
Persistence Homology Distillation for Semi-supervised
Continual Learning

Yan Fan, Yu Wang∗, Pengfei Zhu, Dongyue Chen, Qinghua Hu
College of Intelligence and Computing, Tianjin University, China

Haihe Laboratory of Information Technology Application Innovation, China
fyan_0411@tju.edu.cn, wang.yu@tju.edu.cn, zhupengfei@tju.edu.cn

dyuechen@tju.edu.cn,huqinghua@tju.edu.cn

Abstract

Semi-supervised continual learning (SSCL) has attracted significant attention for
addressing catastrophic forgetting in semi-supervised data. Knowledge distillation,
which leverages data representation and pair-wise similarity, has shown significant
potential in preserving information in SSCL. However, traditional distillation strate-
gies often fail in unlabeled data with inaccurate or noisy information, limiting their
efficiency in feature spaces undergoing substantial changes during continual learn-
ing. To address these limitations, we propose Persistence Homology Distillation
(PsHD) to preserve intrinsic structural information that is insensitive to noise in
semi-supervised continual learning. First, we capture the structural features using
persistence homology by homological evolution across different scales in vision
data, where the multi-scale characteristic established its stability under noise inter-
ference. Next, we propose a persistence homology distillation loss in SSCL and
design an acceleration algorithm to reduce the computational cost of persistence
homology in our module. Furthermore, we demonstrate the superior stability of
PsHD compared to sample representation and pair-wise similarity distillation meth-
ods theoretically and experimentally. Finally, experimental results on three widely
used datasets validate that the new PsHD outperforms state-of-the-art with 3.9%
improvements on average, and also achieves 1.5% improvements while reducing
60% memory buffer size, highlighting the potential of utilizing unlabeled data in
SSCL. Our code is available: https://github.com/fanyan0411/PsHD.

1 Introduction

Continual learning involves developing practical approaches for incrementally training models,
enabling them to learn new concepts while effectively retaining previously acquired knowledge [1].
The problem of catastrophic forgetting in continual learning impacts the model’s performance on
previously learned tasks. Numerous efforts have been dedicated to addressing this issue in continual
learning [2–8]. However, most state-of-the-art methods are trained under the assumption of fully
labeled data, neglecting the vast amounts of unlabeled data.

Semi-supervised continual learning introduces unlabeled data in CL by partially annotating the trained
data in each task and aims to alleviate catastrophic forgetting by exploiting these unlabeled data[9–14].
Learning from unlabeled data to improve model generalizability across tasks is a natural approach,
but its performance significantly relies on the size of the memory buffer [12, 15]. Generative replay
methods reduce the need for a memory buffer but incur prohibitive costs for higher resolution images
and are limited to relatively simple datasets [11, 12]. Knowledge distillation methods are proposed to
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Figure 1: The performance interference of extra unlabeled data distillation. The four approaches are
(a) iCaRL, (b) PodNet, (c) R-DFCIL and (d) our persistence homology distillation methods. Avg and
Avg_old mean the average incremental accuracy of all tasks and old tasks, respectively.

preserve valuable information in the unlabeled data of the previous model, referred to as the teacher
model [13, 14].

Logits or feature distillation approaches focus on sample-wise representation [9]. Relation distillation
methods, as variants of representation distillation, are explored for vulnerable representation of
unlabeled data to enhance more expressive knowledge preservation, including class-instance similarity
[13], and local structural similarity [14]. Although these distillation strategies have proven effective,
the impact of noisy relations remains a significant challenge. As shown in Figure 1, the succeeded
biased or inaccurate information often nterferes with the generalization on known classes impact
and even impact the entire tasks[16]. Therefore, we argue that a more powerful distillation that
investigates noise insensitive information preservation in unlabeled data is needed for semi-supervised
learning continual learning.

To address the aforementioned problem, we explore extracting multi-scale shape and structural
information from unlabeled data that is insensitive to feature space bias and noise interference in
semi-supervised continual learning. Inspired by the manifold assumption [17] and the homomorphism
between manifolds and simplicial complexes [18], we explore summarizing complex vision data into
simplicial complexes, and investigate the preservation of multi-scale structural properties despite
representation changes. Persistence homology in topological data analysis, as an adaptation of
homology to discrete metric spaces, reflects the homology-class evolution across different scales. Its
characteristics of invariants on homeomorphism and robustness to perturbations provide an adaptable
view to explore the structure in unlabeled data.

To this end, we propose a new model named Persistence Homology Distillation (PsHD) for semi-
supervised continual learning to stabilize learned tasks by leveraging the power of topological
features. Firstly, we construct local simplicial complexes in vision data based on the weighted k-hop
neighborhood and extract multi-scale structural features using persistent homology. Furthermore, we
devise a model parameter-independent distillation loss based on these structural features and also
design an acceleration algorithm to mitigate the computation costs. We also demonstrate the stability
privilege of persistence homology distillation compared to pair-wise similarity distillation strategies
[13, 19, 20] theoretically and experimentally. The primary contributions of our work are as follows:

• We utilize simplicial complexes to approximate vision data and explore stable topological
feature representation of unlabeled data in semi-supervised learning.

• We propose a novel persistence homology distillation strategy for SSCL that is insensitive
to noise information interference based on the intrinsic topological features, and devise an
accelerating algorithm to reduce computation costs.

• We demonstrate that our method outperforms existing methods on several benchmarks, and
highlights the potential of utilizing unlabeled data to overcome catastrophic forgetting.

