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ABSTRACT

Emotion Cause Pair Extraction (ECPE) aims to jointly identify emotion clauses
and their corresponding cause clauses, forming emotion-cause pairs (ECPs). Ex-
isting approaches either rely on complex discriminative architectures to model pair
boundaries or adopt generic text-to-text frameworks that flatten ECPE into plain
sequence generation. Both paradigms overlook rich semantic dependencies, such
as clause roles, emotion types, and clue words, and struggle in multi-pair scenarios
with nested or overlapping structures. In this paper, we propose a task-adaptive
generative multi-task learning framework that rethinks ECPE as a structured text-
to-text generation task. We design semantics-structured output formats that ex-
plicitly encode clause roles, emotion types, and trigger words as semantic mark-
ers, allowing the model to capture inter-label dependencies and co-occurrence
patterns during generation. For emotion clause extraction (EE), outputs are for-
matted as (clause, emotion type, trigger words) triplets; for ECPE, emotion–cause
pairs are directly generated, enabling implicit modeling of emotional reasoning.
A shared encoder with task-specific decoders supports both clause- and pair-level
generation within a unified pipeline. To enhance reliability, we further introduce
a Clause Prediction Alignment (CPA) strategy that grounds generated clauses to
input spans, mitigating hallucinations and ensuring faithfulness. Extensive exper-
iments demonstrate that CPA is indispensable: without it, performance collapses,
whereas with it, our framework achieves consistent state-of-the-art results, includ-
ing a +21.3 F1 improvement on the English benchmark.

1 INTRODUCTION

Sentiment analysis (SA) is a fundamental topic in artificial intelligence and natural language pro-
cessing, aiming to identify and understand the emotions or opinions expressed in texts. Traditional
SA studies Li et al. (2015); Hu et al. (2022) focus on coarse-grained emotion categories, such as
sentiment polarity (positive, neutral, negative). However, such shallow classification often fails to
meet the demands of more complex analytical needs. As research progresses, increasing attention
has shifted toward Emotion Cause Analysis (ECA) Chen et al. (2020a); Weng et al. (2020), which
not only detects emotions but also identifies their underlying causes. This task is crucial for psycho-
logical research and has broad applications in sociology, marketing, and education. For example, it
aids in creating effective treatment plans in psychotherapy, helps companies understand consumer
behavior in marketing, and supports personalized instruction in education Weng et al. (2020).

Xia & Ding (2019) proposed the ECPE task, which simultaneously extracts all emotions and cor-
responding causes from the unannotated text. Specifically, the objective of the ECPE task is to
extract all the emotion and cause clauses from a given document at once and form ECPs. Figure 1
shows an example with 8 clauses. c1 and c8 express the emotions “disgust” and “surprise”, re-
spectively. c1 has two causes: c2 and c3, while c8 is triggered by c5 and c7. The desired ECPs
are {(c1, c2), (c1, c3), (c8, c5), (c8, c7)}. This example highlights the challenges of ECPE, including
multiple emotions, overlapping causes, and nested structures.

Existing ECPE methods can be categorized into 2-step pipeline Xia & Ding (2019), multi-task
learning Chen et al. (2022b); Zheng et al. (2022); Shang et al. (2023); Fu & Li (2024), sequence
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labeling Fan et al. (2020); Cheng et al. (2021), graph-based Bao et al. (2022); Li et al. (2023b); Zhu
et al. (2024); Li et al. (2024), question answering (QA) Nguyen & Nguyen (2023), machine reading
comprehension (MRC) Zhou et al. (2022); Cheng et al. (2023); Mai et al. (2024), reinforcement
learning (RL) framework Chen et al. (2023). Despite their diversity, most adopt a discriminative
paradigm: they first generate candidate clause pairs and then classify them as valid or invalid through
complex feature engineering or architectures.

Figure 1: An example of an ECPE task based on generative framework from the Chinese dataset.
Emotion clauses are shown in red, and cause clauses are shown in blue. Various shades of color
distinguish different emotions and cause clauses.

However, these approaches still face several limitations. (1) they rely heavily on high-quality anno-
tations and are sensitive to distributional shifts. (2) they lack a global view of clause-level semantics
and inter-clausal dependencies, resulting in poor performance in cross-clause reasoning and diffi-
culty in dealing with complex multiple ECPs. (3) these models ignore semantic labels, such as the
emotion types, clause roles, and emotion trigger words. Encoding such semantic knowledge can
significantly improve the modeling of documents with multiple ECPs. For example, as shown in
Figure 1, recognizing that “disgust” is semantically associated with severe pathological conditions
like “extensive bone metastasis” and enduring physical suffering such as “struggled with severe pain
every day” allows the model to link c1 to both c2 and c3, leading to more accurate extraction of the
set of ECPs {(c1, c2), (c1, c3)}.
Recent advances in generative models have shown strong performance in structured NLP tasks by
reformulating them as text-to-text generation problems Lu et al. (2022); Wang et al. (2023a). Unlike
discriminative models that make isolated decisions over candidate pairs, generative models naturally
model inter-label dependencies through autoregressive decoding, making them well-suited for tasks
with complex, structured outputs.

Inspired by this, we propose to rethink ECPE as a semantics-structured generation task. By explicitly
encoding label semantics, such as emotion types (i.e., happiness), clause roles (i.e., emotion/cause
clause), and emotion trigger words (i.e., surface expressions that signal or instantiate emotional
states, such as: “surprised at”), into the output format, our model can leverage the meaning of labels
to guide generation. For instance, the presence of the emotion “disgust” can prompt the model to
seek clinically negative events as potential causes. This enables implicit modeling of emotional
reasoning, going beyond mere pattern matching.

Our main contributions are summarized as follows:

• We reformulate ECPE as a structured text-to-text generation task, integrating clause roles,
emotion types, and emotion trigger words into the output format to enable explicit modeling
of semantic dependencies between emotions and causes.
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• We design a multi-task generative framework (SSG-ECPE) with a shared encoder and task-
specific decoders, allowing joint training of EE and ECPE within a unified architecture to
enhance cross-task knowledge transfer.

• We introduce a clause prediction alignment strategy that constrains generated clauses to
match actual clauses in the input document, effectively reducing hallucinations and im-
proving faithfulness.

• Extensive experiments on benchmark datasets show that SSG-ECPE achieves state-of-the-
art performance, with significant gains over existing methods (e.g., +21.31 F1 on the En-
glish ECPE dataset).

2 RELATED WORK

Discriminative Models for ECPE. Most existing ECPE methods follow a discriminative paradigm,
aiming to identify valid ECPs by classifying candidate clause pairs using sophisticated feature engi-
neering or interaction modeling. Early approaches adopted pipeline frameworks Xia & Ding (2019),
where emotion and cause clauses are extracted separately and then paired. However, this paradigm
suffers from error propagation and fails to model inter-task dependencies.

