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Abstract
Learning with expert advice and multi-armed
bandit are two classic online decision problems
which differ on how the information is observed
in each round of the game. We study a family
of problems interpolating the two. For a vector
m = (m1, . . . ,mK) ∈ NK , an instance of m-
MAB indicates that the arms are partitioned into
K groups and the i-th group contains mi arms.
Once an arm is pulled, the losses of all arms in the
same group are observed. We prove tight minimax
regret bounds for m-MAB and design an optimal
PAC algorithm for its pure exploration version, m-
BAI, where the goal is to identify the arm with
minimum loss with as few rounds as possible.
We show that the minimax regret of m-MAB is

Θ

(√
T
∑K
k=1 log(mk + 1)

)
and the minimum

number of pulls for an (ε, 0.05)-PAC algorithm
of m-BAI is Θ

(
1
ε2 ·

∑K
k=1 log(mk + 1)

)
. Both

our upper bounds and lower bounds for m-MAB
can be extended to a more general setting, namely
the bandit with graph feedback, in terms of the
clique cover and related graph parameters. As
consequences, we obtained tight minimax regret
bounds for several families of feedback graphs.

1. Introduction
A typical family of online decision problems is as follows:
In each round of the game, the player chooses one ofN arms
to pull. At the same time, the player will incur a loss of the
pulled arm. The objective is to minimize the expected regret
defined as the difference between the cumulative losses of
the player and that of the single best arm over T rounds. The
minimax regret, denoted as R∗(T ), represents the minimum
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expected regret achievable by any algorithm against the
worst loss sequence.

There are variants of the problem according to amount of
information the player can observe in each round. In the
problem of multi-armed bandit (MAB), the player can only
observe the loss of the arm just pulled. The minimax regret
is Θ

(√
NT

)
(Audibert & Bubeck, 2009). Another impor-

tant problem is when the player can observe the losses of all
arms in each round, often refered to as learning with expert
advice. The minimax regret is Θ

(√
T logN

)
(Freund &

Schapire, 1997; Haussler et al., 1995). Bandit with graph
feedback generalizes and interpolates both models. In this
model, a directed graph G, called the feedback graph, is
given. The vertex set of G is the set of arms and a directed
edge from i to j indicates that pulling the arm i can observe
the loss of arm j. As a result, the MAB corresponds to when
G consists of singletons with self-loop, and learning with
expert advice corresponds to when G is a clique. A number
of recent works devote to understanding how the structure
of G affects the minimax regret (Alon et al., 2015; Chen
et al., 2021; He & Zhang, 2023; Eldowa et al., 2024; Kocák
& Carpentier, 2023; Rouyer et al., 2022; Dann et al., 2023).

In this paper, we consider a natural interpolation between
learning with expert advice and multi-armed bandit. Let
m = (m1,m2, . . . ,mK) ∈ NK be a vector with each
mi ≥ 1. An instance of m-MAB is that the all N arms
are partitioned into K groups and the pull of each arm can
observe the losses of all arms in the same group. In the lan-
guage of bandit with graph feedback, the feedback graph G
is the disjoint union ofK cliques with sizem1,m2, . . . ,mk

respectively. We show that the minimax regret for m-MAB
is Θ

(√
T ·
∑
k∈[K] log(mk + 1)

)
. As a result, this gener-

alizes the optimal regret bounds for both MAB and learning
with expert advice.

A closely related problem is the so-called “pure exploration”
version of bandit, often referred to as the best arm identifi-
cation (BAI) problem where the loss of each arm follows
some (unknown) distribution. The goal of the problem is
to identify the arm with minimum mean loss with as few
rounds as possible. Similarly, we introduced the problem
of m-BAI with the same feedback pattern as m-MAB. We
design an (ε, 0.05)-PAC algorithm for m-BAI which ter-
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minates in T = O
(

1
ε2

∑
k∈[K] log(mk + 1)

)
rounds for

every ε < 1
8 . This means that after T rounds of the game,

with probability at least 0.95, the algorithm can output an
arm whose mean loss is less than ε plus the mean of the
best one. We show that our algorithm is optimal by proving
a matching lower bound Ω

(
1
ε2

∑
k∈[K] log(mk + 1)

)
for

any (ε, 0.05)-PAC algorithm.

Both our upper bounds and lower bounds for the minimax
regret of m-MAB can be generalized to bandit with graph
feedback. To capture the underlying structure necessary for
our proofs, we introduce some new graph parameters which
yield optimal bound for several families of feedback graphs.
The main results are summarized in Section 1.1.

Our algorithm deviates from the standard online stochastic
mirror descent (OSMD) algorithm for bandit problems. We
employ the two-stage OSMD developed in (He & Zhang,
2023) and give a novel analysis which yields the optimal
regret bound. For the lower bound, we prove certain new
“instance-specific” lower bounds for the best arm identifica-
tion problem. These lower bounds may find applications in
other problems. We will give an overview of our techniques
in Section 1.2.

1.1. Main Results

We summarize our main results in this section. Formal defi-
nitions of m-MAB, m-BAI and bandit with graph feedback
are in Section 2. All the proof details can be found in the
appendix.

Theorem 1.1. There exists an algorithm such that for any
instance of (m1, . . . ,mK)-MAB, any T > 0 and any loss
sequence ℓ(0), ℓ(1), . . . , ℓ(T−1) ∈ [0, 1]N , its regret is at
most

c ·

√√√√T ·
K∑
k=1

log(mk + 1),

where c > 0 is a universal constant.

Given an instance of m-BAI, for ε, δ ∈ (0, 1), an (ε, δ)-
PAC algorithm can output an arm whose mean loss is less
than ε plus the mean of the optimal one with probability
at least 1 − δ. Using a reduction from m-BAI to m-MAB
(Lemma A.1), we obtain a PAC algorithm for m-BAI:

Theorem 1.2. There exists an (ε, 0.05)-PAC algorithm for
(m1, . . . ,mK)-BAI which pulls

T ≤ c ·
K∑
k=1

log(mk + 1)

ε2

arms where c > 0 is a universal constant.

Let Ber(p) denote the Bernoulli distribution with mean p.

We complement the above algorithm with the following
lower bound:

Theorem 1.3. There exists an instance H such that for
every (ε, 0.05)-PAC algorithm A of (m1, . . . ,mK)-BAI
with ε ∈

(
0, 18

)
, the expected number of pulls T ofA on H

satisfies

E [T ] ≥ c′ ·
T∑
k=1

log(mk + 1)

ε2
,

where c′ > 0 is a universal constant. Moreover, we can pick
H as the one in which each arm follows Ber( 12 ).

Using the reduction from m-BAI to m-MAB (Lemma A.1)
again, we obtain the lower bound for m-MAB.

Theorem 1.4. For any algorithm A of (m1, . . . ,mk)-MAB,
for any sufficiently large T > 0, there exists a loss sequence
ℓ(0), ℓ(1), . . . , ℓ(T−1) such that the regret of A in T rounds
is at least

c′ ·

√√√√T ·
K∑
k=1

log(mk + 1),

where c′ > 0 is a universal constant.

Our results generalize to the setting of bandit with graph
feedback. LetG = (V,E) be a directed graph with self-loop
on each vertex. Let V1, . . . , VK ⊆ V be subsets of vertices.
We say that they form a (V1, . . . , VK)-clique cover of G if
each induced subgraph G[Vk] for k ∈ [K] is a clique and⋃
k∈[K] Vk = V .

Corollary 1.5. Let G be a feedback graph with a self-loop
on each vertex. If G contains a (V1, . . . , VK)-clique cover
where |Vk| = mk for every k ∈ [K], then the minimax
regret of bandit with graph feedback G is at most

c ·

√√√√T ·
K∑
k=1

log(mk + 1)

for some universal constant c > 0.

Our lower bounds generalize to bandit with graph feedback
as well. The terms “strongly observable feedback graphs”
and “weakly observable feedback graphs” are defined in
Section 2.

Theorem 1.6. Let G = (V,E) be the feedback graph. As-
sume that there exist K disjoint sets S1, . . . , SK ⊆ V such
that

• each G[Sk] is a strongly observable graph with a self-
loop on each vertex;

• there is no edge between Si and Sj for any i ̸= j.
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Then for any algorithm A and any sufficiently large time
horizon T > 0, there exists some loss sequence on which

the regret ofA is at least c′ ·
√
T ·
∑K
k=1 log (|Sk|+ 1) for

some universal constant c′ > 0.

The following lower bound for weakly observable feedback
graphs confirms a conjecture in (He & Zhang, 2023) and
implies the optimality of several regret bounds established
there, e.g., when the feedback graph is the disjoint union of
loopless complete bipartite graphs. The notion of t-packing
independent set is defined in Section 2.

Theorem 1.7. Let G = (V,E) be the feedback graph.
Assume that V can be partitioned into K disjoint sets
V = V1 ∪ V2 ∪ · · · ∪ VK such that

• for every k ∈ [K], each G[Vk] is observable;

• for every k ∈ [K], there exists a tk-packing indepen-
dent set Sk in G[Vk] such that every vertex in Sk does
not have a self-loop;

• there is no edge from Vi to Sj for any i ̸= j in G.

Then for any algorithm A and any sufficiently large time
horizon T > 0, there exists some loss sequence on
which the regret of A with feedback graph G is at least

c′ · T 2
3 ·
(∑K

k=1 max
{
log |Sk|, |Sk|

tk

}) 1
3

for some univer-

sal constant c′ > 0.

Theorem 1.7 implies tight regret lower bounds for several
weakly observable graphs. We summarize the minimax
regret for some feedback graphs, weakly or strongly observ-
able, in Table 1.

1.2. Overview of Technique & Contribution

We note that a simple reduction (Lemma A.1) implies that
any algorithm for m-MAB can be turned into a PAC algo-
rithm for m-BAI. As a result, Theorems 1.1 to 1.4 follow
from a minimax regret upper bound for m-MAB and a lower
bound for m-BAI.

1.2.1. UPPER BOUNDS FOR m-MAB

We design a new two-stage algorithm (Algorithm 1) to es-
tablish an upper bound for m-MAB. The algorithm is similar
to the one used in (He & Zhang, 2023) to study weakly
observable graphs with a few tweaks to accommodate our
new analysis.

The algorithm maintains a distribution Y (t) over K groups
and for each group k ∈ [K], it maintains a distribution
X

(t)
k for arms in that group. In each round of the game,

the algorithm pulls an arm in a two-stage manner: First
pick the group according to the distribution over groups and

then pick the arm in that group following the distribution
in the group. At the end of each round, all distributions are
updated in the manner similar to online stochastic mirror
descent (OSMD) with carefully designed loss vectors and
various potential functions. Each group can be viewed as
a super arm, and Y (t) updates with the corresponding loss
sequence L̂(t)(k) for k ∈ [K], while X(t)

k updates with the
corresponding loss estimator ℓ̂(t)k in group k.

Our main technical contribution is a novel analysis of this
two-stage algorithm. We design auxiliary two-stage piece-
wise continuous processes whose regret is relatively easy to
analyze. Then we view our algorithm as a discretization of
the process and bound the accumulated discretization errors.

Our new analysis is the key to the tight regret bound. If
we apply the classical analysis for OSMD to the two-stage
algorithm, as done in (He & Zhang, 2023), the regret de-
composes into two parts: (1) the regret due to choosing
the group and (2) the regret due to running in the optimal
group k∗. Let R(t)(ℓ) denote the t-th instant regret for loss
sequence ℓ. That is

R(t)(ℓ) ≤ O
(
R(t)(L̂) +R(t)(ℓ̂k∗)

)
.

The first part is easy to bound, while the second part is
challenging because it contains a factor 1

Y (t)(k∗)
(the inverse

of the probability to choose the optimal group at each round)
which is usually hard to bound. However, with our new
analysis for OSMD, the regret in the second part can be
improved to the expectation of the regret for each group.
That is

R(t)(ℓ) ≤ O

R(t)(L̂) +
∑
k∈[K]

Y (t)(k) ·R(t)(ℓ̂k)

 .

Technically, the Y (t)(k) term will eliminate the 1
Y (t)(k)

factor, making it possible for the optimal bound (see
Lemma B.4 for details).

Since the notion of m-MAB generalizes both learning with
expert advice and multi-armed bandit, we remark that our
analysis of Algorithm 1 can specialize to an analysis of
both ordinary mirror descent (MD) algorithm and OSMD
algorithm. We believe that the viewpoint of discretizing
a piecewise continuous process is more intuitive than the
textbook analysis of OSMD and may be of independent
pedagogical interest.

