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Abstract

Vision Transformer (ViT) has shown great power in learning from large-scale
datasets. However, collecting sufficient data for expert knowledge is always dif-
ficult. To handle this problem, Cross-Domain Few-Shot Learning (CDFSL) has
been proposed to transfer the source-domain knowledge learned from sufficient
data to target domains where only scarce data is available. In this paper, we find
an intriguing phenomenon neglected by previous works for the CDFSL task based
on ViT: leaving the CLS token to random initialization, instead of loading source-
domain trained parameters, could consistently improve target-domain performance.
We then delve into this phenomenon for an interpretation. We find the CLS token
naturally absorbs domain information due to the inherent structure of the ViT,
which is represented as the low-frequency component in the Fourier frequency
space of images. Based on this phenomenon and interpretation, we further propose
a method for the CDFSL task to decouple the domain information in the CLS
token during the source-domain training, and adapt the CLS token on the target
domain for efficient few-shot learning. Extensive experiments on four benchmarks
validate our rationale and state-of-the-art performance. Our codes are available at
https://github.com/Zoilsen/CLS_Token_CDFSL.

1 Introduction

Vision Transformer (ViT) has boosted the development of artificial intelligence due to its great capa-
bility in learning from large-scale datasets [3, 10, 11, 18, 26, 39], which is now the foundation model
for many deep learning tasks. However, the generalization of ViT on downstream tasks has not been
fully explored yet [27, 32, 41], especially under the cross-domain data-scarce scenarios. To handle
this problem, Cross-Domain Few-Shot Learning (CDFSL) [14, 21, 28, 33, 47] has been proposed
to transfer the general knowledge from the data-sufficient source domain (such as ImageNet [8]) to
learn the expert knowledge in the data-scarce target domain (such as medical datasets [38]). Due to
the domain gap and scarce training data, CDFSL still remains a challenging task.

To handle this task, we focus on the basic transfer-learning-based method, i.e., training the ViT model
on the source domain by the all-class classification loss, and loading the model parameters on the
target domain for classification. We find an intriguing phenomenon that is ignored by previous works:
on the target domain dataset, not loading the CLS token parameters (i.e., leaving the CLS token to
random initialization) would consistently lead to higher performance in most cases, although such
operation may harm the source-domain performance, as shown in Fig. 1.

In this paper, we delve into this phenomenon for an interpretation. We first study what information is
encoded by the CLS token during the source-domain training. We find the CLS token naturally
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Figure 1: (a) Vision Transformer (ViT) takes image tokens and a learnable CLS token as input.
For the Cross-Domain Few-Shot Learning (CDFSL) task, after the training on the source-domain
dataset, we evaluate the model on both the source-domain classes (b) and target-domain classes
(c) by the 5-way 1-shot classification. We find an intriguing phenomenon neglected by previous
works: although not loading the CLS token parameters (i.e., leaving them to random initialization) on
the source-domain classes harms the performance (b), not loading these parameters consistently
improves the target-domain performance (c). In this paper, we delve into this phenomenon for an
interpretation, and propose a simple but effective method based on them for the CDFSL task.

absorbs domain information, represented as low-frequency components in the Fourier frequency
space of images, due to the ViT’s inherent structure which places the CLS token at the input layer
and shares it with all input image patches. Based on this phenomenon and interpretation, we further
propose a method for the CDFSL task. During the source-domain training, this method decouples
the domain information from the CLS token to make it domain agnostic, handling the domain gap
problem. During the target-domain learning, this method finetunes the CLS token to efficiently
absorb domain information, handling the few-shot learning problem. Experiments on four benchmark
datasets validate our rationale, and show that we can outperform current state-of-the-art works.

In summary, our contributions can be listed as follows.
• We find a phenomenon that is neglected by previous works: not loading the source-domain trained

CLS token could consistently improve the performance for the target-domain generalization.

• We delve into this phenomenon for an interpretation: the CLS token naturally absorbs domain
information due to the inherent structure of vision transformers.

• Based on this interpretation, we further propose a method to decouple the domain information in
the CLS token, and make use of the CLS token for efficient downstream few-shot learning.

• Extensive experiments on four CDFSL benchmark datasets validate the rationale of our interpreta-
tion and method, showing we can outperform current state-of-the-art works.

2 Delve into the CLS Token for Cross-Domain Few-Shot Learning

2.1 Preliminaries

Cross-domain few-shot learning (CDFSL) requires the model to be firstly trained on a source-domain
dataset (e.g., miniImageNet [34]), then applied to learn from a few training samples from each
target-domain dataset, and finally evaluated on the test set of the target dataset. Specifically, denoting
the source dataset as DS = {xS

i , y
S
i }Ni=1, the baseline method is to train the model f(·) on DS by

minimizing the cross-entropy loss against the source-domain label space |Y S | as

LCE =
1

N

N∑
i

CE(f(xS
i ), y

S
i ). (1)

During the learning on each target dataset, the model will be applied to learn from the sampled
support set {xT

ij , y
T
ij}

K,M
i=1,j=1 which is called the K-way M -shot task (i.e., K classes in each support

set with M samples in each class). Finally, the model will be evaluated on the query set {xT
q }.

Typically, the classification is based on the distance between class prototypes and the test samples as

ŷTq = argmin
i

d(
1

M

∑
j

f(xT
ij), f(x

T
q )), (2)
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Table 1: Not Loading the CLS token improves the cross-domain performance in most cases.
Method CropDisease EuroSAT ISIC2018 ChestX Ave.

