.7845
CD-MRC [†]	0.7739	0.7478	0.7598	0.9592	0.9183	0.9381	0.7789	0.7616	0.7694
SSG-ECPE	0.9964	0.9955	0.9960	0.9995	0.9986	0.9991	0.9967	0.9957	0.9962
SSG-ECPE-(w/o CPA)	0.4899	0.4894	0.4897	0.7585	0.7578	0.7581	0.5601	0.5596	0.5598

Table 2: The performance of SSG-ECPE with other benchmark methods on the Chinese dataset for the ECPE task as well as the two auxiliary tasks: EE and CE. The approach with [†] means using BERT as the pre-trained model.

4.2 MAIN RESULTS AND DISCUSSION

A. Results on Chinese Dataset. Table 2 shows the performance of SSG-ECPE on the Chinese dataset under two standard splits. Our method achieves SOTA results, with F1 scores exceeding 99% on EE, CE, and ECPE tasks. The key to this performance is the CPA mechanism. As shown in Table 4, removing CPA causes a drastic drop of approximately 50% in F1, revealing severe issues in the base generative model, such as hallucinating clauses or producing lexically inconsistent variants. CPA mitigates these errors by aligning each predicted clause to the most similar one in the input text, ensuring output fidelity. To validate the robustness of CPA, we conduct a threshold sensitivity analysis (see Table 5), showing that F1 peaks around threshold=0.5 and degrades at higher or lower values. This confirms that the high performance is not due to over-permissive matching, but stems from a well-calibrated correction mechanism. While the generative multi-task framework enables expressive joint modeling, CPA stabilizes decoding and transforms SSG-ECPE into a reliable extractor. We randomly sampled 100 test instances and manually verified the predictions. Over 98% of the predicted emotion-cause pairs exactly matched the ground truth, with most errors occurring in cases involving implicit causes or ambiguous clause boundaries. Additional robustness checks, including manual verification, comparisons different pre-trained models, and case studies, are presented in Appendix E, G, and F.

B. Results on English Dataset. SSG-ECPE achieves 71.54 F1 on the English dataset, setting a new SOTA (+10.8 over best baseline). The performance gap relative to the Chinese dataset (99%) stems from higher ambiguity in novel-derived English texts (implicit causes, subjective annotations) and

Method	Emotion-Cause Pair Extraction			Emotion Clause Extraction			Cause Clause Extraction		
	P	R	F1	P	R	F1	P	R	F1
Indep	0.4694	0.4102	0.4367	0.6741	0.7160	0.6940	0.6039	0.4734	0.5301
ECPE-2D	0.6049	0.4384	0.5073	0.7435	0.6968	0.7189	0.6491	0.5353	0.5855
ECPE-MILL	0.5926	0.4530	0.5121	0.7546	0.6996	0.7255	0.6350	0.5919	0.6110
E2E-PExtE	0.5134	0.4929	0.5017	0.7163	0.6749	0.6943	0.6636	0.4375	0.5226
IA-ECPE	0.6014	0.4303	0.5005	0.7398	0.6985	0.7180	0.6387	0.5455	0.5880
GPT3.5	0.4211	0.3934	0.4068	-	-	-	-	-	-
GPT3.5 DECC	0.4689	0.5442	0.5035	-	-	-	-	-	-
SSG-ECPE	0.7159	0.7149	0.7154	0.7843	0.7832	0.7837	0.7480	0.7469	0.7474

Table 3: Performance comparison on the English ECPE benchmark.

greater linguistic complexity. Nonetheless, consistent gains confirm strong cross-lingual generalization.

Approach	Emotion-Cause Pair Extraction			Emotion Clause Extraction		
	P	R	F1	P	R	F1
SSG-ECPE	0.9947	0.9924	0.9936	0.9991	0.9988	0.9990
-w/o CPA	0.5016	0.5004	0.5010	0.9823	0.9890	0.9856
-w/o EE	0.9956	0.9947	0.9952	-	-	-
-w/o semantic labels	0.9948	0.9952	0.9950	0.8600	0.8236	0.8414
-w/o clause types	0.9899	0.9915	0.9907	0.9985	0.9990	0.9987
-w/o emotion types	0.9925	0.9882	0.9903	0.9963	0.9999	0.9982
-w/o trigger words	0.9952	0.9858	0.9905	0.9911	0.9961	0.9936
-w/o clause ID	0.9861	0.9832	0.9847	0.9984	0.9994	0.9989
-w/o task prefix	0.9962	0.9938	0.9950	0.6591	0.9778	0.8784

Table 4: Ablation study results. Removing CPA leads to catastrophic performance drop.

C. Ablation Study on Key Components. Table 4 shows key ablations. Removing CPA collapses ECPE-F1 by $\sim 50\%$, confirming its essential role in grounding generation. Omitting task prefixes harms EE (F1: 87.84%), while clause IDs have little effect. Semantic labels (types, triggers) contribute moderately. Interestingly, excluding EE slightly boosts ECPE (+0.16%), but full multi-tasking ensures balanced performance.

D. Threshold Sensitivity of CPA. We vary the threshold θ_{emo} from 0.3 to 0.9. As shown in Table 5, ECPE-F1 fluctuates within a narrow range ($< 1.3\%$), peaking at $\theta_{emo} = 0.5$. Even under extreme settings (e.g., $\theta_{emo} = 0.9$), performance remains high (96.9% F1), far exceeding the best baseline ($\leq 71\%$). This demonstrates that CPA’s gains are robust and not due to fine-tuned thresholds. Combined with ablation and cross-lingual results, this confirms the stability and general effectiveness of our approach.

Threshold	EE-F1	CE-F1	ECPE-F1
0.3	98.21	97.45	97.98
0.4	99.01	98.76	99.15
0.5	99.83	99.40	99.36
0.6	99.72	99.31	99.10
0.7	99.54	99.02	98.89
0.8	99.20	98.47	98.35
0.9	97.98	96.65	96.92

Table 5: F1 scores under different CPA thresholds. Best results at threshold=0.5.