1.2.2. LOWER BOUNDS FOR m-BAI

Our lower bound for the number of rounds in an (ε, 0.05)-
PAC algorithm for m-BAI where m = (m1, . . . ,mK) is

Ω
( K∑
k=1

log(mk + 1)

ε2

)
,

3



On Interpolating Experts and Multi-Armed Bandits

Table 1. Minimax Regret Bound on Various Feedback Graphs

Graph Type Previous Result This Work

General strongly observable
graphs with self-loops

O
(√

αT logNT
)

Ω
(√

αT
)

1

O

(√
T
∑K
k=1 logmk

)
2

See Theorem 1.6 for the lower bound

Disjoint union of K cliques
O
(√

KT logNT
)

Ω
(√

KT
) Θ

(√
T
∑K
k=1 logmk

)
General weakly observable

graphs Ω

(
T

2
3 max

{
|S|
k , log |S|

} 1
3

)
3 Ω

(
T

2
3

(∑K
k=1 max

{
log |Sk|, |Sk|

tk

}) 1
3

)
Disjoint union of K loopless

bipartite graphs Ω
(
T

2
3 (logN)

1
3

)
Ω

(
T

2
3

(∑K
k=1 logmk

) 1
3

)
1 Here α is the independence number of the graph.
2 Here K is the clique cover number of the graph and m1,m2, . . .mK are the size of the K cliques respectively.
3 Here S is a t-packing independent set of the graph. Sk and tk are defined in Theorem 1.7.
4 Previous results are from (Alon et al., 2015), (Alon et al., 2017) and (Chen et al., 2021).

which is the sum of lower bounds on each (mk)-BAI in-
stance. To achieve this, we show that the instance where
all arms are Ber( 12 ) is in fact a universal hard instance
in the sense that every (ε, 0.05)-PAC algorithm requires
Ω
(∑K

k=1
log(mk+1)

ε2

)
to identify. Via a reduction of “direct-

sum” flavor, we show that every (ε, 0.05)-PAC algorithm,
when applied to this instance, must successfully identify
that each group consists of Ber( 12 ) arms. As a result, the
lower bound is the sum of the lower bounds for each “all
Ber( 12 )” (mk)-BAI instance.

We then prove the lower bound for “all Ber( 12 )” (m)-BAI
instance for every m ≥ 2. We use H

(m)
0 to denote this

instance. The H
(m)
0 specified lower bound is obtained by

constructing another m instances H
(m)
1 , . . . ,H

(m)
m and

compare the distribution of losses generated by H
(m)
0

and the distribution of losses generated by a mixture of
H

(m)
1 , . . . ,H

(m)
m . For technical reasons, we first prove

the lower bound when all arms are Gaussian and reduce the
Gaussian arms to Bernoulli arms.

1.3. Related Works

The bandit feedback setting as an online decision problem
has received considerable attention. The work of (Audibert
& Bubeck, 2009) first provided a tight bound for the ban-
dit feedback setting, while the full information feedback
case has been well studied in (Freund & Schapire, 1997;
Haussler et al., 1995). Building upon these works, (Man-
nor & Shamir, 2011) introduced an interpolation between
these two extremes and generalized the feedback of the
classic bandit problem to a graph structure. Several prior
studies, such as (Alon et al., 2015; Zimmert & Lattimore,
2019; Chen et al., 2021; He & Zhang, 2023), have proposed

various graph parameters to characterize the factors that
influence regret. However, the algorithms proposed in these
works for more general graphs do not yield a tight bound in
our specific setting.

The pure exploration version of the bandit problem, known
as the best arm identification (BAI) problem, has also re-
ceived significant attention in the literature (Even-Dar et al.,
2002; Mannor & Tsitsiklis, 2004; Bubeck et al., 2009; Au-
dibert et al., 2010; Karnin et al., 2013; Chen et al., 2017).
While the BAI problem may appear deceptively simple,
determining the precise bound for BAI under the bandit
feedback setting remains an open question. However, for
the problem of identifying an ε-optimal arm with high prob-
ability, (Even-Dar et al., 2002) established a tight bound
for the bandit feedback setting, while the bound for the full
feedback model is relatively straightforward (see e.g. Chen
et al. (2021)).

1.3.1. COMPARISON WITH PREVIOUS WORK

The very recent work of (Eldowa et al., 2024) studied in-
terpolation of learning with experts and multi-armed ban-
dit as well from a different perspective. They proved an
O
(√

Tα(1 + log (N/α))
)

upper bound for the minimax
regret of bandit with strongly feedback graph G where α
is the independence number of G. The parameter is in
general not comparable with clique covers used in this
work for feedback graphs. Particularly on an m-MAB
instance where m = (m1, . . . ,mK), the independence
number is K and therefore their upper bound becomes
to O

(√
TK log(N/K)

)
while our results showed that

the minimax regret is indeed Θ

(√
T
∑K
k=1 log(mk + 1)

)
.
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Another work (Foster et al., 2020) using the idea of the two-
stage algorithm bears similarity to ours. But applying their
algorithm and analysis to our problem can only derive an
upper bound of O

(√
TKmaxk∈[K] logmk

)
, which is also

suboptimal. To see the difference, assume K = ⌊logN⌋
and m = (1, 1, . . . , 1, N−K+1), then the minimax regret
is Θ

(√
T logN

)
while the upper bounds in both (Eldowa

et al., 2024) and (Foster et al., 2020) are O
(√

T logN
)

.
We believe that the algorithms and the analysis of previous
work cannot achieve the same bound in our setting without
significant extra effort.

2. Preliminaries
In this section, we formally define the notations used and
introduce some preparatory knowledge that will help in
understanding this work.

2.1. Mathematical Notations

Let n be a non-negative integer. We use [n] to denote the set
{1, 2, . . . , n} and ∆n−1 =

{
x ∈ Rn≥0 :

∑n
i=1 x(i) = 1

}
to denote the n − 1 dimensional standard simplex where
R≥0 is the set of all non-negative real numbers. For a real
vector x ∈ Rn, the i-th entry of x is denoted as x(i) for
every i ∈ [n]. We define e

[n]
i as the indicator vector of

the i-th coordinate such that e[n]i (i) = 1 and e
[n]
i (j) = 0

for all j ̸= i and j ∈ [n]. We may write e
[n]
i as ei if the

information on n is clear from the context.

Given two vectors x,y ∈ Rn, we define their inner prod-
uct as ⟨x,y⟩ =

∑n
i=1 x(i)y(i). For any a, b ∈ R, let

[a, b] = {c ∈ R | min {a, b} ≤ c ≤ max {a, b}} be the in-
terval between a and b. For any x,y ∈ Rn, we say
y ≥ x if y(i) ≥ x(i) for every i ∈ [n]. Then we can
define the rectangle formed by x and y: Rect(x,y) =
{z ∈ Rn : y ≥ z ≥ x}.

For any positive semi-definite matrix M ∈ Rn×n, let
∥x∥M =

√
xTMx be the norm of x with respect to M .

Specifically, we abbreviate ∥x∥(∇2ψ)−1 as ∥x∥∇−2ψ where
∇2ψ is the Hessian matrix of a convex function ψ.

Let F : Rn → R be a convex function which is differ-
entiable in its domain dom(F ). Given x,y ∈ dom(F ),
the Bregman divergence with respect to F is defined as
BF (x,y) = F (x) − F (y) − ⟨x − y,∇F (y)⟩. Given
two measures P1 and P2 on the same measurable space
(Ω,F), the KL-divergence between P1 and P2 is defined
as DKL (P1,P2) =

∑
ω∈Ω P1 [ω] log

P1[ω]
P2[ω]

if Ω is discrete

or DKL (P1,P2) =
∫
Ω
log P1[ω]

P2[ω]
dP1 [ω] if Ω is continuous

provided P1 is absolutely continuous with respect to P2.

2.2. Graph Theory

Let G = (V,E) be a directed graph where |V | =
N . We use (u, v) to denote the directed edge from
vertex u to vertex v. For any U ⊆ V , we denote
the subgraph induced by U as G[U ]. For v ∈ V , let
Nin(v) := {u ∈ V : (u, v) ∈ E} be the set of in-neighbors
of v andNout(v) := {u ∈ V : (v, u) ∈ E} be the set of out-
neighbors. If the graph is undirected, we have Nin(v) =
Nout(v), and we use N(v) to denote the neighbors for
brevity. We say S ⊆ V is an independent set of G if for ev-
ery v ∈ S, {u ∈ S | u ̸= v, u ∈ Nin(v) ∪Nout(v)} = ∅.
The maximum independence number of G is denoted as
α(G) and abbreviated as α whenG is clear from the context.
Furthermore, we say an independent set S is a t-packing in-
dependent set if and only if for any v ∈ V , there are at most
t out-neighbors of v in S, i.e., |Nout(v) ∩ S| ≤ t. We say
the subsets V1, . . . , VK ⊆ V form a (V1, . . . , VK)-clique
cover of G if each induced subgraph G[Vk] for k ∈ [K] is a
clique and

⋃
k∈[K] Vk = V .

2.3. m-MAB and m-BAI

Let K > 0 be an integer. Given a vector m =
(m1,m2, . . . ,mK) ∈ ZK≥1 with

∑
k∈[K]mk = N , we now

define problems m-MAB and m-BAI respectively.

2.3.1. m-MAB

In the problem of m-MAB, there are N arms. The arms are
partitioned into K groups and the k-th group contains mk

arms. Let T ∈ N be the time horizon. Then m-MAB is the
following online decision game. The game proceeds in T
rounds. At round t = 0, 1, . . . , T − 1:

• The player pulls an arm At ∈ [N ];

• The adversary chooses a loss function ℓ(t) ∈ [0, 1]N ;

• The player incurs loss ℓ(t)(At) and observes the losses
of all arms in the group containing At.

Clearly the vector m encodes the amount of information
the player can observe in each round. Two extremes are
the problem of learning with expert advice and multi-armed
bandit, which correspond to (N)-MAB and (1, . . . , 1)-MAB
respectively.

We assume the player knows m and T in advance and useA
to denote the player’s algorithm (which can be viewed as a
function from previous observed information and the value
of its own random seeds to the arm pulled at each round).

The performance of the algorithm A is measured by the no-
tion of regret. Fix a loss sequence L⃗ =

{
ℓ(0), . . . , ℓ(T−1)

}
.

Let a∗ = argmina∈[N ]

∑T
t=1 ℓ

(t)(a) be the arm with mini-
mum accumulated losses. The regret of the algorithmA and
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time horizon T on L⃗ with respect to the arm a is defined
as Ra(T,A, L⃗) = E

[∑T−1
t=0 ℓ(t)(At)

]
−
∑T−1
t=0 ℓ(t)(a). If

there is no ambiguity, we abbreviate Ra(T,A, L⃗) as Ra(T ).
We also use R(T ) to denote Ra∗(T ).

We are interested in the regret of the best algorithm against
the worst adversary, namely the quantity

R∗
a(T ) = inf

A
sup
L⃗

Ra(T,A, L⃗).

We call R∗
a∗(T ) the minimax regret of m-MAB and usually

write it as R∗(T ).

We may use the following two ways to name an arm in
m-MAB:

• use the pair (k, j) where k ∈ [K] and j ∈ [mk] to
denote “the j-th arm in the k-th group”;

• use a global index i ∈ [N ] to denote the i-th arm.

Following this convention, we use ℓ(t)(i) and ℓ(t)k (j) to de-
note the loss of arm i and arm (k, j) at round t respectively.

2.3.2. BEST ARM IDENTIFICATION AND m-BAI

The best arm identification (BAI) problem asks the player to
identify the best arm among N given arms with as few pulls
as possible. To be specific, each arm i is associated with
a parameter pi and each pull of arm i gives an observation
of its random loss, which is drawn from a fixed distribu-
tion with mean pi independently. The loss of each arm is
restricted to be in [0, 1]. The one with smallest pi, indexed
by i∗, is regarded as the best arm. An arm j is called an
ε-optimal arm if its mean is less than the mean of the best
arm plus ε for some ε ∈ (0, 1), namely pj < pi∗ + ε. With
fixed ε, δ > 0, an (ε, δ)-probably approximately correct
algorithm, or (ε, δ)-PAC algorithm for short, can find an ε-
optimal arm with probability at least 1− δ. In most parts of
this paper, we choose δ = 0.05. For an algorithmA of BAI,
we usually use T to denote the number of arms A pulled
before termination. Similarly for any arm i, we use Ti to
denote the number of times that the arm i has been pulled
by A before its termination. We also use Ni to denote the
number of times that the arm i has been observed by A.

Let m = (m1,m2, · · · ,mK) ∈ ZK≥1 be a vector. Similar
to m-MAB, the arms are partitioned into K groups and the
k-th group consists of mk arms. Each pull of an arm can
observe the losses of all arms in the group. As usual, the
goal is to identify the best arm (the one with minimum pi)
with as few rounds as possible.

Similar to m-MAB, we use i ∈ [N ] or (k, j) where k ∈ [K]
and j ∈ [mk] to name an arm. For a fixed algorithm, we use

Ti or T(k,j) to denote the number of times the respective arm
has been pulled and use Ni or N(k,j) to denote the number
of times it has been observed. For every k ∈ [K] we use
T (k) to denote the number of times the arms in the k-th
group have been pulled, namely T (k) =

∑
j∈[mk]

T(k,j).
By definition, it holds that T =

∑
k∈[K] T

(k) and N(k,j) =

T (k) for every j ∈ [mk].

