
Personal Information Parroting in Language Models

Nishant Subramani 1 Kshitish Ghate 1 Mona T. Diab 1

Abstract

Modern language models (LM) are trained on
large scrapes of the Web, containing millions
of personal information (PI) instances, many of
which LMs memorize, increasing privacy risks.
In this work, we develop the regexes and rules
(R&R) detector suite to detect email addresses,
phone numbers, and IP addresses, which out-
performs the best regex-based PI detectors. On
a manually curated set of 483 instances of PI,
we measure memorization: finding that 13.6%
are parroted verbatim by the Pythia-6.9b model,
i.e., when the model is prompted with the to-
kens that precede the PI in the original document,
greedy decoding generates the entire PI span ex-
actly. We expand this analysis to study models
of varying sizes (160M-6.9B) and timesteps of
pretraining (70k-143k iterations) on the Pythia
model suite and find that both model size and
amount of pretraining are positively correlated
with memorization. Even the smallest model,
Pythia-160m, parrots 2.7% of the instances ex-
actly. Consequently, we strongly recommend that
pretraining datasets be aggressively filtered and
anonymized to minimize PI parroting. The code
for our detectors can be found at https://github.
com/nishantsubramani/rr_pi_detectors/.

1. Introduction
Large language models (LLMs) are trained on trillions of to-
kens scraped from the Web, containing millions of instances
of personal information (PI) (Elazar et al., 2023; Subramani
et al., 2023; Soldaini et al., 2024). We use the term PI
because it encapsulates the US definition of personally iden-
tifiable information (PII), the UN definition of personal data,
and other definitions in other countries (Subramani et al.,
2023). For many pretraining datasets, however, documenta-
tion of PI is absent. Furthermore, LLMs memorize training

1Carnegie Mellon University, LTI. Correspondence to: Nishant
Subramani <nishant2@cs.cmu.edu>.

Published at MemFM Workshop at ICML 2025, Vancouver,
Canada. Copyright 2025 by the author(s).

examples and can be prodded to extract PI via prompt-based
methods (Carlini et al., 2019; 2021; 2022). LLMs can also
be steered to generate exact sequences primarily via steer-
ing vectors and prompting, unrelated to privacy (Subramani
et al., 2019; 2022; Subramani & Suresh, 2020; Shin et al.,
2020; Li & Liang, 2021). This indicates a serious prob-
lem: LLMs memorize and generate PI and a malicious
actor can gain access to these without complex extraction at-
tacks. Better filtering can improve PI memorization for both
filtered examples and for examples that were not caught
by the filter (Borkar et al., 2025). However, PI filtering
and anonymization has largely been ignored when curating
pretraining datasets; those that do tend to resort to regular-
expression (regex) based approaches because model-based
approaches are computationally infeasible (Subramani et al.,
2023; Elazar et al., 2023; Soldaini et al., 2024).

To address these limitations, we focus on character-based PI,
which are among the highest risk PI types (Subramani et al.,
2023). Accordingly, our work contributes the following:

1. We develop the regexes and rules detector suite
(R&R) containing four new PI detectors for email
addresses, IP addresses, US phone numbers, and US
phone numbers with the country code and show that
our suite outperforms the strongest regex-based PI de-
tectors (Elazar et al., 2023).

2. Using the Pythia suite, we measure the degree of PI par-
roting and analyze the effect of model size, pretraining
timesteps, and prefix length on memorization.

2. R&R Detection Suite
PI Detection & Baselines Following Subramani et al.
(2023), we focus on character-based PI since they are one
of the highest risk categories for risk exposure as they can
often uniquely identify a person. Model-based tools like
Presidio (Microsoft, 2021) outperform regular-expression
based systems slightly, but are infeasibly slow on large
datasets (e.g., pretraining corpora). As a result, we compare
with the WIMBD detectors (Elazar et al., 2023), the strongest
efficient baselines to our knowledge, which contain detec-
tors for three PI types: email addresses, US phone numbers,
and IP addresses.

1

https://github.com/nishantsubramani/rr_pi_detectors/
https://github.com/nishantsubramani/rr_pi_detectors/

Personal Information Parroting in Language Models

Figure 1: Results on manually annotating 1750 detec-
tions, 250 per PI type per system. R&R (blue) outper-
forms WIMBD (orange) in 17 of 20 cases. WIMBD cannot
detect US phone numbers when it has the country code
(+1), yielding a precision of 0%. R&R significantly outper-
forms WIMBD for email addresses and both phone numbers
and is not significantly better for IP addresses.

Dataset We choose the Pile (Gao et al., 2020), one of
the largest open-source pretraining datasets containing 383
billion tokens. The dataset consists of 22 smaller sub-
sets including OpenWebText2, arXiv, StackExchange, and
YoutubeSubtitles with text from many genres including re-
search papers, patents, subtitles, law, science, and math-
ematics. These are grouped into 5 categories: academic,
dialogue, internet, prose, and misc. The Pile was also used
to train the Pythia model suite, a suite of auto-regressive
decoder-only language models ranging from 70 million pa-
rameters to 12 billion parameters with 143 intermediate
model checkpoints (Biderman et al., 2023). We use the
Pythia model suite in our memorization experiments in §4.

2.1. Regexes and Rules Detectors (R&R)

We develop our own regex patterns, improving upon the
patterns in WIMBD and add rules to increase precision across
PI types. R&R features four detectors for email addresses,
IP addresses, US/Canada phone numbers, and US/Canada

PI type total
detections

expected
PI counts

email addresses 16.389,977 12,623,478
IP addresses 7,801,628 4,411,309

phone numbers 1,275,862 278,332
phone numbers (global) 172,326 28,987

Table 1: Total detections and expected PI counts across the
Pile dataset using R&R for each PI type.

phone numbers with the +1 country code respectively.