5 CONCLUSION

We proposed SSG-ECPE, a semantics-structured generation framework enhanced by clause prediction alignment (CPA) for Emotion-Cause Pair Extraction. By reformulating ECPE as a multi-task generation problem, our model integrates label semantics (e.g., emotion types, roles) into structured outputs and grounds predictions in the input text. Extensive experiments demonstrate that CPA is not only crucial for correcting hallucinations but also substantially improves stability across datasets and thresholds, leading to state-of-the-art results. This highlights a broader insight: lightweight alignment mechanisms can bridge the gap between discriminative and generative paradigms, enabling generative models to achieve both flexibility and reliability in structured extraction tasks. Future work may extend this paradigm to other relation extraction and event argument extraction problems, where grounding generation in the source text is equally vital.

486 REFERENCES
487

488 Yinan Bao, Wei Zhou, and Songlin Hu. Multi-granularity semantic aware graph model for reduc-
489 ing position bias in emotion cause pair extraction. In *Proceedings of the ACL*, pp. 1203–1213.
490 Association for Computational Linguistics, 2022. doi: 10.18653/v1/2022.findings-acl.95. URL
491 <https://doi.org/10.18653/v1/2022.findings-acl.95>.

492 Fang Chen, Ziwei Shi, and Yongfeng Huang. Recurrent synchronization network for emotion-cause
493 pair extraction. *KBS*, 238:107965, 2022a. doi: 10.1016/j.knosys.2021.107965. URL <https://doi.org/10.1016/j.knosys.2021.107965>.

494 Shunjie Chen, Xiaochuan Shi, Jingye Li, and Donghong Ji. Joint alignment of multi-task feature
495 and label spaces for emotion cause pair extraction. In *Proceedings of the 29th COLING*, pp.
496 6955–6965. International Committee on Computational Linguistics, 2022b. URL <https://aclanthology.org/2022.coling-1.606>.

497 Siyuan Chen and Kezhi Mao. A graph attention network utilizing multi-granular information for
498 emotion-cause pair extraction. *Neurocomputing*, 543:126252, 2023. doi: 10.1016/j.neucom.2023.126252.
499 URL <https://doi.org/10.1016/j.neucom.2023.126252>.

500 Xinhong Chen, Qing Li, and Jianping Wang. Conditional causal relationships between emotions and
501 causes in texts. In *Proceedings of the EMNLP*, pp. 3111–3121. Association for Computational
502 Linguistics, 2020a. doi: 10.18653/V1/2020.EMNLP-MAIN.252. URL <https://doi.org/10.18653/v1/2020.emnlp-main.252>.

503 Xinhong Chen, Qing Li, and Jianping Wang. A reinforcement learning based two-stage model
504 for emotion cause pair extraction. *IEEE Trans. Affect. Comput.*, 14(3):1779–1790, 2023.
505 doi: 10.1109/TAFFC.2022.3218648. URL <https://doi.org/10.1109/TAFFC.2022.3218648>.

506 Ying Chen, Wenjun Hou, and Xiaoqiang Zhang. End-to-end emotion-cause pair extraction with
507 graph convolutional network. In *Proceedings of the 28th COLING*, pp. 198–207. International
508 Committee on Computational Linguistics, 2020b. doi: 10.18653/v1/2020.coling-main.17. URL
509 <https://doi.org/10.18653/v1/2020.coling-main.17>.

510 Zifeng Cheng, Zhiwei Jiang, and Qing Gu. A unified target-oriented sequence-to-sequence model
511 for emotion-cause pair extraction. *IEEE/ACM TASLP*, 29:2779–2791, 2021. doi: 10.1109/TASLP.
512 2021.3102194. URL <https://doi.org/10.1109/TASLP.2021.3102194>.

513 Zifeng Cheng, Zhiwei Jiang, and Qing Gu. A consistent dual-mrc framework for emotion-cause
514 pair extraction. *ACM Trans. Inf. Syst.*, 41(4):105:1–105:27, 2023. doi: 10.1145/3558548. URL
515 <https://doi.org/10.1145/3558548>.

516 DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
517 gang Zhao, Chengqi Deng, Chenyu Zhang, and et al. Deepseek-v3 technical report. *CoRR*,
518 abs/2412.19437, 2024. doi: 10.48550/ARXIV.2412.19437. URL <https://doi.org/10.48550/arXiv.2412.19437>.

519 Xizhang Ding, Rui Xia, and Jianfei Yu. ECPE-2D: emotion-cause pair extraction based on joint two-
520 dimensional representation, interaction and prediction. In *Proceedings of the 58th ACL*, pp. 3161–
521 3170. Association for Computational Linguistics, 2020a. doi: 10.18653/v1/2020.acl-main.288.
522 URL <https://doi.org/10.18653/v1/2020.acl-main.288>.

523 Xizhang Ding, Jianfei Yu, and Rui Xia. End-to-end emotion-cause pair extraction based on
524 sliding window multi-label learning. In *Proceedings of the EMNLP*, pp. 3574–3583, 2020b.
525 doi: 10.18653/v1/2020.emnlp-main.290. URL <https://doi.org/10.18653/v1/2020.emnlp-main.290>.

526 Chuang Fan, Lin Gui, Min Yang, and Rui Feng Xu. Transition-based directed graph construction for
527 emotion-cause pair extraction. In *Proceedings of the 58th ACL*, pp. 3707–3717. Association for
528 Computational Linguistics, 2020. doi: 10.18653/v1/2020.acl-main.342. URL <https://doi.org/10.18653/v1/2020.acl-main.342>.