2.4. Bandit with Graph Feedback

A more general way to encode the observability of arms is to
use feedback graphs. In this problem, a directed graph G =
(V,E) is given. The vertex set V = [N ] is the collection of
all arms.

The game proceeds in the way similar to m-MAB. The only
difference is that when an arm At is pulled by the player at
a certain round, all arms in Nout(At) can be observed. As a
result, given a vector m = (m1,m2, · · · ,mK) ∈ ZK≥1, the
m-MAB problem is identical to bandit with graph feedback
G = (V,E) where G is the disjoint union of K cliques
G1 = (V1, E1), G2 = (V2, E2), . . . , GK = (VK , EK)
with mk = |Vk| and Ek = V 2

k for every k ∈ [K].

According to (Alon et al., 2015), we measure the observabil-
ity of each vertex in terms of its in-neighbors. If a vertex has
no in-neighbor, we call it a non-observable vertex, other-
wise it is observable. If a vertex v has a self-loop or Nin(v)
exactly equals to V \ {v}, then v is strongly observable. If
an observable vertex is not strongly observable, then it is
weakly observable. In this work, we assume each vertex
is observable. If all the vertices are strongly observable,
the graph G is called a strongly observable graph. If G
contains weakly observable vertices (and does not have non-
observable ones), we say G is a weakly observable graph.

We can also define the notion of regret for bandit with
graph feedback. Assume notations before, the regret of
an algorithm A with feedback graph G and time horizon T
on a loss sequence L⃗ with respect to the arm a is defined
as Ra(G,T,A, L⃗) = E

[∑T−1
t=0 ℓ(t)(At)

]
−
∑T−1
t=0 ℓ(t)(a).

If there is no ambiguity, we abbreviate Ra(G,T,A, L⃗) as
Ra(G,T ) or Ra(T ). We also use R(T ) to denote Ra∗(T ).
Then minimax regret is again

R∗
a∗(G,T ) = inf

A
sup
L⃗

Ra∗(G,T,A, L⃗).

When G is clear from the context, we write it as R∗(T ).

3. The Upper Bounds
In this section, we prove Theorem 1.1 and Theorem 1.2.
We describe the algorithm for m-MAB in Section 3.1 and
analyze it in Section 3.2. The algorithm for m-BAI is ob-
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tained by a reduction to m-MAB described in Appendix A.
Finally we discuss how to extend the algorithm to bandit
with strongly observable feedback graphs and prove Corol-
lary 1.5 in Appendix B.3.

3.1. The Algorithm

As discussed in the introduction, our algorithm basically
follows the framework of the two-stage online stochastic
mirror descent developed in (He & Zhang, 2023). However,
our updating rules is slightly different from the one in (He &
Zhang, 2023) in order to incorporate with our new analysis.

Given a K-dimensional vector m = (m1, . . . ,mK) as in-
put, in each round t, the algorithm proceeds in the following
two-stage manner:

• A distribution Y (t) over [K] is maintained, indicating
which group of arms the algorithm is going to pick.

• For each k ∈ [K], a distribution X(t)
k is maintained,

indicating which arm in the k-th group the algorithm
will pick conditioned on that the k-th group is picked
in the first stage.

• The algorithm then picks the j-th arm in the k-group
with probability Y (t)(k) ·X(t)

k (j).

The algorithm is described in Algorithm 1 and we give
an explanation for each step below. Assuming Y (0) and
X

(0)
k for all k ∈ [K] are well initialized, in each time step

t = 0, 1, . . . , T − 1, the player will repeat the following
operations:

Sampling: For each arm (k, j), the algorithm pulls it with
probability

Z(t)(k, j) = Y (t)(k) ·X(t)
k (j).

The arm pulled at this round is denoted by At = (kt, jt).
Our algorithm can guarantee that Z(t) is a distribution over
all arms.

Observing: Observe partial losses ℓ(t)kt (j) for all j ∈
[mkt ].

Estimating: For each arm (k, j), define the unbiased
estimator ℓ̂(t)k (j) = 1[k=kt]

Pr[k=kt]
· ℓ(t)k (j). It is clear that

E
[
ℓ̂
(t)
k (j)

]
= ℓ

(t)
k (j).

Updating:

• For each k ∈ [K], update X(t)
k in the manner of stan-

dard OSMD:

∇ϕk(X
(t+1)

k ) = ∇ϕk(X(t)
k )− ℓ̂(t)k ; X

(t+1)
k

= argmin
x∈∆mk−1

Bϕk
(x, X

(t+1)

k ),

where ϕk(x) = η−1
k

∑
i x(i) log x(i) is the negative

entropy scaled by the learning rate ηk.

• Define Y
(t)

in the way that, for any k ∈ [K]

1√
Y

(t+1)
(k)

=
1√

Y (t)(k)
+

∑
j∈[mk]

η

ηk
X

(t)
k (j)

(
1− exp

(
−ηk · ℓ̂(t)k (j)

))
.

(1)

where η is the learning rate. Then let Y (t+1) be the
projection of Y

(t+1)
on ∆K−1:

Y (t+1) = argmin
y∈∆K−1

Bψ(y, Y
(t+1)

),

where ψ(y) = −2
∑
i

√
y(i) for any y =

(y(1), . . . , y(K)) ∈ RK , referred to as Tsallis entropy
in literature. Note that when x is small, 1−exp (−x) ≈
x. So when ηk is small (and it is so), the updating rule
is approximately for any k ∈ [K]

1√
Y

(t+1)
(k)

=
1√

Y (t)(k)
+η

∑
j∈[mk]

X
(t)
k (j)·ℓ̂(t)k (j),

which is equivalent to

∇ψ(Y
(t+1)

) = ∇ψ(Y
(t)
)− η · L̂(t),

where L̂(t) = (L̂(t)(1), . . . , L̂(t)(K)) ∈ RK satisfy-
ing L̂(t)(k) =

∑
j∈[mk]

X
(t)
k (j) · ℓ̂(t)k (j). One can

think of L̂(t)(k) as the “average loss” of the arms in
the k-th group at round t. Nevertheless, we use rule
Equation (1) in the algorithm to guarantee the result in
Lemma B.1 since it is convenient for our analysis later.

In the realization of Algorithm 1, we will choose η = 1√
T

and ηk = log(mk+1)√
T

∑K
k=1 log(mk+1)

.

3.2. Regret Bound for MAB

We prove the following theorem, which implies Theo-
rem 1.1.

Theorem 3.1. For every T > 0 and every loss sequence
ℓ(0), . . . , ℓ(T−1) ∈ [0, 1]N , the regret of Algorithm 1 satis-
fies

R(T ) ≤ O


√√√√T

K∑
k=1

log(mk + 1)

 .
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Algorithm 1 Two-Stage Algorithm for m-MAB
Input: An (m1, . . . ,mK)-MAB instance
X

(0)
k ← argmin

a∈∆mk−1

ϕk(a), for all k ∈ [K];

Y (0) ← argmin
b∈∆K−1

ψ(b);

for t← 0 to T − 1 do
Z(t)(k, j) ← Y (t)(k) · X(t)

k (j), for all k ∈ [K] and
j ∈ [mk];
Pull At = (kt, jt) ∼ Z(t) and observe ℓ(t)kt (j) for all
j ∈ [mk];

Update∇ϕk(X
(t+1)

k ) = ∇ϕk(X(t)
k )− ℓ̂(t)k ;

X
(t+1)
k = argminx∈∆mk−1

Bϕk
(x, X

(t+1)

k );
Update ∀k ∈ [K], 1√

Y
(t+1)

(k)
= 1√

Y (t)(k)
+

η
ηk

∑
j∈[mk]

X
(t)
k (j)

(
1− exp

(
−ηk · ℓ̂(t)k (j)

))
;

Y (t+1) = argminy∈∆K−1
Bψ(y, Y

(t+1)
);

end for

Instead of directly bounding the regret of the sequence of the
action distributions

{
Z(t)

}
0≤t≤T−1

, we study an auxiliary

piecewise continuous process
{
Z(s)

}
s∈[0,T )

. We define

and bound the regret of
{
Z(s)

}
s∈[0,T )

in Appendix B.1.1,

and compare it with the regret of
{
Z(t)

}
0≤t≤T−1

in Ap-
pendix B.1.2. Finally, we prove Theorem 3.1 in Ap-
pendix B.1.3

4. Lower Bound
In this section, the main work is to prove a lower bound
for m-BAI. A natural way is to prove a lower bound for
each group and then sum up all in a “direct sum ” flavor. A
conventional method is to design a family of hard instances
and claim that there exists some instance requiring a suffi-
cient number of pulls. However, different groups may have
different hard instances, preventing a direct summation of
the lower bound for each group. Instead, we prove that the
instance with all m arms following a Ber(1/2) distribution,
denoted by H

(m)
0 , is always the most challenging one.

Lemma 4.1. LetA be an (ε, 0.05)-PAC algorithm. Assume
m ≥ 2. There exists a universal constant c1 > 0 such that
A terminates on H

(m)
0 after at least c1ε2 log(m+ 1) rounds

in expectation.

Armed with above lemma, we can establish the lower bound
for m-BAI.

Lemma 4.2. Let ε be a number in
(
0, 18

)
. For

every (ε, 0.05)-PAC algorithm of m-BAI, we have
EH m

0

[
T (k)

]
≥ c1 log(mk+1)

ε2 for every k ∈ [K] with
mk ≥ 2 and EH m

0
[T ] ≥

∑K
k=1

c1 log(mk+1)
2ε2 if the total

number of arms
∑K
k=1mk ≥ 2, where c1 is the constant in

Lemma 4.1, T (k) is the number of rounds that arms in group
k is played and T is the total pull times.

Moreover, these lower bounds still hold even the algorithm
can identify the ε-optimal arm with probability 0.95 only
when the input arms have losses drawn from either Ber

(
1
2

)
or Ber

(
1
2 − ε

)
.

Now let us fix m = (m1, . . . ,mK). We then derive a regret
lower bound for m-MAB and thus prove Theorem 1.4 using
Lemmas 4.1 and A.1.
Lemma 4.3. For any algorithm A of (m1, . . . ,mk)-MAB,
for any sufficiently large T > 0, there exists H ∈ H such
that the expected regret of A satisfies

EH [R(T )] ≥ c′ ·

√√√√T ·
K∑
k=1

log(mk + 1)

where c′ > 0 is a universal constant. Here the expectation
is taken over the randomness of losses which are drawn
from H independently in each round.

We can,of course, apply our more powerful Lemma 4.1 to
a broader class of graphs, thus obtaining improved lower
bounds for both strongly and weakly observable graphs.

5. Conclusion
In this study, we delve into the m-MAB and m-BAI, and
reduce the the latter to the former. We propose a two stage
algorithm for m-MAB and prove a lower bound for m-BAI,
thereby providing both problems with tight bounds. Further-
more, we utilize the bound proven for BAI to more general
graphs and yield some improved lower bounds. The tech-
nique developed in the upper bound is more intuitive than
standard methods. The proof of the lower bound for BAI
reveals that to address the failure error of m arms, calcula-
tions must consider them together, such as using mixture
distribution, instead of assuming m failures to distinguish
one distribution from all others one by one to construct a
contradiction. We believe our approach may inspire others
to enhance the logarithmic factor in other problems.
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Lattimore, T. and Szepesvári, C. Bandit algorithms. Cam-
bridge University Press, 2020.

Mannor, S. and Shamir, O. From bandits to experts: On the
value of side-observations. Advances in Neural Informa-
tion Processing Systems, 24, 2011.

Mannor, S. and Tsitsiklis, J. N. The sample complexity of
exploration in the multi-armed bandit problem. Journal
of Machine Learning Research, 5(Jun):623–648, 2004.

Rouyer, C., van der Hoeven, D., Cesa-Bianchi, N., and
Seldin, Y. A near-optimal best-of-both-worlds algorithm
for online learning with feedback graphs. Advances
in Neural Information Processing Systems, 35:35035–
35048, 2022.

Zimmert, J. and Lattimore, T. Connections between mirror
descent, thompson sampling and the information ratio. In
Advances in Neural Information Processing Systems, pp.
11973–11982, 2019.

9



On Interpolating Experts and Multi-Armed Bandits

A. A Reduction from BAI to MAB
In this section, we construct a PAC algorithm for m-BAI by leveraging an algorithm designed for m-MAB, employing
Lemma A.1. We then reduce BAI to MAB. Consequently, the upper bound of an algorithm for MAB is also applicable to the
constructed algorithm for BAI, and a lower bound for BAI implies one for MAB.