2 Related Work

Persistence Homology Topological data analysis (TDA) is a new approach to seeking structural or
geometric information from discrete data. Persistent homology (PH) is one of the most popular tools
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in TDA to capture topological information about connectivity and holes in geometric data. Several
impressive applications of persistent homology in complex data are explored [21–25].

Topological features in vision data have been investigated broadly, including leveraging the prior
topology knowledge to improve the segmentation results [26, 27] and exploiting high-order per-
sistence spectral representations in image embedding [27]. These works are all based on explicit
object-level topology features. Few insights about TDA in category-level vision data have been
investigated. Liu et al. [28] propose a topological prediction model in image dataset, while is
not learnable to meet the requirement of deep learning. Madhu and Chepuri [29] introduce the
simplicial contrastive loss to preserve more expressive consistency, while only considering neighbors’
aggregated representation. So far, there are limited results on learnable intrinsic category features to
summarize vision data and investigate the structural stabilization of data distribution.

Continual Learning Continual learning methods can be categorized into three groups. The
regularization-based methods selectively regularizing the variation of essential network parameters
[2, 3] or preserve the outputs consistency of prediction functions [30, 31]. Replay-based methods
store few representative samples for retraining or old knowledge distillation [4–6], or utilize an
additional generative model to replay previous data [32, 33]. The parameter isolation methods isolate
parameter subspaces dedicated to each task throughout the network[7, 8].

To address the limitation of continual learning in neglecting tremendous unlabeled data, recent
efforts have been directed towards semi-supervised continual learning [9, 12, 11, 15, 13]. Some of
these methods leverage the generalizability of unlabeled data to alleviate forgetting by incorporating
gradients of unlabeled data [12] or employing contrastive loss among unlabeled data [15]. Such
strategies require a substantial memory buffer to ensure satisfactory performance. To deal with
the memory limitation, a generative reply method regularizes discriminator consistency to mitigate
catastrophic forgetting [11]. Employing meta distribution to consolidate the task-specific knowledge
[34] and training an adversarial auto-encoder to reconstruct images [35] extends [11] further. However,
these methods incur prohibitive costs on higher-resolution images. Knowledge distillation strategies
have also been explored on unlabeled data to address the forgetting in SSCL, including sample-wise
representation [9], class-instance relationships [13], and local-neighborhood similarity [14].

In continual learning scenarios with limited labeled data, the required changes of feature space can
often be dramatic [1], and the learned class-related representation is usually biased to labeled data [13].
With the unreliable distribution, stabilizing the feature extractor may interfere with accommodating
new representations and subsequent task refinement. A more stable representation learning robust to
data transformation is required for the SSCL.

3 Methodology

3.1 Preliminaries on Persistence Homology

A k-simplex σ is a k-dimensional polytope which is the convex hull of its k+1 vertexes. A single
point can be regarded as a 0-simplex, and a line segment can be defined as a 1-simplex. A 2-simplex
is a triangle, and a 3-simplex can be seen as a tetrahedron. The convex hull of any nonempty subset
of the k+1 points that define a k-simplex is called a face of the simplex. A simplicial complex K is
a set of simplex that satisfies the following conditions. (1) Any face of a simplex from K is also in
K. (2) The intersection of any two simplices σ1, σ2 ∈ K is a face of both σ1 and σ2. A common
choice of simplicial complex Kr is the Vietoris-Rips simplicial complexR(X, r), in which a simplex
σ = {x1, x2, . . . , xm} ∈ R(X, r) when dist(xi, xj) < r for all 1 ≤ i, j ≤ m.

A filtration {Kr}r∈R of a point cloud in Rd can be constructed from any filter function f : Rd → R
by considering each simplicial complex to be the sublevel set of f threshold by r, Kr = {x ∈
Rd|f(x) ≤ r}. The underlying filter function introduced above is the distance function δX : Rd → R,
where δX(y) = min{dist(y, x)|x ∈ X} is the distance from y to point set X . To be specific, the
Vietoris-Rips simplicial complexR(X, r) approximates the sublevel set

Kr = δ−1
X ((−∞, r]) = {y ∈ Rd|δX(y) ≤ r} = ∪x∈XB(x, r), (1)

3
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Figure 2: Illustration of topological data analysis. (a) Filtration of simplicial complex, (b) correspond-
ing persistence barcode, and (c) persistence diagram.

where B(x, r) is a ball with radius centered around x ∈ X . Then the filtration is a nested sequence
of subcomplex set

∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K, (2)

which reflect multi-scale topological spaces underlying the point data, as shown in Figure 2(a).
The persistence homology quantifies the changes in topological features as the subcomplexes grow
with the increasing threshold of the filter function. The strict definition of persistence homology
is provided in Appendix A.1. An easier way to understand is as follows. The lifetime of each
multi-scale topological feature is recorded by persistence barcode, as shown in Figure 2(b). Finally,
the persistence barcode can be converted into a persistence diagram, as shown in Figure 2(c).
Dgm = {(xσ, yσ) ∈ R2 : xσ < yσ} ∪ △ are a scatter plot with the x and y axes respectively
depicting the scale xσ at which each topological feature is born one subcomplex and dies in threshold
yσ or is identified with another homology class. △ is the diagonal set containing points in PH.