(a.1) Baseline 81.22 72.08 32.75 22.84 52.22
(a.2) Baseline + Fix CLS as Initialization 82.50 +1.28 72.58 +0.50 32.69 -0.06 22.94 +0.10 52.68 +0.46

(a.3) Baseline + not loading CLS 82.54 +1.32 73.02 +0.94 32.76 +0.01 22.84 +0.06 52.81 +0.59

(b.1) Baseline + finetuning FC 83.14 72.81 33.82 23.09 53.22
(b.2) Baseline + finetuning FC + not loading CLS 83.32 +0.18 73.80 +0.99 33.37 -0.45 23.19 +0.10 53.42 +0.21

(c.1) Baseline + finetuning FC & CLS 83.15 73.26 33.84 23.07 53.33
(c.2) Baseline + finetuning FC & CLS + not loading CLS 83.37 +0.22 73.63 +0.37 34.26 +0.42 23.13 +0.06 53.60 +0.27

where f(x) ∈ Rd is the feature, and d(·, ·) denotes the Euclidean distance. Repeating the above
sampling-evaluation process multiple times on target datasets, the performance will be obtained.

In this paper, we set the model f(·) to the Vision Transformer (ViT) [10] with DINO [42] (other
settings can be found in the appendix). ViT takes both the image tokens and a learnable CLS token as
inputs, written as

f(x) = h(TC , T (x)) (3)

where TC ∈ Rd is the CLS token, T (x) ∈ Rnt×d is the image tokens, and h(·, ·) processes the
combination of two kinds of tokens, as shown in Fig. 1a.

2.2 Wider verification of the phenomenon
To delve into this phenomenon, we first study this phenomenon under different training conditions
for a detailed verification. Following [13], we first take the ViT model pretrained on the ImageNet
dataset as an initialization. Then, the model is trained on the base classes of the miniImageNet dataset
as the source-domain training. Finally, we learn and evaluate the model on four benchmark datasets
(CropDiseases [25], EuroSAT [16], ISIC2018 [5] and ChestX [38]) by the 5-way 1-shot accuracy.
The target-domain learning methods include prototype-based method (Tab. 1a), which does not need
to adapt the model parameters; finetuning-based methods (Tab. 1b,c), which only adapts parts of
model parameters due to the scarcity of training data. Results are reported in Tab. 1, where both the
accuracy and the change of accuracy w.r.t. the first row of each block are included.

From this table, we can see this phenomenon exists in most cases, no matter whether we finetune
the model or not. This means the CLS token trained on the source domain may contain poisonous
information for target-domain generalization. Therefore, we also try to finetune the CLS token
(Tab. 1c) on the target domain, but this phenomenon still exists, which means such source-domain
information is strong enough that it cannot be simply handled by the target-domain finetuning.

To ablate such information from the source-domain training, we directly fix the CLS token as random
initialization for both the source and target domains (Tab. 1 a.2). We can see that by abandoning the
learning of the CLS token, the performance is also improved from the baseline method, but is slightly
lower than training but not loading it (Tab. 1 a.3). This means such information in the CLS token
could be beneficial for the source-domain training. Therefore, in the following subsections, we
will keep delving into such information to study what it is and how it is learned.

2.3 What information does the CLS token encode?
Intuitively, since not loading the CLS token improves performances only under cross-domain sce-
narios, it is natural to think of the CLS token’s poisonous information as the domain information.
Therefore, below we will validate and delve into this intuition both quantitatively and qualitatively.

2.3.1 Quantitative study: CLS token contains domain information

Firstly, we quantitatively measure the domain distance between source and target datasets by the CKA
similarity following [7]. Specifically, given a backbone network, we extract features from images in
different domains, and then calculate the CKA similarity by aligning the channel dimension. The
larger the CKA similarity is, the smaller the domain distance will be, and it means the model contains
less domain information. The results are plotted in Fig. 2a. We can see:

(1) Not loading the CLS token can significantly increase the CKA similarity, indicating the CLS token
contains domain information while other structures tend to capture domain-irrelevant information.
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Figure 2: (a) Not loading the CLS token significantly improves the domain similarity, indicating
the CLS token contains domain information. (b) The similarity map between the CLS token and
image tokens can roughly represent the background of the object (top two rows), which can hardly be
transferred to target domains (bottom row). However, in some images (e.g., first row, second column),
the highlighted regions are not necessarily the background but the dim regions (bottom-right region),
which inspires us to consider whether the CLS token actually captures the low-frequency components
in the Fourier frequency space of images.

Figure 3: (a) We only maintain the low-frequency component of images, and the frequency threshold
decreases from left to right. The similarity map becomes brighter with the decreasing of the frequency,
indicating the CLS token shows higher similarity to low-frequency components. (b) We quantitatively
measure the average value of the similarity map and ratio of activated regions for different low-
frequency images. With the decrease of the threshold, the similarity consistently increases.

(2) Fixing the CLS token as random initialization in the source-domain training can further increase
the CKA similarity, because the domain information inherited from the pertaining is now limited.

Therefore, we validate that the CLS token indeed contains domain information, and it plays an
important role in learning such information.