To address these issues, joint learning frameworks were proposed to unify emotion clause extraction
(EE), cause clause extraction (CE), and ECPE format within a single model Chen et al. (2022b);
Shang et al. (2023); Li et al. (2023a). While enabling task interaction, these methods often face task
imbalance and insufficient semantic alignment. Alternative views regard ECPE as a sequence label-
ing problem using hand-crafted tagging schemes (e.g., BIOE or pair-level tags) Fan et al. (2021);
Cheng et al. (2021). However, such approaches struggle with generalization due to heuristic design.
Graph-based methods enhance clause interaction modeling by representing documents as structured
graphs. For instance, Fan et al. (2020) converts the ECPE task to a directed graph construction,
while Chen et al. (2020b); Liu et al. (2022) explicitly model ECP relations. However, they often un-
derperform in long-range scenarios unless augmented with external knowledge (e.g., commonsense,
clause dependencies) Bao et al. (2022); Li et al. (2023b). Multi-granularity models Chen & Mao
(2023) integrate word-, clause-, and document-level semantics but still struggle with complex rela-
tional structures. Other works explore question answering (QA) or machine reading comprehension
(MRC) paradigms, treating ECPE as a query-based extraction task Zhou et al. (2022); Cheng et al.
(2023); Mai et al. (2024); Nguyen & Nguyen (2023). Despite competitive performance, these meth-
ods are constrained by predefined templates and exhibit limited effectiveness on long documents.

Generative Models for ECPE. Inspired by the success of structured text-to-text generation in in-
formation extraction Lu et al. (2022); Wu et al. (2022); Wang et al. (2023a), recent studies have ex-
plored generative formulations for ECPE, which naturally model inter-label dependencies through
autoregressive decoding. Zheng et al. (2022) propose a multi-task prompt framework that decom-
poses ECA tasks into sub-prompts for unified modeling. However, this approach relies on manually
designed templates, limiting its flexibility and generalization. With the rise of large language models
(LLMs), zero-shot and few-shot ECPE has gained attention. Wang et al. (2023b) apply ChatGPT to
ECPE, leveraging its semantic understanding, but suffer from uncontrolled outputs and weak task-
specific adaptation. DECC Wu et al. (2024) introduces a chain-of-thought strategy to decompose
ECPE into sub-tasks, yet faces high computational costs and suboptimal performance in complex,
multi-pair scenarios.

However, they still face some issues: (1) hallucination: generating non-existent clauses, (2) failing
to fully leverage label semantics (e.g., emotion types, clause roles). Our work addresses these limita-
tions by introducing a semantics-structured output format and a clause-level alignment mechanism,
ensuring more reliable and coherent predictions.

3 METHOD

We propose Semantics-Structured Generation with Alignment (SSG-ECPE), a generative framework
for Emotion-Cause Pair Extraction (ECPE). As illustrated in Figure 2, our method reformulates
ECPE and its auxiliary task, Emotion Clause Extraction (EE), into conditional sequence generation
problems. Specifically, SSG-ECPE is built upon a shared encoder and two task-specific decoders,
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Figure 2: An example of an ECPE task based on generative framework from the Chinese dataset.

allowing knowledge sharing across tasks while maintaining task-level specialization. To ensure the
generated outputs remain faithful to the input document, we introduce two key components: (1) a
semantics-structured generation format, which explicitly incorporates clause roles, emotion types,
and trigger words into the target sequences; and (2) a clause prediction alignment (CPA) strategy,
which aligns generated spans with the closest input clauses to mitigate hallucinations and guarantee
clause-level consistency. This design enables SSG-ECPE to handle complex phenomena in ECPE,
such as multiple causes for one emotion, overlapping relations, and self-referential ECPs, while
producing interpretable and semantically grounded outputs.

3.1 PROBLEM FORMULATION

Given a document with n clauses D = {c1, c2, . . . , cn}, each clause contains multiple words ci =
{wi,1, wi,2, . . . , wi,|ci|}. The ECPE task aims to extract all valid ECPs (ci, cj), where clause ci
expresses an emotion and cj provides its cause:

yECPE = {(ci, cj)}(i,j)∈P (1)

where P denotes the set of valid clause index pairs.

Unlike traditional formulations that treat ECPE as a classification or matching problem, we refor-
mulate it under a structured generation paradigm. Specifically, the task is cast as a constrained text
generation problem: given the input document D, the model generates a structured sequence that
encodes all valid ECPs in a predefined format. This formulation not only accommodates many-to-
many relationships but also naturally handles cases where an emotion clause also functions as its
own cause clause.

3.2 MULTI-TASK GENERATIVE FRAMEWORK

Shared Encoder. To jointly capture the semantic dependencies across emotion extraction (EE)
and emotion-cause pair extraction (ECPE), we adopt a multi-task generative framework built on the
T5 architecture. A shared encoder is employed to encode the entire document with explicit clause
boundary markers. The input sequence is constructed as:

X = [TASK]⊕ c1 ⊕ <c>⊕ c2 ⊕ <c>⊕ · · · ⊕ <c>⊕ cn ⊕ <c> (2)
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Input:
Task Descriptions:c1:The family currently relies on her for more than 2,000 yuan in wages to live, c2:the
medical treatment has been heavily indebted, c3:if I disappeared, c4:and my wife did not have a Shenzhen
household registration, c5:the days would be even more difficult, c6:it is helpless and heartbreaking, c7:but
I also appreciate the netizens who help me, c8:and the family’s unwavering commitment, c9:now I can only
grit my teeth and continue to hold on, c10:and I hope to achieve the wish.

Ground Truth:
Emotion Clauses: c7:but I also appreciate the netizens who help me
Cause Clauses: c7:but I also appreciate the netizens who help me
c8:and the family’s unwavering commitment
Emotion Types: happiness
ECPs: {c7, c7}, {c7, c8}

Target:
EE Target: [emotion clause: c7:but I also appreciate the netizens who help me, emotion type: happiness,
keywords: appreciate]
ECPE Target: [emotion clause: c7:but I also appreciate the netizens who help me, cause clause: c7:but I
also appreciate the netizens who help me, c8:and the family’s unwavering commitment]

Table 1: Example of EE and ECPE tasks. The input is task description and all clauses. The target is
the ECPs or emotion clauses.

where ⊕ denotes concatenation, and <c> is a special token marking clause boundaries. [TASK] is
a task-specific prefix (e.g., “EE:” or “ECPE:”). The shared encoder E shared

θ produces contextualized
token-level representations:

H = E shared
θ (X) ∈ RL×d (3)

where L is the sequence length, and d is the hidden dimension.