540 Chuang Fan, Chaofa Yuan, Lin Gui, and Ruiqiang Xu. Multi-task sequence tagging for emotion-
 541 cause pair extraction via tag distribution refinement. *IEEE ACM TASLP*, 29:2339–2350, 2021.
 542 doi: 10.1109/TASLP.2021.3089837. URL <https://doi.org/10.1109/TASLP.2021.3089837>.

544 Mingrui Fu and Weijiang Li. Emotion-cause pair extraction method based on multi-granularity
 545 information and multi-module interaction. *CoRR*, abs/2404.06812, 2024. doi: 10.48550/ARXIV.
 546 2404.06812. URL <https://doi.org/10.48550/arXiv.2404.06812>.

548 Qinghong Gao, Jiannan Hu, Ruiqiang Xu, and Qin Lu. Overview of NTCIR-13 ECA task. In *Pro-
 549 ceedings of the 13th NTCIR*. NII, 2017. URL <https://research.nii.ac.jp/ntcir/workshop/OnlineProceedings13/pdf/ntcir/01-NTCIR13-OV-ECA-GaoQ.pdf>.

552 Guimin Hu, Yuchuan Wu, and Yongbin Li. Unimse: Towards unified multimodal sentiment
 553 analysis and emotion recognition. In *Proceedings of the EMNLP*, pp. 7837–7851. Associa-
 554 tion for Computational Linguistics, 2022. doi: 10.18653/V1/2022.EMNLP-MAIN.534. URL
 555 <https://doi.org/10.18653/v1/2022.emnlp-main.534>.

556 Weichun Huang, Yixue Yang, and Liyan Xiong. Emotion-cause pair extraction based on interactive
 557 attention. *Appl. Intell.*, 53(9):10548–10558, 2023. doi: 10.1007/s10489-022-03873-x. URL
 558 <https://doi.org/10.1007/s10489-022-03873-x>.

560 Chenbing Li, Jie Hu, Tianrui Li, and Fei Teng. An effective multi-task learning model for end-
 561 to-end emotion-cause pair extraction. *Appl. Intell.*, 53(3):3519–3529, 2023a. doi: 10.1007/
 562 s10489-022-03637-7. URL <https://doi.org/10.1007/s10489-022-03637-7>.

563 Min Li, Hui Zhao, Tiquan Gu, and Di Ying. Experiencer-driven and knowledge-aware graph model
 564 for emotion-cause pair extraction. *KBS*, 278:110703, 2023b. doi: 10.1016/J.KNOSYS.2023.
 565 110703. URL <https://doi.org/10.1016/j.knosys.2023.110703>.

566 Min Li, Hui Zhao, and Bin Liao. Class imbalance mitigation: A select-then-extract learning frame-
 567 work for emotion-cause pair extraction. *ESWA*, 236:121386, 2024. doi: 10.1016/J.ESWA.2023.
 568 121386. URL <https://doi.org/10.1016/j.eswa.2023.121386>.

570 Shoushan Li, Lei Huang, Rong Wang, and Guodong Zhou. Sentence-level emotion classifica-
 571 tion with label and context dependence. In *Proceedings of the 53rd ACL*, pp. 1045–1053.
 572 The Association for Computer Linguistics, 2015. doi: 10.3115/V1/P15-1101. URL <https://doi.org/10.3115/v1/p15-1101>.

574 Junlong Liu, Xichen Shang, and Qianli Ma. Pair-based joint encoding with relational graph con-
 575 volutional networks for emotion-cause pair extraction. In *Proceedings of the EMNLP*, pp. 5339–
 576 5351. Association for Computational Linguistics, 2022. URL <https://aclanthology.org/2022.emnlp-main.358>.

578 Yaojie Lu, Qing Liu, Dai Dai, Xinyan Xiao, Hongyu Lin, Xianpei Han, Le Sun, and Hua Wu.
 579 Unified structure generation for universal information extraction. In Smaranda Muresan, Preslav
 580 Nakov, and Aline Villavicencio (eds.), *Proceedings of the 60th Annual Meeting of the Association
 581 for Computational Linguistics (Volume 1: Long Papers)*, ACL 2022, Dublin, Ireland, May 22–27,
 582 2022, pp. 5755–5772. Association for Computational Linguistics, 2022. doi: 10.18653/V1/2022.
 583 ACL-LONG.395. URL <https://doi.org/10.18653/v1/2022.acl-long.395>.

584 Hanjie Mai, Jin Wang, and Xiaobing Zhou. A machine reading comprehension model with counter-
 585 factual contrastive learning for emotion-cause pair extraction. *Knowl. Inf. Syst.*, 66(6):3459–
 586 3476, 2024. doi: 10.1007/S10115-024-02062-1. URL <https://doi.org/10.1007/s10115-024-02062-1>.

588 H. Nguyen and M. Nguyen. Emotion-cause pair extraction as question answering. In *Proceedings
 589 of the 15th ICAART*, pp. 988–995. SCITEPRESS, 2023. doi: 10.5220/0011883100003393. URL
 590 <https://doi.org/10.5220/0011883100003393>.

592 Xichen Shang, Chuxin Chen, Zipeng Chen, and Qianli Ma. Modularized mutuality network for
 593 emotion-cause pair extraction. *IEEE ACM TASLP*, 31:539–549, 2023. doi: 10.1109/TASLP.
 2022.3228129. URL <https://doi.org/10.1109/TASLP.2022.3228129>.

594 A. Singh, Saim Wani, and A. Modi. An end-to-end network for emotion-cause pair extraction. In
 595 *Proceedings of the 11th WASSA*, pp. 84–91, 2021. URL <https://aclanthology.org/2021.wassa-1.9/>.
 596

597 Fanfan Wang, Jianfei Yu, and Rui Xia. Generative emotion cause triplet extraction in conversa-
 598 tions with commonsense knowledge. In *Proceedings of the EMNLP*, pp. 3952–3963. Association
 600 for Computational Linguistics, 2023a. doi: 10.18653/V1/2023.FINDINGS-EMNLP.260. URL
 601 <https://doi.org/10.18653/v1/2023.findings-emnlp.260>.