2.3.2 Qualitative study: CLS token captures low Fourier-frequency components

To study the information encoded by the CLS token, we then visualize the CLS token by image
retrieval. Specifically, we calculate the cosine similarity between the CLS token and the image token
in the input layer, and report the similarity map in Fig. 2b. We can see the similarity map could
roughly represent the contour of the object for the source dataset, by highlighting the background
regions with higher similarity. Since identifying the background also means the model could find
the foreground in the image, the CLS token can indeed facilitate the source-domain recognition.
However, on the target datasets, such capability is downgraded to activating just random regions
(EuroSAT, ChestX), which limits the effectiveness of the CLS token and is consistent with the
performance change in Tab. 1.

Since the background region in ImageNet is always in bokeh due to the photography tools, we observe
these regions as being blurry. This inspires us to consider whether the CLS token actually tends to
find the low-frequency regions (with the Fourier Transform). To validate this hypothesis, we try to
remove the high-frequency components and maintain only the low-frequency components of input
images, and compare the generated similarity map in Fig. 3a. Intuitively, by removing the frequency
components from high to low (from left to right in Fig. 3a), the input image becomes blurrier. The
corresponding similarity map, as the brighter color indicates a higher similarity, gradually gets
brighter from left to right. This indicates the information encoded by the CLS token is more likely
to be contained by these blurry regions. Quantitatively, we measure the average similarity value of
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BID CropDisease EuroSAT ISIC2018 ChestX Ave.

0 82.54 +1.32 73.02 +0.94 32.76 +0.01 22.84 +0.06 52.81 +0.59

2 76.43 -5.72 67.52 -5.65 30.09 -2.79 21.98 -0.75 49.01 -3.73

4 81.12 -1.84 71.11 -1.95 31.80 -1.15 22.56 -0.15 51.65 -1.27

6 79.21 -3.66 72.20 -0.38 30.83 -1.84 22.53 -0.12 51.19 -1.50

8 78.28 -4.13 70.87 -1.15 31.27 -1.03 22.47 -0.13 50.72 -1.61

10 80.16 -1.49 70.40 +0.02 31.06 -1.37 22.59 -0.07 51.05 -0.73

Table 2: (Left) Interpretation of why the CLS token captures domain information. (Right) Only not
loading the CLS token in the first block can consistently improve performance.

all images in Fig. 3b as the blue curve to verify such intuition. We can see such values consistently
increase with the decrease of maintained frequency.

Moreover, we then utilize the similarity map to generate the segmentation mask of the input image
in the third row, where we set the masking threshold as the 50%-th similarity value in the original
similarity map. Intuitively, we can observe that (1) with the decrease of the frequency, the masked
regions get fewer, and (2) the regions (the guitarist, foreground) that are originally masked in the all-
frequency (left-most) image are not masked in the low-frequency (right-most) image. This indicates
the CLS token actually does not detect the fore- or background, because if the foreground (the
guitarist) gets into low-frequency regions, the CLS token can no longer detect it, which verifies that it
is the low-frequency components that the CLS token detects. Quantitatively, we measure the ratio
of regions that surpass the threshold (Act. Ratio) in Fig. 3b as the red curve to verify such intuition.
We can also see such ratios consistently increase as the frequency gets lower in all images2.

As the low-frequency information has been verified to be relevant to the domain information [12], the
above experiments also validate that the CLS token encodes the domain information.

In all, by qualitative and quantitative experiments, we verify the CLS token encodes domain informa-
tion, which contributes to the source-domain training but is harmful to target-domain generalization.

2.4 Why does the CLS token contain domain information?

Finally, we interpret why the CLS token encodes the domain information in two folds (Tab. 2):

(1) The CLS token is shared by all image-patch tokens. As shown in Tab. 2 (left), the influence of
such characteristics can be divided into two folds: (a) For each image, the CLS token adapts much
slower than image tokens, so it cannot reflect the patch-wise change in each image. This means it
tends to capture the trend of a relatively large number of patches, which is reflected in low-frequency
components in the frequency space and is verified to be relevant to domain information. (b) For each
dataset, the CLS token captures the shared information for all patches. What information is shared by
all patches in each dataset: the domain information, coinciding with the influence for each image.

(2) The CLS token captures low-level information that is more vulnerable to domain information.
To verify this hypothesis, we move the CLS token to different ViT blocks and train the model on
the source dataset, and report the performance change by loading the CLS token or not in Tab. 2
(right). We can see only the first block (i.e., the input layer which is the default choice in ViT) shows
consistent performance improvements by not loading the CLS token, which verifies our hypothesis.

2.5 Conclusion and Discussion

Based on the above experiments, we make the interpretation as follows. The CLS token is originally
designed to be placed at the input layer, which is treated as a shared token for different input tokens.
These two characteristics enable the CLS token to naturally absorb the domain information, since (1)
the low-level information in the input layer is vulnerable to domain changes, and (2) the CLS token is
shared by all image tokens therefore it captures the low-frequency information in each image that is
relevant to domain changes. Such information is beneficial for source-domain learning as it partly
highlights the background, but can hardly be transferred to target domains. As a result, not loading
the CLS token harms the source-domain performance but improves the target-domain performance.

2Further experiments are conducted in the appendix to show not all tokens tend to have such a characteristic.
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Figure 4: Based on the phenomenon and interpretation, we propose to decouple the domain informa-
tion from the CLS token to make it domain-agnostic during the source-domain training, and utilize
the CLS token’s characteristic in absorbing domain information for efficient target-domain adaptation.
Specifically, during the source-domain training, we generate pseudo domains on the source dataset by
clustering, and apply a domain token for each pseudo domain. We fix the CLS token as the random
initialization, and add the domain token to the fixed CLS token, so that domain tokens will substitute
the CLS token in absorbing domain information, which decouples the domain information from
the CLS token. During the target-domain adaptation, we abandon domain tokens and finetune the
CLS token to absorb target-domain information for efficient few-shot learning.