Task-Specific Decoders. On top of the shared encoder, we employ task-specific decoders to gener-
ate structured outputs for different tasks. Specifically, two separate decoders, DEE

ϕ and DECPE
ψ , are

responsible for EE and ECPE respectively. Each decoder conditions on the shared representation H
to produce task-specific sequences:

Y EE = DEE
ϕ (H), Y ECPE = DECPE

ψ (H) (4)

3.3 SEMANTICS-STRUCTURED GENERATION FORMAT

To unify EE and ECPE within a single generative framework, we design a semantics-structured
generation format that explicitly incorporates rich label semantics into the model outputs. These
semantics include emotion types, clause roles (i.e., emotion vs. cause clauses), and emotion trig-
ger words, allowing the model to produce outputs that are both structured and interpretable. Our
framework naturally supports self-referential ECPs (ci, ci), which occur when a single clause si-
multaneously expresses an emotion and its underlying cause, as in self-reflective statements (e.g., “I
am happy because I am grateful”).

EE Generative Paradigm. For the EE task, the goal is to identify all clauses expressing emotions
and determine their corresponding emotion type and trigger words. We define the generative target
as:

GEE = [emotion clause : ci, emotion type : emo, keywords : kw] (5)

where ci ∈ D is an emotion clause, emo ∈ ε = {anger, disgust, fear, happy, sad, surprise}, kw
is a salient token or phrase indicating the emotional expression. This structured output explicitly
encodes emotion semantics and facilitates modeling co-occurrence patterns between emotion types
and their lexical triggers. Table 1 is an illustrative example of EE tasks.

ECPE Generative Paradigm. The ECPE task aims to identify all valid ECPs in a document. The
generation target is defined as:

GECPE = [emotion clause : ci, cause clause : cj ] (6)
When an emotion clause ci is associated with multiple causes {cj1 , cj2 , ..., cjk}, we aggregate them
in a single structured entry:

[emotion clause : ci, cause clause : cj1 , cj2 , ..., cjk ] (7)
which preserves the natural clustering of causal information. As shown in Table 1, this format sup-
ports scenarios where the emotion clause is also its own cause (e.g., clause c7) while accommodating
additional external causes.
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3.4 OUTPUT DECODING STRATEGY

Given an input document, the generative model produces a target sequence Y ′ following the pre-
defined semantics-structured schema. Each output entry is enclosed within square brackets [] to
provide explicit boundaries, which facilitates automated parsing and reduces ambiguity in the gen-
erated sequences.

For the ECPE task, we adopt an emotion-centric causal clustering strategy. Concretely, for each
unique emotion clause ci that corresponds to one or more cause clauses, the model generates a
single structured entry of the form: [emotion clause: <content>, cause clause:
<cause 1>, <cause 2>, ..., <cause k>]. This design naturally supports: (1) multiple
causes for a single emotion clause, and (2) self-referential pairs where the emotion clause itself
also serves as its own cause (ci, ci). All entries in a document are concatenated and separated by
semicolons ;, as exemplified in Table 1.

Similarly, for the EE task, the output consists of one or more entries formatted as: [emotion
clause: <content>, emotion type: <type>, keywords: <kw>]. Multiple
entries are also separated by semicolons ;.

The parsing process is as follows: (1) Split the generated sequence by ; to extract individual
emotion-centric entries. (2) For each entry, extract the emotion clause content. (3) For ECPE,
split the content following cause clause: by , to obtain all associated cause clauses. (4) Form
ECPs by pairing the emotion clause with each listed cause clause.

To address potential generation errors or malformed outputs, we implement a recovery strategy
that identifies the longest well-formed substring within brackets. Only valid entries are parsed,
while malformed segments are ignored, ensuring that extraction remains robust and faithful to the
original document. This mechanism guarantees the reliability of the final ECPs even under imperfect
generation conditions, accommodating multi-cause scenarios and self-referential ECPs.

3.5 CLAUSE PREDICTION ALIGNMENT

Generative models occasionally produce clauses with minor lexical variations or paraphrasing,
which may deviate from the original document clauses. To enforce faithful clause-level predic-
tions, we introduce Clause Prediction Alignment (CPA) as a simple yet effective post-processing
step. Formally, for each generated clause c, we search for the most similar clause c∗ ∈ D within the
original document by maximizing a normalized sequence similarity:

c∗ = argmax
c′∈D

Sim(c, c′), (8)

where Sim(c, c′) ∈ [0, 1] is computed using the SequenceMatcher algorithm (based on longest
common subsequence matching). If the highest similarity exceeds a threshold τ , we replace c with
c∗; otherwise, we retain the original prediction. This thresholding mechanism prevents overcorrec-
tion and ensures only reliable alignments are applied.

Compared to exact edit-distance matching, the LCS-based similarity measure is more tolerant to
minor rephrasings while preserving sequence-level fidelity. This ensures that all final predictions
are grounded in the predefined clause set D, with a threshold τ tuned on the validation set to avoid
overcorrection. Please refer to Appendix B for the detailed implementation.

3.6 MULTI-TASK LEARNING OBJECTIVE

Our framework jointly models EE and ECPE in a multi-task generative setting. To this end, we
employ a shared encoder Eθ to capture common contextual representations, while task-specific de-
coders DEE

ϕ and DECPE
ψ generate outputs for their respective tasks. This design enables knowledge

transfer between EE and ECPE: emotion semantics captured in EE can guide ECPE in identifying
causal relationships, and vice versa.

For the EE task, given the input xEE = EE: ⊕D and encoder output H = Eθ(xEE), the training
objective maximizes the likelihood of the target token sequence:

LEE(x) = −
1

Nx

Nx∑
i=1

logPϕ
(
yEE
i | Hx, y

EE
<i

)
(9)
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where yEE
<i = {yEE

1 , . . . , yEE
i−1} denotes the tokens generated before step i, and N is the length of the

EE target sequence.

Similarly, for the ECPE task with input xECPE = ECPE:⊕D, the negative log-likelihood loss is:

LECPE = − 1

M

M∑
j=1

logPψ
(
yECPE
j | H, yECPE

<j

)
(10)

where M is the length of the ECPE target sequence. The overall training objective is a weighted
combination of the two losses:

L = λEE · LEE + λECPE · LECPE (11)

where λEE and λECPE are task-balancing hyperparameters, tuned on the validation set.

By sharing the encoder, our model leverages cross-task information, allowing EE to inform the
model about salient emotional content, while ECPE benefits from capturing causal dependencies
among clauses. At the same time, the task-specific decoders retain flexibility to specialize in their
respective outputs.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Dataset. We evaluate our SSG-ECPE framework on two widely-used benchmark datasets: (1)
Chinese ECPE Dataset Xia & Ding (2019): A clause-level annotated Chinese corpus specifically
designed for ECPE. (2) NTCIR-13 English Emotion Corpus Gao et al. (2017): An English dataset
extracted from novels. Comprehensive dataset statistics are provided in the Appendix D.

Evaluation Metrics. For the evaluation metrics, similarly to the prior work Xia & Ding (2019),
we report the Precision, Recall, and F1-score for the main ECPE task, as well as for the auxiliary
sub-tasks of emotion clause extraction (EE) and cause clause extraction (CE).