3.2 Persistence Homology Distillation for Semi-supervised Continual Learning

Formulation of SSCL As shown in Figure 3(a), when encountering new data Dt, let f tθ be the
model to be trained, with both labeled data L and unlabeled data U input into the model. The
parameters θ are updated through the cross-entropy loss LCE and semi-supervised loss LSSL to
adapt the model to the new task. Simultaneously, to prevent catastrophic forgetting, the memory
buffer M is used to regularize the knowledge consistency between DK(ht) and DK(ht−1) based
on the previous model f t−1

θ through a continual learning loss LCL. The complete loss function for
SSCL is as follows:

Lsscl = LCE + LSSL + λLCL, (3)

where we follow DSGD [14] to employ Fixmatch [36] as the semi-supervised loss LSSL. Now we
propose a new persistence homology distillation loss Lhd as LCL.

Persistence Homology Distillation Existing distillation methods preserve the sample represen-
tation, the class-instance similarity between tasks, and local neighbor similarity. This limits the
performance when inaccurate representation is inherited or noise occurs in previous tasks, especially
when a significant transfer between the feature spaces of two tasks exists. To exploit the intrinsic
structural features preservation, which topological invariant regardless of specific representation,
we propose a persistence homology-based distillation method and design an effective algorithm to
achieve stable knowledge accumulation.

The first step of our model is to define the topological similarity among two samples. Given a
collection of image sets, we build the local persistence diagram by considering the weighted k-hop
neighborhood N (xi, k). To be specific, let G = (V,E) be the adjacency graph of memory buffer,
where V is the set of replayed image samples. W ∈ RN×N be the adjacency matrix of G such that
Wij = 1 for eij ∈ E and 0 for otherwise. As a discrete point data, we construct the adjacency matrix
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Figure 3: Illustration of our proposed persistence homology distillation for semi-supervised continual
learning. (a) represents the backbone of SSCL, LCE and LSSL are the cross-entropy loss on labeled
data and semi-supervised loss on unlabeled data. LCL means the continual learning loss on the
memory buffer. (b) corresponds to our PsHD loss, serving as LCL, employed on the replied samples.

by applying a threshold to the cosine similarity sij =< hi, hj >=
hihj

∥hi∥∥hj∥

Wij =

{
1, if sij ≥ β
0, if sij < β,

(4)

where hi, hj are the representations of sample xi and xj , respectively. We use the logits hi ∈ Rd

in this study. Next, we can group the weighted k-hop neighborhood set N (xi, k), where for any
xj ∈ N (xi, k), the shortest path between xi and xj is at most k. Armed with the distance function
dist(xi, xj) = 1− sij , we can construct the h-dimensional persistence diagram Dgmh(N (xi, k))
by considering the distance function as the filtration function according to Eq (1)-(2).

Subsequently, we try to preserve this structural information by designing a distillation loss, which goes
beyond only the pairwise similarity of node features. Given any sample x of the memory buffer, we
can derive the persistence diagrams of the old task by the old feature extractor Dgmh(N k

x , fold). The
corresponding persistence diagram in the new model is Dgmh(N k

x , fnew), where the neighborhood
set is the same as the previous task. The structural similarity between two tasks is measured with the
p-Wasserstein distance between the corresponding persistence diagrams as

dNk
x
(fold, fnew) = infγ(

∑
u∈Dgmh(Nk

x ,fold)

||u− γ(u)||p))
1
p , (5)

where p ≥ 1 and γ is taken over all bijective maps between Dgmh(N k
x , fold) and Dgmh(N k

x , fnew).
In our analysis p=1. This distance quantifies how much effort is needed to transform one topological
feature representation into another.

Persistence Homology Distillation Acceleration Algorithm It is known that the worst-case
complexity of generating a homology diagram is O(n2.5), where n is the number of the simplices
[37]. Thus, the complexity of computing local topology similarity for each sample in the memory
buffer is O(|M |n2.5), which is computationally expensive. This procedure is also redundant since
nearby samples typically share similar topological structures. To mitigate the computation cost, we
design an approximate algorithm to simplify the final distillation loss and accelerate the persistence
homology distillation procedure.

Given the replayed data M , we randomly select one sample x1 and group its weighted k-hop
neighborhood setN (x1, k). We then select another sample x2 in the remaining samplesM\N (x1, k),
and group its weighted k-hop neighborhood set N (x2, k). This process is repeated until all samples
are grouped into their respective neighborhood sets. After this step, we can compute several homology
diagrams derived from grouped k-hop neighborhood sets {N (x1, k), . . . ,N (xl, k)}. We design the
final distillation loss as Lhd in SSCL by meaning of all separated local homology diagrams

Lhd =
1

|S|
∑
x∈S

dNk
x
(fold, fnew), (6)
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where | · | is the cardinality. This procedure is summarized as Algorithm 1 in Appendix A.2. By doing
so, the complexity is reduced from O(|M |n2.5) to O(|S|n2.5). We experimentally find that the size
of S is approximate to the number of classes in the memory buffer, so theO(|S|n2.5) is approximated
to be O(CMn

2.5). This contributes to a significant reduction in computation, approximately 10-fold
when 1000 unlabeled samples are replayed in CIFAR-100.

Stability Analysis The superiority of our proposed persistence homology distillation lies in its
insensitivity to noisy and inaccurate representation. According to the stability of persistence homology
[38], we can infer that persistence homology distillation is inherently more robust than feature
distillation. We also demonstrate its robustness compared to the similarity distillation in Theorem 1.

Theorem 1. Given the two feature space of point data as P0 and P1, for all p ≥ 1 and h ∈ Z+, we
have

Wp(Dgmh(R(P0)), Dgmh(R(P1))) ≤
(
M − 1

k

) 1
p

W pair
p (P0,P1), (7)

where Dgmh(R(P0)) and Dgmh(R(P1)) are the h-dimensional persistence diagram for the
Vietoris-Rips filtration on the point set P0 and P1 respectively. W pair

p represents the pair-wise

distance between the point set W pair
p (P0,P1) = infϕ(

∑
u,v∈P0

| ∥v − u∥ − ∥ϕ(v)− ϕ(u)∥ |p)
1
p ),

where ϕ is a bijection between the two set P0 and P1.