Let r(T, L⃗) be a real valued function with the time horizon T and loss sequence L⃗ =
(
ℓ(1), . . . , ℓ(T )

)
as its input. Let H

be a BAI instance. With fixed T > 0, we use EH

[
r(T, L⃗)

]
to denote the expectation of r(T, L⃗) where ℓ(t) in L⃗ is drawn

from H independently for every t ∈ [T ]. LetH be a set of BAI instances.

Lemma A.1. Let A be an algorithm for m-MAB with regret Ra∗(T,A, L⃗) ≤ r(T, L⃗) for every time horizon T and every
loss sequence L⃗. Then there exists an (ε, 0.05)-PAC algorithm A′ for m-BAI that terminates in T ∗ rounds where T ∗ is the
solution of the equation

T ∗ =
2500 ·maxL⃗ r(T

∗, L⃗)

ε
.

Moreover, if we only care about identifying an ε-optimal arm with probability 0.95 when the input is chosen from a known
familyH, we can construct an algorithm solving this problem that terminates in T ∗

H rounds where T ∗
H is the solution of the

equation

T ∗
H =

2500 ·maxH ∈H EH

[
r(T ∗

H, L⃗)
]

ε
.

Proof. Given an instance H of m-BAI, we run A for T ∗ rounds. Let Ti be the number of times that the arm i has been
pulled, i.e., Ti =

∑T∗−1
t=0 ⊮[At = i]. Let Z =

(
Z1, Z2, . . . , ZN

)
=
(
T1

T∗ ,
T2

T∗ , . . . ,
TN

T∗

)
be a distribution on N arms. We

construct A′ by simply sampling from Z =
(
T1

T∗ ,
T2

T∗ , . . . ,
TN

T∗

)
and outputting the result.

Recall that pi is the mean of the i-th arm in H and arm a∗ is the one with the minimum mean. Define the gap vector
∆ = (p1− pa∗ , · · · , pN − pa∗). Note that Z is a random vector and define conditional expected regret R(Z) = ⟨∆, Z⟩ ·T ∗

given Z. Thus the expected regret EZ
[
R(Z)

]
≤ maxL⃗ r(T

∗, L⃗). By Markov’s inequality, R(Z) ≤ 100maxL⃗ r(T
∗, L⃗)

with probability at least 0.99. Now we only consider Z conditioned on R(Z) ≤ 100maxL⃗ r(T
∗, L⃗). Let B ⊆ [N ]

denote the “bad set” which contains arms that are not ε-optimal. Then εT ∗∑
i∈B Zi ≤ 100maxL⃗ r(T

∗, L⃗). Note that

T ∗ =
2500·maxL⃗ r(T

∗,L⃗)

ε . Therefore
∑
i∈B Zi ≤ 0.04. In total, this algorithm will make a mistake with probability no more

than 0.05 by the union bound.

When we only care about the input instances chosen from H, we run A for T ∗
H rounds and similarly, we output an arm

drawn from
(
T1

T∗
H
, T2

T∗
H
, . . . , TN

T∗
H

)
. It is easy to verify via the same arguments that this algorithm can output an ε-optimal arm

with probability 0.95 when the input is chosen fromH.

B. Upper bound
In this section, we first prove the regret bound for MAB, and then reduce BAI to MAB to give a bound for BAI with the help
of Lemma A.1. Finally we can easily apply the algorithm to more general graph.

B.1. Regret Upper Bound for MAB

B.1.1. THE PIECEWISE CONTINUOUS PROCESS

Assuming notations in Algorithm 1, the process
{
Z(s)

}
s∈[0,T )

is defined as

Z(s)(k, j) = Y(s)(k) · X (s)
k (j), ∀k ∈ [K], j ∈ [mk],

where
{
Y(s)

}
s∈[0,T )

and
{
X (s)
k

}
s∈[0,T )

for every k ∈ [K] are piecewise continuous processes defined in the following
way.

• For every integer t ∈ {0, 1, . . . , T − 1}, we let Y(t) = Y (t) and X (t)
k = X

(t)
k for every k ∈ [K].
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• For every integer t ∈ {0, 1, . . . , T − 1} and every k ∈ [K], the trajectory of
{
X (s)
k

}
s∈[t,t+1)

is a continuous path in

Rmk governed by the ordinary differential equation

d∇ϕk(X (s)
k )

ds
= −ℓ̂(t)k . (2)

• For every integer t ∈ {0, 1, . . . , T − 1}, the trajectory of
{
Y(s)

}
s∈[t,t+1)

is a continuous path in RK governed by the
ordinary differential equation

d∇ψ(Y(s))

ds
= −L̂(s), (3)

where L̂(s) =
(
L̂(s)(1), . . . , L̂(s)(K)

)
∈ RK satisfies L̂(s)(k) =

∑
j∈[mk]

X (s)
k (j) · ℓ̂(t)k (j).

Clearly the trajectories of Z(s), Y(s) and X (s)
k for every k ∈ [K] are piecewise continuous paths in the time interval

s ∈ [0, T ). An important property is that the end of each piece of the trajectories of Y(s) and X (s)
k coincides with its discrete

counterpart before performing projection to the probability simplex.

Formally, for every t ∈ [T ] and k ∈ [K], define X (t)−

k := lims→t− X
(s)
k and Y(t)− := lims→t− Y(s). We have the

following lemma.

Lemma B.1. For every t ∈ [T ] and k ∈ [K], it holds that X (t)−

k = X
(t)

k and Y(t)− = Y
(t)

.

Proof. To ease the notation, for any fixed t ∈ {0, 1, . . . , T − 1} and fixed k ∈ [K], we now prove that X (t+1)−

k = X
(t+1)

k

and Y(t+1)− = Y
(t+1)

respectively.

In fact, X (t+1)−

k = X
(t+1)

k immediately follows by integrating both sides of (2) from t to t+1 and noting that X (t)
k = X

(t)
k .

More efforts are needed to prove the identity for Y(t). Recall ϕk(x) = η−1
k

∑
j x(j) log x(j) for every x =(

x(1), . . . , x(mk)
)
. It follows from (2) that for every s ∈ [t, t+ 1) every k ∈ [K] and every j ∈ [mk],

X (s)
k (j) = X (t)

k (j) · exp
(
−(s− t)ηk ℓ̂(t)k (j)

)
.

As a result, we know that

L̂(s)(k) =
∑

j∈[mk]

X (t)
k (j) · exp

(
−(s− t)ηk ℓ̂(t)k (j)

)
· ℓ̂(t)k (j).

Integrating (3) from t to s, plugging in above and noting that Y(t) = Y (t), we obtain

1√
Y(s)(k)

=
1√

Y (t)(k)
+

η

ηk

∑
j∈[mk]

X
(t)
k (j)

(
1− exp

(
−ηk · (s− t) · ℓ̂(t)k (j)

))
,

which is exactly our rule to define Y
(t+1)

in Line 1 of Algorithm 1 (take s = t+ 1).

We define the regret for the piecewise continuous process as follows.

Definition B.2. The continuous regret contributed by the process
{
Z(s)

}
s∈[0,T )

with respect to a fixed arm a ∈ [N ] is
defined as

Ra(T ) :=

T−1∑
t=0

E

[∫ t+1

t

⟨Z(s) − e[N ]
a , ℓ(t)⟩ds

]
.

Then we are ready to bound Ra(T ). Recall that we may write e
[N ]
a as ea if the information on N is clear from the context.
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Lemma B.3. For any time horizon T > 0, any loss sequence ℓ(0), ℓ(1), . . . , ℓ(T−1) ∈ [0, 1]N , and any arm a = (k, j), it
holds that

Ra(T ) ≤ Bψ(e[K]
k , Y (0)) +Bϕk

(e
[mk]
j , X

(0)
k ).

Proof. Assume a = (k, j). For every t ∈ {0, 1, . . . , T − 1}, we compute the decreasing rate of the Bregman divergence
caused by the evolution of Y(s) and X (s)

k respectively.

First consider the change of Bψ(ek,Y(s)) over time:

d

ds
Bψ(ek,Y(s)) =

d

ds

(
ψ(ek)− ψ(Y(s))− ⟨ek − Y(s),∇ψ(Y(s))⟩

)
= ⟨d∇ψ(Y(s))

ds
,Y(s) − ek⟩

= −⟨L̂(s),Y(s) − ek⟩.

Integrating above from t to t+ 1, we have∫ t+1

t

⟨L̂(s),Y(s) − ek⟩ds = Bψ(ek,Y(t))−Bψ(ek,Y(t+1)−) = Bψ(ek, Y
(t))−Bψ(ek, Y

(t+1)
), (4)

where the last equality follows from Lemma B.1.

Note that projection never increases Bregman divergence; that is, we have

Bψ(ek, Y
(t+1)

)−Bψ(ek, Y (t+1))

= ψ(Y (t+1))− ψ(Y (t+1)
) + ⟨∇ψ(Y (t+1)), ek − Y (t+1)⟩ − ⟨∇ψ(Y

(t+1)
), ek − Y

(t+1)⟩

= ψ(Y (t+1))− ψ(Y (t+1)
)− ⟨∇ψ(Y

(t+1)
), Y (t+1) − Y (t+1)⟩︸ ︷︷ ︸

A

+ ⟨∇ψ(Y
(t+1)

)−∇ψ(Y (t+1)), Y (t+1) − ek⟩︸ ︷︷ ︸
B

.

Since ψ is convex, we have A ≥ 0. By the definition of Y (t+1),

Y (t+1) = argmin
y∈∆K−1

Bψ(y, Y
(t+1)

) = argmin
y∈∆K−1

ψ(y)− ⟨y,∇ψ(Y
(t+1)

)⟩.

The first-order optimality condition (see Section 26.5 in (Lattimore & Szepesvári, 2020)) implies that B ≥ 0. As a result,
Bψ(ek, Y

(t+1)
) ≥ Bψ(ek, Y (t+1)) and it follows from Equation (4) that∫ t+1

t

⟨L̂(s),Y(s) − ek⟩ds ≤ Bψ(ek, Y (t))−Bψ(ek, Y (t+1)). (5)

Then we consider the change of Bϕk
(ej ,X (s)

k ) over time. Likewise we have

d

ds
Bϕk

(ej ,X (s)
k ) = ⟨

d∇ϕk(X (s)
k )

ds
,X (s)

k − ej⟩ = −⟨ℓ̂(t)k ,X (s)
k − ej⟩.

By an argument similar to the one for Y(s) above, we can obtain∫ t+1

t

⟨ℓ̂(t)k ,X (s)
k − ej⟩ds ≤ Bϕk

(ej , X
(t)
k )−Bϕk

(ej , X
(t+1)
k ). (6)

On the other hand, we have for every s ∈ [t, t+ 1) and any arm a∗ = (k∗, j∗),

E
[
⟨Z(s) − ea∗ , ℓ

(t)⟩
]
= E

[
⟨Z(s) − ea∗ , ℓ̂

(t)⟩
]
= E

 ∑
k∈[K]

∑
j∈[mk]

Y(s)(k) · X (s)
k (j) · ℓ̂(t)k (j)− ℓ̂(t)(a∗)

 .
12
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Recall that for every k ∈ [K], it holds that L̂(s)(k) =
∑
j∈[mk]

X (s)
k (j) · ℓ̂(t)k (j). Rearranging above yields

E
[
⟨Z(s) − ea∗ , ℓ

(t)⟩
]
= E

 ∑
k∈[K]

Y(s)(k) · L̂(s)(k)− ℓ̂(t)(a∗)


= E

[
⟨Y(s), L̂(s)⟩ − ℓ̂(t)(a∗)

]
= E

[
⟨Y(s) − ek∗ , L̂

(s)⟩+ L̂(s)(k∗)− ℓ̂(t)k∗ (j
∗)
]

= E
[
⟨Y(s) − ek∗ , L̂

(s)⟩
]
+E

[
⟨X (s)

k∗ − ej∗ , ℓ̂
(t)
k∗ ⟩
]
.

Integrating above from t to t+ 1 and plugging in Equations (5) and (6), we obtain∫ t+1

t

E
[
⟨Z(s) − ea∗ , ℓ

(t)⟩
]
ds =

∫ t+1

t

E
[
⟨Y(s) − ek∗ , L̂

(s)⟩
]
ds+

∫ t+1

t

E
[
⟨X (s)

k − ej∗ , ℓ̂
(t)
k∗ ⟩
]
ds

≤ Bψ(ek, Y (t))−Bψ(ek, Y (t+1)) +Bϕk
(ej , X

(t)
k )−Bϕk

(ej , X
(t+1)
k ).

Summing above over t from 0 to T − 1 finishes the proof.

B.1.2. COMPARISON OF Ra(T ) AND Ra(T )

For any fixed loss sequence ℓ(0), ℓ(1), . . . , ℓ(T−1), we bound the difference between the regret Ra(T ) of Algorithm 1 and
the continuous regret Ra(T ) for any arm a. Formally, we establish the following lemma:
Lemma B.4.