Baselines To comprehensively evaluate the effectiveness of our proposed SSG-ECPE framework,
we compare it against a wide range of representative baselines on both Chinese and English datasets.
Unless otherwise specified, all supervised fine-tuning (SFT) baselines are implemented with BERT-
based encoders to ensure fair comparison. We group the baselines into the following categories:
(1) Discriminative SFT Models. These methods formulate ECPE as a discriminative clause-pair
classification or tagging task. Representative works include Indep/Inter-CE/Inter-EC Xia & Ding
(2019), RANKCP Wei et al. (2020), ECPE-2D Ding et al. (2020a), PairGCN Chen et al. (2020b),
ECPE-MLL Ding et al. (2020b), Tagging Yuan et al. (2020), and subsequent refinements such as
UTOS Cheng et al. (2021), Refinement Fan et al. (2021), and CD-MRC Cheng et al. (2023). (2)
Graph- and Multi-task-based Models. These approaches exploit syntactic/semantic graphs or
auxiliary tasks to enhance representation learning. Examples include PairGCN Chen et al. (2020b),
KMGP Zong et al. (2024), RSN Chen et al. (2022a), MGSAG Bao et al. (2022), A2Net Chen
et al. (2022b), ECPE-MTL Li et al. (2023a), and MMN Shang et al. (2023). (3) Generative and
Prompt-based Models. Recent work explores generative paradigms or prompting strategies, includ-
ing UECA-Prompt Zheng et al. (2022), DECC Wu et al. (2024), and LLM-based approaches such
as GPT-3.5 Wang et al. (2023b) and DeepSeek-V3 DeepSeek-AI et al. (2024). (4) English-specific
Baselines. For the NTCIR-13 English dataset, in addition to the above, we include E2E-PExtE Singh
et al. (2021) and IA-ECPE Huang et al. (2023), which are tailored to English corpora.

Implementation Details All experiments are conducted under the T5 framework. Specifically, we
adopt Randeng-T5-77M-MultiTask-Chinese for the Chinese dataset and T5-base for the
English dataset. For the Chinese dataset, we consider two widely-used experimental setups for fair
and comprehensive comparison: Setting 1: Following Xia & Ding (2019), the dataset is split into
90% training and 10% testing. Setting 2: Following Fan et al. (2020), the dataset is divided into
80%/10%/10% for training/validation/testing, where the model is fine-tuned on the validation set
and evaluated on the test set. For the English dataset, we followed Singh et al. (2021) with an
80%/10%/10% split. In both datasets, we employ AdamW as the optimizer with a learning rate of
3 × 10−4, batch size of 24, and train for 20 epochs. Detailed experimental configurations can be
found in the Appendix C.
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Main Task Auxiliary Task
Emotion-Cause Pair Extraction Emotion Clause Extraction Cause Clause Extraction

Approach P R F1 P R F1 P R F1
Setting 1: 90% for training, 10% for testing

Indep 0.6832 0.5082 0.5818 0.8375 0.8071 0.8210 0.6902 0.5673 0.6205
Inter-CE 0.6902 0.5153 0.5901 0.8494 0.8122 0.8300 0.6809 0.5634 0.6151
Inter-EC 0.6721 0.5705 0.6128 0.8364 0.8107 0.8230 0.7041 0.6083 0.6507
EDSECPE† 0.7822 0.7417 0.7614 0.9243 0.9115 0.9179 0.7981 0.7821 0.7900
RANKCP† 0.7119 0.7630 0.7360 0.9123 0.8999 0.9057 0.7461 0.7788 0.7615
ECPE-2D† 0.7292 0.6544 0.6889 0.8627 0.9221 0.8910 0.7336 0.6934 0.7123
PairGCN† 0.7692 0.6791 0.7202 0.8857 0.7958 0.8375 0.7907 0.6928 0.7375
ECPE-MLL† 0.7700 0.7235 0.7452 0.8608 0.9191 0.8886 0.7382 0.7912 0.7630
RSN† 0.7601 0.7219 0.7393 0.8614 0.8922 0.8755 0.7727 0.7398 0.7545
MGSAG† 0.7743 0.7321 0.7521 0.9208 0.8211 0.8717 0.7979 0.7468 0.7712
A2Net† 0.7503 0.7780 0.7634 0.9067 0.9098 0.9080 0.7762 0.7920 0.7835
PBJE† 0.7922 0.7384 0.7637 0.9077 0.8691 0.8876 0.8179 0.7609 0.7878
ECPE-MTL† 0.7548 0.7557 0.7503 0.9093 0.8922 0.9004 0.7769 0.7739 0.7749
MMN† 0.7611 0.7396 0.7502 0.9037 0.8785 0.8907 0.7901 0.7554 0.7721
EPO-ECPE† 0.7900 0.6021 0.6824 0.9780 0.7848 0.8702 0.7961 0.6039 0.6848
GAT-ECPE 0.7265 0.7752 0.7492 0.9098 0.9103 0.9099 0.7617 0.7872 0.7734
TransECPE† 0.7708 0.6532 0.7072 0.8879 0.8315 0.8588 0.7874 0.6689 0.7233
UTOS† 0.7389 0.7062 0.7203 0.8815 0.8321 0.8556 0.7671 0.7320 0.7471
Refinement† 0.7746 0.7199 0.7463 0.8711 0.8178 0.8436 0.7947 0.7404 0.7666
Guided-QA† 0.7710 0.6920 0.7290 0.8470 0.9080 0.8760 0.7190 0.7920 0.7540
MM-R† 0.8218 0.7927 0.8062 0.9738 0.9038 0.9370 0.8328 0.7964 0.8135
CD-MRC† 0.8333 0.7800 0.8013 0.9692 0.9398 0.9537 0.8101 0.8068 0.8077
CFC-ECPE† 0.8249 0.8125 0.8187 0.9708 0.9332 0.9512 0.8409 0.8116 0.8247
RL-TSM 0.7604 0.7584 0.7590 0.8843 0.8334 0.8564 0.7965 0.7739 0.7848
MV-SHIF 0.8500 0.8070 0.8280 0.9670 0.9070 0.9360 0.8410 0.7940 0.8170
EoCP 0.7920 0.7694 0.7842 0.9796 0.8523 0.9113 0.8240 0.7418 0.7921
UECA-Prompt 0.7182 0.7799 0.7470 0.8475 0.9195 0.8816 0.7624 0.7916 0.7755
GPT3.5 0.4074 0.6754 0.5082 - - - - - -
GPT3.5 DECC 0.6123 0.8156 0.6995 - - - - -
SSG-ECPE 0.9947 0.9924 0.9936 0.9995 0.9972 0.9983 0.9952 0.9929 0.9940
SSG-ECPE-(w/o CPA) 0.5571 0.5545 0.5559 0.7952 0.7915 0.7932 0.6190 0.6161 0.6175