The proof is shown in Appendix A.3. We consider the features of point data as the extracted
embedding through our backbone network. This theorem demonstrates that the persistence homology
is robust to the perturbations of similarity between samples and inaccurate sample-wise representation.

4 Empirical Study

4.1 Experiment Settings

Datasets. We evaluate our method on three datasets with different classes and resolutions. CIFAR-
10 [39] is a dataset containing colored images classified into 10 classes, which consists of 5,000
training samples and 1,000 testing samples of size 32 * 32 per class. CIFAR-100 [39] comprises 500
training images and 100 testing images per class, with the same size with CIFAR-10. ImageNet-100
[40], a subset of ImageNet-1000, is composed of 100 classes with 1300 images per class for training
and 500 images per class for validation. ImageNet-100 resembles real-world scenes with a higher
resolution of 256*256.

Continual Semi-supervised Setting. For both CIFAR-10 and CIFAR-100, we train the models with
different levels of supervision, i.e., λ ∈ {0.8%, 5%, 25%}. For instance, the label ratio corresponds
to 4, 25, and 125 annotated samples per class in CIFAR-100. Regarding ImageNet-100, we choose
{1%, 7.7%} for label ratio. To build the continual datasets, we use two learning sequence settings
in the literature NNCSL [13] and DSGD [14], and divide the datasets into equally disjoint tasks:
5/10/10 tasks for CIAFR-10/CIFAR-100/ImageNet-100, i.e., 2/10/10 class per task. We also follow
the standard incremental setting of CL and assume that only limited space is left for previous data. In
other words, the memory buffer can be constructed for both labeled and unlabeled data. Following
[13, 7], we set the buffer size as 500 and 2000.

Evaluation Metrics. We evaluate the performance of different methods considering the average
accuracy over all the classes seen after the last task AAT = 1

T

∑T
i=1 aT,i, and average incremental

accuracy of each task AIA = 1
T−1

∑T
t=2AAt [1]. Analysis with backward transfer, which presents

the degree of forgetting BWT = 1
T−1

∑T−1
t=1 (aT,t − at,t), is also evaluated in the ablation study.

The forgetting is usually reflected as negative BWT .

Baselines. We adopt the semi-supervised continual learning pipeline of DSGD [14]. Two categories
of methods: distillation-based method iCaRl[4] and parameter consolidation method DER[7] are
considered as the strategies for overcoming catastrophic of labeled data. A common semi-supervised
learning method Fixmatch [36] is adopted to learn discriminate representation of unlabeled data.
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Table 1: Average incremental accuracy and average accuracy of various methods on 5-tasks CIFAR-
10, 10-tasks CIFAR-100 and 10-tasks ImageNet-100 settings following the learning sequence [14],
with a memory buffer size of 2000. The improvements of PsHD compared to the state-of-the-art
methods are highlighted in blue color.

Method
CIFAR-10 CIFAR-100 ImageNet-100

5% 25% 5% 25% 1% 7.7%

avg last avg last avg last avg last avg last avg last

iCaRL[4] 65.9 56.4 65.4 51.4 28.1 15.3 44.1 30.7 19.9 12.9 30.8 16.7
iCa_Fix[14] 83.7 79.2 82.9 78.8 49.8 31.3 56.9 41.4 26.4 15.6 37.5 21.0
DSGD[14] 83.8 79.1 83.2 79.0 53.4 35.9 58.1 43.1 28.3 19.1 50.5 32.1
PsHD 85.4 81.5 86.1 81.4 56.6 38.8 59.4 43.2 29.7 22.4 53.4 35.0
Gain +1.6 +2.4 +2.9 +2.4 +3.2 +2.9 +1.3 +0.1 +1.4 +3.2 +2.9 +2.9

DER[7] 70.4 65.6 70.9 62.3 32.8 26.5 57.2 48.8 20.8 14.4 41.2 32.6
DER_Fix[14] 86.1 81.2 83.9 81.4 52.0 44.5 66.7 53.6 29.8 23.3 59.5 51.0
DSGD[14] 86.3 81.6 85.0 81.9 57.9 46.7 69.1 58.5 29.8 23.3 59.9 51.5
PsHD 86.0 81.8 88.0 83.4 58.3 47.2 69.5 58.7 30.7 24.2 60.6 52.1
Gain -0.3 +0.2 +3.0 +1.5 +0.4 +0.5 +0.4 +0.2 +0.9 +0.9 +0.7 +0.6

Table 2: Average accuracy with the standard derivation of different methods test with 5-tasks CIFAR-
10 and 10-tasks CIFAR-100 settings following learning sequence of [13] with 500 samples replayed.
The data with underline is the best performance within existing methods.