Ra(T )−Ra(T ) ≤
1

2

T−1∑
t=0

E

 sup
ξ∈Rect(Y (t),Y

(t+1)
)

∥L̂(t)∥2∇−2ψ(ξ) +
∑
k∈[K]

Y (t)(k) · sup
ζk∈Rect(X(t)

k ,X
(t+1)
k )

∥ℓ̂(t)k ∥
2
∇−2ϕk(ζk)

 .
Proof. By the definition of the regret, we have

Ra(T ) = E

[
T−1∑
t=0

⟨Z(t) − ea, ℓ̂
(t)⟩

]

=

T−1∑
t=0

E
[
⟨Z(t) − ea, ℓ̂

(t)⟩
]

=

T−1∑
t=0

E

[∫ t+1

t

⟨Z(s) − ea, ℓ̂
(t)⟩ ds+

∫ t+1

t

⟨Z(t) −Z(s), ℓ̂(t)⟩ ds
]

= Ra(T ) +

T−1∑
t=0

E

[∫ t+1

t

⟨Z(t) −Z(s), ℓ̂(t)⟩ ds
]
,

where the first equality holds due to Fubini’s theorem. Therefore, we only need to bound the term∑T−1
t=0 E

[∫ t+1

t
⟨Z(t) −Z(s), ℓ̂(t)⟩ ds

]
.

Fix t ∈ {0, 1, . . . , T − 1}. We have shown in the proof of Lemma B.1 that

X (s)
k (j) = X

(t)
k (j) · exp

(
−(s− t)ηk ℓ̂(t)k (j)

)
≤ X(t)

k (j)

for any s ∈ [t, t+ 1) and any j ∈ [mk].

Recall that L̂(s)(k) =
∑
j∈[mk]

X (s)
k (j) · ℓ̂(t)k (j) for every k ∈ [K]. Then by the discussion above, we have L̂(s) ≤ L̂(t) for

any s ∈ [t, t+ 1). As a result, it follows from (3) that for any s ∈ [t, t+ 1),

∇ψ(Y(s))−∇ψ(Y (t)) =

∫ s

t

−L̂(w) dw ≥ −(s− t) · L̂(t). (7)

13
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Recall that for any two vectors x,y of the same dimension, Rect(x,y) is the rectangle between x and y. Since our ψ is a
separable function (and therefore ∇2ψ is diagonal), we can apply the mean value theorem entrywise and obtain

∇ψ(Y(s))−∇ψ(Y (t)) = ∇2ψ(ξ(s))(Y(s) − Y (t)) (8)

for some ξ(s) ∈ Rect(Y(s), Y (t)).

By our choice of ψ, it holds that ∇2ψ(ξ(s)) ≻ 0 for any ξ(s) ∈ Rect(Y(s), Y (t)). Therefore, combining Equations (7)
and (8), we have

Y(s) ≥ Y (t) − (s− t) ·∇−2ψ(ξ(s)) · L̂(t).

Similar argument yields that
X (s)
k ≥ X(t)

k − (s− t) ·∇−2ϕk(ζ
(s)
k ) · ℓ̂(t)k

for some ζ(s)k ∈ Rect(X (s)
k , X

(t)
k ).

Therefore for any k ∈ [K], j ∈ [mk] and any s ∈ [t, t+ 1), we can bound the difference between Z(t)(k, j) and Z(s)(k, j):

Z(t)(k, j)−Z(s)(k, j) = Y (t)(k) ·X(t)
k (j)− Y(s)(k) · X (s)

k (j)

≤ Y (t)(k) ·X(t)
k (j)−

(
Y (t)(k)− (s− t) ·

[
∇−2ψ(ξ(s)) · L̂(t)

]
(k)
)
·
(
X

(t)
k (j)− (s− t) ·

[
∇−2ϕk(ζ

(s)
k ) · ℓ̂(t)k

]
(j)
)

= −(s− t)2 ·
[
∇−2ψ(ξ(s)) · L̂(t)

]
(k) ·

[
∇−2ϕk(ζ

(s)
k ) · ℓ̂(t)k

]
(j) + (s− t) ·X(t)

k (j) ·
[
∇−2ψ(ξ(s)) · L̂(t)

]
(k)

+ (s− t) · Y (t)(k) ·
[
∇−2ϕk(ζ

(s)
k ) · ℓ̂(t)k

]
(j)

≤ (s− t) ·X(t)
k (j) ·

[
∇−2ψ(ξ(s)) · L̂(t)

]
(k) + (s− t) · Y (t)(k) ·

[
∇−2ϕk(ζ

(s)
k ) · ℓ̂(t)k

]
(j)

for some ξ(s) ∈ Rect(Y(s), Y (t)) and ζ(s)k ∈ Rect(X (s)
k , X

(t)
k ).

We are now ready to bound the gap between Ra(T ) and Ra(T ):

Ra(T )−Ra(T )

=

T−1∑
t=0

E

[∫ t+1

t

⟨Z(t) −Z (s), ℓ̂(t)⟩
]

≤
T−1∑
t=0

E

∫ t+1

t

(s− t)

 ∑
k∈[K]

∑
j∈[mk]

X
(t)
k (j) · sup

ξ∈Rect(Y (t),Y
(t+1)

)

[
∇−2ψ(ξ) · L̂(t)

]
(k)

 · ℓ̂(t)k (j) ds


︸ ︷︷ ︸

(A)

+
T−1∑
t=0

E

∫ t+1

t

(s− t)

 ∑
k∈[K]

∑
j∈[mk]

Y (t)(k) · sup
ζk∈Rect(X(t)

k ,X
(t+1)
k )

[
∇−2ϕk(ζk) · ℓ̂(t)k

]
(j)

 · ℓ̂(t)k (j) ds


︸ ︷︷ ︸

(B)

.

Note that in both expressions (A) and (B) above, only the term (s− t) depend on s. So we can integrate and obtain:

(A) =
1

2

T−1∑
t=0

E

 ∑
k∈[K]

∑
j∈[mk]

X
(t)
k (j) · sup

ξ∈Rect(Y (t),Y
(t+1)

)

[
∇−2ψ(ξ) · L̂(t)

]
(k)

 · ℓ̂(t)k (j)

 (9)

=
1

2

T−1∑
t=0

E

 ∑
k∈[K]

sup
ξ∈Rect(Y (t),Y

(t+1)
)

[
∇−2ψ(ξ) · L̂(t)

]
(k) ·

 ∑
j∈[mk]

X
(t)
k (j) · ℓ̂(t)k (j)


=

1

2

T−1∑
t=0

E

 ∑
k∈[K]

sup
ξ∈Rect(Y (t),Y

(t+1)
)

[
∇−2ψ(ξ) · L̂(t)

]
(k) · L̂(t)(k)


14
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=
1

2

T−1∑
t=0

E

[
sup

ξ∈Rect(Y (t),Y
(t+1)

)

∥L̂(t)∥2∇−2ψ(ξ)

]
.

Similarly,

(B) =
1

2

T−1∑
t=0

E

 ∑
k∈[K]

∑
j∈[mk]

Y (t)(k) · sup
ζk∈Rect(X(t)

k ,X
(t+1)
k )

[
∇−2ϕk(ζk) · ℓ̂(t)k

]
(j)

 · ℓ̂(t)k (j)

 (10)

=
1

2

T−1∑
t=0

E

 ∑
k∈[K]

Y (t)(k) · sup
ζk∈Rect(X(t)

k ,X
(t+1)
k )

∥ℓ̂(t)k ∥
2
∇−2ϕk(ζk)

 .
Combining Equations (9) and (10), we have

Ra(T )−Ra(T ) ≤
1

2

T−1∑
t=0

E

 sup
ξ∈Rect(Y (t),Y

(t+1)
)

∥L̂(t)∥2∇−2ψ(ξ) +
∑
k∈[K]

Y (t)(k) · sup
ζk∈Rect(X(t)

k ,X
(t+1)
k )

∥ℓ̂(t)k ∥
2
∇−2ϕk(ζk)

 .
(11)

If we apply the “regret decomposition theorem” in (He & Zhang, 2023) and use the standard OSMD bound for each stage,
we will get the term

sup
ζk∗∈Rect(X(t)

k∗ ,X
(t+1)

k∗ )

∥ℓ̂(t)k∗ ∥
2
∇−2ϕk∗ (ζk∗ ) (12)

where k∗ is the index of the group containing the optimal arm instead of the term∑
k∈[K]

Y (t)(k) · sup
ζk∈Rect(X(t)

k ,X
(t+1)
k )

∥ℓ̂(t)k ∥
2
∇−2ϕk(ζk)

in Equation (11). The new Y (t)(k) term is crucial to our optimal regret bound since it cancels a Y (t)(k) term hidden in the
denominator of ∥ℓ̂(t)k ∥2∇−2ϕk(ζk)

. This will be clear in Appendix B.1.3.

B.1.3. THE REGRET OF ALGORITHM 1

Note that the regret of Algorithm 1 is composed of the two parts in Lemma B.3 and Lemma B.4. In this section, we will
prove Theorem 3.1 by providing more specific bounds for the terms in these two lemmas.

Proof of Theorem 3.1. By definition of Bregman divergence,

Bψ(ek, Y
(0)) = ψ(ek)− ψ(Y (0))− ⟨∇ψ(Y (0)), ek − Y (0)⟩.

Since we initialize Y (0) = argminb∈∆K−1
ψ(b), Y (0)(k) = 1

K for k ∈ [K] and ⟨∇ψ(Y (0)), ek − Y (0)⟩ ≥ 0 follows the
first-order optimality condition for Y (0). Thus

Bψ(ek, Y
(0)) ≤ ψ(ek)− ψ(Y (0)) =

−2 + 2
√
K

η
≤ 2
√
K

η
.

Similarly we have X(0)
k (j) = 1

mk
for j ∈ [mk] and

Bϕk
(ej , X

(0)
k ) ≤ ϕk(ej)− ϕk(X(0)

k ) =
logmk

ηk
.

Therefore

Ra(T ) ≤
2
√
K

η
+

logmk

ηk
. (13)
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Recall that At = (kt, jt) is the arm pulled by the algorithm at round t. Now we plug our estimator ℓ̂(t)k (j) = 1[kt=k]
Y (t)(k)

ℓ
(t)
k (j)

and ∇2ψ(ξ) = diag
(

1
2ηξ(1)3/2

, 1
2ηξ(2)3/2

, · · · , 1
2ηξ(K)3/2

)
into the first term on the RHS of Lemma B.4.

E

[
sup

ξ∈Rect(Y (t),Y
(t+1)

)

∥L̂(t)∥2∇−2ψ(ξ)

]
= 2ηE

 sup
ξ∈Rect(Y (t),Y

(t+1)
)

∑
k∈[K]

ξ(k)3/2 ·

1 [kt = k]

Y (t)(k)

∑
j∈[mk]

ℓ
(t)
k (j)X

(t)
k (j)

2


(a)

≤ 2ηE

 ∑
k∈[K]

(
Y (t)(k)

)3/2
·

1 [kt = k]

Y (t)(k)

∑
j∈[mk]

ℓ
(t)
k (j)X

(t)
k (j)

2


(b)

≤ 2ηE

E
 ∑
k∈[K]

1 [kt = k]√
Y (t)(k)

 ∣∣∣∣∣ Y (t)


= 2η

K∑
k=1

E

[√
Y (t)(k)

]
(c)

≤ 2η

K∑
k=1

√
E
[
Y (t)(k)

]
≤ 2η

√
K.

In the calculation above: (a) follows from Y
(t+1)

(k) ≤ Y (t)(k), (b) is due to
∑
j∈[mk]

ℓ
(t)
k (j)X

(t)
k (j) ∈ [0, 1], and (c) is

due to Jensen’s inequality.

Similarly we have for the second term with∇2ϕk(ζk) = diag
(

1
ηkζk(1)

, 1
ηkζk(2)

, · · · , 1
ηkζk(mk)

)

E

 ∑
k∈[K]

Y (t)(k) · sup
ζk∈Rect(X(t)

k ,X
(t+1)
k )

∥ℓ̂(t)k ∥
2
∇−2ϕk(ζk)


= E

 ∑
k∈[K]

ηkY
(t)(k) · sup

ζk∈Rect(X(t)
k ,X

(t+1)
k )

∑
j∈[mk]

ζk(j) ·
(
1 [kt = k]

Y (t)(k)
ℓ
(t)
k (j)

)2


(d)

≤ E

 ∑
k∈[K]

ηkY
(t)(k) ·

∑
j∈[mk]

X
(t)
k (j) ·

(
1 [kt = k]

Y (t)(k)
ℓ
(t)
k (j)

)2


(e)

≤ E

E
 ∑
k∈[K]

ηk ·
∑

j∈[mk]

X
(t)
k (j) · 1 [kt = k]

Y (t)(k)

 ∣∣∣∣∣ Y (t)(k)


=
∑
k∈[K]

ηk
∑

j∈[mk]

X
(t)
k (j) =

∑
k∈[K]

ηk.