602 Zengzhi Wang, Zixiang Ding, and Rui Xia. Is chatgpt a good sentiment analyzer? A preliminary
 603 study. *CoRR*, abs/2304.04339, 2023b. doi: 10.48550/ARXIV.2304.04339. URL <https://doi.org/10.48550/arXiv.2304.04339>.
 604

606 Penghui Wei, Jiahao Zhao, and Wenji Mao. Effective inter-clause modeling for end-to-end emotion-
 607 cause pair extraction. In *Proceedings of the 58th ACL*, pp. 3171–3181. Association for Compu-
 608 tational Linguistics, 2020. doi: 10.18653/v1/2020.acl-main.289. URL <https://doi.org/10.18653/v1/2020.acl-main.289>.
 609

610 Jinta Weng, Wensheng Gan, Ying Gao, and Jing Qiu. SESM: emotional social semantic and
 611 time series analysis of learners’ comments. In *Proceedings of the IEEE SMC*, pp. 4134–4139.
 612 IEEE, 2020. doi: 10.1109/SMC42975.2020.9283241. URL <https://doi.org/10.1109/SMC42975.2020.9283241>.
 613

615 Jialiang Wu, Yi Shen, Ziheng Zhang, and Longjun Cai. Enhancing large language model with
 616 decomposed reasoning for emotion cause pair extraction. *CoRR*, abs/2401.17716, 2024. doi: 10.
 617 48550/ARXIV.2401.17716. URL <https://doi.org/10.48550/arXiv.2401.17716>.
 618

618 Xueqing Wu, Jiacheng Zhang, and Hang Li. Text-to-table: A new way of information extraction.
 619 In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), *Proceedings of the 60th*
 620 *Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, *ACL*
 621 *2022, Dublin, Ireland, May 22–27, 2022*, pp. 2518–2533. Association for Computational Linguistics,
 622 2022. doi: 10.18653/V1/2022.ACL-LONG.180. URL <https://doi.org/10.18653/v1/2022.acl-long.180>.
 623

625 Rui Xia and Zixiang Ding. Emotion-cause pair extraction: A new task to emotion analysis in texts.
 626 In *Proceedings of the 57th ACL*, pp. 1003–1012. Association for Computational Linguistics, 2019.
 627 doi: 10.18653/v1/p19-1096. URL <https://doi.org/10.18653/v1/p19-1096>.
 628

628 Chaofa Yuan, Chuang Fan, Jianzhu Bao, and Rui Feng Xu. Emotion-cause pair extraction as sequence
 629 labeling based on A novel tagging scheme. In *Proceedings of the EMNLP*, pp. 3568–3573. As-
 630 sociation for Computational Linguistics, 2020. doi: 10.18653/v1/2020.emnlp-main.289. URL
 631 <https://doi.org/10.18653/v1/2020.emnlp-main.289>.
 632

633 Xiaopeng Zheng, Zhiyue Liu, and Jiahai Wang. Ueca-prompt: Universal prompt for emotion
 634 cause analysis. In *Proceedings of the 29th COLING*, pp. 7031–7041, 2022. URL <https://aclanthology.org/2022.coling-1.613>.
 635

636 Changzhi Zhou, Jing Xu, and Zhijing Wu. A multi-turn machine reading comprehension framework
 637 with rethink mechanism for emotion-cause pair extraction. In *Proceedings of the 29th COLING*,
 638 pp. 6726–6735. International Committee on Computational Linguistics, 2022. URL <https://aclanthology.org/2022.coling-1.584>.
 639

641 Peican Zhu, Botao Wang, and Zhen Wang. A knowledge-guided graph attention network for
 642 emotion-cause pair extraction. *KBS*, 286:111342, 2024. doi: 10.1016/J.KNOSYS.2023.111342.
 643 URL <https://doi.org/10.1016/j.knosys.2023.111342>.
 644

644 Linlin Zong, Jinglin Zhang, and Bo Xu. Emotion-cause pair extraction via knowledge-
 645 driven multi-classification and graph-based position embedding. *Appl. Intell.*, 54(3):2703–
 646 2715, 2024. doi: 10.1007/S10489-024-05326-Z. URL <https://doi.org/10.1007/s10489-024-05326-z>.
 647

648 **A USE OF LARGE LANGUAGE MODELS (LLMs)**
649650 In preparing this paper, we used Large Language Models (LLMs) solely as an assistive tool for
651 improving the clarity and readability of the manuscript. Specifically, LLMs were employed for
652 language polishing, such as grammar correction, style refinement, and phrasing suggestions.653 No part of the research process, including problem formulation, dataset construction, methodology
654 design, experimental execution, or result analysis, was conducted by or delegated to LLMs.
655 All scientific contributions, including conceptualization, implementation, and interpretation, are the
656 authors' original work. The authors take full responsibility for the content of this paper.
657658 **B IMPLEMENTATION OF CLAUSE PREDICTION ALIGNMENT (CPA)**
659660 We provide a pseudo-code description of the Clause Prediction Alignment (CPA) module used during
661 inference. This implementation directly corresponds to the description in Section 3.5 and is
662 based on Python's `difflib.SequenceMatcher`. The CPA module can be implemented using the Python
663 standard library `difflib`. No external dependencies are required beyond standard
664 Python, ensuring reproducibility and lightweight integration into the inference pipeline.
665666 **Algorithm 1:** Clause Prediction Alignment (CPA)667 **Input:** Predicted clause c , set of original document clauses D , similarity threshold τ 668 **Output:** Aligned clause \hat{c} 669
670 $\hat{c} \leftarrow c$ // Default: retain predicted clause
671 $best_sim \leftarrow 0$;
672 **foreach** $c' \in D$ **do**
673 $sim \leftarrow SequenceMatcher(c, c').ratio()$;
674 **if** $sim > best_sim$ **then**
675 $best_sim \leftarrow sim$;
676 $\hat{c} \leftarrow c'$;
677 **if** $best_sim < \tau$ **then**
678 $\hat{c} \leftarrow c$ // No reliable match, revert to original
679 **return** \hat{c} 680
681 **Complexity Analysis.** Let $|D|$ denote the number of clauses in the document and L the average
682 length (in tokens/characters) of a clause. The `SequenceMatcher` function computes the edit
683 similarity between two strings in $\mathcal{O}(L^2)$ time. Since CPA compares the predicted clause against
684 all clauses in D , the overall time complexity is: $\mathcal{O}(|D| \cdot L^2)$. In practice, $|D|$ is typically small
685 (dozens of clauses per document), and L is short (one or two sentences). Thus, CPA adds negligi-
686 ble computational overhead relative to model inference while significantly improving alignment
687 robustness.688 **C EXPERIMENT SETTINGS**
689690 To ensure a fair and reproducible comparison with existing approaches, we adopt standard evaluation
691 metrics, including Precision (P), Recall (R), and F1-score, defined as follows:

692
$$P = \frac{\sum \text{correct_pairs}}{\sum \text{proposed_pairs}} \quad (12)$$

693
$$R = \frac{\sum \text{correct_pairs}}{\sum \text{actual_pairs}} \quad (13)$$

694
$$F1 = \frac{2 \times P \times R}{P + R} \quad (14)$$

695 where *proposed_pairs* means the pairs generated by the model, *actual_pairs* is the number of
696 actual pairs labeled in the dataset, and the *correct_pairs* represents the number of pairs correctly
697 predicted.

For the Chinese dataset, we consider two widely used data splits: 9:1 (train:test) Xia & Ding (2019) and 8:1:1 (train:valid:test) Fan et al. (2020). The pre-trained model used for Chinese experiments is *Randeng-T5-77M-MultiTask-Chinese*. For the English dataset, we follow the 8:1:1 Singh et al. (2021) splitting strategy, using *T5-small* as the backbone.

We employ the AdamW optimizer with an initial learning rate of 3×10^{-4} and weight decay of 1×10^{-2} . The batch size is set to 24, and the model is trained for 20 epochs on all datasets. We apply linear learning rate decay with a warm-up ratio of 0.1 and use gradient clipping at a maximum norm of 1.0 to stabilize training. For Setting 2 and the English dataset, the best model is selected based on validation performance, and early stopping is applied with a patience of 5 epochs. Each experiment is repeated 5 times with different random seeds, and the average performance is reported.

All experiments are conducted on a single NVIDIA GeForce RTX 3090 GPU with 24GB VRAM. A complete 10-fold cross-validation on the Chinese dataset (with a 9:1 train:test split in each fold) takes approximately 27 hours, which is comparable to the time required for BERT fine-tuning (30 hours).

D DATASET STATISTICS

Table 6 summarizes the statistics of the two benchmark datasets. Most documents contain only a single emotion-cause pair (ECP), accounting for 89.77% in the Chinese dataset and 89.24% in the English dataset, which indicates that the majority of instances follow relatively simple document structures.

On average, Chinese documents are longer (14.77 clauses per document) compared to English ones (7.67 clauses per document). In both datasets, most ECPs occur within a short clause distance: 95.8% in Chinese and 91.73% in English appear within three clauses. This reflects a strong local co-occurrence tendency, which models can easily exploit but also creates a positional bias.

Such bias may hinder the detection of complex, long-distance emotion-cause relationships, particularly in the Chinese dataset where longer document lengths (up to 73 clauses) and wider clause distances (up to 12) necessitate capturing semantic dependencies beyond local proximity. These observations highlight two major challenges in ECPE: (1) mitigating positional bias and (2) modeling semantic coherence across long documents.

Range	Chinese Dataset		English Dataset	
	Num.	Ratio	Num.	Ratio
Documents	1945	100%	2843	100%
1 ECP	1746	89.77%	2537	89.24%
2 ECPs	177	9.10%	256	9.00%
>2 ECPs	22	1.13%	50	1.76%
Abs dist. = 0 ECPs	511	23.6%	1640	51.01%
Abs dist. = 1 ECPs	1342	61.9%	825	25.66%
Abs dist. = 2 ECPs	224	10.3%	328	10.21%
Abs dist. = 3 ECPs	50	2.3%	156	4.85%
Abs dist. >3 ECPs	40	1.9%	266	8.27%
ECPs	2154	-	3215	-
Emotion clause	2085	-	2872	-
Cause clause	2142	-	3187	-
Avg clauses/doc	14.77	-	7.67	-
Max clauses/doc	73	-	41	-
Avg ECPs/doc	1.11	-	1.13	-
Max ECPs/doc	4	-	6	-
Min dist. emo&cau	0	-	0	-
Max dist. emo&cau	12	-	25	-
Avg dist. emo-cau	0.94	-	1.54	-

Table 6: Dataset statistics for the two benchmark dataset used for ECPE task.

E MANUALLY VERIFIED THE CPA’S PREDICTIONS

To further validate the reliability of our Clause Prediction Alignment (CPA) mechanism, we conducted a manual verification of predicted emotion-cause pairs on a random subset of the test set.