Regexes For email addresses, we allow for a wider range
of characters in the username, including all alphanumeric
characters, valid special characters, and periods. This
modification helps us detect non-traditional domain names
through literals. For IP addresses, we add an additional
pattern to detect IPv6 addresses because WIMBD only con-
siders IPv4. For phone numbers, we ensure that any detected
phone number is not followed by a digit, whereby removing
false positives resulting from numbers with more than 10
digits. Since WIMBD , fails to detect phone numbers with
a country code, we develop an additional regex to target
phone numbers with a ”+1” country code prefix, which
reflects the common format for US and Canadian phone
numbers. See Appendix C for details on the specific regular
expressions used.

Rules To complement the updated regexes, we introduce
new post-processing rules, particularly addressing contex-
tual subtleties that a regex cannot easily capture. For phone
numbers and IP addresses, we add filtering rules to check
whether part numbers, ISBN numbers, and similar identifi-
cation numbers are in the context. Additionally, we remove
placeholder examples such as 123-456-7890. For phone
numbers, we add an area code validator and a central office
code validator ensuring compliance with the North Ameri-
can Numbering Plan (NANP). See Appendix C for details
on the specific rules we use. Taken together these updates
improve detection efficacy for all PI types.

2.2. R&R vs. WIMBD

Figure 1 shows the results of our manual audit of both
the WIMBD and R&R detection suites. 1 We run both detec-
tors on the entire Pile dataset and take a random sample of
1750 detections. To improve coverage, we leverage stratified
sampling from the detectors across 5 different subcategories

1We focus solely on precision. This mirrors the annotation
process of prior work, where the authors manually annotated de-
tections (Subramani et al., 2023; Elazar et al., 2023). Annotating
pretraining documents would be infeasible without a large pool
of annotators, however using that pool would reveal PI publicly,
drastically increasing privacy risks.

2

Personal Information Parroting in Language Models

(academic, dialogue, internet, prose, and misc) of the Pile.
We sample and annotate the data selected across all PI types.
Overall, we find that R&R has a total of 483 true positives,
with 99% of them having a perfect span. We use this gold
set to quantify memorization.

For all four PI types (including phone numbers with +1)
and for 17 of the 20 categories in Figure 1, R&R out-
performs WIMBD. The improvement on phone numbers
is especially notable: WIMBD has a precision of nearly 0,
whereas R&R has a precision of 0.3 on average. Using
both the total detected counts and the precision values calcu-
lated from the manual annotation, we compute the expected
PI counts across the Pile dataset. Both total counts and
expected counts are shown in Table 1. Email addresses
and IP addresses are orders of magnitude more prevalent
than phone numbers in the Pile. We run permutation tests
with 10,000 resamples to test whether R&R is significantly
better than WIMBD across all four types of PI. We find
that R&R is significantly better for email addresses and
both sets of phone numbers (p-value < 0.05), but not for IP
addresses.

3. Quantifying Memorization and Risk
Measuring Memorization and Associated Model Parrot-
ing of Personal Information To quantify memorization
and its associated model parroting, we use the definition of
p-memorization (Carlini et al., 2022). A string s is said to be
p-memorized if a model M, when prompted with a string
s′ of length p generates s verbatim with greedy decoding
and the concatenation, [s||s′], is in the training data of M.
This definition gives us a framework to quantify the extent
to which a model has memorized a training instance in a
deterministic fashion. 2

Metrics Since character-based PI instances are strings, we
use Levensthein distance between a candidate instance of PI
and its ground-truth to compute a similarity score, which we
call PARROTSCORE. More formally for a candidate string
s1 and a ground-truth string s2:

PARROTSCORE(s1, s2) = 1− dlevensthein(s1, s2)

|s2|
(1)

In practice, if |s1| > |s2|, we take every substring of s1 of
size |s2| and choose the one that has the maximum PAR-
ROTSCORE with s2. Since PARROTSCORE ∈ [0, 1], a score
of 1 signifies verbatim parroting, while a score of 0 indicates
that there is not a single character that overlaps between the
two strings. A low score such as 0.1 can still pose privacy
risks; just three characters at the end of an email address can

2A model M verbatim parroting an instance when prompted
with a prefix of size p is similar to saying it has been p-memorized,
if s′ is the ground-truth PI.

Figure 2: Here, we show the results of prompting each
Pythia model with the prefix that occurs before each in-
stance of PI and measuring the PARROTSCORE between the
ground-truth PI and the model’s greedily decoded genera-
tion across all PI types.

expose geographic information like the country a person
lives in (e.g., .nl).

4. Experiments
To measure PI parroting and memorization, we use the
manually annotated and curated set of detections from
our R&R detection suite which contains 483 instances of
PI. We experiment with 6 models from the Pythia suite
with 160m, 410m, 1b, 1.4b, 2.8b, 6.9b parameters respec-
tively. For each instance of PI, we find its associated pre-
fix in the Pile and truncate this to a maximum of 80 to-
kens. Using this potentially truncated prefix as a prompt, we
generate from the LM using greedy decoding and evaluate
whether it parrots the ground truth PI instance using PAR-
ROTSCORE in equation (1). 3

5. Results & Analysis
Model size vs. memorization: Figure 2 shows how dif-
ferent models with varying model sizes parrot PI across all
of the PI types considered. Email addresses are the most par-
roted, with an average PARROTSCORE of greater than 0.3
for all models. This is closely followed by IP addresses and
then by phone numbers. Model size and PARROTSCORE are
positively correlated, but even the smallest models have
high PARROTSCORE indicating that even small models are
prone to memorization and verbatim parroting. In fact,
the 410m parameter model, the second smallest model we

3This is similar to measuring p-memorization for p = 80.