Moreover, we draw inspirations for the model design to facilitate the target-domain generalization and
few-shot learning: (1) The model should on the one hand maintain the learning of CLS token due to its
benefits in source-domain learning, and on the other hand alleviate its negative effect in domain bias.
Simply not loading the CLS token on the target domain cannot fully take advantage of the CLS token’s
characteristics. (2) The CLS token is beneficial for downstream few-shot learning, as it efficiently
encodes domain information with just a few parameters. Therefore, we can focus on the finetuning of
the CLS token for the downstream fast adaptation (akin to the prompt tuning [15, 31, 37, 40]).

3 Method: Decoupling Domain Information from the CLS Token

Based on the above interpretation, we aim to make use of the CLS token’s characteristic of absorbing
domain information for the CDFSL task. Therefore, we propose to decouple the domain information
naturally absorbed by the CLS token during the source-domain training to make the CLS token
domain-agnostic, and finetune the CLS token for efficient target-domain few-shot learning (Fig. 4).

For the source-domain stage, our decoupling method includes three modifications to Sec. 2.1:

(1) Not loading the pre-trained CLS token parameters, since the domain information absorbed in the
CLS token does not help the CDFSL task.

(2) Random initialize the CLS token, so that it does not contain any domain information, and then fix
it, as the learning of the CLS token will naturally absorb domain information.

(3) Explicitly adding source-domain-specific tokens to the CLS token, which would substitute the
CLS token to absorb the domain information and will not be applied on the target domain.

In summary, we aim to decouple the original CLS token into a source-domain-specific part (we call
domain tokens) and a source-domain-agnostic part (the fixed CLS token), where the domain tokens
will be abandoned on target domains, and the CLS token fixed on source domains will be finetuned
on target domains for efficient few-shot learning. Therefore, we need to encourage domain tokens
to absorb domain information more effectively. However, although the original CLS token could
naturally absorb domain information, its efficacy may not be optimal, since the original CLS token is
shared by all images in the source dataset, but the source dataset could demonstrate sub-domains in it.

To handle this problem, we create sub-domains by clustering the class prototypes (i.e., fully-connected
layer parameters) generated by the baseline model. For clarity, we call these created domains as
pseudo domains. Then, we assign each pseudo domain with an individual domain token, which makes
such domain token only absorb information specific to such pseudo domain, by means of sharing
different domain tokens among different pseudo-domain images, instead of sharing one domain token
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among all source-domain images. This improves the efficacy of absorbing domain information,
thereby helping source-domain learning.

Specifically, following section 2.1, we denote the ViT backbone network as f(x) = h(TC , T (x))

where TC ∈ Rd is the CLS token and T (x) ∈ Rnt×d is image tokens. Then, we manually specify a
set of learnable domain tokens TD ∈ Rnd×d to represent nd pseudo domains on the source dataset.
Given an input image x, besides its source-domain label y, we also have access to its pseudo-domain
label z, since these pseudo domains are created by ourselves. Therefore, we can obtain the domain
token for this sample as TD

z ∈ Rd. Subsequently, we replace the original input CLS token TC by the
combination of the domain token and the CLS token as

f(x) = h(TC + TD
z , T (x)). (4)

Ideally, since now TC is fixed as the random initialization, TD
z would substitute TC to learn the

information that is originally captured by TC . Since we explicitly specify different TD
z for each

pseudo domain, the domain information will be better absorbed by the domain tokens.

To explicitly encourage the decoupling of domain information, we also apply another loss to make
the domain token orthogonal to the CLS token, which is represented as

Lorth =
1

nt

nt∑
z

| TC

||TC ||
TD
z

||TD
z ||

| (5)

Finally, the model is trained by the cross-entropy loss in Eq. 1 and Lorth with a hyper-parameter λ as

L = LCE + λLorth. (6)

For the target-domain stage, we abandon the domain tokens as they capture the source-domain
information, and directly utilize the CLS token as Eq. 3. For the prototype-based classification, we
follow Eq. 2 for target-domain recognition. For the finetuning-based classification, note that there
is no domain gap between the training set and the test set on the target domain. Since the CLS
token naturally absorbs domain information, now we set the CLS token to learnable parameters to
encourage it to absorb target-domain information. The finetuning is based on the cross-entropy loss
on the support set, and we only train the classifier and the CLS token for efficient adaptation.

4 Experiments

4.1 Dataset and Implementation Details

Following current works [28, 33], we utilize the miniImageNet dataset [34] as our source domain with
around 60k images and 100 annotated classes. We train our models on the training split of the source
dataset, then finetune and evaluate the generalization performance on four target-domain datasets,
CropDisease [25], EuroSAT [16], ISIC [5], and ChestX [38], which are cross-domain datasets from
the domain of agriculture, remote sensing and medical data (with significant domain gaps).

In implementation, we set the domain number to 64, i.e., each source-domain class has a specific
domain token. We set λ to 100 to keep two losses on the same scale. We follow [1, 13, 42] to take
DINO on ImageNet as the pretraining of our backbone network, and scale the learning rate of the
domain token to 1% of the backbone network. Experiments are conducted on NVIDIA A5000 GPUs.

