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Abstract

We present two practical improvement techniques for unsupervised segmentation
learning. These techniques address limitations in the resolution and accuracy
of predicted segmentation maps of recent state-of-the-art methods. Firstly, we
leverage image post-processing techniques such as guided filtering to refine the
output masks, improving accuracy while avoiding substantial computational costs.
Secondly, we introduce a multi-scale consistency criterion, based on a teacher-
student training scheme. This criterion matches segmentation masks predicted
from regions of the input image extracted at different resolutions to each other.
Experimental results on several benchmarks used in unsupervised segmentation
learning demonstrate the effectiveness of our proposed techniques.

1 Introduction

The task of segmenting objects in images is a fundamental first step in extracting semantic information.
Current approaches [15, 14] have reached remarkable performance and capabilities by combining
various annotation modalities (text, points, bounding boxes, and segmentation masks) and by scaling
the training to large datasets. However, recently, several methods [10, 31, 20, 19, 3, 28] have shown
that it is possible to learn to segment objects in an unsupervised manner, i.e., without the guidance
of any human annotation. Besides the intrinsic scientific significance of such unsupervised learning
methods, their main advantage is that they could potentially be scaled to extremely large datasets and
across multiple imaging modalities with limited human effort.

Despite encouraging results, these methods seem to be either limited in resolution [19] or to rely
on difficult training schemes [3]. Since many of the existing methods [18, 28, 19] rely on DINO
features [5], which reduce the initial image resolution by a factor of 8 or 16, we introduce two rather
general “tricks” to enhance the resolution of predicted segmentation maps and demonstrate their
capabilities on the recent state of the art method Sempart for unsupervised segmentation learning
[19]. Our first trick is to use post-processing to enhance the resolution of the output masks. We show
that well-established image processing methods such as guided filtering [13] can easily improve the
accuracy of the predicted segmentation masks when the input image luminance is used as the filter
guidance.

Our second trick is a general criterion to enhance the resolution of dense predictions. We introduce a
multi-scale consistency criterion on the predicted segmentation mask. We do so by using a teacher-
student training scheme, where the teacher network takes a zoomed-in region of an image as input
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and the student network takes the whole image as input. Then, we zoom in on the same region of the
predicted segmentation mask from the student network’s prediction and match it to the prediction
from the teacher. Because we use the output of the teacher network as a target, we only backpropagate
through the student network.

In summary, our contributions are

• We achieve new state-of-the-art (SotA) results in unsupervised saliency segmentation on the
DUT-OMRON [30], DUTS-TE [27], and ECSSD [22] datasets;

• We introduce two novel and general techniques to enhance the resolution of the segmentation
masks predicted by existing SotA that are computationally efficient;

• Our techniques are easy to apply and have been thoroughly tested on several benchmarks and
in combination with different methods; the code will be made available upon publication.

2 Related Work

Spectral Methods. Graph representations are commonly utilized in computer vision and computer
graphics for partitioning problems. [21] propose the normalized cuts method for image segmentation
to handle the bias towards small-isolated segments in the minimum graph cut method [29].
Self-supervised representations (SSL). The idea of training deep networks without any supervision
to obtain effective image representations gained popularity with the success of [6, 12, 4, 5, 11]. In
particular, DINO [5] features based on ViT [7] demonstrate capabilities beyond image classification.
Unsupervised Semantic Segmentation. Several recent approaches, such as [24, 18, 28], explore the
use of DINO features and graph cuts for semantically meaningful image segmentation. However,
these methods often exhibit high computational complexity and relatively low segmentation accuracy.
In contrast, [2, 3] rely on the local “shiftability” of segmented objects, but face challenges due to the
complexity of their adversarial training schemes. [17] explores pre-trained generative adversarial
networks (GAN). However, it is also challenging to generalize this approach due to the limitations
of existing GANs. Other methods, like [26, 25, 23, 19], leverage various strategies, such as push-
pull forces between pixels, and pseudo-masks, to distill segmentation networks. However, these
approaches often suffer from low-resolution image features, limiting the quality of the generated
masks.