Verification Procedure. We randomly sampled 50 instances from the Chinese and English test set. For each instance, human annotators checked whether each predicted emotion-cause pair exactly

756	Document: 1.生不如死是老吴患癌后常有的想法 2.由于大面积骨转移 3.老吴每天都在剧痛里挣扎 4.从2012年10月到现在 5.老吴已经和晚期肺癌搏斗了30个月 6.这个时间长度 7.比医生最初给他的死亡判决已经超出了近10倍 8.深圳宁养院的医生王劲也感到惊讶 Ground Truth: 情感原因对: (1, 2), (1, 3), (8, 5), (8, 7)	Documents: 1.We dont have a chip to spare 2.he railed 3,correctly . Ground Truth: ECPs: (2, 1)
757		Generative Targets: [['情感子句:c1:生不如死是老吴患癌后常有的想法','原因子句:c2:由于大面积骨转移','c3:老吴每天都在剧痛里挣扎'],['情感子句:c4:深圳宁养院的医生王劲也感到惊讶','原因子句:c5:老吴已经和晚期肺癌搏斗了30个月','c7:比医生最初给他的死亡判决已经超出了近10倍']]
758		Generative Prediction: [['情感子句:c1:生不如死是老吴患癌后常有的想法','原因子句:c2:由于大面积骨转移','c3:老吴每天都在剧痛里挣扎'],['情感子句:c4:深圳宁养院的医生王劲也感到惊讶','原因子句:c5:老吴已经和晚期肺癌搏斗了30个月','c7:比医生最初给他的死亡判决已经超出了近10倍']]
759		Clause Prediction Matching Output: [['情感子句:c1:生不如死是老吴患癌后常有的想法','原因子句:c2:由于大面积骨转移','c3:老吴每天都在剧痛里挣扎'],['情感子句:c4:深圳宁养院的医生王劲也感到惊讶','原因子句:c5:老吴已经和晚期肺癌搏斗了30个月','c7:比医生最初给他的死亡判决已经超出了近10倍']]
760		Documents: 1,He wanted to secure a location right at the front of the hall as a dramatic way to launch the Apple II 2, and so he shocked Wozniak by paying \$5 3,000 in advance . Ground Truth: ECPs: (2, 1)
761		Generative Targets: [['情感子句:c1:生不如死是老吴患癌后常有的想法','原因子句:c2:由于大面积骨转移','c3:老吴每天都在剧痛里挣扎'],['情感子句:c4:深圳宁养院的医生王劲也感到惊讶','原因子句:c5:老吴已经和晚期肺癌搏斗了30个月','c7:比医生最初给他的死亡判决已经超出了近10倍']]
762		Generative Prediction: [['情感子句:c1:生不如死是老吴患癌后常有的想法','原因子句:c2:由于大面积骨转移','c3:老吴每天都在剧痛里挣扎'],['情感子句:c4:深圳宁养院的医生王劲也感到惊讶','原因子句:c5:老吴已经和晚期肺癌搏斗了30个月','c7:比医生最初给他的死亡判决已经超出了近10倍']]
763		Clause Prediction Matching Output: [['情感子句:c1:生不如死是老吴患癌后常有的想法','原因子句:c2:由于大面积骨转移','c3:老吴每天都在剧痛里挣扎'],['情感子句:c4:深圳宁养院的医生王劲也感到惊讶','原因子句:c5:老吴已经和晚期肺癌搏斗了30个月','c7:比医生最初给他的死亡判决已经超出了近10倍']]
764		Documents: 1,He wanted to secure a location right at the front of the hall as a dramatic way to launch the Apple II 2, and so he shocked Wozniak by paying \$5 3,000 in advance . Ground Truth: ECPs: (2, 1)
765		Generative Targets: [['情感子句:c1:生不如死是老吴患癌后常有的想法','原因子句:c2:由于大面积骨转移','c3:老吴每天都在剧痛里挣扎'],['情感子句:c4:深圳宁养院的医生王劲也感到惊讶','原因子句:c5:老吴已经和晚期肺癌搏斗了30个月','c7:比医生最初给他的死亡判决已经超出了近10倍']]
766		Generative Prediction: [['情感子句:c1:生不如死是老吴患癌后常有的想法','原因子句:c2:由于大面积骨转移','c3:老吴每天都在剧痛里挣扎'],['情感子句:c4:深圳宁养院的医生王劲也感到惊讶','原因子句:c5:老吴已经和晚期肺癌搏斗了30个月','c7:比医生最初给他的死亡判决已经超出了近10倍']]
767		Clause Prediction Matching Output: [['情感子句:c1:生不如死是老吴患癌后常有的想法','原因子句:c2:由于大面积骨转移','c3:老吴每天都在剧痛里挣扎'],['情感子句:c4:深圳宁养院的医生王劲也感到惊讶','原因子句:c5:老吴已经和晚期肺癌搏斗了30个月','c7:比医生最初给他的死亡判决已经超出了近10倍']]
768		Documents: 1,当 I 看到建议被采纳 2,部委领导写给我的回信 3,我知道我正在为这个国家的发展尽着一份力量 4,27 日 5,河北省邢台钢铁有限公司的普通工人白金跃 6,拿着历年来国家各部委反馈给他的感谢信 7,激动地对中新网记者说 8,国家公安部国家工商总局国家科学技术委员会科技部卫生部国家发展改革委员会等部委均接受并采纳过我的建议 Ground Truth: 情感原因对: (7, 9)
769		Generative Targets: [['情感子句:c7:激动地对中新网记者说','原因子句:c9:国家公安部国家工商总局国家科学技术委员会科技部卫生部国家发展改革委员会等部委均接受并采纳过我的建议']]
770		Generative Prediction: [['情感子句:c7:激动地对中新网记者说','原因子句:c9:国家零国家相对医学有个寸科技部呼吸部国家发展就寸等部委均满足并采纳过我的订']]
771		Clause Prediction Matching Output: [['情感子句:c7:激动地对中新网记者说','原因子句:c9:国家公安部国家工商总局国家科学技术委员会科技部卫生部国家发展改革委员会等部委均接受并采纳过我的建议']]
772		Documents: 1,We dont have a chip to spare 2,he railed 3,correctly . Ground Truth: ECPs: (2, 1)
773		Generative Targets: [['emotion clause:c7:Jobs threw a tantrum','cause clause:c1:Scott assigned 1 to Wozniak and 2 to Jobs']]
774		Generative Prediction: [['emotion clause:c7:Jobs threw a quickerum','cause clause:c1:Scott assigned 1 to Wozniak and 2 to Jobs']]
775		Clause Prediction Matching Output: [['emotion clause:c7:Jobs threw a tantrum','cause clause:c1:Scott assigned 1 to Wozniak and 2 to Jobs']]
776		Documents: 1,We dont have a chip to spare 2,he railed 3,correctly . Ground Truth: ECPs: (2, 1)
777		Generative Targets: [['emotion clause:c7:Jobs threw a tantrum','cause clause:c1:Scott assigned 1 to Wozniak and 2 to Jobs']]
778		Generative Prediction: [['emotion clause:c7:Jobs threw a quickerum','cause clause:c1:Scott assigned 1 to Wozniak and 2 to Jobs']]
779		Clause Prediction Matching Output: [['emotion clause:c7:Jobs threw a tantrum','cause clause:c1:Scott assigned 1 to Wozniak and 2 to Jobs']]
780		Documents: 1,We dont have a chip to spare 2,he railed 3,correctly . Ground Truth: ECPs: (2, 1)
781		Generative Targets: [['emotion clause:c7:Jobs threw a tantrum','cause clause:c1:Scott assigned 1 to Wozniak and 2 to Jobs']]
782		Generative Prediction: [['emotion clause:c7:Jobs threw a quickerum','cause clause:c1:Scott assigned 1 to Wozniak and 2 to Jobs']]
783		Clause Prediction Matching Output: [['emotion clause:c7:Jobs threw a tantrum','cause clause:c1:Scott assigned 1 to Wozniak and 2 to Jobs']]
784		Documents: 1,We dont have a chip to spare 2,he railed 3,correctly . Ground Truth: ECPs: (2, 1)
785		Generative Targets: [['emotion clause:c7:Jobs threw a tantrum','cause clause:c1:Scott assigned 1 to Wozniak and 2 to Jobs']]
786		Generative Prediction: [['emotion clause:c7:Jobs threw a quickerum','cause clause:c1:Scott assigned 1 to Wozniak and 2 to Jobs']]
787		Clause Prediction Matching Output: [['emotion clause:c7:Jobs threw a tantrum','cause clause:c1:Scott assigned 1 to Wozniak and 2 to Jobs']]
788		matched the ground truth, including correct clause boundaries and roles. Predictions were categorized as: Exact Match : Both emotion and cause clauses match the ground truth. Partial Match : Either the emotion or cause clause is partially correct. Mismatch : Both clauses are incorrect.
789		On the Chinese dataset, 48 out of 50 instances achieved <i>Exact Match</i> , yielding a 96% exact accuracy. The two non-exact cases involved: A lexical deviation (“Teresa” vs. “Graduates”) in the raw generation, which was corrected by CPA to the correct clause via similarity matching. An ambiguous multi-pair case where one cause clause was missed due to overlapping semantics. On the English dataset, 49 out of 50 instances were exact matches. The single error occurred in a narrative with an implicit causal relation (“he felt guilty because he didn’t help”), where the cause is not explicitly stated. Notably, when inspecting model outputs <i>without CPA</i> , we observed frequent hallucinations—generating clauses not present in the original text. In contrast, CPA ensures all predictions are grounded in actual input clauses, effectively eliminating spurious generations. These results confirm that the high F1 scores reflect genuine prediction accuracy and demonstrate that CPA plays a critical role in aligning generated outputs with the input text.
802		
803	F CASE STUDIES ON CHINESE AND ENGLISH DATASETS	
804		
805		To illustrate the behavior of SSG-ECPE and the role of Clause Prediction Alignment (CPA), we present one representative example from each language.
806		On the Chinese dataset, the raw generator produces significant errors: (“...20-30”) is a hallucinated phrase not in the original text, likely due to noisy token generation. Additionally, (“originally”) slightly deviates from (“initially”). Without CPA, these would be false predictions. However, CPA
807		
808		
809		