4.2 Comparison with State-of-the-Art Works

We report our comparison with state-of-the-art works utilizing the ViT-S backbone for both 5-shot
and 1-shot settings in Tab. 3 and 4. For a fair comparison, we compare works with and without
finetuning (FT) respectively. The asterisk (*) denotes a transductive setting. As can be seen, our
results achieve the top average performance in all settings and consistently outperform current works,
MEM-FS [35], StyleAdv [13], PMF [29] and FLoR [46], in almost all datasets.

4.3 Ablation Study

The ablation study is reported in Tab. 5 for the prototype-based classification which studies the
source-domain training. We can see both the CLS decoupling and the orthogonal loss contribute to
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Table 3: Comparison with state-of-the-art works by the 5-way 5-shot classification.
Methods backbone FT Mark Crop. Euro. ISIC. Ches. Ave.

LDP-net [44] ResNet10 × CVPR-23 89.40 82.01 48.06 26.67 61.29
GNN+AFA [17] ResNet10 × ECCV-22 88.06 85.58 46.01 25.02 61.67
SDT [22] ResNet10 × NN-24 90.27 82.02 48.66 27.20 62.04
FLoR [46] ResNet10 × CVPR-24 91.25 80.87 51.44 26.70 62.32
MEM-FS [35] ViT-S × TIP-23 93.74 86.49 47.38 26.67 63.57
StyleAdv [13] ViT-S × CVPR-23 94.85 88.57 47.73 26.97 64.53
MICM [43] ViT-S × MM-24 94.61 90.08 46.85 27.11 64.66
SDT [22] ViT-S × NN-24 95.00 89.60 47.64 26.72 64.75
FLoR [46] ViT-S × CVPR-24 95.28 90.41 49.52 26.71 65.48
CD-CLS ViT-S × Ours 95.68 91.04 50.46 27.23 66.10
FLoR [46] ResNet10 ✓ CVPR-24 92.33 83.06 56.74 26.77 64.73
PMF [29] ViT-S ✓ CVPR-22 92.96 85.98 50.12 27.27 64.08
StyleAdv [13] ViT-S ✓ CVPR-23 95.99 90.12 51.23 26.97 66.08
FLoR [46] ViT-S ✓ CVPR-24 96.47 90.75 53.06 27.02 66.83
CD-CLS ViT-S ✓ Ours 96.27 91.53 54.69 27.66 67.54

LDP-net* [44] ResNet10 ✓ CVPR-23 91.89 84.05 48.44 26.88 62.82
RDC* [19] ResNet10 ✓ CVPR-22 93.30 84.29 49.91 25.07 63.14
FLoR* [46] ResNet10 ✓ CVPR-24 93.60 83.76 57.54 26.89 65.45
MEM-FS+RDA* [35] ViT-S ✓ TIP-23 95.04 88.77 51.02 27.98 65.70
CD-CLS* ViT-S ✓ Ours 96.62 91.68 55.66 28.25 68.05

Table 4: Comparison with state-of-the-art works by the 5-way 1-shot classification.
Method backbone FT Mark Crop. Euro. ISIC. Ches. Ave.

GNN+AFA [17] ResNet10 × ECCV-22 67.61 63.12 33.21 22.92 46.97
LDP-net [44] ResNet10 × CVPR-23 69.64 65.11 33.97 23.01 47.18
FLoR [46] ResNet10 × CVPR-24 73.64 62.90 38.11 23.11 49.69
SDT [22] ResNet10 × NN-24 73.92 65.87 36.45 23.22 49.97
MEM-FS [35] ViT-S × TIP-23 81.11 68.11 32.97 22.76 51.24
StyleAdv [13] ViT-S × CVPR-23 81.22 72.15 33.05 22.92 52.34
SDT [22] ViT-S × NN-24 81.03 72.71 33.40 22.79 52.48
FLoR [46] ViT-S × CVPR-24 81.81 72.39 34.20 22.78 52.80
CD-CLS ViT-S × Ours 83.51 74.08 34.21 22.93 53.68
FLoR [46] ResNet10 ✓ CVPR-24 84.04 69.13 38.81 23.12 53.78
PMF [29] ViT-S ✓ CVPR-22 80.79 70.74 30.36 21.73 50.91
FLoR [46] ViT-S ✓ CVPR-24 83.55 73.09 35.49 23.26 53.85
StyleAdv [13] ViT-S ✓ CVPR-23 84.11 74.93 33.99 22.92 53.99
CD-CLS ViT-S ✓ Ours 84.54 74.97 35.56 23.39 54.62

LDP-net* [44] ResNet10 ✓ CVPR-23 81.24 73.25 33.44 22.21 52.54
RDC* [19] ResNet10 ✓ CVPR-22 85.79 70.51 36.28 22.32 53.73
FLoR* [46] ResNet10 ✓ CVPR-24 86.30 71.38 41.67 23.12 55.62
MEM-FS+RDA* [35] ViT-S ✓ TIP-23 83.74 75.91 37.07 23.85 55.14
CD-CLS* ViT-S ✓ Ours 87.39 78.41 37.20 23.88 56.72

the performance, and the CLS decoupling contributes the most. Moreover, we conduct experiments
on the second block to compare different design choices from our final method.

4.3.1 Verification of fixing CLS token as random initialization

Since our method fixes the CLS token as the random initialization during the source-domain training,
we first try to load the DINO pretrained CLS token (Tab. 5a). The performance drops from 66.10
to 64.46. This is because the CLS token’s capture of domain information is not bound to the label
supervision. Although DINO is a self-supervised learning method, it still absorbs strong domain
information from ImageNet, therefore we can hardly decouple the domain information from it.