3 Two Tricks

We introduce two tricks that can be incorporated into different unsupervised segmentation methods in
a flexible manner: guided filtering[13] and random cropping-based equivariance loss.
Guided Filtering. First, the RGB image -whose saliency mask is predicted- is converted to grayscale.
Afterward, the guided filter [13] is applied to the predicted segmentation mask using the grayscale
image as guidance.
Multi-Scale Consistency. One challenge associated with incorporating a segmentation head over a
ViT [7] feature map (as with DINO) is the loss of details, particularly for small objects or structures
within the image. Sempart [19] addresses this issue by feeding the input image into the segmentation
head and by applying a total variation loss on the resulting high-resolution mask. We aim to tackle
this problem by introducing an equivariance loss based on random cropping depicted in Fig. 1. The
proposed equivariance loss is computed through the following steps:

1. Given an input image and a segmentation framework denoted as I and f(·) respectively,
predict a mask denoted as ŝ. This process can be expressed as f(I) = ŝ.

2. Randomly crop the same region of the input image and the predicted mask and enlarge
both of them to the original input image size. This operation on I , ŝ can be expressed as
CU(I, ŝ) = {Ic, sc} where CU(·, ·), Ic, and sc are the crop-zoom function, the resultant
image and mask.

3. Use the resultant image to predict a mask and refine this mask with guided image filtering,
which can be expressed as f(Ic) = ŝc.

4. Apply stop gradient afterward to prevent a collapse of the predicted masks, which we denote
as SG[GF(ŝc)] = starget, where starget is the final target for our loss, and SG[·] is the stop
gradient operation.
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Figure 1: The illustration of the proposed multi-scale consistency procedure. First, we predict a
segmentation from an input image. Then, we randomly crop a portion of the input image, predict
a more detailed segmentation mask, refine this prediction with guided filtering, and apply a stop-
gradient operation to the final mask to prevent a mask prediction collapse. Finally, we calculate the
mean squared error between the corresponding region of the initial mask and the detailed target mask.

Table 1: The unsupervised saliency segmentation results on DUT-OMRON [30], DUTS-TE [27],
and ECSSD [22]. The best results are indicated in bold. Sempart∗ indicates our implementation of
Sempart [19] since the code is currently unavailable. “Ours” indicates the application of the proposed
trick over the Sempart baseline. We demonstrate improvements over the baseline implementation we
have.

Model
DUT-OMRON [30] DUTS-TE [27] ECSSD [22]

Acc IoU maxFβ Acc IoU maxFβ Acc IoU maxFβ

LOST [24] .797 .410 .473 .871 .518 .611 .895 .654 .758
TokenCut [28] .880 .533 .600 .903 .576 .672 .918 .712 .803
FOUND [25] - single .920 .586 .683 .939 .637 .733 .912 .793 .946
MOVE [3] .923 .615 .712 .950 .713 .815 .954 .830 .916
Sempart [19] .932 .668 .764 .959 .749 .867 .964 .855 .947
Sempart∗ .908 .664 .758 .949 .761 .856 .950 .853 .925
Ours .920 .684 .765 .956 .787 .869 .952 .862 .931

MOVE [3] + BF .931 .636 .734 .951 .687 .821 .953 .801 .916
Sempart + BF .942 .698 .799 .958 .749 .879 .963 .850 .944
Sempart∗ + BF .914 .689 .770 .950 .765 .857 .950 .849 .925
Ours + BF .920 .675 .763 .950 .742 .855 .945 .830 .920

SELFMASK w/ MOVE .933 .666 .756 .954 .728 .829 .956 .835 .921
SELFMASK w/ Sempart .942 .698 .799 .958 .749 .879 .963 .850 .944
SELFMASK w/ Sempart∗ .923 .674 .768 .953 .743 .866 .962 .854 .942
SELFMASK w/ Ours .935 .685 .790 .956 .747 .881 .962 .852 .948

5. Calculate the mean squared error between the new prediction and the corresponding region
of the first segmentation prediction as Leq = 1

hw∥sc − starget∥22 where h and w are the
height and width of the corresponding masks ŝc and starget.

In our experiments, we added Leq multiplied with the parameter λeq to the overall loss of Sempart
[19]. We also used the cropped image to train the network.

4 Experimental Results

We evaluate the tricks we propose on Sempart [19] since it is the current state-of-the-art unsupervised
segmentation learning method, it trains stably, and it converges quickly. The evaluations are performed

3



Table 2: Comparison of single object detection on Pascal VOC07 [8], Pascal VOC12 [9], COCO20K
[16] with CorLoc metric. The best results are indicated in bold. Sempart∗ indicates our implementa-
tion of Sempart [19]. (↑ z) indicate the improvements over the baseline.