3

Personal Information Parroting in Language Models

model sizes email ip phone
num

phone
num +1

160m 2.34% 4.72% 1.64% 1.23%
410m 8.41% 7.09% 4.92% 2.47%

1b 12.62% 7.87% 3.28% 1.23%
1.4b 16.36% 11.81% 3.28% 1.23%
2.8b 19.63% 14.17% 1.64% 1.23%
6.9b 19.63% 14.17% 3.28% 4.94%

Table 2: Percent of total instances that are verbatim parroted.
Note that this corresponds to the percent of instances that
achieve a PARROTSCORE of 1. We find that verbatim par-
roting increases with model size and email addresses are the
most likely to be parroted exactly.

tested, has a similar PARROTSCORE to the 2.8b model for
both phone number types and has only a 0.1 lower PAR-
ROTSCORE on email and IP addresses.

Model size vs. verbatim parroting: Table 2 presents the
percent of total instances that are verbatim parroted by each
model. Verbatim parroting and model size are positively cor-
related, email addresses and IP addresses contribute mostly
to this trend. Both PI types are increasingly parroted: nearly
20% of all detected email addresses and over 14% of IP
addresses are exactly parroted by the two largest models.
Phone numbers have a much lower verbatim parrot rate,
which is uncorrelated with model size, indicating that phone
numbers can be challenging for LMs to memorize.

Pretraining steps vs. memorization: The top plot of Fig-
ure 3 shows that even from only half of the pretraining
(70,000 steps) to fully pretrained (143,000 steps), PAR-
ROTSCORE remains consistent, indicating that parroting
exists for undertrained models and persists, even as models
improve. Figure 3 shows results for the Pythia-6.9b model.

Prefix length vs. memorization: Recall that we are mea-
suring p-memorization, which depends heavily on the prefix
length p. In all preceding experiments, we set this number
to be at most 80 tokens. To measure how prefix length af-
fects PARROTSCORE , we experimented with reducing p to
40, 20, and 10 tokens. This is the maximum size of the pre-
fix that precedes the target PI in the original document.The
bottom part of Figure 3 indicates that PARROTSCORE is
positively correlated with prefix length, but, even with as
little as a 10 token prefix, the 6.9b model can parrot, achiev-
ing an average PARROTSCORE of 0.34. This indicates that
models memorize PI rampantly and can be prompted with
short prompts to parrot PI.

Memorization of constituent parts: We measure how
each constituent part of a type of PI is verbatim parroted
by each model in Tables 3–5. We split email addresses into

two groups via the ‘@’ symbol: usernames and domains, IP
addresses into four groups via each of the three ‘.’ symbols,
and phone numbers into two groups: area code and rest
of the numbers. For email addresses, both usernames and
domains are verbatim parroted often, while for IP addresses
each of the four constituents are parroted less often than the
preceding one. For phone numbers, area codes are five times
more likely to be parroted than the full number, increasing
privacy risks as area codes can be tied closely to location.
For more details see Appendix E.

6. Related Work
Documentation and PI in Data: The community pri-
oritized documentation, especially personal information,
copyright, and autonomy more strongly before the current
LLM wave when datasets were smaller (McEnery, 2019).
Subramani et al. (2023) analyzed both C4 and the Pile for
character-based PI including emails and phone numbers.
Concurrently, a preliminary version of these filters was used
during the creation of the BigScience ROOTS corpus used to
train the BLOOM suite of models (Scao et al., 2022; Laurenc-
con et al., 2023). Elazar et al. (2023) built on top of this work
to develop better regular expressions in the WIMBD suite.
Our work improves upon WIMBD by developing better de-
tectors for all PI types and annotating a larger set for better
coverage.

Model Memorization and Privacy: Carlini et al. (2021)
explore how language models like GPT-2 tend to memorize
specific training examples, including PI, and that this can
correlate with data frequency and model size. Other work in-
vestigate model forgetting, especially tailored to memorized
examples throughout training (Jang et al., 2022; Jagielski
et al., 2022; Carlini et al., 2022). Our work builds upon
these: we quantify character-based PI parroting for the first
time and analyze how model size, steps of pretraining, and
prefix length affect it, further substantiating the claim that
larger, better trained models tend to memorize and parrot
more heavily.

7. Conclusion
We develop the regexes and rules (R&R) detection suite
for email addresses, US/Canada phone numbers, and IP
addresses, improving upon the WIMBD detectors across all
PI types. We measure memorization of PI and find that ver-
batim parroting is rampant, especially as models get larger.
This phenomenon is not isolated to larger models; even
the smallest models pose privacy risks by parroting per-
sonal information verbatim. Consequently, we encourage
the community to both develop better PI detectors and care-
fully filter and anonymize pretraining data when building
language models.

4

Personal Information Parroting in Language Models

References
Biderman, S., Schoelkopf, H., Anthony, Q. G., Bradley,

H., O’Brien, K., Hallahan, E., Khan, M. A., Purohit, S.,
Prashanth, U. S., Raff, E., et al. Pythia: A suite for ana-
lyzing large language models across training and scaling.
In International Conference on Machine Learning, pp.
2397–2430. PMLR, 2023.

Borkar, J., Jagielski, M., Lee, K., Mireshghallah, N., Smith,
D. A., and Choquette-Choo, C. A. Privacy ripple ef-
fects from adding or removing personal information
in language model training. ArXiv, abs/2502.15680,
2025. URL https://api.semanticscholar.org/

CorpusID:276557913.

Carlini, N., Liu, C., Erlingsson, Ú., Kos, J., and Song, D.
The secret sharer: Evaluating and testing unintended
memorization in neural networks. In 28th {USENIX}
Security Symposium ({USENIX} Security 19), pp. 267–
284, 2019.