Method Source CIFAR-10 CIFAR-100

0.8% 5% 25% 0.8% 5% 25%

iCaRL[4] CVPR 2017 24.7 35.8 51.4 3.6 11.3 27.6
FOSTER[6] ECCV 2022 43.3 51.9 57.1 4.7 14.1 21.7
X-DER[42] TPAMI 2022 33.4 48.2 58.9 8.9 18.3 23.9
PseudoER[13] ICCV 2023 50.5 56.5 57.0 8.7 11.4 12.3
CCIC[15] PRL 2021 54.0 63.3 63.9 11.5 19.5 20.3
PAWS[43] ICCV 2021 51.8 64.6 65.9 16.1 21.2 19.2
CSL[13] ICCV 2023 64.5 69.6 70.0 23.6 26.2 29.3
NNCSL[13] ICCV 2023 73.2 77.2 77.3 27.4 31.4 35.3
DER_Fix[14] AAAI 2024 73.4 75.2 76.5 25.4 41.3 46.3
DSGD[14] AAAI 2024 73.6 76.1 77.5 25.9 41.6 47.1
PsHD Ours 74.5+1.1 77.6+0.4 78.0+0.5 27.7+0.3 42.4+0.8 47.8+0.7

4.2 Quantitative Results

Comparison with SSCL Methods. Table 1 shows the disrupted class order following [14, 41]
across the three datasets, and also report the average incremental accuracy to demonstrate the
effectiveness of the proposed method during the whole evolution. The backbone architectures remain
consistent with those used in [14], while the distillation loss on unlabeled samples in the memory
buffer is replaced by our newly proposed persistent homology distillation loss. We obtain a general
improvement on the two backbones, demonstrating the intrinsic topological features captured by
PH are more efficient than the sample-wise local similarity distillation. In addition, the scale of the
sub-graph is an important parameter that should be selected in DSGD [14], which does not occur in
the proposed PsHD since its automatic multi-scale characteristic. The results of ImageNet-100 also
demonstrate the effectiveness on a more challenging benchmark with a higher resolution.

For a more comprehensive comparison, we also validate our method on the default class sequence.
Table 2 shows the results of semi-supervised continual learning on CIFAR-10 and CIFAR-100
without shuffle class order. It can be seen that our PsHD outperforms all the methods in the average
accuracy across several label ratios on both datasets. As representative relation distillation methods,
NNCSL [13] and DSGD [14] show comparative results compared to sample representation distillation.
Our method surpasses the two approaches further, indicating the superiority of distilling persistent
homology for unlabeled data in semi-supervised continual learning. In addition, NNCSL [13] only
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considers the rehearsal of labeled data, limiting its potential advantages on unlabeled data, while our
methods focus on the unlabeled data and complement the class-instance similarity preservation.

Table 3: Average accuracy of different knowl-
edge distillation methods applied on SSCL.

Method Type CIFAR10 CIFAR100

5% 25% 5% 25%

iCaRL[4] logits 79.2 78.8 31.3 41.4
Foster[6] logits 75.0 70.4 24.6 38.8

LUCIR[44] feature 75.2 74.7 32.0 32.6
Podnet[45] feature 57.9 69.0 21.4 21.1
R-DFIL[46] relation 78.5 78.8 34.7 34.2
DSGD[14] relation 79.1 79.0 35.9 43.1
TopKD[47] topology 78.7 79.8 35.4 41.9

PsHD topology 81.5 81.4 38.8 43.2

Better Adaptability to Unlabeled Data Com-
pared with Distillation Methods. Table 3 presents
a comparison of traditional knowledge distillation
and its more recent variants from [48] in the learn-
ing tasks of our SSCL problem. The effectiveness
of logits and features distillation diminishes gener-
ally, particularly as tasks become more challenging
and numerous. For instance, the performance on
CIFAR100 is lower than that on CIFAR10, and a
reduced labeled ratio results in decreased accuracy.
Although relation and topology distillation are rel-
atively effective for SSCL, their stability is still
inferior to that of our method.

Stability to Noise Interference. We also validate
the stability of our methods under noise interference. As shown in Table 4, we add Gaussian noise
with standard deriviation {0.2, 1, 1.2} on five distillation-based continual learning methods and our
PsHD. The results indicate that our method exhibits greater stability in terms of both forgetting degree
and accuracy, despite the presence of higher noise levels. These findings further confirm the stability
conclusions drawn in Theorem 1.

Table 4: Comparison of distillation methods with Gaussian noise interference on CIFAR10 with 5%
supervision. σ is the standard deviation.

σ Podnet[45] LUCIR[44] R-DFCIL[46] DSGD[14] TopKD[47] PsHD
BWT↓ AA↑ BWT↓ AA↑ BWT↓ AA↑ BWT↓ AA↑ BWT↓ AA↑ BWT↓ AA↑

0.2 31.8 55.6 21.8 71.5 19.2 77.5 18.1 76.7 19.7 76.5 14.0 78.7
1.0 44.4 27.9 34.3 57.3 28.2 62.1 27.1 64.2 23.0 67.2 17.7 70.9
1.2 49.8 34.6 36.4 56.4 26.4 61.8 23.7 64.1 22.8 65.8 18.3 67.8

4.3 Parameter Analysis

Ablation Study. We firstly ablate the components of persistence homology distillation through
quantitative analysis in Table 5 on both CIFAR-10 and CIFAR-100 across 5% and 25% label ratios.
The baseline is based on iCaRL_Fix and DER_Fix, where the iCaRL and DER are two methods
in traditional continual learning and Fix is Fixmatch for semi-supervised learning. LSSL and Lhd

represent the semi-supervised loss and homology diagrams distillation loss, respectively. The general
improvements of our structural distillation loss confirm the contributions of our proposed components.