Setting 2: 80% for training, 10% for validation, 10% for testing
Tagging† 0.7243 0.6366 0.6776 0.8196 0.7329 0.7739 0.7490 0.6602 0.7018
TransECPE† 0.7374 0.6307 0.6799 0.8716 0.8244 0.8474 0.7562 0.6471 0.6974
UTOS† 0.7104 0.6812 0.6907 0.8649 0.8293 0.8491 0.7418 0.7084 0.7281
RANKCP† 0.6575 0.7305 0.6915 0.8936 0.8948 0.8942 0.6940 0.7471 0.7191
Refinement† 0.7377 0.6802 0.7078 0.8593 0.7993 0.8282 0.7614 0.7039 0.7315
PairGCN† 0.7672 0.6791 0.7202 0.8857 0.7958 0.8375 0.7907 0.6928 0.7375
ECPE-MLL† 0.7488 0.6976 0.7220 0.8465 0.8990 0.8717 0.7051 0.7704 0.7358
MM-R† 0.7897 0.7532 0.7706 0.9609 0.8809 0.9188 0.8090 0.7621 0.7845
CD-MRC† 0.7739 0.7478 0.7598 0.9592 0.9183 0.9381 0.7789 0.7616 0.7694
SSG-ECPE 0.9964 0.9955 0.9960 0.9995 0.9986 0.9991 0.9967 0.9957 0.9962
SSG-ECPE-(w/o CPA) 0.4899 0.4894 0.4897 0.7585 0.7578 0.7581 0.5601 0.5596 0.5598

Table 2: The performance of SSG-ECPE with other benchmark methods on the Chinese dataset for
the ECPE task as well as the two auxiliary tasks: EE and CE. The approach with † means using
BERT as the pre-trained model.

4.2 MAIN RESULTS AND DISCUSSION

A. Results on Chinese Dataset. Table 2 shows the performance of SSG-ECPE on the Chinese
dataset under two standard splits. Our method achieves SOTA results, with F1 scores exceeding
99% on EE, CE, and ECPE tasks. The key to this performance is the CPA mechanism. As shown
in Table 4, removing CPA causes a drastic drop of approximately 50% in F1, revealing severe is-
sues in the base generative model, such as hallucinating clauses or producing lexically inconsistent
variants. CPA mitigates these errors by aligning each predicted clause to the most similar one in the
input text, ensuring output fidelity. To validate the robustness of CPA, we conduct a threshold sen-
sitivity analysis (see Table 5), showing that F1 peaks around threshold=0.5 and degrades at higher
or lower values. This confirms that the high performance is not due to over-permissive matching,
but stems from a well-calibrated correction mechanism. While the generative multi-task framework
enables expressive joint modeling, CPA stabilizes decoding and transforms SSG-ECPE into a reli-
able extractor. We randomly sampled 100 test instances and manually verified the predictions. Over
98% of the predicted emotion-cause pairs exactly matched the ground truth, with most errors oc-
curring in cases involving implicit causes or ambiguous clause boundaries. Additional robustness
checks, including manual verification, comparisons different pre-trained models, and case studies,
are presented in Appendix E, G, and F.

B. Results on English Dataset. SSG-ECPE achieves 71.54 F1 on the English dataset, setting a new
SOTA (+10.8 over best baseline). The performance gap relative to the Chinese dataset ( 99%) stems
from higher ambiguity in novel-derived English texts (implicit causes, subjective annotations) and
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Emotion-Cause Pair Extraction Emotion Clause Extraction Cause Clause Extraction
Method P R F1 P R F1 P R F1
Indep 0.4694 0.4102 0.4367 0.6741 0.7160 0.6940 0.6039 0.4734 0.5301
ECPE-2D 0.6049 0.4384 0.5073 0.7435 0.6968 0.7189 0.6491 0.5353 0.5855
ECPE-MLL 0.5926 0.4530 0.5121 0.7546 0.6996 0.7255 0.6350 0.5919 0.6110
E2E-PExtE 0.5134 0.4929 0.5017 0.7163 0.6749 0.6943 0.6636 0.4375 0.5226
IA-ECPE 0.6014 0.4303 0.5005 0.7398 0.6985 0.7180 0.6387 0.5455 0.5880
GPT3.5 0.4211 0.3934 0.4068 - - - - - -
GPT3.5 DECC 0.4689 0.5442 0.5035 - - - - -
SSG-ECPE 0.7159 0.7149 0.7154 0.7843 0.7832 0.7837 0.7480 0.7469 0.7474

Table 3: Performance comparison on the English ECPE benchmark.

greater linguistic complexity. Nonetheless, consistent gains confirm strong cross-lingual generaliza-
tion.

Emotion-Cause Pair Extraction Emotion Clause Extraction
Approach P R F1 P R F1
SSG-ECPE 0.9947 0.9924 0.9936 0.9991 0.9988 0.9990
-w/o CPA 0.5016 0.5004 0.5010 0.9823 0.9890 0.9856
-w/o EE 0.9956 0.9947 0.9952 - - -
-w/o semantic labels 0.9948 0.9952 0.9950 0.8600 0.8236 0.8414
-w/o clause types 0.9899 0.9915 0.9907 0.9985 0.9990 0.9987
-w/o emotion types 0.9925 0.9882 0.9903 0.9963 0.9999 0.9982
-w/o trigger words 0.9952 0.9858 0.9905 0.9911 0.9961 0.9936
-w/o clause ID 0.9861 0.9832 0.9847 0.9984 0.9994 0.9989
-w/o task prefix 0.9962 0.9938 0.9950 0.6591 0.9778 0.8784

Table 4: Ablation study results. Removing CPA leads to catastrophic performance drop.

C. Ablation Study on Key Components. Table 4 shows key ablations. Removing CPA col-
lapses ECPE-F1 by ∼50%, confirming its essential role in grounding generation. Omitting task
prefixes harms EE (F1: 87.84%), while clause IDs have little effect. Semantic labels (types, trig-
gers) contribute moderately. Interestingly, excluding EE slightly boosts ECPE (+0.16%), but full
multi-tasking ensures balanced performance.

D. Threshold Sensitivity of CPA. We vary the threshold θemo from 0.3 to 0.9. As shown in Table 5,
ECPE-F1 fluctuates within a narrow range (< 1.3%), peaking at θemo = 0.5. Even under extreme
settings (e.g., θemo = 0.9), performance remains high (96.9% F1), far exceeding the best baseline
(≤71%). This demonstrates that CPA’s gains are robust and not due to fine-tuned thresholds. Com-
bined with ablation and cross-lingual results, this confirms the stability and general effectiveness of
our approach.

Threshold EE-F1 CE-F1 ECPE-F1
0.3 98.21 97.45 97.98
0.4 99.01 98.76 99.15
0.5 99.83 99.40 99.36
0.6 99.72 99.31 99.10
0.7 99.54 99.02 98.89
0.8 99.20 98.47 98.35
0.9 97.98 96.65 96.92

Table 5: F1 scores under different CPA thresholds. Best results at threshold=0.5.