Carlini, N., Tramer, F., Wallace, E., Jagielski, M., Herbert-
Voss, A., Lee, K., Roberts, A., Brown, T., Song, D.,
Erlingsson, U., et al. Extracting training data from large
language models. In 30th USENIX Security Symposium
(USENIX Security 21), pp. 2633–2650, 2021.

Carlini, N., Ippolito, D., Jagielski, M., Lee, K., Tramer, F.,
and Zhang, C. Quantifying memorization across neu-
ral language models. arXiv preprint arXiv:2202.07646,
2022.

Elazar, Y., Bhagia, A., Magnusson, I. H., Ravichander, A.,
Schwenk, D., Suhr, A., Walsh, E. P., Groeneveld, D.,
Soldaini, L., Singh, S., Hajishirzi, H., Smith, N. A., and
Dodge, J. What’s in my big data? In The Twelfth Interna-
tional Conference on Learning Representations, 2023.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T.,
Foster, C., Phang, J., He, H., Thite, A., Nabeshima, N.,
et al. The pile: An 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027,
2020.

Groeneveld, D., Beltagy, I., Walsh, E., Bhagia, A., Kin-
ney, R., Tafjord, O., Jha, A., Ivison, H., Magnusson, I.,
Wang, Y., Arora, S., Atkinson, D., Authur, R., Chandu,
K., Cohan, A., Dumas, J., Elazar, Y., Gu, Y., Hessel,
J., Khot, T., Merrill, W., Morrison, J., Muennighoff, N.,
Naik, A., Nam, C., Peters, M., Pyatkin, V., Ravichander,
A., Schwenk, D., Shah, S., Smith, W., Strubell, E., Subra-
mani, N., Wortsman, M., Dasigi, P., Lambert, N., Richard-
son, K., Zettlemoyer, L., Dodge, J., Lo, K., Soldaini, L.,
Smith, N., and Hajishirzi, H. OLMo: Accelerating the
science of language models. In Ku, L.-W., Martins, A.,
and Srikumar, V. (eds.), Proceedings of the 62nd Annual

Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 15789–15809, Bangkok,
Thailand, August 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.acl-long.841. URL
https://aclanthology.org/2024.acl-long.841/.

Jagielski, M., Thakkar, O., Tramer, F., Ippolito, D., Lee, K.,
Carlini, N., Wallace, E., Song, S., Thakurta, A., Papernot,
N., et al. Measuring forgetting of memorized training
examples. arXiv preprint arXiv:2207.00099, 2022.

Jang, J., Yoon, D., Yang, S., Cha, S., Lee, M., Logeswaran,
L., and Seo, M. Knowledge unlearning for mitigat-
ing privacy risks in language models. arXiv preprint
arXiv:2210.01504, 2022.

Laurenccon, H., Saulnier, L., Wang, T., Akiki, C., del
Moral, A. V., Scao, T. L., von Werra, L., Mou, C., Pon-
ferrada, E. G., Nguyen, H., Frohberg, J., vSavsko, M.,
Lhoest, Q., McMillan-Major, A., Dupont, G., Bider-
man, S., Rogers, A., Allal, L. B., Toni, F. D., Pistilli,
G., Nguyen, O., Nikpoor, S., Masoud, M., Colombo,
P., de la Rosa, J., Villegas, P., Thrush, T., Longpre, S.,
Nagel, S., Weber, L., Muñoz, M. S., Zhu, J., van Strien,
D. A., Alyafeai, Z., Almubarak, K., Vu, M. C., Gonzalez-
Dios, I., Etxabe, A. S., Lo, K., Dey, M., Suarez, P. O.,
Gokaslan, A., Bose, S., Adelani, D. I., Phan, L., Tran,
H. T., Yu, I., Pai, S., Chim, J., Lepercq, V., Ilic, S.,
Mitchell, M., Luccioni, S., and Jernite, Y. The big-
science roots corpus: A 1.6tb composite multilingual
dataset. ArXiv, abs/2303.03915, 2023. URL https:

//api.semanticscholar.org/CorpusID:257378329.

Li, X. L. and Liang, P. Prefix-tuning: Optimizing continu-
ous prompts for generation. In Zong, C., Xia, F., Li, W.,
and Navigli, R. (eds.), Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers), pp.
4582–4597, Online, August 2021. Association for Com-
putational Linguistics. doi: 10.18653/v1/2021.acl-long.
353. URL https://aclanthology.org/2021.acl-long.

353/.

McEnery, T. Corpus linguistics. Edinburgh University Press,
2019.

Microsoft. Presidio - data protection and anonymization api,
2021. URL https://github.com/microsoft/presidio.
[Release Version 2.2.23, released on Nov 16, 2021].

Scao, T. L., Fan, A., Akiki, C., Pavlick, E., Ili’c, S., Hesslow,
D., Castagn’e, R., Luccioni, A. S., Yvon, F., Gallé, M.,
Tow, J., Rush, A. M., Biderman, S., Webson, A., Am-
manamanchi, P. S., Wang, T., Sagot, B., Muennighoff, N.,
del Moral, A. V., Ruwase, O., Bawden, R., Bekman, S.,
McMillan-Major, A., Beltagy, I., Nguyen, H., Saulnier,

5

https://api.semanticscholar.org/CorpusID:276557913
https://api.semanticscholar.org/CorpusID:276557913
https://aclanthology.org/2024.acl-long.841/
https://api.semanticscholar.org/CorpusID:257378329
https://api.semanticscholar.org/CorpusID:257378329
https://aclanthology.org/2021.acl-long.353/
https://aclanthology.org/2021.acl-long.353/
https://github.com/microsoft/presidio