Model VOC07 [8] VOC12 [9] COCO20K [16]

LOST [24] 61.9 64.0 50.7
Deep Spectral [18] 62.7 66.4 50.7
TokenCut [28] 68.8 72.1 58.8
MOVE [3] 76.0 78.8 66.6
Sempart [19] 75.1 76.8 66.4
Sempart∗ 71.7 75.9 61.3
Ours 74.4 (↑ 2.7) 77.0 (↑ 1.1) 63.4 (↑ 2.1)

for saliency segmentation and single object detection since Sempart [19] and previous works were
evaluated on these tasks. All the evaluations were performed using the fine branch of Sempart [19].
The improved baseline with the proposed tricks is denoted as “ours”.

4.1 Unsupervised Saliency Segmentation

Datasets. We used the DUTS-TR [27] for training in every experiment, as [23, 3, 19]. To evaluate
the saliency segmentation, we used DUT-OMRON [30], DUTS-TE [27], and ECSSD [22] datasets.
Evaluation. Three metrics are reported in our work as [23, 3, 19], which are pixel mask accuracy
(Acc), intersection over union (IoU), and maxFβ [28].
Results. In Table 1, we present a comprehensive comparison of our results with the recent state-of-
the-art method Sempart [19]. Our implementation, denoted as “Sempart∗”, undergoes evaluation
across three distinct criteria: baseline results, post-processed baseline results employing bilateral
filtering [1], and outcomes derived from SELFMASK [23], trained with pseudo-masks generated by
various methods. The comparison reveals the efficacy of our approach in advancing unsupervised
saliency segmentation.

Our results show state-of-the-art Intersection over Union (IoU) performance across all three datasets.
When considering the notable gaps between our implemented baseline and the reported baseline,
particularly in terms of accuracy (Acc) and maxFβ metrics, it becomes evident that our approach
has the potential to establish a new state-of-the-art benchmark with precisely the same baseline.

4.2 Single Object Detection

Datasets. The evaluation of single object detection was done on three datasets, which are the train
split of COCO20K [16], the training and validation splits of Pascal VOC07 [8], and Pascal VOC12
[9].
Evaluation. We follow the evaluation protocol of the previous methods [28, 3, 19] and report Correct
Localization (CorLoc) metric.
Results. In Table 2, we conduct a comprehensive comparison between our results and the recent
state-of-the-art MOVE [3], as well as our baseline in object detection. Our tricks significantly enhance
the baseline across all three datasets considered. This improvement is evident in detection accuracy,
underscoring the effectiveness of our approach in advancing unsupervised object detection.

5 Conclusion

We introduce two practical methods that can be flexibly incorporated into unsupervised image
segmentation. We demonstrate their effectiveness with state-of-the-art results on unsupervised
saliency segmentation tasks, combined with the recent state-of-the-art baseline. Moreover, in the
appendix, we demonstrate that these two methods can be effective even if the baseline was trained
with different backbones and combined with other recent unsupervised segmentation methods. We
also include related background information, more qualitative results illustrating the gains of our
methods, and an ablation study in unsupervised saliency segmentation and unsupervised object
discovery in the appendix.
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A Additional Background

In this section we briefly revise some basic definitions to make the paper self-contained and also to
provide a context for our proposed techniques.

Normalized Cuts. Normalized cuts [21] is a method to partition a weighted undirected graph
G = (V,E) with weights wij representing the similarity between nodes vi and vj , into partitions A
and B by minimizing the following loss

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(B,A)

assoc(B, V )
, (1)

where cut(A,B)
.
=

∑
u∈A,v∈B

wuv and assoc(A, V )
.
=

∑
u∈A,t∈V

wut.