Then, we try to set the CLS token to learnable parameters (Tab. 5b), and we can see the performance
still drops from 66.10 to 64.83, which is slightly higher than (Tab. 5a). This is because although we
explicitly set the domain token for decoupling, the characteristic of the CLS token does not change:
it is still located in the input layer and changes slowly with different input tokens. Therefore, it still
captures the domain information as long as we set it to learnable parameters, although the captured
domain information is not as strong as that from DINO.
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Table 5: Ablation study of source-domain training by the 5-way 5-shot accuracy.
Method CropDisease EuroSAT ISIC2018 ChestX Ave.

Baseline 94.62±0.26 88.62±0.22 46.08±0.33 26.25±0.17 63.89±0.14

+ Decoupling 95.55±0.22 90.48±0.25 49.58±0.26 27.03±0.17 65.66±0.15

+ Orth 95.68±0.21 91.04±0.29 50.46±0.19 27.23±0.18 66.10±0.17

(a) Load CLS 94.93±0.21 88.99±0.28 47.15±0.23 26.77±0.16 64.46±0.14

(b) Learn CLS 95.36±0.22 89.79±0.25 47.12±0.22 26.94±0.20 64.83±0.15

(c) w/o Domain Token 94.84±0.26 89.54±0.30 46.63±0.25 26.99±0.19 64.50±0.16

(d) Not learn Domain Token 95.40±0.27 90.67±0.26 48.45±0.24 27.09±0.16 65.37±0.15

(e) Random Domain Choice 94.76±0.23 89.87±0.22 46.08±0.21 26.82±0.17 64.38±0.15

(f) Decouple by Prompt 95.07±0.22 89.87±0.21 46.68±0.21 26.78±0.16 64.50±0.14

Table 6: Ablation study of target-domain finetuning by the 5-way 1-shot accuracy.
Method CropDisease EuroSAT ISIC2018 ChestX Ave.

Train CLS 84.54±0.23 74.97±0.30 35.56±0.17 23.39±0.19 54.62±0.13

Fix CLS 84.40±0.21 74.61±0.19 34.82±0.25 23.13±0.11 54.24±0.11

Decouple CLS 80.82±0.21 69.93±0.22 33.37±0.21 22.91±0.12 51.77±0.12

4.3.2 Contribution of domain tokens

Subsequently, we study the contribution of domain tokens. We first directly remove the domain token
in Tab. 5c (i.e., fixing the CLS token to random initialization, Tab. 1 a.2). We can see the performance
is higher than the baseline model, but is much lower than our final method, which is consistent with
Tab. 1 and verifies the domain token is crucial.

Then, we try to fix the domain token as random initialization (Tab. 5d). The performance is higher than
Tab. 5c, indicating the separated domain information can indeed help to absorb domain information.
Moreover, such absorption is enhanced by setting the domain token to learnable parameters as ours.

Finally, we try to randomize the domain choice in Tab. 5e, i.e., randomly choosing domain tokens for
each sample. We can see the performance is even lower than Tab. 5c, indicating the domain token
can indeed represent each pseudo domain and is important for CLS decoupling.

4.3.3 Verification of target-domain finetuning

To study the contribution to target-domain finetuning, we report Tab. 6 for finetuning-based classifica-
tions under the most challenging 1-shot scenario. Compared with the default choice of finetuning
(Fix CLS), our method (Train CLS) can indeed improve the finetuning performance, verifying the
effectiveness of the CLS token in fast learning the domain information.

Moreover, we try to apply the CLS decoupling method to the finetuning, and the performance greatly
drops. This is because there is no domain gap between the target-domain finetuning and evaluation,
and the domain information is beneficial now. Therefore, the decoupling of domain information
harms the performance, which on the contrary verifies the effectiveness of CLS decoupling.

4.4 Verification of Domain Tokens and Hyper-parameters

To study what the domain token encodes, we follow Sec. 2.3 to plot the similarity map between the
domain token and image tokens in the corresponding class in Fig. 5. We can see the domain token
can better capture the low-frequency regions (majorly represented as background) in each image
compared with the baseline’s CLS token (denoted as BL-CLS). Moreover, we quantitatively validated
the domain distance in Fig. 2a, where we can see the domain similarity significantly increases
by applying the domain token. These results indicate the domain can better absorb the domain
information, so that it can better help to decouple such information from the CLS token.

Finally, we study the hyper-parameters in Fig. 5b,c. We can see only the CLS token in the first block
(input layer) could be decoupled, consistent with Tab. 2. The best choice of cluster number is the
number of source-domain classes, which means each class can be viewed as a pseudo domain. Since
the source dataset (miniImageNet) is a general classification dataset, the difference between each
class is larger (e.g., than fine-grained datasets where domain information is clear). Therefore, for
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Figure 5: (a) Domain tokens can better represent the background regions than the CLS token in
the baseline method (BL-CLS), validating the effectiveness in absorbing domain information. (b)
Applying the decoupling only on the first block (input layer) can improve the performance, consistent
with Tab. 2. (c) The best pseudo-domain choice is to view each source-domain class as a domain.

miniImageNet, it is reasonable to view each class as a domain. Further experiments in the appendix
verify that domain tokens absorb domain information instead of class-specific information.