Visualization of the Effectiveness of Persistence Homology Distillation. We also provide the class
activation heatmap of old categories in the initial and following tasks during the continual learning
process in ImageNet-100. These heatmap pictures localize class-specific discriminative regions,
as shown in Figure 4. It can be seen from (a) part of the three groups that the model without our
persistence homology distillation usually drop the class-specific attention region with the task takes
advancement, despite the init model having learned a discriminative representation. In addition, the
base model may even shift focus on the background area in the middle tasks, such as Task 6-9 in 2.a,
resulting in unreliable knowledge accumulation. This is because of the insufficient previous data
support, memory data under-utilization, and feature space transformation, which lead to attention
shift as shown in 1.a, and even attention vanishment as shown in 3.a.

In contrast, the introduction of our persistence homology distillation is able to preserve the discrimi-
native region along with the whole continual learning, as depicted in (b) part, which indicates that
preserving persistence homology that captures the class-wise structural information encourages the
model to focus on the class-specific region continually. It is worth noting that even if the initial
model is not capable of noticing the class-specific region, as shown in 3.a, which may result from
insufficient supervision, our method still empowers the following model training to activate the
potential class-relevant region since it focuses on the global distribution of each class and pushes the
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Table 5: Ablation study of proposed persistence homology distillation

Method LSSL Lhd
CIFAR10_5% CIFAR10_25% CIFAR100_5% CIFAR100_25%
avg last avg last avg last avg last

iCaRL
√

83.7 79.2 82.9 78.8 54.2 36.1 58.4 41.1√ √
85.3+1.5 80.8+1.6 85.4+2.6 80.5+1.7 56.4+2.2 38.8+2.7 59.2+0.8 42.2+1.1

DER
√

86.1 81.2 84.9 81.4 57.8 46.3 68.1 57.2√ √
86.2+0.1 81.8+0.6 87.9+3.0 83.4+2.0 58.2+0.4 47.2+0.9 68.3+0.2 57.7+0.5
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Figure 4: Visualization of activation heatmap during the continual learning process, where the cate-
gories belong to Task0. 1-3(a) correspondence to PsHD without the Lhd, and 1-3(b) correspondence
to PsHD with Lhd. The red area localizes class-specific discriminative regions.

semantic similar samples to be related in representation, as shown in 3.b. Additional visualization of
PsHD is depicted in Appendix A.5.

Effect of the Weight of Persistence Homology Loss. We evaluate the influence of loss weight λ
in Eq. 3 across the three datasets, and report the results in Figure 5. It can be seen that a higher
weight indicates higher average incremental accuracy and a lower forgetting degree generally. In
addition, our method improve the baseline generally within a reasonable range. Too much higher
weight on persistence homology loss, for instance bigger than 1, is not supposed to be better for the
trade-off problem between old and new tasks. We choose 1 for CIFAR10 and CIFAR100, and 1.5 for
ImageNet100 in our experiments.

Effect of k-simplex in Persistence Homology. The persistence diagram calculation considers the
lift-span of h-dimensional holes that existed in the nested simplicial complexes data distribution. We
verify the effectiveness of dimension h in the homology diagram by considering 0-dimensional holes
and both 0,1-dimensional holes in CIFAR-10 and CIFAR-100. The results are shown in Figure 5.
It can be seen that considering the persistence of both 0,1-dimensional holes are more effective in
CIFAR-10, while CIFAR-100 slightly prefers the simple 0-dimensional holes persistence preserved.

Effect of Memory Buffer Distribution. To investigate the necessity of replaying the unlabeled data,
we evaluate the effect of memory buffer allocation of labeled and unlabeled data on CIFAR-100 of 5%
and 25% label ratios in Table 6, where ratios represent the percentage of labeled data in the memory
buffer. The general improvements indicate the percentage of labeled data has an important effect on
the performance. It can be observed that replacing 20%-40% labeled samples with unlabeled samples
improves 1.49%, 1.27% in 5%. We experimentally choose 0.6-0.9 in the following settings.
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Figure 5: Effectiveness of h-simplex features in persistent homology. H0_Avg and H01_Avg represent
the average incremental accuracy based on considering 0-dimensional holes and 0,1-dimensional
holes persistence. BWT evaluates the forgetting degree.

Table 6: Effect of data allocation in memory buffer

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

5% 53.94 54.60 55.43 54.63 55.21 54.45 54.57 54.30 54.21 54.52
25% 65.32 65.82 65.48 65.45 65.50 65.44 65.17 65.3 65.00 56.10

4.4 Efficiency Analysis

Table 7: Average accuracy of different methods following
learning sequence of [13] with memory buffer size 5120.
* represents that the size of memory buffer is 2000.

Method CIFAR-10 CIFAR-100

0.8% 5% 25% 0.8% 5% 25%

PseudoER[13] 55.4 70.0 71.5 15.1 24.9 30.1
CCIC[15] 55.2 74.3 84.7 12.0 29.5 44.3
CSL[13] 64.3 73.1 73.9 23.7 41.8 50.3
NNCSL[13] 73.7 79.3 81.0 27.5 46.0 56.4

PsHD 82.3 82.5 87.2 28.9 47.7 57.5
PsHD * 74.6 81.5 84.6 28.3 46.0 56.5

Memory Reduction. Our method is
also memory-efficient for SSCL. As
shown in Table 7, the proposed PsHD
that incorporates unlabeled data surpasses
methods relying solely on labeled data,
such as NNCSL, by an average of 3.9%
across six SSCL settings. To further ver-
ify the memory efficiency, we reduced
the memory buffer size by 60% to 2000,
achieving an average improvement of
1.5% compared to NNCSL across the six
semi-supervised continual learning tasks.