In the calculation above: (d) follows from X
(t+1)

k (j) ≤ X(t)
k (j) and (e) is due to ℓ(t)k (j) ∈ [0, 1].

Hence, summing up above two terms from 0 to T − 1, we obtain

Ra(T )−Ra(T ) ≤ η
√
KT +

1

2
T
∑
k∈[K]

ηk. (14)

Combining Equations (13) and (14) and choosing η = 1√
T

and ηk = log(mk+1)√
T

∑K
k=1 log(mk+1)

, we obtain for any fixed arm a,

Ra(T ) ≤
2
√
K

η
+

logmk

ηk
+
T

2

∑
k∈[K]

ηk + ηT
√
K ≤ O


√√√√T

K∑
k=1

log(mk + 1)

 .
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B.2. Upper Bound for BAI

We can use the Algorithm 1 and Theorem 3.1 to give an upper bound for m-BAI through Lemma A.1.

Proof of Theorem 1.2. We use Algorithm 1 to construct an (ε, 0.05)-PAC algorithm for m-BAI as described in Lemma A.1.

Since the regret satisfies R(T ) ≤ c
√
T
∑K
k=1 log(1 +mk) for some constant c on every loss sequence by Theorem 1.1,

running Algorithm 1 with T ∗ =
(2500c)2

∑K
k=1 log(1+mk)

ε2 , we can get an (ε, 0.05)-PAC algorithm which always terminates

in O
(∑K

k=1
log(mk+1)

ε2

)
rounds.

B.3. The Strongly Observable Graph with Self-loops

We can generalize our results to any strongly observable graph G = (V,E) with each vertex owning a self-loop. Assume
G contains a (V1, . . . , VK)-clique cover. We construct a new graph G′ = (V,E′) by ignoring the edges between any two
distinct cliques. It is clear that R∗(G,T ) ≤ R∗(G′, T ). Then we can prove Corollary 1.5 by directly applying Algorithm 1
with feedback graph G′. This proves Corollary 1.5, which asserts that

R∗(G,T ) = O


√√√√T ·

K∑
k=1

log(mk + 1)

 .

Although we assume that each vertex contains a self-loop for the sake of simplicity, we note that our algorithm can still
be applied to strongly observable graphs that have some vertices without self-loops. In such cases, we can incorporate an
additional exploration term into our algorithm, and a similar analysis to that in Section 3.2 still works.

There have been several works using the clique cover as the parameter to bound the minimax regret of graph bandit. For
example, (Erez & Koren, 2021) applies FTRL algorithm with a carefully designed potential function which combines the
Tsallis entropy with negative entropy. It achieves a regret of (log T )O(1) ·O

(√
KT

)
. Our new bound takes into account

the size of each clique and is always superior.

C. Lower Bounds for m-BAI
Let A be an algorithm for m-BAI where m = (m1, . . . ,mK) is a vector. Given an instance of m-BAI, we use T to denote
the number of rounds the algorithm A proceeds. Recall that for every group k ∈ [K] and j ∈ [mk], we use T(k,j) to denote
the number of times that the arm (k, j) has been pulled. For every k ∈ [K], let T (k) =

∑
j∈[mk]

T(k,j) be the number of
rounds the arms in the k-th group have been pulled. We also use N(k,j) to denote the number of times the arm (k, j) has
been observed. Clearly N(k,j) = T (k).

In the following part, we only consider stochastic environment. That is, ℓ(t) is independently drawn from the same
distribution for each t ∈ N. Therefore, we omit the superscript (t) and only use ℓ(i) or ℓk(j) to denote the one-round loss of
arm i or arm (k, j) respectively when the information is clear from the context.

In Appendix C.1, we lower bound the number of rounds for a PAC algorithm on a specific m-BAI instance with m = (m)
and then prove the result for m-BAI in Appendix C.4. We then use these results to prove a regret lower bound for m-MAB
and bandit problems with general feedback graphs in Appendix E.

C.1. An Instance-Specific Lower Bound for (m)-BAI

In this section, we study the number of rounds required for (m)-BAI in an (ε, 0.05)-PAC algorithm. In this setting, the pull
of any arm can observe the losses of all arms. We will establish a lower bound for a specified instance, namely the one
where all arms follow Ber( 12 ). This is key to our lower bound later.

We focus on instances of (m)-BAI where each arm is Bernoulli. As a result, each instance can be specified by a vector
(p1, . . . , pm−1, pm) ∈ Rm meaning the loss of arm i follows Ber(pi) in each round independently.

Let ε ∈
(
0, 12

)
. In the following context, when we denote an instance as H m, the superscript m indicates that it is an

17
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m-BAI instance. Consider the following m+ 1 (m)-BAI instances
{

H
(m)
j

}
j∈[m]∪{0}

:

• The instance H
(m)
0 is

(
1
2 ,

1
2 ,

1
2 , · · · ,

1
2

)
. That is, pi = 1

2 for every i ∈ [m] in H
(m)
0 ;

• For j ∈ [m],

H
(m)
j =

1

2
,
1

2
, · · · , 1

2
,

1

2
− ε
↑

the j-th arm

,
1

2
, · · · , 1

2

 ;

that is, the instance satisfies pj = 1
2 − ε and pi = 1

2 for every i ̸= j.

We say an algorithm A distinguishes
{

H
(m)
j

}
j∈[m]∪{0}

with probability p if

Pr
[
A outputs j

∣∣∣ the input instance is H
(m)
j

]
≥ p,

and the output can be arbitrary among {0, 1, . . .m} when the input is not in
{

H
(m)
j

}
j∈[m]∪{0}

. We refer it as a distin-

guishing algorithm, which is different from the (ε, 0.05)-PAC algorithm.

The main result of this section is

Lemma C.1 (restate Lemma 4.1). Let A be an (ε, 0.05)-PAC algorithm. Assume m ≥ 2. There exists a universal constant
c1 > 0 such that A terminates on H

(m)
0 after at least c1ε2 log(m+ 1) rounds in expectation.

We will demonstrate in Lemma C.6 that an (ε, 0.05)-PAC algorithm can be adapted into an algorithm to distinguish{
H

(m)
j

}
j∈[m]∪{0}

with few extra samples. Thus, we first establish a lower bound for distinguishing algorithms. For

technical reasons, we begin by proving a lower bound for distinguishing algorithms for Gaussian arms in Appendix C.2 and
subsequently reduce the Bernoulli arms to Gaussian arms in Appendix C.3.

C.2. The Gaussian Arms

In this section, we relax the constraint on the range of each arm’s loss and allow the losses to be arbitrary real numbers. Let
ε ∈

(
0, 12

)
and σ ∈

(
1

2
√
2π
, 1√

2π

)
. We construct m+ 1 instances {Nj}j∈{0}∪[m] with Gaussian distributions:

• In the instance N0, for each i ∈ [m], ℓ(i) is independently drawn from a Gaussian distribution N (0, σ2);

• In the instance Nj for j ∈ [m], ℓ(j) ∼ N (−ε, σ2) and ℓ(i) ∼ N (0, σ2) for each i ̸= j and i ∈ [m] independently.

Lemma C.2 (Bretagnolle-Huber inequality, see e.g. (Lattimore & Szepesvári, 2020)). Let P1 and P2 be two probability
measures on the same measurable space (Ω,F), and let E ∈ F be an arbitrary event. Then

P1[E] +P2[E] ≥ 1

2
e−DKL(P1,P2)

Let Nmix be the mixture of {Nj}j∈[m] meaning that the environment chooses k from [m] uniformly at random and generates
losses according to Nk in the following BAI game. Let A be an algorithm distinguishing {Nj}j∈[m]∪{0}. Let Ω be the set
of all possible outcomes during the first t∗ rounds, including the samples according to the input distribution and the output
of A (if A does not terminate after the t∗-th round, we assume its output is −1). Note that if the algorithm terminates in
t′ < t∗ rounds, we can always add t∗ − t′ virtual rounds so that it still produces a certain loss sequence in Rm×t∗ .

As a result, each outcome ω ∈ Ω can be viewed as a pair ω = (w, x) where w ∈ Rm×t∗ is the loss sequence and
x ∈ {−1, 0, 1, . . . ,m} indicates the output of A. Thus Ω =W × {−1, 0, 1, . . . ,m} where W = Rm×t∗ .

To ease the proof below, we slightly change A’s output: if the original output is x ∈ {−1, 0, . . . ,m}, we instead output a
uniform real in [x, x+ 1). Therefore, we can let Ω =W ×X where W = Rm×t∗ and X = R. The benefit of doing so is
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that we can let F be the Borel sets in Ω which is convenient to work with. Clearly it is sufficient to establish lower bounds
for the algorithms after the change.

For any instance H (m), let PH (m) be the measure of outcomes of A in t∗ rounds with input instance H (m) and pH (m)

be the corresponding probability density function (PDF). Then PN0
and PNmix

are two probability measures on (Ω,F)
and pNmix

(ω) = 1
m

∑
j∈[m] pNj (ω) for any ω = (w, x) ∈ Ω = Rm×t∗+1. We also let pW

H (m) be the PDF of the samples

during the first t∗ rounds according to the input H (m) and pX
H (m) be the PDF of A’s output. Furthermore, we let pX|W

H (m) to

be the conditional density function of X given W . By definition, we have p
X|W
H (m)(x|w) =

p
H (m) (ω)

pW

H (m)
(w)

.

Lemma C.3.

DKL (PNmix
,PN0

) ≤ log
m− 1 + exp

(
ε2t∗

σ2

)
m

.

Proof. For any ω = (w, x) ∈ Ω, let wj,t denote the (j, t)th entry of the matrix w for every j ∈ [m] and t ∈ [t∗]. That is,
wj,t = ℓ(t)(j), which is the loss of arm j in the t-th round. Then for each i ∈ [m],

pWNi
(w) =

(
2πσ2

)−mt∗
2 exp

−∑t∈[t∗]

(
(wi,t + ε)2 +

∑
j ̸=i w

2
j,t

)
2σ2


and

pWN0
(w) =

(
2πσ2

)−mt∗
2 exp

(
−
∑
t∈[t∗],j∈[m] w

2
j,t

2σ2

)
.

Therefore we have

pNi(ω)

pN0
(ω)

=
pWNi

(w)

pWN0
(w)

=

(
2πσ2

)−mt∗
2 exp

(
−

∑
t∈[t∗]((wi,t+ε)

2+
∑

j ̸=i w
2
j,t)

2σ2

)
(2πσ2)

−mt∗
2 exp

(
−

∑
t∈[t∗],j∈[m] w

2
j,t

2σ2

)
= exp

(
−
ε2t∗ + 2ε

∑
t∈[t∗] wi,t

2σ2

)
.

From Jensen’s inequality, we have

DKL (PNmix
,PN0

) =

∫
Ω

log
pNmix

(ω)

pN0
(ω)

dPNmix
(ω) ≤ log

∫
Ω

pNmix
(ω)

pN0
(ω)

dPNmix
(ω)

= log

∫
Ω

1

m

∑
j∈[m]

pNj
(ω)

1
m

∑
i∈[m] pNj (ω)

pN0
(ω)

dω.

Note that for ω = (w, x), For i, j ∈ [m] and i ̸= j,∫
Ω

pNi
(ω)

pNj (ω)

pN0
(ω)

dω =

∫
W

∫
X

pWNi
(w) · pX|W

Ni
(x|w)

pWNj
(w)

pWN0
(w)

dxdw

=

∫
W

pWNi
(w)

pWNj
(w)

pWN0
(w)

dw

=
(
2πσ2

)−mt∗
2 ·

∫
Ω

exp

−
∑
t∈[t∗]

(
(wi,t + ε)2 + (wj,t + ε)2

)
+
∑

j′ ̸=i
j′ ̸=j

w2
j′,t

2σ2

 dw = 1.

For i ∈ [m],∫
Ω

pNi(ω)
pNi(ω)

pN0(ω)
dω =

∫
W

∫
X

pWNi
(w) · pX|W

Ni
(x|w)

pWNi
(w)

pWN0
(w)

dxdw
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=

∫
W

pWNi
(w)

pWNi
(w)

pWN0
(w)

dw

=
(
2πσ2

)−mt∗
2 ·

∫
Ω

exp

−∑t∈[t∗]

(
(wi,t + 2ε)2 +

∑
j′ ̸=i w

2
j′,t

)
− 2ε2t∗

2σ2

 dw

= exp

(
ε2t∗

σ2

)
.

Therefore, combining the equations above, we get∫
Ω

1

m

∑
j∈[m]

pNj (ω)

1
m

∑
i∈[m] pNi

(ω)

pN0(ω)
dω =

1

m2

∑
i,j∈[m]

∫
Ω

pNi(ω)
pNj

(ω)

pN0(ω)
dω

=
m(m− 1) +m · exp

(
ε2t∗

σ2

)
m2

=
m− 1 + exp

(
ε2t∗

σ2

)
m

,

where the first equality follows from Fubini’s theorem. This indicates that DKL (PNmix
,PN0

) ≤ log
m−1+exp

(
ε2t∗
σ2

)
m .