cut(B,A), and assoc(B, V ) are also defined similarly. By minimizing Ncut with respect to A and B,
the connectivity between partitions A and B is minimized and the connectivity within the partitions
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is maximized. The weights are collected in an affinity matrix W such that its i, j-th entry Wi,j = wij .
The minimization of normalized cuts loss is NP-complete; hence, [21] proposed a relaxation of the
proposed loss which leads to a generalized eigenvalue problem.
TokenCut. [5] shows that the attention maps in DINO strongly relate to the location and shape of
the object present in the input image. Thus, TokenCut [28] proposes to utilize DINO features for
semantic segmentation combined with normalized cuts as a post-processing step. TokenCut [28]
minimizes the normalized cuts’ loss with the following affinity matrix

wij =

{
1 | ⟨Fvi , Fvj

⟩ > τ
ϵ | otherwise. (2)

where Fvi is the DINO feature corresponding to the node vi, and τ and ϵ are scalar thresholds to be
tuned.
Sempart. Sempart [19] instead leverages DINO features by training a convolutional neural networks
(CNN) segmentation head to minimize a loss based on the normalized cut cost. The segmentation
head generates two segmentation predictions: one, Scoarse ∈ [0, 1]|V |, at a low-resolution and one,
Sfine ∈ [0, 1]HW , at high-resolution, where |V | is the number of DINO features, and H and W are
the height and width of the input image. Scoarse minimizes the following variation of the normalized
cuts’ loss

LNcut = Ncut(A,B) =
STW (1− S)

STW1
+

(1− S)TWS

(1− S)TW1
, (3)

where 1 is a vector of ones. Eq. 3 is optimized only for the low-resolution mask Scoarse. High-
resolution mask Sfine is guided through a consistency loss

LSR = ∥down(Sfine)− Scoarse∥22, (4)

which matches the downsampled Sfine and Scoarse, and LGTV-fine is a graph total variation (GTV) loss
that works on the high-resolution mask. An additional GTV loss LGTV-coarse computed with Scoarse is
also used for additional guidance. LGTV-fine and LGTV-coarse are given as

LGTV-fine/coarse =
1

2

∑
(i,j)∈E

aij(si − sj)
2, (5)

afine
ij = exp(−∥xi − xj∥22/σ), (6)

acoarse
ij = wijI{i ∈ N (j)}, (7)

where N (j) is set of nodes adjacent to node j, and I is the indicator function. The only difference
between LGTV-fine and LGTV-coarse is that xi is a pixel value from the input image for fine GTV, but it
is the DINO feature for the coarse GTV. Finally, the segmentation head is trained with the combined
loss

Lsempart = LNcut + λGTV-coarseLGTV-coarse + λGTV-fineLGTV-fine + λSRLSR. (8)

B Additional Results

B.1 Unsupervised Saliency Segmentation

We provide some qualitative results in Fig. 2 for the cases where the segmentation is improved,
unaffected, and degraded.

B.2 Single Object Detection

We share the implementation details of the single object detection evaluation and some qualitative
results here to illustrate how our tricks boost object detection. Specifically, Fig. 3 visually depicts
how random cropping facilitates the detection of small objects and, in some instances, objects with
occlusion. Evaluation Details. First, the predicted mask is split into parts if it’s not fully connected.
Then, we select the mask with the largest bounding box as our object prediction and calculate the
IoU between our prediction and the ground-truth bounding box. Finally, the percentage of the IoUs
higher than 0.5 is calculated, known as the Correct Localization (CorLoc) metric.
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Figure 2: A qualitative comparison between the baseline and the improved segmentation with our
proposed tricks (Ours). The first row shows images sampled from DUTS-TE [27], the second row
shows the baseline segmentation predictions, the third row shows the segmentation results with our
tricks, and the last row shows the ground truth segmentation masks. In (a) we show 4 image samples
where we achieve a significant improvement over the baseline; in (b) we show two image samples
where we achieve the same results as in the baseline; in (c) we show two image samples where the
tricks make the segmentation masks worse (relative to the ground truth mask). We point out that some
of the incorrect masks may also be due to the inherent ambiguity of the unsupervised segmentation
task.

B.3 Ablations

We conducted various ablation experiments to demonstrate the effectiveness of the proposed enhance-
ments. These experiments involved evaluating the impact of the proposed techniques compared to
the baseline in unsupervised saliency segmentation and single object detection. Additionally, we
performed an ablation study on the guided filtering, comparing its performance with recent methods
such as TokenCut [28] and MOVE [3] in unsupervised saliency segmentation. For the saliency
segmentation ablation, we trained different baselines using various SSL backbones and demonstrated
that our techniques consistently outperformed the baselines across different backbones.
The tricks on saliency segmentation. In Table 3, we present the Intersection over Union (IoU) results
obtained from the evaluation of unsupervised saliency segmentation on three datasets: DUT-OMRON
[30], DUTS-TE [27], and ECSSD [22]. The original baseline is trained with DINO [5] ViT-S/8 as
the backbone. Additionally, we provide results for baselines trained with DINO ViT-S/16 and IBOT
[32] ViT-S/16 as the backbones. Our findings indicate that across different backbones, the proposed
techniques significantly enhance segmentation performance. Notably, guided filtering emerges as a
key contributor to the improved segmentation results.