Figure 3: Case studies.

810 aligns each predicted clause with the most similar one in the document, successfully recovering the
 811 correct clauses and producing perfect matches. On the English dataset, the generator incorrectly
 812 substitutes "chip" with "web", a semantically plausible but lexically incorrect word. This type of
 813 error, common in autoregressive models, would lead to an exact-match failure. CPA detects that the
 814 similarity between "We dont have a web to spare" and the true clause "We dont have a chip to spare"
 815 is high (e.g., SequenceMatcher ratio > 0.9), and maps it back to the closest valid clause in the input.
 816 Thus, the final output becomes accurate despite imperfect generation.

818 G PERFORMANCE COMPARISON OF PRE-TRAINED MODELS ON ECPE TASK

820 To analyze the performance difference between different pre-trained models on the Emotion Cause
 821 Pair Extraction (ECPE) task, we performed comparative experiments on the Randeng-T5 model used
 822 for the Chinese dataset. Due to the limitation of computational resources, we selected mBART-large-
 823 50¹ and mT5-small² as comparison models.

824 BART employs a denoising autoencoder architecture, with a bidirectional encoder and a causal
 825 decoder, which differs from the unified text-to-text framework of T5-based models. Both mT5 and
 826 Randeng-T5 are based on the T5 architecture but differ in their pre-training corpora. mT5 is
 827 trained on the multilingual corpus, which includes a small proportion of Chinese text among 101
 828 languages. In contrast, Randeng-T5 is specifically optimized for Chinese, with its pre-training
 829 corpus exclusively composed of Chinese text.

830 On the Chinese dataset, Randeng-T5-77M and mT5-small achieve strong performance, bene-
 831 fitting from their exposure to Chinese text during pre-training. Notably, Randeng-T5-77M, despite
 832 its smaller size (77M parameters), matches the performance of the larger mT5-small (300M), un-
 833 derscoring the critical importance of language-specific pre-training for optimal performance.