5 Related Work

Cross-Domain Few-Shot Learning (CDFSL) has been studied by several works [14, 21, 28, 33, 47],
which focuses on training a model on the source domain that can generalize well to target domain
with limited examples. Current methods can be categorized into two types: meta-learning based
approaches [12, 14, 17, 36], which aim at learning task-agnostic knowledge in order to learn new
tasks efficiently, and transfer learning based approaches [4, 14, 20, 44, 46],tackling the problem based
on reusing the model trained on the base classes data in a standard supervised learning way. However,
these works are mostly restricted to the CNN architecture. Recently some works [13, 29, 35, 39]
focus on the transformer structure to solve the CDFSL tasks but these efforts have not fully dug out
the potential of the VIT structure and the importance of the CLS token on CDFSL.

The CLS token. Adding extra special tokens to the input sequence in the transformer architecture is
popularized in BERT [9]. However, most methods extend the input tokens with new tokens in order
to use their output value as the output of the model, like ViT adding a token as the CLS token[10].
Recently, some works [2, 23, 24] focus on using the CLS tokens in ViT to prune the network structure
to reduce computational efficiency, and some researches [6] focus on adding additional tokens to the
ViT to store and retrieve information. Different from them, our study is the first, as we know, to delve
into the influence of the CLS token on cross-domain transferability, alleviating the domain gap by
decoupling the CLS tokens into domain-specific and domain-agnostic tokens.

6 Conclusion

In this paper, we find a phenomenon that not loading the pretrained CLS token parameters can
improve the CDFSL performance. We delve into this phenomenon for an interpretation, and find the
CLS token naturally absorbs domain information due to ViT’s structure. Based on the interpretation,
we further propose a method to decouple the domain information in the CLS token for the CDFSL
task. Extensive experiments on four CDFSL benchmarks validate our rationale and effectiveness.
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A Appendix / supplemental material

A.1 Detailed Dataset Description

Figure 6: Samples of source domain miniImageNet dataset(left) and target domain datasets (right),
from left to right correspond to five distinct datasets: miniImageNet, CropDiseases, EuroSAT,
ISIC2018, and ChestX.

miniImageNet[34] is a subset of the ImageNet[8] dataset that contains 100 categories, each consisting
of 600 natural images. Following the current work[28, 33], we split the miniImageNet into 64 classes
as the source domain training dataset. In addition, as shown in Figure 6, we utilize the datasets from
four other different domains, like agriculture, remote sensing, and medical data, as target domains.
We’ll sequentially introduce each of them below.

CropDiseases [25] consists of 38 distinct classes and a total of 43,456 images, which are natural
images, but are very specialized (specific to the agriculture industry), including various infected crops,
healthy plants, and their corresponding disease category labels.

EuroSAT [16] contains a total of 27,000 satellite images of the Earth categorized into 10 distinct
classes. The images in the EuroSAT are less similar to images in miniImageNet since they lack
perspective distortion, but still color images of natural scenes.

ISIC2018 [5], which is even less similar to the miniImageNet as they could not even represent natural
scenes, encompasses 10,015 medical images for skin lesion classification across 7 different classes.

ChestX [38], a medical dataset for chest classification, consists of 25,847 images distributed across 7
distinct classes. The dataset is the most dissimilar to the miniImageNet in three criteria. Apart from
the two factors mentioned above, it loses 2 color channels that appear in the ChestX.

A.2 More Experiments

A.2.1 More Visualization of the CLS token by retrieval

To delve into the information encoded by the CLS token, we calculate the cosine similarity between
the CLS token and the image token in the input layer of a fixed ViT trained on the source dataset
and report the similarity map in Figure 7. It is clear that on the source dataset, the background
regions have a higher similarity map, roughly representing the contour of the object for the source
domain dataset. It means that the CLS token can distinguish the background and the foreground of
the image which could indeed facilitate source-domain recognition. However, as shown in Figure 7
from above to bottom, with images that are less similar to the source domain, the ability to recognize
the background for the CLS token gradually fades into mediocrity.
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Figure 7: Samples from top to bottom correspond to the similarity map between the CLS token and
the image token on the miniImageNet and four target domain datasets, like CropDiseases, EuroSAT,
ISIC2018, and ChestX. It can be seen that the CLS token can distinguish the background and the
foreground of the image which could indeed facilitate the source-domain recognition on the source
dataset while meeting more difficulties with a larger domain gap.

A.2.2 More Visualization of the domain tokens by retrieval

Figure 8: Applying the domain token significantly improves the domain similarity compared to
the CLS token of the baseline method (BL-CLS), validating the effectiveness of our approach in
absorbing domain information

To delve into what the domain token encodes, we re-utilize the similarity map plotted in Figure 8 as
our measurement to compare our approach with the baseline’s CLS token (denoted as BL-CLS). It
seems that when utilizing the domain token, the domain similarity significantly increases, proving
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that the domain token can better absorb the domain information and efficiently help to decouple such
information from the CLS token.

A.2.3 Applying Our Method to Other Baselines

Table 7: Ablation study of our method with iBOT-pretrained ViT and DINO-Pretrained ViT-Base by
the 5-way 1-shot accuracy.

Method CropDiseases EuroSAT ISIC2018 ChestX Ave.

iBOT 81.17 72.71 31.44 22.56 51.97
iBOT + Ours 81.31 72.80 31.87 22.57 52.14
DINO-ViT-Base 82.97 72.06 34.19 22.60 52.95
DINO-ViT-Base + Ours 83.11 73.77 34.75 22.98 53.65

Table 8: Implementing our method with meta-learning baseline.
Method Crop. Euro. ISIC. Ches. Ave.