5 CONCLUSION

We proposed SSG-ECPE, a semantics-structured generation framework enhanced by clause predic-
tion alignment (CPA) for Emotion-Cause Pair Extraction. By reformulating ECPE as a multi-task
generation problem, our model integrates label semantics (e.g., emotion types, roles) into structured
outputs and grounds predictions in the input text. Extensive experiments demonstrate that CPA is not
only crucial for correcting hallucinations but also substantially improves stability across datasets and
thresholds, leading to state-of-the-art results. This highlights a broader insight: lightweight align-
ment mechanisms can bridge the gap between discriminative and generative paradigms, enabling
generative models to achieve both flexibility and reliability in structured extraction tasks. Future
work may extend this paradigm to other relation extraction and event argument extraction problems,
where grounding generation in the source text is equally vital.
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A USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this paper, we used Large Language Models (LLMs) solely as an assistive tool for
improving the clarity and readability of the manuscript. Specifically, LLMs were employed for
language polishing, such as grammar correction, style refinement, and phrasing suggestions.

No part of the research process, including problem formulation, dataset construction, methodol-
ogy design, experimental execution, or result analysis, was conducted by or delegated to LLMs.
All scientific contributions, including conceptualization, implementation, and interpretation, are the
authors’ original work. The authors take full responsibility for the content of this paper.

B IMPLEMENTATION OF CLAUSE PREDICTION ALIGNMENT (CPA)

We provide a pseudo-code description of the Clause Prediction Alignment (CPA) module used dur-
ing inference. This implementation directly corresponds to the description in Section 3.5 and is
based on Python’s difflib.SequenceMatcher. The CPA module can be implemented us-
ing the Python standard library difflib. No external dependencies are required beyond standard
Python, ensuring reproducibility and lightweight integration into the inference pipeline.

Algorithm 1: Clause Prediction Alignment (CPA)
Input: Predicted clause c, set of original document clauses D, similarity threshold τ
Output: Aligned clause ĉ

ĉ← c // Default: retain predicted clause
best sim← 0 ;
foreach c′ ∈ D do

sim← SequenceMatcher(c, c′).ratio() ;
if sim > best sim then

best sim← sim ;
ĉ← c′ ;

if best sim < τ then
ĉ← c // No reliable match, revert to original

return ĉ

Complexity Analysis. Let |D| denote the number of clauses in the document and L the average
length (in tokens/characters) of a clause. The SequenceMatcher function computes the edit
similarity between two strings in O(L2) time. Since CPA compares the predicted clause against
all clauses in D, the overall time complexity is: O(|D| · L2). In practice, |D| is typically small
(dozens of clauses per document), and L is short (one or two sentences). Thus, CPA adds negli-
gible computational overhead relative to model inference while significantly improving alignment
robustness.

C EXPERIMENT SETTINGS

To ensure a fair and reproducible comparison with existing approaches, we adopt standard evaluation
metrics, including Precision (P), Recall (R), and F1-score, defined as follows:

P =

∑
correct pairs∑
proposed pairs

(12)

R =

∑
correct pairs∑
actual pairs

(13)

F1 =
2× P ×R

P +R
(14)

where proposed pairs means the pairs generated by the model, actual pairs is the number of
actual pairs labeled in the dataset, and the correct pairs represents the number of pairs correctly
predicted.
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For the Chinese dataset, we consider two widely used data splits: 9:1 (train:test) Xia & Ding (2019)
and 8:1:1 (train:valid:test) Fan et al. (2020). The pre-trained model used for Chinese experiments
is Randeng-T5-77M-MultiTask-Chinese. For the English dataset, we follow the 8:1:1 Singh et al.
(2021) splitting strategy, using T5-small as the backbone.

We employ the AdamW optimizer with an initial learning rate of 3 × 10−4 and weight decay of
1 × 10−2. The batch size is set to 24, and the model is trained for 20 epochs on all datasets. We
apply linear learning rate decay with a warm-up ratio of 0.1 and use gradient clipping at a maximum
norm of 1.0 to stabilize training. For Setting 2 and the English dataset, the best model is selected
based on validation performance, and early stopping is applied with a patience of 5 epochs. Each
experiment is repeated 5 times with different random seeds, and the average performance is reported.

All experiments are conducted on a single NVIDIA GeForce RTX 3090 GPU with 24GB VRAM.
A complete 10-fold cross-validation on the Chinese dataset (with a 9:1 train:test split in each fold)
takes approximately 27 hours, which is comparable to the time required for BERT fine-tuning ( 30
hours).

D DATASET STATISTICS

Table 6 summarizes the statistics of the two benchmark datasets. Most documents contain only a
single emotion-cause pair (ECP), accounting for 89.77% in the Chinese dataset and 89.24% in the
English dataset, which indicates that the majority of instances follow relatively simple document
structures.

On average, Chinese documents are longer (14.77 clauses per document) compared to English ones
(7.67 clauses per document). In both datasets, most ECPs occur within a short clause distance:
95.8% in Chinese and 91.73% in English appear within three clauses. This reflects a strong local
co-occurrence tendency, which models can easily exploit but also creates a positional bias.

Such bias may hinder the detection of complex, long-distance emotion–cause relationships, partic-
ularly in the Chinese dataset where longer document lengths (up to 73 clauses) and wider clause
distances (up to 12) necessitate capturing semantic dependencies beyond local proximity. These ob-
servations highlight two major challenges in ECPE: (1) mitigating positional bias and (2) modeling
semantic coherence across long documents.

Chinese Dataset English Dataset
Range Num. Ratio Num. Ratio
Documents 1945 100% 2843 100%
1 ECP 1746 89.77% 2537 89.24%
2 ECPs 177 9.10% 256 9.00%
>2 ECPs 22 1.13% 50 1.76%
Abs dist. = 0 ECPs 511 23.6% 1640 51.01%
Abs dist. = 1 ECPs 1342 61.9% 825 25.66%
Abs dist. = 2 ECPs 224 10.3% 328 10.21%
Abs dist. = 3 ECPs 50 2.3% 156 4.85%
Abs dist. >3 ECPs 40 1.9% 266 8.27%
ECPs 2154 - 3215 -
Emotion clause 2085 - 2872 -
Cause clause 2142 - 3187 -
Avg clauses/doc 14.77 - 7.67 -
Max clauses/doc 73 - 41 -
Avg ECPs/doc 1.11 - 1.13 -
Max ECPs/doc 4 - 6 -
Min dist. emo&cau 0 - 0 -
Max dist. emo&cau 12 - 25 -
Avg dist. emo–cau 0.94 - 1.54 -

Table 6: Dataset statistics for the two benchmark dataset used for ECPE task.

E MANUALLY VERIFIED THE CPA’S PREDICTIONS

To further validate the reliability of our Clause Prediction Alignment (CPA) mechanism, we con-
ducted a manual verification of predicted emotion-cause pairs on a random subset of the test set.