834 On the English dataset, T5-base achieves the best results, demonstrating its effectiveness in
 835 generation-based information extraction. mT5-small performs slightly worse, likely due to in-
 836 terference from non-English content in its multilingual training data. Once again, BART underper-
 837 forms dramatically (F1: 2.38%), with nearly all outputs failing to conform to the expected structure.
 838 This consistent failure across languages highlights a key insight: for structured generation tasks
 839 like ECPE, the choice of pre-training objective (e.g., denoising vs. span corruption) and language
 840 specialization critically affects model compatibility and performance.

841 Moreover, BART performed significantly worse, which can be attributed to the following factors: 1.
 842 Limited training objective: BART is pre-trained on unsupervised data with denoising reconstruction
 843 as its primary task, resulting in a narrow focus that limits its generalization ability for the ECPE
 844 task. 2. Mismatch with task requirements: The pre-training objective of BART is mainly to restore
 845 corrupted input, which, while beneficial for generation tasks, may fall short in capturing the com-
 846 plex causal relationships required for ECPE. 3. Architectural limitations: BART's design is better
 847 suited for tasks like text summarization but is less effective for tasks demanding more substantial
 848 reasoning and semantic understanding. Additionally, considering the model size, mBART-large-50
 849 has 610M parameters, Randeng-T5-77M has 77M parameters, and mT5-small has 300M parame-
 850 ters. Although Randeng-T5 is relatively lightweight in scale, it performs strongly on the Chinese
 851 dataset. Its advantage is due to its pre-training optimization explicitly tailored for Chinese corpora,
 852 allowing it to capture better linguistic patterns and discourse structures common in Chinese writing.

Dataset	PLM	P	R	F1
Chinese	Randeng-T5	0.9947	0.9924	0.9936
	mT5	0.9952	0.9947	0.9949
	BART	0.4851	0.4692	0.4767
English	T5	0.7159	0.7149	0.7154
	mT5	0.7082	0.6900	0.7013
	BART	0.0242	0.0237	0.0238

859
 860 Table 7: Different Pre-trained Language Models (PLM) perform on ECPE task. We report results
 861 for two PLMs, Rangdeng, mT5, and BART on Chinese and English dataset.

862
 863 ¹<https://huggingface.co/facebook/mbart-large-50>

²<https://huggingface.co/google/mt5-small>

864 H SUPPLEMENTARY RESULTS FOR LLM-BASED APPROACHES 865

866 To contextualize our method within the landscape of large language models (LLMs), we conduct
867 preliminary evaluations of several LLM-based approaches, including GPT-4o, DeepSeek-R1, and
868 DeepSeek-V3, in addition to GPT-3.5. Due to the high computational cost (GPT-4o: \$500) and API
869 expenses of LLMs, comprehensive evaluations are resource-intensive. Following the setup of Wang
870 et al. (2023b), we perform zero-shot evaluations on a subset of 100 test samples from the Chinese
871 dataset. As shown in Table 8, GPT-4o, DeepSeek-V3, and DeepSeek-R1 achieve F1 scores of
872 55.82%, 63.72%, and 64.37%, respectively.

873 Our SSG-ECPE model, evaluated on the same 100-sample subset, achieves a significantly higher F1
874 score of 99.36%. This substantial performance gap highlights the effectiveness of our semantics-
875 structured generation and clause-level alignment framework. The results suggest that even state-
876 of-the-art LLMs face challenges in ECPE under zero-shot conditions, potentially due to the need
877 for precise clause-level matching and the complexity of identifying multiple, potentially nested
878 emotion-cause pairs.

Method	P	R	F1
GPT3.5 (prompt, 0-shot)	54.13	50.86	52.44
GPT3.5 (DECC, 0-shot)	57.50	39.66	46.94
GPT-4o	58.64	53.26	55.82
DeepSeek-V3(0-shot)	65.45	62.07	63.72
DeepSeek-R1(0-shot)	65.97	62.86	64.37
SSG-ECPE	99.45	99.28	99.36

886 Table 8: Results of SSG-ECPE with other LLMs-based baselines on the Chinese dataset for the
887 ECPE task.

889 I COMPARISON ON EXTRACTING MULTIPLE PAIRS.

890 The extraction of multiple emotion-cause pairs (ECPs) within a single document is a significant
891 challenge due to potential nesting, overlap, and complex inter-clause dependencies. To evaluate the
892 robustness of our method in such complex scenarios, we partitioned the test set (from the 10-fold
893 CV) of the Chinese dataset into two subsets: one containing documents with only one ECP, and the
894 other containing documents with two or more ECPs.

895 Table 9 presents the results. SSG-ECPE achieves state-of-the-art performance on both subsets. Notably,
896 on documents with multiple ECPs, SSG-ECPE significantly outperforms all baselines, achieving
897 an F1 score of 98.70%, which is over 38 points higher than the best competing method (EPO-
898 ECPE, 60.19%). This dramatic performance gap underscores the effectiveness of our semantics-
899 structured generation and clause-level alignment framework in handling complex, multi-pair docu-
900 ments.

Approach	P	R	F1
Single ECP			
Inter-EC	0.6734	0.5939	0.6288
RANKCP	0.6625	0.6966	0.6780
ECPE-MLL	0.6870	0.6832	0.6851
UTOS	0.6765	0.6232	0.6480
EPO-ECPE	0.7668	0.6559	0.7065
SSG-ECPE	0.9937	0.9900	0.9918
Multiple ECPs			
Inter-EC	0.5912	0.3302	0.4206
RANKCP	0.7508	0.4390	0.5531
ECPE-MLL	0.7045	0.4776	0.5688
UTOS	0.5545	0.4676	0.5035
EPO-ECPE	0.8396	0.4768	0.6019
SSG-ECPE	0.9822	0.9918	0.9870

914 Table 9: The results for documents with only one and more than one ECP on the Chinese benchmark
915 dataset.