ProtoNet 93.59 86.92 46.15 25.68 63.09
ProtoNet + Ours 95.03 89.42 48.67 27.15 65.07

We also implement our approach on distinct backbones, like ViT pretrained by iBOT [45], and
ViT-Base [42] pretrained by DINO. The results can be seen in Tab 7. Specifically, iBOT represents
the iBOT-pretrained ViT baseline, and DINO-ViT-Base corresponds to the ViT-Base pretrained by
DINO baseline. It is clarified from the average performance of four target domains that our approach
shows improvements among both backbones in the 5-way 1-shot setting.

To verify our model also suits the meta-learning-based baselines, we conduct experiments based on
the ProtoNet [30] in Tab 8. We can see that our model also improves this kind of baseline method.

A.2.4 Further Verification of the CLS Token

Figure 9: To verify it is the CLS token that tends to capture low-frequency components, we (a)
visualize similarity maps of a random token and (b) use random tokens to calculate the similarity map
of low-frequency images, and find random tokens do not show the same results as the CLS token.

To verify it is the CLS token that tends to capture low-frequency components, we visualize similarity
maps of a random token in Fig. 9a. We use the same color bar as in Fig.2b. We can see the similarity is
much lower, but a coarse contour of objects can still be observed in both the source and target domains,
indicating a good transferability of detecting object contours, because no domain information is in
the random token. However, the contour detected by the random token is much worse than that
by the CLS tokens as shown in Fig.2a and Fig.5a, indicating although the random CLS token can
initially detect the object contour, the learning of the CLS token strengthens this characteristic to
detect low-frequency images.

Then, we use random tokens to calculate the similarity map of low-frequency images, and find random
tokens do not show the same results as the CLS token. Specifically, we measure the activation ratio
of the CLS token and the random token. We take the top 10% or 20% value as examples in Fig. 9b.
We can see the random tokens show a tendency to decrease the activation ratio, while the CLS token
shows a tendency to increase the ratio, indicating it is the CLS token that tends to be similar to the
feature of low-frequency images.
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Table 9: Verification of re-initializing the CLS token.
Method Crop. Euro. ISIC. Ches. Ave.

Baseline 95.62 88.62 46.08 26.25 63.89
Ours 95.55 90.48 49.58 27.03 65.66
Ours + Re-Init 95.20 89.60 50.23 26.79 65.31

A.2.5 Further Verification of Domain Tokens

To verify that our model does not overfit the fixed random CLS token (so that view the fixed value as
a kind of new domain token), we re-initialize the CLS token during the source-domain training. The
results are reported in Tab. 9, and we can see the improvements also exist.

However, re-initializing the CLS token can be viewed as adding noise to the domain token, therefore
harming the absorbed domain information, which then affects the domain-irrelevant information
learned by other structures in ViT. As a result, the Re-Init performance is slightly lower.

Indeed, domain tokens are encouraged to be orthogonal to the fixed CLS token, which would drive
the model to view the fixed token as a domain-agnostic token. But note that the random token is
already agnostic enough to every domain even without training, therefore our training would not
essentially drive the model to be more agnostic to that CLS token, i.e., our model is not bound to the
specific value of the CLS token.

Table 10: Training with datasets of 5 constructed domains.
Method Crop. Euro. ISIC. Ches. Ave.

Baseline 93.85 89.72 49.74 26.07 64.77
320 classes as domain token 95.03 90.49 49.10 26.81 65.35
64 classes as domain token 95.16 90.61 47.86 26.77 65.10
5 domains as domain token 95.52 90.62 50.77 27.00 65.98

To further ablate "domain-specific" and "class-specific", we then manually construct some new source
domains based on miniImageNet. Specifically, we take the amplitude (by Fourier transformation)
from target domains as the style information, and use the phase (by Fourier transformation) from the
original source-domain images as the content information, thereby constructing 4 new domains with
the original 64 source-domain classes. Then, we train our model on a new dataset containing the 4
constructed datasets and the original source dataset, and ablate different choice of domain tokens in
Tab. 10.

As can be seen, by introducing larger domain gaps, viewing each class as a domain is not the best
choice. Instead, setting a domain token for each domain could achieve the best performance, which
validates the rationale of the domain token in absorbing the domain information.

A.3 Broader Impact

We propose a CD-FSL method based on decoupling the CLS token into domain-specific and domain-
agnostic tokens in the ViT and making use of it for efficient downstream few-shot learning to alleviate
the domain gap and generalize well to the target domain. This work can also be adopted in other
fields, like domain generalization, domain adaption, and few-shot class-incremental learning, where
the challenge of enhancing the transferability of model exists universally. The evaluations of our
approach are mainly across four different target domains, which may not represent all possible
real-world scenarios. The approach can be evaluated on various target domains to be validated in a
more realistic setting.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: We do not have theoretical results or proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have reported the detailed settings and hyper-parameters. We will release
our codes.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We have reported the detailed settings and hyper-parameters. We will release
our codes.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have reported the detailed settings and hyper-parameters. We will release
our codes.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We have reported the confidence interval in our ablation studies.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have reported the computer resources in the implementation details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conform, in every respect, with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the broader impact in the appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not have the risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have respected the license of assets used in this paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not have new assets in this paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not include human subjects information.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not include human subjects information.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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