Let t∗ = c0 log(m+1)
ε2 , where c0 ≤ σ2 is a universal constant. We have the following lemma to bound PrN0 [T ≥ t∗]. Here

the randomness comes from the algorithm and environment when the input instance is N0.
Lemma C.4. For any algorithm distinguishing {Nj}j∈[m]∪{0} with probability 0.925, we have PrN0 [T ≥ t∗] ≥ 0.1.

Proof. Let A be an algorithm that can distinguish {Nj}j∈[m]∪{0} with probability 0.925. Let E be the event that A
terminates within t∗ rounds and gives answer N0. Recall that T is a random variable which represents the rounds thatA runs.
Assume PrN0

[T ≥ t∗] < 0.1. Then we have PrN0

[
E
]
< 0.075 + 0.1 from the union bound. Combining Lemma C.2 and

Lemma C.3, we get

PrNmix
[E] ≥ m

2
(
m− 1 + exp

(
ε2t∗

σ2

)) −PrN0

[
E
]
>

m

2 (m− 1 +m+ 1)
− 0.1− 0.075 ≥ 0.075

for every m ≥ 1. This indicates the existence of some j ∈ [m] such that PrNj
[E] > 0.075, which is in contradiction to the

promised success probability of A. Therefore A satisfies

PrN0
[T ≥ t∗] ≥ 0.1.

C.3. From Gaussian to Bernoulli

We then show a reduction from Gaussian arms to Bernoulli arms which implies lower bounds for instances{
H

(m)
j

}
j∈[m]∪{0}

.

Given an input instance from {Nj}j∈[m]∪{0}, we can map it to a corresponding instance among
{

H
(m)
j

}
j∈[m]∪{0}

by the

following rules.

In each round, if an arm receives a loss ℓ ∈ R, let

ℓ̂ =

{
0, if ℓ < 0;

1, if ℓ ≥ 0.
(15)

Obviously, losses drawn from Gaussian distribution N (0, σ2) are mapped to Ber
(
1
2

)
losses. For a biased Gaussian

N
(
−ε, σ2

)
, as Figure 1 shows, it holds that

Pr
[
ℓ̂ < 0

]
=

∫ −ε

−∞

1√
2πσ

e−
(x+ε)2

2σ2 dx+

∫ 0

−ε

1√
2πσ

e−
(x+ε)2

2σ2 dx
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=
1

2
+

∫ 0

−ε

1√
2πσ

e−
(x+ε)2

2σ2 dx .

0−ε

1√
2πσ

ℓ̂ = 0 ℓ̂ = 1

Figure 1. From Gaussian to Bernoulli

Let f(σ) =
∫ 0

−ε
1√
2πσ

e−
(x+ε)2

2σ2 dx denote the shadowed area in Figure 1. Note that f is continuous with regard to σ and

f(σ) ∈
(

ε√
2πσ

e−
ε2

2σ2 ,
ε√
2πσ

)
.

Assume that ε < 1
8 . Therefore, there exists σ0 ∈

(
1

2
√
2π
, 1√

2π

)
such that f(σ0) = ε. Choose σ = σ0. Then we map

N (−ε, σ2) to Ber
(
1
2 − ε

)
and transform the sample space from Rm×t∗ to {0, 1}m×t∗ .

Lemma C.5. Let ε be a number in
(
0, 18

)
. For any algorithm distinguishing

{
H

(m)
j

}
j∈[m]∪{0}

with probability 0.925, we

have Pr
H

(m)
0

[T ≥ t∗] ≥ 0.1.

Proof. Assume that there exists such an algorithm A with Pr
H

(m)
0

[T ≥ t∗] < 0.1. We then construct an algorithm A′ to
distinguish {Nj}j∈[m]∪{0}.

The algorithm A′ proceeds as follows: When A′ receives a loss ℓ, it first calculates ℓ̂ as Equation (15) and treats ℓ̂ as the
loss to apply A. If A outputs H

(m)
j , A′ output Nj . Therefore, A′ also succeeds with probability 0.925 while satisfying

PrN0
[T ≥ t∗] < 0.1. This violates Lemma C.4.

We remark that we cannot replace H
(m)
0 by H

(m)
j for any j ∈ [m] in Lemma C.5, since an “H (m)

j favourite” algorithm

exists for every j ∈ [m]. For example, an “H (m)
1 favourite” algorithm is as follows: one first sample the arms for 2 log 1

0.03

ε2

rounds. If the empirical mean p̂1 < 1
2 −

ε
2 , terminate and output H

(m)
1 . Otherwise apply an algorithm which can distinguish{

H
(m)
j

}
j∈[m]∪{0}

with probability 0.96. By the Hoeffding’s inequality, the error probability in the first stage is at most

0.03. Therefore, this “H (m)
1 favourite” algorithm has success probability 0.925 and with high probability, it only needs to

play 2 log 1
0.03

ε2 rounds when the input instance is H
(m)
1 .

Then we are ready to prove Lemma C.1, which is a direct corollary of the following lemma.

Lemma C.6. Let ε be a number in
(
0, 18

)
and assume m ≥ 2. There exists a constant c1 > 0 such that for any algorithm

A which can output an ε-optimal arm on any instance among
{

H
(m)
j

}
j∈[m]∪{0}

with probability at least 0.95, we have

E
H

(m)
0

[T ] ≥ c1 log(m+1)
ε2 .
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Proof. We first consider the case c0 log(m+ 1) > 4 log 40 where c0 is the universal constant in the definition of t∗. We
reduce from the hypothesis testing lower bound in Lemma C.5. Assume A satisfying Pr

H
(m)
0

[
T ≥ c0 log(m+1)

2ε2

]
< 0.1.

Then we construct an algorithm A′ to distinguish
{

H
(m)
j

}
j∈[m]∪{0}

. Given an instance among
{

H
(m)
j

}
j∈[m]∪{0}

, we

first apply A to get an output arm i. Then we sample 2 log 1
0.025

ε2 rounds and check whether the empirical mean p̂i ≤ 1
2 −

ε
2 .

If so, output H
(m)
i . Otherwise, output H

(m)
0 . The success probability of at least 0.925 is guaranteed by Hoeffding’s

inequality and the union bound.

According to our assumption, with probability larger than 0.9, A′ terminates in c0 log(m+1)
2ε2 +

2 log 1
0.025

ε2 < c0 log(m+1)
ε2

rounds. This violates Lemma C.5.

Then we consider the case c0 log(m+ 1) ≤ 4 log 40; that is, when m is bounded by some constant. It then follows from
Lemma D.3 that A satisfies Pr

H
(m)
0

[
T ≥ cs

ε2

]
≥ 0.1 for a universal constant cs when m ≥ 2.

Then choosing c1 = min
{
c0
20 ,

cs
10 log(m0+1)

}
where m0 = ⌊e

4 log 40
c0 − 1⌋, we have E

H
(m)
0

[T ] ≥ c1 log(m+1)
ε2 for any

algorithms that can output an ε-optimal arm on any instance among
{

H
(m)
j

}
j∈[m]∪{0}

with probability at least 0.95 when

m ≥ 2.

C.4. The Lower Bound for m-BAI

Recall that in m-BAI, the N arms are partitioned into K groups with size m1,m2, . . . ,mK respectively. Each pull of an
arm results in an observation of all the arms in its group. Consider an m-BAI instance H m

0 which consists of all fair coins.
Recall that we use T (k) to denote the number of rounds in which the pulled arm belongs to the k-th group.

We then prove the following lemma, which indicates the result of Theorem 1.3 directly.

Lemma C.7 (restate Lemma 4.2). Let ε be a number in
(
0, 18

)
. For every (ε, 0.05)-PAC algorithm of m-BAI, we have

EH m
0

[
T (k)

]
≥ c1 log(mk+1)

ε2 for every k ∈ [K] with mk ≥ 2 and EH m
0

[T ] ≥
∑K
k=1

c1 log(mk+1)
2ε2 if the total number of

arms
∑K
k=1mk ≥ 2, where c1 is the constant in Lemma C.6.

Moreover, these lower bounds still hold even the algorithm can identify the ε-optimal arm with probability 0.95 only when
the input arms have losses drawn from either Ber

(
1
2

)
or Ber

(
1
2 − ε

)
.

Proof. We only prove the latter case which is stronger. LetH be the set of all m-BAI instances where the input arms have
losses drawn from either Ber

(
1
2

)
or Ber

(
1
2 − ε

)
.

Let A be an algorithm that identifies the ε-optimal arm with probability 0.95 when the input instance is inH. Assume A
satisfies EH m

0

[
T (k)

]
< c1 log(mk+1)

ε2 for some k ∈ [K]. In the following, we construct an algorithmA′ to find an ε-optimal

arm given instances in
{

H
(mk)
j

}
j∈[m]∪{0}

.

Given any (mk)-BAI instance H (mk) ∈
{

H
(mk)
j

}
j∈[m]∪{0}

, we construct an m-BAI instance: set H (mk) to be the

k-th group and all remaining arms are fair ones. Then we apply A on this instance. The output of A′ is as follows:

Output of A′ =

{
arm j, if the output of A is arm (k, j);

an arbitrary arm, otherwise.

Clearly, the correct probability of A′ is at least 0.95. However, A′ satisfies E
H

(mk)

0

[T ] < c1 log(mk+1)
ε2 , which violates

Lemma C.6.

Therefore, we have EH m
0

[
T (k)

]
≥ c1 log(mk+1)

ε2 for every k ∈ [K] with mk ≥ 2 and thus have proved EH m
0

[T ] ≥∑K
k=1

c1 log(mk+1)
ε2 as long as each mk ≥ 2. For those groups of size one, we can pair and merge them so that each group

contains at least two arms (in case there are odd number of singleton groups, we merge the remaining one to any other
groups). Notice that this operation only makes the problem easier (since one can observe more arms in each round) and only
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affects the lower bound by a factor of at most 2. Therefore, we still have

EH m
0

[T ] ≥
K∑
k=1

c1 log(mk + 1)

2ε2
.

D. Lower Bound for (m)-BAI with Bounded m

In this section, we will lower bound the number of pulls in (ε, 0.05)-PAC algorithms of (m)-BAI when m is bounded by a
constant. To this end, we first prove a likelihood lemma in Appendix D.1.

D.1. Likelihood Lemma

Consider two instances Ha and Hb which only differ at one arm (without loss of generality, assume it is the first arm). In
Ha, ℓ(1) is drawn from Ber

(
1
2

)
and in Hb, ℓ(1) is drawn from Ber

(
1
2 − ε

)
where ε ∈

(
0, 12

)
is a fixed number.

Let A be a PAC algorithm for BAI. Let Kt
j =

∑t
r=1 ℓ

(r)(j) be the accumulative loss of arm j before the (t + 1)-th

round and abbreviate KNj

j as Kj . Let Aj be the event that Nj < t̂ for a fixed t̂ ∈ N. Let Caj be the event that{
max1≤t≤t̂

∣∣Kt
j − 1

2 t
∣∣ < √t̂ · cε2t̂} and Cbj be the event

{
max1≤t≤t̂

∣∣Kt
j −

(
1
2 − ε

)
t
∣∣ < √t̂ · cε2t̂} where c is a positive

constant.

Lemma D.1 (Lemma 3 of (Mannor & Tsitsiklis, 2004)). If 0 ≤ x ≤ 1√
2

and y > 0, then (1−x)y ≥ e−dxy where d = 1.78.

Lemma D.2 (Likelihood Lemma). Let Sa = A1 ∩B ∩Ca1 and Sb = A1 ∩B ∩Cb1 where B is an arbitrary event. Then we
have

PrHb
[Sa] ≥ e−8(1+

√
c)ε2 t̂PrHa [S

a] (16)

and
PrHa

[
Sb
]
≥ e−8(1+

√
c)ε2 t̂PrHb

[
Sb
]

(17)

Proof. We first prove Equation (16). For each ω ∈ Sa (ω is a history of the algorithm, including the behavior of the
algorithm and observed result in each round), we have

PrHb
[ω]

PrHa [ω]
=

(
1
2 − ε

)K1
(
1
2 + ε

)N1−K1(
1
2

)N1
= (1− 2ε)

K1 (1 + 2ε)
N1−K1

=
(
1− 4ε2

)N1−K1
(1− 2ε)

2K1−N1 ≥
(
1− 4ε2

)N1
(1− 2ε)

2K1−N1 .

From Lemma D.1 and the definition of Sa, we have(
1− 4ε2

)N1 ≥
(
1− 4ε2

)t̂ ≥ e−8ε2 t̂

and
(1− 2ε)

2K1−N1 ≥ (1− 2ε)
2
√
t̂·cε2 t̂ ≥ e−8

√
cε2 t̂.

