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Abstract—Entity alignment (EA) identifies equivalent entities that locate in different knowledge graphs (KGs), and has attracted growing
research interests over the last few years with the advancement of KG embedding techniques. Although a pile of embedding-based EA
frameworks have been developed, they mainly focus on improving the performance of entity representation learning, while largely overlook
the subsequent stage that matches KGs in entity embedding spaces. Nevertheless, accurately matching entities based on learned entity
representations is crucial to the overall alignment performance, as it coordinates individual alignment decisions and determines the global
matching result. Hence, it is essential to understand how well existing solutions for matching KGs in entity embedding spaces perform
on present benchmarks, as well as their strengths and weaknesses. To this end, in this article we provide a comprehensive survey and
evaluation of matching algorithms for KGs in entity embedding spaces in terms of effectiveness and efficiency on both classic settings and
new scenarios that better mirror real-life challenges. Based on in-depth analysis, we provide useful insights into the design trade-offs and
good paradigms of existing works, and suggest promising directions for future development.

✦

1 INTRODUCTION

Matching data instances that refer to the same real-world
entity is a long-standing problem. It establishes the connec-
tions among multiple data sources, and is critical to data
integration and cleaning [39]. Therefore, the task has been
actively studied; for instance, in the database community,
various entity matching (EM) (and entity resolution (ER))
strategies are proposed to train a (supervised) classifier to
predict whether a pair of data records match [10], [39].

Recently, due to the emergence and proliferation of knowl-
edge graphs (KGs), matching entities in KGs draws much
attention from both academia and industries. Distinct from
traditional data matching, it brings its own challenges. Partic-
ularly, it underlines the use of KGs’ structures for matching,
and manifests unique characteristics of data, e.g., imbalanced
class distribution, few attributive textual information, etc.
In consequence, although viable, following traditional EM
pipeline, it is hard to train an effective classifier that can infer
the equivalence between entities. Thus, much effort has been
dedicated to specifically addressing the matching of entities
in KGs, which is also referred to as entity alignment (EA).

Nevertheless, early solutions to EA are mainly unsuper-
vised [25], [48], i.e., no labeled data is assumed. They utilize
discriminative features of entities (e.g., entity descriptions
and relational structures) to infer the equivalent entity pair,
which are, however, embarrassed by the heterogeneity of
independently-constructed KGs [50].

To mitigate this issue, recent solutions to EA employ a few
labeled pairs as seeds to guide the learning and prediction [9],
[16], [31], [43], [54]. In short, they embed the symbolic repre-
sentations of KGs as low-dimensional vectors in a way such
that the semantic relatedness of entities is captured by the geo-
metrical structures of embedding spaces [4], where the seed
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pairs are leveraged to produce unified entity representations.
In the testing stage, they match entities based on the unified
entity embeddings. They are coined as embedding-based EA
methods, which have exhibited state-of-the-art performance
on existing benchmarks.

To be more specific, the embedding-based EA 1 pipeline
can be roughly divided into two major stages, i.e., representa-
tion learning and matching KGs in entity embedding spaces (or
embedding matching for short). While the former encodes the
KG structures into low-dimensional vectors and establishes
connections between independent KGs via the calibration
or transformation of (seed) entity embeddings [50], the latter
computes pairwise scores between source and target enti-
ties based on such embeddings and then makes alignment
decisions according to the pairwise scores. Although this
field has been actively explored, existing efforts are mainly
devoted to the representation learning stage [19], [30], [70], while
embedding matching has not raised many attentions until very
recently [35], [62]. The majority of existing EA solutions adopt
a simple algorithm to realize this stage, i.e., DInf, which first
leverages common similarity metrics such as cosine similarity
to calculate the pairwise similarity scores between entity
embeddings, and then matches a source entity to its most
similar target entity according to the pairwise scores [54].
Nevertheless, it is evident that such an intuitive strategy
can merely reach local optimums for individual entities and
completely overlooks the (global) interdependence among the
matching decisions for different entities [64].

To address the shortcomings of DInf, advanced strategies
are devised [13], [50], [57], [62], [64], [65]. While some of them
inject the modeling of global interdependence into the compu-
tation of pairwise scores [13], [50], [62], some directly improve
the alignment decision-making process by imposing collective
matching constraints [57], [64], [65]. These efforts demonstrate
the significance of matching KGs in entity embedding spaces from
at least three major aspects: (1) It is an indispensable step of
EA, which takes as input the entity embeddings (generated by

1. In the rest of the paper, we use EA to refer to embedding-based EA
solutions, and use conventional EA for the early solutions.
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Fig. 1. Three cases of EA. Dashes lines between KGs denote the
seed entity pairs. Entities with the same subscripts are equivalent. In
the embedding space, the circles with two colors represent that the
corresponding entities in the two KGs have the same embeddings.

the representation learning stage), and outputs matched entity
pairs; (2) Its performance is crucial to the overall EA results,
e.g., an effective algorithm can improve the alignment results
by up to 88% [62]; and (3) It empowers EA with explainability,
as it unveils the decision-making process of alignment. We
use Example 1 to further illustrate the significance of the
embedding matching process.