Personal Information Parroting in Language Models

L., Tan, S., Suarez, P. O., Sanh, V., Laurenccon, H., Jer-
nite, Y., Launay, J., Mitchell, M., Raffel, C., Gokaslan,
A., Simhi, A., Etxabe, A. S., Aji, A. F., Alfassy, A.,
Rogers, A., Nitzav, A. K., Xu, C., Mou, C., Emezue,
C. C., Klamm, C., Leong, C., van Strien, D. A., Adelani,
D. I., Radev, D. R., Ponferrada, E. G., Levkovizh, E.,
Kim, E., Natan, E., Toni, F. D., Dupont, G., Kruszewski,
G., Pistilli, G., ElSahar, H., Benyamina, H., Tran, H. T.,
Yu, I., Abdulmumin, I., Johnson, I., Gonzalez-Dios, I.,
de la Rosa, J., Chim, J., Dodge, J., Zhu, J., Chang, J.,
Frohberg, J., Tobing, J., Bhattacharjee, J., Almubarak,
K., Chen, K., Lo, K., von Werra, L., Weber, L., Phan, L.,
Allal, L. B., Tanguy, L., Dey, M., Muñoz, M. R., Masoud,
M., Grandury, M., vSavsko, M., Huang, M., Coavoux,
M., Singh, M., Jiang, M. T.-J., Vu, M. C., mad A. Jauhar,
M., Ghaleb, M., Subramani, N., Kassner, N., Khamis,
N., Nguyen, O., Espejel, O., de Gibert, O., Villegas, P.,
Henderson, P., Colombo, P., Amuok, P., Lhoest, Q., Har-
liman, R., Bommasani, R., L’opez, R., Ribeiro, R., Osei,
S., Pyysalo, S., Nagel, S., Bose, S., Muhammad, S. H.,
Sharma, S. S., Longpre, S., Nikpoor, S., Silberberg, S.,
Pai, S., Zink, S., Torrent, T. T., Schick, T., Thrush, T.,
Danchev, V., Nikoulina, V., Laippala, V., Lepercq, V.,
Prabhu, V., Alyafeai, Z., Talat, Z., Raja, A., Heinzer-
ling, B., Si, C., Salesky, E., Mielke, S. J., Lee, W. Y.,
Sharma, A., Santilli, A., Chaffin, A., Stiegler, A., Datta,
D., Szczechla, E., Chhablani, G., Wang, H., Pandey, H.,
Strobelt, H., Fries, J. A., Rozen, J., Gao, L., Sutawika,
L., Bari, M. S., Al-Shaibani, M. S., Manica, M., Nayak,
N. V., Teehan, R., Albanie, S., Shen, S., Ben-David, S.,
Bach, S. H., Kim, T., Bers, T., Févry, T., Neeraj, T.,
Thakker, U., Raunak, V., Tang, X., Yong, Z.-X., Sun,
Z., Brody, S., Uri, Y., Tojarieh, H., Roberts, A., Chung,
H. W., Tae, J., Phang, J., Press, O., Li, C., Narayanan,
D., Bourfoune, H., Casper, J., Rasley, J., Ryabinin, M.,
Mishra, M., Zhang, M., Shoeybi, M., Peyrounette, M.,
Patry, N., Tazi, N., Sanseviero, O., von Platen, P., Cor-
nette, P., Lavall’ee, P. F., Lacroix, R., Rajbhandari, S.,
Gandhi, S., Smith, S., Requena, S., Patil, S., Dettmers,
T., Baruwa, A., Singh, A., Cheveleva, A., Ligozat, A.-L.,
Subramonian, A., N’ev’eol, A., Lovering, C., Garrette, D.,
Tunuguntla, D. R., Reiter, E., Taktasheva, E., Voloshina,
E., Bogdanov, E., Winata, G. I., Schoelkopf, H., Kalo,
J.-C., Novikova, J., Forde, J. Z., Tang, X., Kasai, J., Kawa-
mura, K., Hazan, L., Carpuat, M., Clinciu, M., Kim, N.,
Cheng, N., Serikov, O., Antverg, O., van der Wal, O.,
Zhang, R., Zhang, R., Gehrmann, S., Mirkin, S., Pais,
S. O., Shavrina, T., Scialom, T., Yun, T., Limisiewicz, T.,
Rieser, V., Protasov, V., Mikhailov, V., Pruksachatkun, Y.,
Belinkov, Y., Bamberger, Z., Kasner, Z., Kasner, Z., Pes-
tana, A., Feizpour, A., Khan, A., Faranak, A., Santos, A.
S. R., Hevia, A., Unldreaj, A., Aghagol, A., Abdollahi, A.,
Tammour, A., HajiHosseini, A., Behroozi, B., Ajibade,
B. A., Saxena, B. K., Ferrandis, C. M., Contractor, D.,