Computation Efficiency. A newly
topology-based distillation method TopKD [47], which is similar with our method, is proposed for
model compression. We prove that the complexity proportion of TopKD and our method is b2, where
b is the number of old classes. The specific derivation is clarified in Appendix A.4. This value
indicates the relative complexity of TopKD grows polynomially when the class number increases,
highlighting our computation superiority.

We evaluate the memory storage, model parameters and training time between our methods and
state-of-the-art methods in Appendix A.4 Table 8, indicating the superiority. Despite the acceleration
algorithm, a limitation of our method is that the computation of the persistence diagram relies on the
Guidh package, which operates on the CPU. We plan to explore the learnable network RipsNet [49]
to approximate the persistence diagram and further accelerate the computation in the following work.

5 Conclusion

We proposed Persistence Homology Distillation (PsHD) to address catastrophic forgetting and
noise sensitivity in Semi-Supervised Continual Learning (SSCL). First, we utilized persistence
homology to capture stable topological feature representation of unlabeled data in semi-supervised
learning. Next, we proposed a novel persistence homology distillation strategy for SSCL that is
insensitive to noise information interference based on the intrinsic topological features and devised
an accelerating algorithm to reduce computation costs. Finally, general improvements in three
benchmarks demonstrated the efficiency of PsHD in overcoming catastrophic forgetting in SSCL.
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A.1 Preliminaries

Persistence Homology. Now we explain how persistence homology works. It is easy to obtain
an inclusion map Ki ↪→ Kj , 0 < i < j < m from Eq. 2. These maps also induce a group
homomorphism of the corresponding homology groups

F i,j
d : Hd(Ki) 7→ Hd(Kj), 0 < i < j < m, (8)

where Hd(Ki) and Hd(Kj) are homology groups of the dth order. A homology class h is born
at time fi if h ∈ Hd(Ki) but h /∈ img(F i−1,j

d ). Provided h is born at fi, h dies at time fj only
if F i,j−1

d (h) /∈ img(F i−1,j−1
d ) while F i,j

d (h) ∈ img(F i−1,j
d ) [50]. (‘img’ refers to the image of

a map). These maps reveal which feature features persist (a feature refers to a homology class,
corresponding to a component or a n-dimensional hole). An easier way to understand is as follows. A
new homology class is born at time fi only if it does not appear at the existing features, and it dies
at time fj only if it still persists at time fj−1 and is merged into other features at time fj . The time
between death and birth of a feature is called its lifetime or persistence.

A.2 Algorithm of Persistence Homology Distillation

We illustrate our persistence homology distillation in Algorithm 1.

Algorithm 1 Hierarchical Persistence Homology Distillation
Input: Replayed batch of unlabeled data: Bo

u.
Parameter: Embedding encoder of current task fnew and old task fold,

1: E ← Bo
u, i← 0, S ← ∅

2: repeat
3: xi ← RandomSample(E)
4: (fnewxi

, foldxi
)

5: Group the weighted k-hop neighborhood set N (xi, k) by foldxi

6: E ← E\N (xi, k), S ← S ∪ xi, i← i+ 1
7: Compute the Wasserstein distance dNk

x
(fold, fnew) according to Eq. 5

8: until E is empty
9: Minimize the total loss Lhd = 1

|S|
∑

x∈S dNk
x
(fold, fnew)

A.3 Proof of Stability Theorem

Theorem 1. Given the two feature space of point data as P0 and P1, for all p ≥ 1 and h ∈ Z+, we
have

Wp(Dgmh(R(P0)), Dgmh(R(P1))) ≤
(
M − 1

k

) 1
p

W pair
p (P0,P1), (9)

whereDgmh(R(P0)) andDgmh(R(P1)) are the h-dimensional persistence diagram for the Vietoris-
Rips filtration on the point set P0 and P1 respectively. W pair

p represents the pair-wise distance

between the point set W pair
p (P0,P1) = infϕ(

∑
u,v∈P0

| ∥v − u∥ − ∥ϕ(v)− ϕ(u)∥ |p)
1
p ), where ψ

is a bijection within the same set, such as P0 or P1, and ϕ is a bijection between the two set P0 and
P1.
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Proof. Let ϕ : P0 → P1 be the bijection which achieves the minimum of

W pair
p (P0,P1) = inf

ϕ
(
∑

u,v∈P0

∣∣∣∥u− v∥ − ∥ϕ(u)− ϕ(v)∥∣∣∣p) 1
p

Relabel the points in P0 = {x1, . . . , xM} and P1 = {y1, . . . , yM} so that ϕ(xi) = y1. Let
K be the complete simplicial complex on M vertices {v1, · · · , vM}. Define functions f, g :
K → R by f([vi0 , vi1 , · · · , vik ]) the time when [xi0 , xi1 , · · · , xik ] is included in R(P0) and
g([vi0 , vi1 , · · · , vik ]) the time when [yi0 , yi1 , · · · , yik ] is included inR(P1).

Suppose h ≥ 1, then

|f([vi0 , vi1 , · · · , vik ])− g([vi0 , vi1 , · · · , vik ])| =
∣∣∣(max

j,l
{
∥∥xij − xil∥∥} −max

j,l
{
∥∥yij − yil∥∥}∣∣∣

≤ max
j,l

∣∣∣∥∥xij − xil∥∥− ∥∥yij − yil∥∥∣∣∣
≤ max

j

∑
l

∣∣∣∥∥xij − xil∥∥− ∥∥yij − yil∥∥∣∣∣.
Since K is the complete simplicial complex over M vertices, each edge [vi, vj ] appears in

(
M−2
k−1

)
h-simplices, we only need to decide which extra k-1 vertives to include.