Therefore
PrHb

[ω]

PrHa [ω]
≥ e−8(1+

√
c)ε2 t̂

and thus

PrHb
[Sa] ≥

∑
ω∈Sa

PrHb
[ω]

PrHa [ω]
·PrHa [ω] ≥ e−8(1+

√
c)ε2 t̂PrHa [S

a] .

The proof of Equation (17) is similar.
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D.2. Lower Bound for (m)-BAI with Constant m

Lemma D.3. There exists a constant cs such that for any algorithm A which can output an ε-optimal arm on any
instance among

{
H

(m)
j

}
j∈[m]∪{0}

with probability at least 0.95 when m ≥ 2 and c0 log(m+ 1) ≤ 4 log 40, we have

Pr
H

(m)
0

[
T ≥ cs

ε2

]
≥ 0.1.

Proof. Note that there must exist j ∈ [m] such that Pr
H

(m)
0

[A output arm j] ≤ 1
m . Let B be the event that the algorithm

output any arm except for arm j. Apply Lemma D.2 with t̂ = log 3
100ε2 , c = 100, Hb = H

(m)
j and Ha = H

(m)
0 . Assume that

Pr
H

(m)
0

[
T ≥ t̂

]
< 0.1. By the Kolmogorov’s inequality, we have Pr

H
(m)
0

[
max1≤t≤t̂

∣∣Kt
j − 1

2 t
∣∣ < √t̂ · cε2t̂] ≥ 1−0.25.

Therefore, we have Pr
H

(m)
0

[Sa] ≥ 0.9− 1
m − 0.25 ≥ 0.15 by the union bound.

Then from Equation (16), we have

Pr
H

(m)
j

[B] ≥ e−8(1+
√
c)· log 3

100 ·Pr
H

(m)
0

[Sa] > 0.15 · 1
3
= 0.05.

However, this is in contradiction with the success probability of A. Therefore, letting cs = log 3
100 , we have

Pr
H

(m)
0

[
T ≥ cs

ε2

]
≥ 0.1.

E. Regret Lower Bounds
In this section we prove lower bounds for minimax regrets in various settings. All lower bounds for regrets in the section are
based on the lower bounds for m-BAI established in Appendix C.

E.1. Regret Lower Bound for m-MAB

Let us fix m = (m1, . . . ,mK). We then derive a regret lower bound for m-MAB and thus prove Theorem 1.4. Let T be the
time horizon and c1 be the constant in Lemma C.6. Consider a set of m-BAI instances where each arm has losses drawn

from either Ber
(
1
2

)
or Ber

(
1
2 − ε

)
where ε =

√
c1

∑K
k=1 log(mk+1)

8T . Denote this set byH.

Lemma E.1. For any algorithm A of (m1, . . . ,mk)-MAB, for any sufficiently large T > 0, there exists H ∈ H such that
the expected regret of A satisfies

EH [R(T )] ≥ c′ ·

√√√√T ·
K∑
k=1

log(mk + 1)

where c′ > 0 is a universal constant. Here the expectation is taken over the randomness of losses which are drawn from H
independently in each round.

Proof. Assume A satisfies

EH [R(T )] <

√
T · 12

∑K
k=1 c1 log(mk + 1)

5000

for every H ∈ H where c1 is the constant in Lemma C.6. Lemma A.1 shows that A implies an algorithm to identify the
ε-optimal arm for m-BAI instances in H with probability 0.95 which terminates in c1 ·

∑K
k=1 log(mk+1)

8ε2 rounds. We can
assume ε < 1

8 since T is sufficiently large.

However, according to Lemma C.7, for any such algorithms, there exists some instances in H that need
at least c1

∑K
k=1 log(mk+1)

2ε2 rounds. This violates Lemma A.1 and thus indicates a regret lower bound of

Ω

(√
T ·
∑K
k=1 log(mk + 1)

)
.

Theorem 1.4 is a direct corollary of Lemma E.1.
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E.2. Regret Lower Bounds for Strongly Observable Graphs

Let G = (V,E) be a strongly observable graph with a self-loop on each vertex. Let N = |V |. Assume that there exist K
disjoint sets S1, . . . , SK ⊆ V such that there is no edge between Si and Sj for any i ̸= j. For every k ∈ [K], let mk = |Sk|.
Let S =

⋃
k∈[K] Sk.

Proof of Theorem 1.6. We present a reduction from m-MAB to bandit with feedback graph G where m = (m1, . . . ,mK).
Let A be an algorithm for bandit with feedback graph G. Consider a set of instances where the loss of each arm is drawn

from either Ber
(
1
2

)
or Ber

(
1
2 − ε

)
where ε =

√
c1

∑K
k=1 log(mk+1)

8T (here c1 is the constant in Lemma C.6). Denote this
set byH. When we say the input of MAB is an instance inH, we mean that the loss sequence is drawn from this instance
independently in each round.

Then we design an algorithm A′ for m-MAB to deal with instances inH as follows. For an m-MAB instance H m inH, we
construct a bandit instance with feedback graph G: the losses of arms in Sk correspond to the losses of arms in the k-th
group of H m in the m-MAB game and the losses of arms in V \ S are always equal to 1.

The algorithm A′ actually makes decisions according to A. If A pulls an arm in S, A′ pulls the corresponding arm in the
m-MAB game. Otherwise, when A requests to pull an arm At ∈ V \ S, we replace this action by letting A′ pull the first arm
in each group once and then feed the information that At should have observed back to A (Note that all arms outside S have
fixed loss 1). We force A′ to terminate after pulling exactly T arms. Note that ε≪ 1

K since T is sufficiently large. If we use
R(T ) and R′(T ) to denote the regret of A and A′ respectively, then by our choice of ε, we have

E [R(T )] ≥ E [R′(T )]

where the expectation is taken over the randomness of loss sequences specified above.

Lemma E.1 shows that there exists H ∈ H such that

EH [R′(T )] ≥ c′
√√√√T ·

K∑
k=1

log(mk + 1)

Therefore, there exist some loss sequences on which A needs to suffer a regret of Ω
(√

T ·
∑K
k=1 log(mk + 1)

)
.

Remark E.2. Although we assume each vertex has a self-loop in Theorem 1.6, it is easy to verify that this result also holds
for strongly observable graphs which contain some vertices without self-loops, as long as we can find legal {Sk}k∈[K]. For
example, for the loopless clique, we can also apply Theorem 1.6 with K = 1 and S1 = V . It gives a minimax regret lower
bound of Ω

(√
T logN

)
, which matches the previous best upper bound in (Alon et al., 2015).

. .
.

. .
.

S1 S2 S3 SK

. . . . . .

· · ·

Figure 2. A Feedback Graph Example

Theorem 1.6 gives a general regret lower bound for bandit with arbitrary feedback graphs. Intuitively, it allows us to partition
the graph and consider the hardness of each single part respectively.

For example, consider the graph shown in Figure 2: The feedback graph is the disjoint union ofK1 cliques andK2 = K−K1

cycles where each clique contains m1 vertices and each cycle contains m2 vertices. Note that the clique cover of this graph
contains K1 cliques of size m1 and ⌈K2m2

2 ⌉ cliques of constant size. According to Theorem 3.1, our Algorithm 1 gives a
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regret upper bound of O
(√

T (K1 logm1 +K2m2)
)

, which matches the lower bound given in Theorem 1.6. The previous

best lower bound ((Alon et al., 2015)) on this feedback graph is Ω
(√

(K1 +K2m2)T
)

. When K1 and m1 are large, our

result wins by a factor of Θ
(√

logm1

)
.

E.3. Regret Lower Bounds for Weakly Observable Graphs

LetG = (V,E) be a weakly observable graph. Assume that V can be partitioned intoK disjoint sets V = V1∪V2∪· · ·∪VK
and each G[Vk] contains a tk-packing independent set Sk such that every vertex in Sk does not have a self-loop. Assume
there are no edges from Vj to Si for any i ̸= j. Let mk = |Sk| and S =

⋃
k∈[K] Sk.

Without loss of generality, we assume in the following proof that eachmk ≥ 2. When there exists somemk = 1, we can pair
and merge them into new sets of size at least 2 (in case there are odd number of singleton sets, we merge the remaining one
to any other sets). This merging process only affects the result by at most a constant factor. Let m = (m1, . . . ,mK). Our
proof idea is to embed a certain m′-BAI instance in G so that the lower bound follows from the lower bound of m′-BAI.

Proof of Theorem 1.7. Let

ξk = max

{
c1 log(mk + 1),

c2mk

tk

}
for every k ∈ [K] where c1 > 0 is the constant in Lemma C.7 and c2 = c1 log 3

4 . Assume there exists an algorithm A such
that

R(T ) <
1

2 · 1250 2
3

(
K∑
k=1

ξk

) 1
3

· T 2
3 (18)

for every loss sequence. We will construct an m′-BAI game for some m′ = (m′
1,m

′
2, . . . ,m

′
K′) and reduce this BAI game

to the bandit problem with feedback graph G. The vector m′ is obtained from m in the following ways. For every k ∈ [K],
we distinguish between two cases:

• Case 1: if c1 log(mk + 1) ≥ c2mk

tk
, we let the arms in Sk form a group in the m′-BAI instance;

• Case 2: if c1 log(mk + 1) < c2mk

tk
, we divide Sk into ⌊mk

2 ⌋ small sets, each with size at least two. Each small set
becomes a group in the m′-BAI instance.

In other words, each group in the m′-BAI instance is either one of Sk (Case 1) or is a subset of a certain Sk (Case 2).

Given an m′-BAI instance and time horizon T > 0, we now define the loss sequence for bandit with feedback graph G:
the losses of arms in S in each round are sampled from the distribution of the corresponding arm in the m′-MAB instance
independently, and the losses of arms in V \ S are always equal to 1. We then design an algorithm A′ for the m′-BAI game
by simulating A on this graph bandit problem. If A pulls an arm in V \ S and observes arms in Sk, we again consider two
cases:

• Case 1: if c1 log(mk + 1) ≥ c2mk

tk
, we let A′ pull an arbitrary arm in the corresponding group m′-MAB instance;

• Case 2: if c1 log(mk + 1) < c2mk

tk
, for each arm in Sk that will be observed, A′ pulls the corresponding arm in the

m′-MAB instance once.

Otherwise if A pulls an arm in S, A′ does nothing and just skips this round. Note that A′ can always observe more
information about the feedback of arms in S than A. So A′ can well simulate A just by feeding the information it observed
to A and making decisions according to the behavior of A as described above.

Let Ti be the number of times that arm i has been pulled by A. At the end of the game, A′ samples an arm in V according
to the distribution

(
T1

T ,
T2

T , . . . ,
TN

T

)
. If the sampled arm is in V \ S, A′ outputs a random arm. Otherwise A′ outputs the

sampled arm. Choose ε = 1250
1
3

(∑K
k=1 ξk
T

) 1
3

. We can verify that A′ is an (ε, 0.05)-PAC algorithm through an argument
similar to the one in our proof of Lemma A.1.
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Let T (k) be the number of times that the arms in group k have been pulled by A′ in the m′-BAI game. According to
Lemma C.7, for each k ∈ [K ′],

EH m′
0

[
T (k)

]
≥ c1 log(m

′
k + 1)

ε2
,

where H m′

0 is the m′-BAI instance with all fair coins. Let I0 denote the graph bandit instance constructed from above
rules based on H m′

0 . Recall that one pull of A corresponds to at most tk pulls of A′ in Case 2. Therefore, when the input is

I0, A must pull the arms in Vk \ Sk for at least c1⌊
mk
2 ⌋ log 3

tkε2
≥ c2mk

tkε2
times if k is in Case 2 and at least c1 log(mk+1)

ε2 times
if k is in Case 1. In other words, A must pull the arms in Vk \ Sk for at least ξkε2 times for every k ∈ [K]. Plugging in our

choice of ε, A needs to pull the arms in V \ S for more than 1

1250
2
3
·
(∑K

k=1 ξk

) 1
3

T
2
3 times in total on I0. These pulls

contribute a regret of at least 1

2·1250
2
3

(∑K
k=1 ξk

) 1
3 · T 2

3 , which contradicts the assumption in Equation (18).

Therefore, there exists some loss sequences such that A satisfies

R(T ) = Ω

T 2
3 ·

(
K∑
k=1

max

{
logmk,

mk

tk

}) 1
3

 .

Theorem 1.7 confirms a conjecture in (He & Zhang, 2023). It can also generalize the previous lower bound for weakly

observable graphs Ω
(
T

2
3

(
log |S|, |S|t

) 1
3

)
in (Chen et al., 2021) by applying Theorem 1.7 with K = 1 and V1 = V where

S ⊆ V is a t-packing independent set of G. As consequences, Theorem 1.7 provides tight lower bounds for several feedback
graphs. For example, when G is the disjoint union of K complete bipartite graphs of size m1,m2, . . . ,mK respectively, it

implies a lower bound of Ω
((∑

k∈[K] logmk

) 1
3

T
2
3

)
, which matches the upper bound in (He & Zhang, 2023).
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