Lansky, D. M., David, D., Kiela, D., Nguyen, D. A.,
Tan, E., Baylor, E., Ozoani, E., Mirza, F. T., Ononiwu,
F., Rezanejad, H., Jones, H., Bhattacharya, I., Solaiman,
I., Sedenko, I., Nejadgholi, I., Passmore, J., Seltzer, J.,
Sanz, J. B., Fort, K., Dutra, L., Samagaio, M., Elbadri,
M., Mieskes, M., Gerchick, M., Akinlolu, M., McKenna,
M., Qiu, M., Ghauri, M., Burynok, M., Abrar, N., Rajani,
N., Elkott, N., Fahmy, N., Samuel, O., An, R., Kromann,
R. P., Hao, R., Alizadeh, S., Shubber, S., Wang, S. L., Roy,
S., Viguier, S., Le, T.-C., Oyebade, T., Le, T. N. H., Yang,
Y., Nguyen, Z., Kashyap, A. R., Palasciano, A., Calla-
han, A., Shukla, A., Miranda-Escalada, A., Singh, A. K.,
Beilharz, B., Wang, B., de Brito, C. M. F., Zhou, C., Jain,
C., Xu, C., Fourrier, C., Perin’an, D. L., Molano, D., Yu,
D., Manjavacas, E., Barth, F., Fuhrimann, F., Altay, G.,
Bayrak, G., Burns, G., Vrabec, H. U., Bello, I. I., Dash, I.,
Kang, J. S., Giorgi, J., Golde, J., Posada, J. D., Sivaraman,
K., Bulchandani, L., Liu, L., Shinzato, L., de Bykhovetz,
M. H., Takeuchi, M., Pàmies, M., Castillo, M. A., Nezhu-
rina, M., Sanger, M., Samwald, M., Cullan, M., Weinberg,
M., Wolf, M., Mihaljcic, M., Liu, M., Freidank, M., Kang,
M., Seelam, N., Dahlberg, N., Broad, N. M., Muellner,
N., Fung, P., Haller, P., Haller, P., Eisenberg, R., Martin,
R., Canalli, R., Su, R., Su, R., Cahyawijaya, S., Garda,
S., Deshmukh, S. S., Mishra, S., Kiblawi, S., Ott, S.,
Sang-aroonsiri, S., Kumar, S., Schweter, S., Bharati, S. P.,
Laud, T., Gigant, T., Kainuma, T., Kusa, W., Labrak, Y.,
Bajaj, Y., Venkatraman, Y., Xu, Y., Xu, Y., Xu, Y., Tan,
Z. X., Xie, Z., Ye, Z., Bras, M., Belkada, Y., and Wolf, T.
Bloom: A 176b-parameter open-access multilingual lan-
guage model. ArXiv, abs/2211.05100, 2022. URL https:

//api.semanticscholar.org/CorpusID:253420279.

Shin, T., Razeghi, Y., Logan IV, R. L., Wallace, E., and
Singh, S. AutoPrompt: Eliciting Knowledge from Lan-
guage Models with Automatically Generated Prompts. In
Webber, B., Cohn, T., He, Y., and Liu, Y. (eds.), Proceed-
ings of the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pp. 4222–4235, On-
line, November 2020. Association for Computational Lin-
guistics. doi: 10.18653/v1/2020.emnlp-main.346. URL
https://aclanthology.org/2020.emnlp-main.346/.

Soldaini, L., Kinney, R., Bhagia, A., Schwenk, D., Atkin-
son, D., Authur, R., Bogin, B., Chandu, K., Dumas,
J., Elazar, Y., Hofmann, V., Jha, A., Kumar, S., Lucy,
L., Lyu, X., Lambert, N., Magnusson, I., Morrison,
J., Muennighoff, N., Naik, A., Nam, C., Peters, M.,
Ravichander, A., Richardson, K., Shen, Z., Strubell,
E., Subramani, N., Tafjord, O., Walsh, E., Zettlemoyer,
L., Smith, N., Hajishirzi, H., Beltagy, I., Groeneveld,
D., Dodge, J., and Lo, K. Dolma: an open corpus
of three trillion tokens for language model pretraining
research. In Ku, L.-W., Martins, A., and Srikumar,
V. (eds.), Proceedings of the 62nd Annual Meeting of

6

https://api.semanticscholar.org/CorpusID:253420279
https://api.semanticscholar.org/CorpusID:253420279
https://aclanthology.org/2020.emnlp-main.346/

Personal Information Parroting in Language Models

the Association for Computational Linguistics (Volume
1: Long Papers), pp. 15725–15788, Bangkok, Thai-
land, August 2024. Association for Computational Lin-
guistics. doi: 10.18653/v1/2024.acl-long.840. URL
https://aclanthology.org/2024.acl-long.840/.

Subramani, N. and Suresh, N. Discovering useful sentence
representations from large pretrained language models.
ArXiv, abs/2008.09049, 2020.

Subramani, N., Bowman, S. R., and Cho, K. Can uncondi-
tional language models recover arbitrary sentences? In
NeurIPS, 2019.

Subramani, N., Suresh, N., and Peters, M. Extracting
latent steering vectors from pretrained language mod-
els. In Muresan, S., Nakov, P., and Villavicencio, A.
(eds.), Findings of the Association for Computational
Linguistics: ACL 2022, pp. 566–581, Dublin, Ireland,
May 2022. Association for Computational Linguistics.
doi: 10.18653/v1/2022.findings-acl.48. URL https:

//aclanthology.org/2022.findings-acl.48/.

Subramani, N., Luccioni, S., Dodge, J., and Mitchell, M.
Detecting personal information in training corpora: an
analysis. In Ovalle, A., Chang, K.-W., Mehrabi, N., Pruk-
sachatkun, Y., Galystan, A., Dhamala, J., Verma, A.,
Cao, T., Kumar, A., and Gupta, R. (eds.), Proceedings
of the 3rd Workshop on Trustworthy Natural Language
Processing (TrustNLP 2023), pp. 208–220, Toronto,
Canada, July 2023. Association for Computational Lin-
guistics. doi: 10.18653/v1/2023.trustnlp-1.18. URL
https://aclanthology.org/2023.trustnlp-1.18/.