Based on the cellular stability theorem [38],
Wp(Dgmh(R(P0)), Dgmh(R(P1)))

p

≤
∑

[vi0 ,··· ,vik ]

|f([vi0 , vi1 , · · · , vik ])− g([vi0 , vi1 , · · · , vik ])|p

+
∑

[vi0 ,··· ,vik+1
]

|f([vi0 , vi1 , · · · , vik+1
])− g([vi0 , vi1 , · · · , vik+1

])|p

≤
∑

[vi0
,...,vik ]

max
j,l

∣∣∣∥∥xij − xil∥∥− ∥∥yij − yil∥∥∣∣∣p
+

∑
[vi0

,··· ,vik+1
]

max
j,l

∣∣∣∥∥xij − xil∥∥− ∥∥yij − yil∥∥∣∣∣p
≤

∑
[vi0 ,...,vik ]

max
j

∑
l∈[vi0 ,··· ,vik ]

∣∣∣∥∥xij − xil∥∥− ∥∥yij − yil∥∥∣∣∣p
+

∑
[vi0 ,··· ,vik+1

]

max
j

∑
l∈[vi0 ,··· ,vik+1

]

∣∣∣∥∥xij − xil∥∥− ∥∥yij − yil∥∥∣∣∣p
≤

∑
xj∈P0

(
M − 2

k − 1

) ∑
xl∈P0

∣∣∣∥xj − xl∥ − ∥yj − yl∥∣∣∣p
+

∑
xj∈P0

(
M − 2

k

) ∑
xl∈P0

∣∣∣∥xj − xl∥ − ∥yj − yl∥∣∣∣p
≤

(
M − 1

k

)
W pair

p (P0,P1)
p.

For h = 0 the calculations are easier as the vertex values are all 0.

Wp(Dgm0(R(P0)), Dgm0(R(P1))) ≤
∑
i<j

|f([vi, vj ])− g(vi, vj)|p

=
∑
i<j

| ∥xi − xj∥ − ∥yi − yj∥ |p

≤W pair
p (P0,P1)

p.
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A.4 Efficiency of Proposed Algorithm

As the similar topology-based distillation methods, ours computation cost is smaller than the TopKD.
The main reason is because of the smaller number of persistence homology points u in the persistence
homology Dgmh(N k

x , fold) ∪ △ of Eq. 5. The number of u is proportional to simplices number
n since HP complexity is O(n2.5). It is hard to approximate n, while we can deriviate its upper
bound in our method UK

n,PsHD = b
∑K

i=1

(
M/b
i

)
and TopKD UK

n,TopKD =
∑K

i=1

(
M
i

)
, where M is

the replayed samples in each batch, b is approximate to class number and K is the highest number
of distilled simplex. We experimentally set K to be 3, since 1-simplex derive when i = 2 and dead
when i = 3. The upper bound ratio is b2.

Proof.

U3
n,TopKD =M +

M(M − 1)

2
+
M(M − 1)(M − 2)

6
,

U3
n,PsHD =M +

M(M/b− 1)

2
+
M(M/b− 1)(M/b− 2)

6
,

U3
n,TopKD

U3
n,PsHD

=
6b2 + (M − 1)3b2 + (M − 1)(M − 2)b2

6b2 + (M − b)3b+ (M − b)(M − 2b)

=
5b2 +M2b2

5b2 +M2

≈ b2(b→M,M >> 5).

When the number of old class b raises in the continual learning process, the relative computational
complexity grows quadratically with b. Heavy computation usually accumulates during the whole
learning process, so this ratio demonstrating the superiority of our methods.

In addition, we also evaluate the memory storage, model parameters and training time between our
methods and state-of-the-art methods in Table 8. When reducing the replayed examplers to 2000, our
method still achieves the best performance 46.0%. Compared to the best indices, our method lessen
the training time by 10.9%, example buffer by 60.9%, and memory size by 28.4%. Therefore, while
existing strong baselines excel in different aspects, NNCSL in accuracy, DER_Fix in training time,
and DSGD relatively balanced computation costs and accuracy, our method achieves the overall least
resources overhead and the highest accuracy.

Table 8: Effectiveness and efficiency comparison on CIFAR100_5%. The memory size is the sum of
the storage of model parameters and replayed examples.

Train.(h) Parameters(m) Example Memory Size (MB) Acc(%)

NNCSL 12.1 11.8 5120 56.58 46.0
DER_Fix 9.1 4.6 5120 30.80 43.61

DSGD 9.8 4.6 5120 30.80 44.61
PsHD 14.2 4.6 5120 30.80 47.7
PsHD 8.1 4.6 2000 22.07 46.0

A.5 Visualization of Effectiveness of PsHD

We provide additional visualizations of PsHD in Figure 6. Expect for the issue in Figure 4, the
attention bias shows that the initial model fails to recognize the accurate class-specific regions,
making it difficult for subsequent models to consistently focus on the correct areas. By incorporating
persistent homology features, the model is encouraged to direct attention to the appropriate regions.
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Figure 6: Visualization of activation heatmap during the continual learning process, where the cate-
gories belong to Task0. (a) part correspondence to PsHD without the Lhd, and (b) part correspondence
to PsHD with Lhd. The red area localizes class-specific discriminative regions.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Abstract and Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section 4.4

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See Appendix A.3.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 3, Section 4 and Supplemental Material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: See Abstract, Section 4.1 and Supplemental Material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section 4.1 and Supplemental Material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We share the same settings with compared methods.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Section 4.1 and Supplemental Material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The original paper related to the experiment results and data are all cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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