Verification Procedure. We randomly sampled 50 instances from the Chinese and English test set.
For each instance, human annotators checked whether each predicted emotion-cause pair exactly
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Document：
1,生不如死是老吴患癌后常有的想法
2,由于大面积骨转移
3,老吴每天都在剧痛里挣扎
4,从2012年10月到现在
5,老吴已经和晚期肺癌搏斗了30个月
6,这个时间长度
7,比医生最初给他的死亡判决已经超出了近10倍
8,深圳宁养院的医生王劲也感到惊诧
Ground Truth：
情感原因对：(1, 2), (1, 3), (8, 5), (8, 7)

Generative Targets:
[['情感子句:c1:生不如死是老吴患癌后常有的想法', '原因子句:c2:
由于大面积骨转移', 'c3:老吴每天都在剧痛里挣扎'], ['情感子
句:c8:深圳宁养院的医生王劲也感到惊诧', '原因子句:c5:老吴已
经和晚期肺癌搏斗了30个月', 'c7:比医生最初给他的死亡判决已
经超出了近10倍']]
Generative Prediction:
[['情感子句:c1:生不如死是老吴患癌后常有的想法', '原因子句:c2:
由于大微博骨20-30', 'c3:老吴每天都在剧痛里挣扎'], ['情感子
句:c8:深圳宁养院的医生王劲也感到惊诧', '原因子句:c5:老吴已
经和晚期肺癌搏斗了30个月', 'c7:比医生当初给他的死亡判决已
经超出了近10倍’]]
Clause Prediction Matching Output:
[['情感子句:c1:生不如死是老吴患癌后常有的想法', '原因子句:c2:
由于大面积骨转移', 'c3:老吴每天都在剧痛里挣扎'], ['情感子
句:c8:深圳宁养院的医生王劲也感到惊诧', '原因子句:c5:老吴已
经和晚期肺癌搏斗了30个月', 'c7:比医生最初给他的死亡判决已
经超出了近10倍']]

Document：
1,当我看到建议被采纳
2,部委领导写给我的回信时
3,我知道我正在为这个国家的发展尽着一份力量
4,27日
5,河北省邢台钢铁有限公司的普通工人白金跃
6,拿着历年来国家各部委反馈给他的感谢信
7,激动地对中新网记者说
8,国家公安部国家工商总局国家科学技术委员会科技部卫生部国
家发展改革委员会等部委均接受并采纳过我的建议
Ground Truth：
情感原因对：(7, 9)

Generative Targets:
[['情感子句:c7:激动地对中新网记者说', '原因子句:c9:国家公安部
国家工商总局国家科学技术委员会科技部卫生部国家发展改革
委员会等部委均接受并采纳过的我的建议']]
Generative Prediction:
[['情感子句:c7:激动地对单记者说', '原因子句:c9:国家雩国家円
relative国家医学有个寸科技部呼吸部国家发展就业寸等部委均
满足并通纳过的我的订']]
Clause Prediction Matching Output:
[['情感子句:c7:激动地对中新网记者说', '原因子句:c9:国家公安部
国家工商总局国家科学技术委员会科技部卫生部国家发展改革
委员会等部委均接受并采纳过的我的建议']]

Document：
1,We dont have a chip to spare 
2,he railed
3,correctly .
Ground Truth：
ECPs：(2, 1)

Generative Targets:
[[''emotion clause:c2:he railed', 'cause clause:c1:We dont have a chip to 
spare'']]
Generative Prediction:
[['emotion clause:c2:he railed', 'cause clause:c1:We dont have a web to 
spare']]
Clause Prediction Matching Output:
[['emotion clause:c2:he railed', 'cause clause:c1:We dont have a chip to 
spare']]

Document：
1,He wanted to secure a location right at the front of the hall as a dramatic 
way to launch the Apple II
2, and so he shocked Wozniak by paying $5
3,000 in advance .
Ground Truth：
ECPs：(2, 1)

Generative Targets:
[['emotion clause:c2:and so he shocked Wozniak by paying $5', 'cause
clause:c1:He wanted to secure a location right at the front of the hall as a 
dramatic way to launch the Apple II']]
Generative Prediction:
[['emotion clause:c2:and so he shocked Wozniak by paying little', 'cause
clause:c1:He wanted to secured a rehearsal right at the front of the hall as a 
unexpected way to release the Apple II']]
Clause Prediction Matching Output:
['emotion clause:c2:and so he shocked Wozniak by paying $5', 'cause
clause:c1:He wanted to secure a location right at the front of the hall as a 
dramatic way to launch the Apple II']]

Document：
1,We dont have a chip to spare 
2,he railed
3,correctly .
Ground Truth：
ECPs：(2, 1)

Generative Targets:
[['emotion clause:c7:Jobs threw a tantrum', 'cause clause:c1:Scott assigned 1 
to Wozniak and 2 to Jobs']]
Generative Prediction:
[['emotion clause:c7:Jobs threw a quickerum', 'cause clause:c1:Scott 
assigned 1 to Wozniak and 2 to Jobs']]
Clause Prediction Matching Output:
[['emotion clause:c7:Jobs threw a tantrum', 'cause clause:c1:Scott assigned 1 
to Wozniak and 2 to Jobs']]

Figure 3: Case studies.

matched the ground truth, including correct clause boundaries and roles. Predictions were catego-
rized as: Exact Match: Both emotion and cause clauses match the ground truth. Partial Match:
Either the emotion or cause clause is partially correct. Mismatch: Both clauses are incorrect.

On the Chinese dataset, 48 out of 50 instances achieved Exact Match, yielding a 96% exact ac-
curacy. The two non-exact cases involved: A lexical deviation (“Teresa” vs. “Graduates”) in the
raw generation, which was corrected by CPA to the correct clause via similarity matching. An am-
biguous multi-pair case where one cause clause was missed due to overlapping semantics. On the
English dataset, 49 out of 50 instances were exact matches. The single error occurred in a narra-
tive with an implicit causal relation (“he felt guilty because he didn’t help”), where the cause is
not explicitly stated. Notably, when inspecting model outputs without CPA, we observed frequent
hallucinations—generating clauses not present in the original text. In contrast, CPA ensures all
predictions are grounded in actual input clauses, effectively eliminating spurious generations. These
results confirm that the high F1 scores reflect genuine prediction accuracy and demonstrate that CPA
plays a critical role in aligning generated outputs with the input text.

F CASE STUDIES ON CHINESE AND ENGLISH DATASETS

To illustrate the behavior of SSG-ECPE and the role of Clause Prediction Alignment (CPA), we
present one representative example from each language.

On the Chinese dataset, the raw generator produces significant errors: (“...20-30”) is a hallucinated
phrase not in the original text, likely due to noisy token generation. Additionally, (“originally”)
slightly deviates from (“initially”). Without CPA, these would be false predictions. However, CPA
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aligns each predicted clause with the most similar one in the document, successfully recovering the
correct clauses and producing perfect matches. On the English dataset, the generator incorrectly
substitutes ”chip” with ”web”, a semantically plausible but lexically incorrect word. This type of
error, common in autoregressive models, would lead to an exact-match failure. CPA detects that the
similarity between ”We dont have a web to spare” and the true clause ”We dont have a chip to spare”
is high (e.g., SequenceMatcher ratio > 0.9), and maps it back to the closest valid clause in the input.
Thus, the final output becomes accurate despite imperfect generation.