The tricks on single object detection. In Table 4, we demonstrate the enhancement achieved by our
techniques in object detection based on the CorLoc metric. The evaluation is performed on datasets
comprising the train and validation splits of Pascal VOC07 [8] and Pascal VOC12 [9], as well as the
train split of COCO20K [16]. Notably, unlike the case of saliency segmentation, we observe that
random cropping yields the most significant improvement in object detection performance.
Guided filtering with different methods. In Table 5, our findings indicate that the application of
guided filtering significantly enhances the performance of recent saliency segmentation methods
TokenCut [28] and MOVE [3]. We present results Acc, IoU, and the maxFβ metric across evaluation
datasets including DUT-OMRON [30], DUTS-TE [27], and ECSSD [22]. Comparative analysis with
baseline methods, incorporating bilateral filtering [1], is also included. Notably, the results in Table 5
demonstrate consistent improvement in all metrics with guided filtering, which contrasts with the
performance of bilateral filtering.

8



Baseline Ours GT

Figure 3: Some examples cases from Pascal VOC12 [9] where our tricks improve object detection
over baseline.

Table 3: The ablations on unsupervised saliency segmentation with mIoU on three datasets; DUT-
OMRON [30], DUTS-TE [27], and ECSSD [22]. The best results are indicated with bold.

Backbone Crop GF DUT-OMRON [30] DUTS-TE [27] ECSSD [22]

DINO [5]
ViT-S/8

× × .664 .761 .853
✓ × .670 .772 .852
× ✓ .684 .784 .869
✓ ✓ .684 .787 .862

DINO [5]
ViT-S/16

× × .604 .692 .784
✓ × .647 .710 .812
× ✓ .608 .697 .788
✓ ✓ .652 .714 .816

IBOT [32]
ViT-S/16

× × .584 .650 .793
✓ × .588 .654 .797
× ✓ .600 .664 .806
✓ ✓ .604 .668 .811

B.4 Limitations

Our method exhibits challenges in scenarios where saliency within an image is unambiguous or
when multiple objects are present in the scene. Some visual examples can be seen in Fig. 4, where
our method tends to segment all objects in the scene, whereas human annotators are inclined to
select smaller and easily movable objects. Moreover, in instances where the salient object and
the background share visual similarities our method encounters difficulty, making it challenging to
distinguish between them accurately.
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Table 4: The ablations on unsupervised single object detection with CorLoc on three datasets; Pascal
VOC07 [8], Pascal VOC12 [9], COCO20K[16]. The best results are indicated with bold.

Crop GF VOC07 [8] VOC12 [9] COCO20K [16]

× × 71.7 75.9 61.3
✓ × 74.2 77.0 64.3
× ✓ 71.7 75.7 61.3
✓ ✓ 74.4 77.0 63.4

Table 5: The ablations of guided filtering [13] and bilateral filtering [1] with TokenCut [28] and
MOVE [3] on unsupervised saliency segmentation with same datasets and metrics in Table 1. The
best results for each method are indicated with bold.

Model
DUT-OMRON [30] DUTS-TE [27] ECSSD [22]

Acc IoU maxFβ Acc IoU maxFβ Acc IoU maxFβ

TokenCut .880 .533 .600 .903 .576 .672 .918 .712 .803
TokenCut + GF .880 .553 .676 .907 .597 .740 .925 .740 .861
TokenCut + BF .897 .618 .697 .914 .624 .755 .934 .772 .874
MOVE .923 .615 .712 .950 .713 .815 .954 .830 .916
MOVE + GF .925 .615 .631 .952 .726 .813 .958 .843 .923
MOVE + BF .931 .636 .734 .951 .687 .821 .953 .801 .916

Ours

GT

Figure 4: Some of the failure cases of our method from DUTS-TE [27]. In most cases the saliency is
unambiguous or the background and the foreground are almost indistinguishable.
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