7

https://aclanthology.org/2024.acl-long.840/
https://aclanthology.org/2022.findings-acl.48/
https://aclanthology.org/2022.findings-acl.48/
https://aclanthology.org/2023.trustnlp-1.18/

Personal Information Parroting in Language Models

A. Limitations
Annotating personal information is time-consuming. Since
the data is private, out-sourcing the annotation process
should not be done because it could expose PI. As a result,
the sets we can annotate are small. Prior work annotated
just a few hundred examples (Subramani et al., 2023; Elazar
et al., 2023), whereas we annotated 1750 total detections.
We hope that larger studies can more comprehensively an-
notate without exposing privacy risks. Most modern lan-
guage models do not have open pretraining data, so figuring
out what data a model has seen can be challenging. As
a result, we focused on using the Pythia model suite be-
cause it was one of the only models that had a variety of
model sizes, checkpoints throughout pretraining, and open
pretraining data. OLMo also has different model sizes,
checkpoints, and open pretraining data (Groeneveld et al.,
2024), but Dolma (Soldaini et al., 2024), its pretraining cor-
pus, contains a PI filtering and anonymization step using
the WIMBD detectors.

During the annotation process, we found that both detec-
tors identify strings of 10 numbers that could be phone
numbers, but they are not phone numbers. For example
MAXINT=2147483647. 214 is also a Dallas area code, so
this could be flagged as a phone number. Additional rules to
automatically eliminate detections such as these could help
us build better detectors. A further extension of the post
processing rules that we did not apply is to filter out subsets
of data based on likelihood of false positives. With further
study, adding rules about which subset of the Pile certain
detectors operate on could decrease the false positive rate
greatly.

B. Impact Statement
We hope that our R&R detectors help the community better
anonymize and curate pretraining datasets such that the LMs
that we deploy in the real world do not expose personal
information. In addition, we hope that our analysis showing
how significant personal information parroting is by models
of all sizes convinces more large language modeling teams
to think more carefully about sanitizing pretraining data.

C. R&R Specifics
Here we present the specifics for each detector.

C.1. Email Addresses

The regex used is

(?:[a-z0-9]+(?:\.[a-z0-9!#$%&’*+/=?^_‘{|}

~-]+)*|"(?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21

\x23-\x5b\x5d-\x7f]|\\[\x01-\x09\x0b\x0c

\x0e-\x7f])*")@(?:(?:[a-z0-9](?:[a-z0-9-]

[a-z0-9])?\.)+[a-z0-9](?:[a-z0-9-][a-z

0-9])?|\[(?:(?:2(?:5[0-5]|[0-4][0-9])|1

[0-9][0-9]|[1-9]?[0-9])\.){3}(?:2(?:5

[0-5]|[0-4][0-9])|1[0-9][0-9]|[1-9]?[0-9]

)|[a-z0-9-]*[a-z0-9]:(?:[\x01-\x08\x0b

\x0c\x0e-\x1f\x21-\x5a\x53-\x7f]|\\[\x01

-\x09\x0b\x0c\x0e-\x7f])+\])

As mentioned before, we check for matches with the regular
expression and then begin our set of rules to further filter
detections. We check whether an “@” character exists to
split the addressee and domain. We make sure these are
nonempty strings. Next we check whether there exists a
starting or trailing period in the domain. If the detected
instance has this, we flag this as a false detection. Lastly we
make sure that there exists a period (“.”) in the domain.

C.2. IP Addresses

For IP addresses we have two regexes, an IPv4 and an IPv6
pattern:

ipv4 = (?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9]

[0-9]?)\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?

[0-9][0-9]?)

ipv6 = (?:^|(?<=\s))(?:(?:[0-9a-fA-F]{1,4}:)

{7,7}[0-9a-fA-F]{1,4}|(?:[0-9a-fA-F]{1,4}:)

{1,7}:|(?:[0-9a-fA-F]{1,4}:){1,6}:[0-9a-f

A-F]{1,4}|(?:[0-9a-fA-F]{1,4}:){1,5}(?::

[0-9a-fA-F]{1,4}){1,2}|(?:[0-9a-fA-F]{1,4}:)

{1,4}(?::[0-9a-fA-F]{1,4}){1,3}|(?:[0-9a-f

A-F]{1,4}:){1,3}(?::[0-9a-fA-F]{1,4}){1,4}|

(?:[0-9a-fA-F]{1,4}:){1,2}(?::[0-9a-fA-F]

{1,4}){1,5}|[0-9a-fA-F]{1,4}:(?:(?::[0-9a-f

A-F]{1,4}){1,6})|:(?:(?::[0-9a-fA-F]{1,4})

{1,7}|:)|fe80:(?:(?::[0-9a-fA-F]{0,4}){0,4}

%[0-9a-zA-Z]{1,})|::(?:ffff(?::0{1,4}){0,1}

:){0,1}(?:(?:(?:25[0-5]|(?:2[0-4]|1{0,1}

[0-9]){0,1}[0-9])\.){3,3}(?:25[0-5]|(?:2

[0-4]|1{0,1}[0-9]){0,1}[0-9]))|(?:(?:

[0-9a-fA-F]{1,4}:){1,4}(?:(?:25[0-5]|(?:2

[0-4]|1{0,1}[0-9]){0,1}[0-9])\.){3,3}(?:25

[0-5]|(?:2[0-4]|1{0,1}[0-9]){0,1}[0-9])))

(?=\s|$)

After running the regular expression based detectors, we
filter the detected IP addresses using the following set of
rules. First, we check if any of the following common
words occur in the micro context window of 20 characters
preceding the detected PI span:

‘isbn’, ‘doi’, ‘#’, ‘grant’, ‘award’, ‘nsf’,

‘patent’, ‘usf’, ‘edition’, ‘congress’,

‘appeal’, ‘claim’, ‘exhibit’, ‘serial’,

8

Personal Information Parroting in Language Models

‘pin’, ‘receipt’, ‘case’, ‘tracking’,

‘ticket’, ‘route’, ‘ wo ’, ‘volume’

These words often indicate a type of number that could have
syntax similar to an IPv4 address. This is a much larger
problem for phone numbers, so we also do this for phone
numbers. Next, we check whether the prefix has alphabet
characters. We take at most the 50 characters preceding the
detected pi span and see if at least 10% of them are alpha
numeric. This is to filter out arbitrary sets of numbers.