G PERFORMANCE COMPARISON OF PRE-TRAINED MODELS ON ECPE TASK

To analyze the performance difference between different pre-trained models on the Emotion Cause
Pair Extraction (ECPE) task, we performed comparative experiments on the Randeng-T5 model used
for the Chinese dataset. Due to the limitation of computational resources, we selected mBART-large-
501 and mT5-small2 as comparison models.

BART employs a denoising autoencoder architecture, with a bidirectional encoder and a causal
decoder, which differs from the unified text-to-text framework of T5-based models. Both mT5 and
Randeng-T5 are based on the T5 architecture but differ in their pre-training corpora. mT5 is
trained on the multilingual corpus, which includes a small proportion of Chinese text among 101
languages. In contrast, Randeng-T5 is specifically optimized for Chinese, with its pre-training
corpus exclusively composed of Chinese text.

On the Chinese dataset, Randeng-T5-77M and mT5-small achieve strong performance, bene-
fiting from their exposure to Chinese text during pre-training. Notably, Randeng-T5-77M, despite
its smaller size (77M parameters), matches the performance of the larger mT5-small (300M), un-
derscoring the critical importance of language-specific pre-training for optimal performance.

On the English dataset, T5-base achieves the best results, demonstrating its effectiveness in
generation-based information extraction. mT5-small performs slightly worse, likely due to in-
terference from non-English content in its multilingual training data. Once again, BART underper-
forms dramatically (F1: 2.38%), with nearly all outputs failing to conform to the expected structure.
This consistent failure across languages highlights a key insight: for structured generation tasks
like ECPE, the choice of pre-training objective (e.g., denoising vs. span corruption) and language
specialization critically affects model compatibility and performance.

Moreover, BART performed significantly worse, which can be attributed to the following factors: 1.
Limited training objective: BART is pre-trained on unsupervised data with denoising reconstruction
as its primary task, resulting in a narrow focus that limits its generalization ability for the ECPE
task. 2. Mismatch with task requirements: The pre-training objective of BART is mainly to restore
corrupted input, which, while beneficial for generation tasks, may fall short in capturing the com-
plex causal relationships required for ECPE. 3. Architectural limitations: BART’s design is better
suited for tasks like text summarization but is less effective for tasks demanding more substantial
reasoning and semantic understanding. Additionally, considering the model size, mBART-large-50
has 610M parameters, Randeng-T5-77M has 77M parameters, and mT5-small has 300M parame-
ters. Although Randeng-T5 is relatively lightweight in scale, it performs strongly on the Chinese
dataset. Its advantage is due to its pre-training optimization explicitly tailored for Chinese corpora,
allowing it to capture better linguistic patterns and discourse structures common in Chinese writing.

Dataset PLM P R F1
Randeng-T5 0.9947 0.9924 0.9936

Chinese mT5 0.9952 0.9947 0.9949
BART 0.4851 0.4692 0.4767

T5 0.7159 0.7149 0.7154
English mT5 0.7082 0.6900 0.7013

BART 0.0242 0.0237 0.0238

Table 7: Different Pre-trained Language Models (PLM) perform on ECPE task. We report results
for two PLMs, Rangdeng, mT5, and BART on Chinese and English dataset.

1https://huggingface.co/facebook/mbart-large-50
2https://huggingface.co/google/mt5-small
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H SUPPLEMENTARY RESULTS FOR LLM-BASED APPROACHES

To contextualize our method within the landscape of large language models (LLMs), we conduct
preliminary evaluations of several LLM-based approaches, including GPT-4o, DeepSeek-R1, and
DeepSeek-V3, in addition to GPT-3.5. Due to the high computational cost (GPT-4o:$500) and API
expenses of LLMs, comprehensive evaluations are resource-intensive. Following the setup of Wang
et al. (2023b), we perform zero-shot evaluations on a subset of 100 test samples from the Chinese
dataset. As shown in Table 8, GPT-4o, DeepSeek-V3, and DeepSeek-R1 achieve F1 scores of
55.82%, 63.72%, and 64.37%, respectively.

Our SSG-ECPE model, evaluated on the same 100-sample subset, achieves a significantly higher F1
score of 99.36%. This substantial performance gap highlights the effectiveness of our semantics-
structured generation and clause-level alignment framework. The results suggest that even state-
of-the-art LLMs face challenges in ECPE under zero-shot conditions, potentially due to the need
for precise clause-level matching and the complexity of identifying multiple, potentially nested
emotion-cause pairs.

Method P R F1
GPT3.5 (prompt, 0-shot) 54.13 50.86 52.44
GPT3.5 (DECC, 0-shot) 57.50 39.66 46.94
GPT-4o 58.64 53.26 55.82
DeepSeek-V3(0-shot) 65.45 62.07 63.72
DeepSeek-R1(0-shot) 65.97 62.86 64.37
SSG-ECPE 99.45 99.28 99.36

Table 8: Results of SSG-ECPE with other LLMs-based baselines on the Chinese dataset for the
ECPE task.

I COMPARISON ON EXTRACTING MULTIPLE PAIRS.

The extraction of multiple emotion-cause pairs (ECPs) within a single document is a significant
challenge due to potential nesting, overlap, and complex inter-clause dependencies. To evaluate the
robustness of our method in such complex scenarios, we partitioned the test set (from the 10-fold
CV) of the Chinese dataset into two subsets: one containing documents with only one ECP, and the
other containing documents with two or more ECPs.

Table 9 presents the results. SSG-ECPE achieves state-of-the-art performance on both subsets. No-
tably, on documents with multiple ECPs, SSG-ECPE significantly outperforms all baselines, achiev-
ing an F1 score of 98.70%, which is over 38 points higher than the best competing method (EPO-
ECPE, 60.19%). This dramatic performance gap underscores the effectiveness of our semantics-
structured generation and clause-level alignment framework in handling complex, multi-pair docu-
ments.

Approach P R F1
Single ECP

Inter-EC 0.6734 0.5939 0.6288
RANKCP 0.6625 0.6966 0.6780

ECPE-MLL 0.6870 0.6832 0.6851
UTOS 0.6765 0.6232 0.6480

EPO-ECPE 0.7668 0.6559 0.7065
SSG-ECPE 0.9937 0.9900 0.9918

Multiple ECPs
Inter-EC 0.5912 0.3302 0.4206

RANKCP 0.7508 0.4390 0.5531
ECPE-MLL 0.7045 0.4776 0.5688

UTOS 0.5545 0.4676 0.5035
EPO-ECPE 0.8396 0.4768 0.6019
SSG-ECPE 0.9822 0.9918 0.9870

Table 9: The results for documents with only one and more than one ECP on the Chinese benchmark
dataset.
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