C.3. Phone Numbers

For phone numbers we have two regular expression based
detectors phone numbers:

\s+\(?(\d{3})\)?[-\.]*(\d{3})[-.]?(\d{4})

(?!\d)

and phone numbers global (US/Canadian phone numbers in
a global context with the country code):

\s+(?:\+1|1)[-\.]*\(?(\d{3})\)?[-\.]*

(\d{3})[-\.]?(\d{4})(?!\d)

After running the regular expression based detectors, we
filter using a set of rules. First, we check if any of the
common words (the words used when filtering IP addresses
above) occur in the micro context window of 20 characters
preceding the detected PI span. These words often indicate a
type of number that can often have 9, 10, or 11 digits. Next,
we check whether the prefix has siffucient alphabet char-
acters, identical to how IP addresses were processed. For
phone numbers, this helps filter out things like html poly-
gons or random sets of numbers without context like dumps
of arbitrary numbers. Next, we standardize the detected
number and validate the area code: excluding numbers with
an area code starting with a 0 or 1 and verify that the area
code is a valid one. After doing this, we validate the cen-
tral office code. Lastly, we exclude a set of placeholder
numbers including 1234567890, 2345678910, MAXINT,
7373737373, and 3141592653 (the digits of π).

D. Ablation Analysis
Here, we look at the impact of pretraining steps and prefix
length on memorization. In Figure 3, we find that models
parrot even when only halfway through training. The Pythia
models are trained for 143,000 steps and even from 70,000
steps as mentioned before, PARROTSCOREremains constant.
Additionally, prefix length is highly correlated with PAR-
ROTSCORE. However, even with as little as 10 tokens in the
prefix, PI memorization is rampant, indicating severe risk.

Figure 3: The effect of the number of pretraining steps (top)
and prefix length (bottom) on PARROTSCORE across PI
types for the Pythia-6.9b model.

E. Memorization of Constituent Parts:
Here, we measure how each constituent part of a type of
PI is verbatim parroted by each model. To do this, we first
parse IP addresses (IPv4) into their four constituent groups
separated by a period (e.g. 8.8.8.8 turns into [8,8,8,8]). Each
of these 4 groups are measured separately. A candidate
generation that outputs “12.8.8 abcd” will turn into [12, 8, 8
abcd, “”] and comparing that to 8.8.8.8 will lead to verbatim
parroting of only group 2. We parse email addresses into
two groups: the username and domain separated by the ‘@’
symbol because email addresses are normally separated into
these two groups. We parse phone numbers into two groups:
area code and the rest of the digits following that. Since we
are only looking at US/Canada phone numbers that always
start with a 1, we did not emphasize splitting out the country
code. We measure verbatim parroting for all model sizes at
the 143,000 iteration checkpoint for a prefix length of 80.
This is an extension of Table 2, where we report percent of
instances that are verbatim parroted.

9

Personal Information Parroting in Language Models

model sizes username domain

160m 11.22% 12.15%
410m 15.42% 20.09%

1b 20.09% 24.77%
1.4b 20.56% 28.50%
2.8b 25.70% 31.31%
6.9b 26.17% 30.84%

Table 3: Percent of total instances that are verbatim parroted
for the constituent parts of email addresses (the username
and domain). Note that this corresponds to the percent of in-
stances with that component achieving a PARROTSCORE of
1. We find that verbatim parroting increases with model
size.

In Table 3, we find that for email addresses, both the user-
names and domains are verbatim parroted often, as much as
31% of instances have a parroted domain. Usernames are
slightly less parroted, but for even those up to 26.17% of
instances have a verbatim parroted username, underscoring
significant risk. For IP addresses in Table 4, each successive
constituent was slightly less likely to be parroted than the
previous group. We hypothesize that this is due to the nature
of left-to-right autoregressive decoding and not due to any
other confounding factors. For the 6.9b model, in about
32% of instances either group 1 or group 2 were verbatim
parroted, whereas only 14% of IP addresses overall were
verbatim parroted.

model sizes grp1 grp2 grp3 grp4

160m 18.11% 13.39% 13.39% 9.45%
410m 18.90% 19.69% 14.96% 11.02%

1b 21.26% 21.26% 20.47% 11.02%
1.4b 25.20% 24.41% 21.26% 14.17%
2.8b 26.77% 25.20% 22.83% 18.90%
6.9b 32.28% 31.50% 24.41% 19.69%

Table 4: Percent of total instances that are verbatim par-
roted for the constituent parts of IP addresses (split on each
‘.’ character grp1-grp4). Note that this corresponds to the
percent of instances with that component achieving a PAR-
ROTSCORE of 1. We find that verbatim parroting increases
with model size.

model sizes area code rest of the number

160m 8.20% 1.64%
410m 13.11% 4.92%

1b 11.48% 3.28%
1.4b 14.75% 3.28%
2.8b 9.84% 1.64%
6.9b 19.67% 3.28%

Table 5: Percent of total instances that are verbatim parroted
for the constituent parts of phone numbers (split by area
code and rest of the number). Note that this corresponds
to the percent of instances with that component achieving
a PARROTSCORE of 1. We find that verbatim parroting
increases with model size for area codes generally, but not
for the rest of the number.

For phone numbers in Table 5, which had a relatively low
verbatim parrot rate (∼ 3%), we find that area codes are
much more likely to be parroted, increasing privacy risk
as this can be tied closely to location. We find that for the
6.9b model, even when only 3.28% of instances are parroted
by the model, in 19.67% of cases the area code is parroted
exactly. Taken together, these results further underscore our
point that PI memorization and parroting is a risk that needs
to be mitigated.

10