Example 1. Figure 1 presents three representative cases of EA.
The KG pairs to be aligned are first encoded into embeddings
via the representation learning models. Next, the embedding
matching algorithms produce the matched entity pairs based
on the embeddings. In the most ideal case where two KGs are
identical, e.g., case (a), with an ideal representation learning
model, equivalent entities would be embedded into exactly the
same place in the low-dimensional space, and using the simple
DInf algorithm would attain perfect results. Nevertheless, in
the majority of practical scenarios, e.g., case (b) and (c), the
two KGs have high structure heterogeneity. As thus, even an
ideal representation learning model might generate different
embeddings for equivalent entities. In this case, adopting the
simple DInf strategy is likely to produce false entity pairs, such
as (u5, v3) in case (b).

Worse still, as pointed out in previous works [50], [68],
existing representation learning methods for EA cannot fully
capture the structural information (possibly due to their inner
design mechanisms, or their incapability of dealing with scarce
supervision signals). Under these settings, e.g., case (c), the
distribution of entity embeddings in the low-dimensional space
would become irregular, where the simple embedding matching
algorithm DInf would fall short, i.e., producing incorrect entity
pairs (u3, v1) and (u5, v1). As thus, in these practical cases, an
effective embedding matching algorithm is crucial to inferring
the correct matches. For instance, by exploiting the collective em-
bedding matching algorithm that imposes the 1-to-1 alignment
constraint, the correct matches, i.e., (u3, v3) and (u5, v5), are
likely to be restored.

While the study on matching KGs in entity embedding
spaces is rapidly progressing, there is no systematic survey
or comparison of these solutions [50]. We do notice that
there are several survey papers covering embedding-based
EA frameworks [50], [61], [66], [67], [68], whereas they all

briefly introduce the embedding matching module (mostly
only mentioning the DInf algorithm). In this article, we aim to
fill in this gap by surveying current solutions for matching KGs
in entity embedding spaces and providing a comprehensive
evaluation of these methods with the following features:

(1) Systematic survey and fair comparison. Albeit essential
to the alignment performance, existing embedding matching
strategies have yet not been compared directly. Instead, they
are integrated with representation learning models, and then
evaluated and compared with each other (as a whole). This,
however, cannot provide a fair comparison of the embedding
matching strategies themselves, since the difference among
them can be offset by other influential factors, such as the
choices of representation learning models or input features.
Therefore, in this work, we exclude irrelevant factors and
provide a fair comparison of current matching algorithms
for KGs in entity embedding spaces at both theoretical and
empirical levels.

(2) Comprehensive evaluation and detailed discussion. To
fully appreciate the effectiveness of embedding matching
strategies, we conduct extensive experiments on a wide range
of EA settings, i.e., with different representation learning mod-
els, with various input features, and on datasets at different
scales. We also analyze the complexity of these algorithms and
evaluate their efficiency/scalability under each experimental
setting. Based on the empirical results, we discuss to reveal
strengths and weaknesses.

(3) New experimental settings and insights. Through em-
pirical evaluation and analysis, we discover that the current
mainstream evaluation setting, i.e., 1-to-1 constrained EA,
oversimplifies the real-life alignment scenarios. As thus, we
identify two experimental settings that better reflect the chal-
lenges in practice, i.e., alignment with unmatchable entities,
as well as a new setting of non 1-to-1 alignment. We compare
the embedding matching algorithms under these challenging
settings to provide further insights.

Contributions. We make the following contributions:
• We systematically and comprehensively survey and com-

pare state-of-the-art algorithms for matching KGs in entity
embedding spaces (Section 3).

• We evaluate and compare the state-of-the-art embedding
matching algorithms on a wide range of EA datasets
and settings, as well as reveal their strengths and weak-
nesses. The codes of these algorithms are organized and
integrated into an open-source library, EntMatcher,
publicly available at https://github.com/DexterZeng/
EntMatcher (Section 4).

• We identify experiment settings that better mirror real-
life challenges and construct a new benchmark dataset,
where deeper insights into the algorithms are obtained
via empirical evaluations (Section 5).

• Based on our evaluation and analysis, we provide useful
insights into the design trade-offs of existing works, and
suggest promising directions for the future development
of matching KGs in entity embedding spaces (Section 6).

2 PRELIMINARIES

In this section, we first present the task formulation of EA and
its general framework. Next, we introduce the studies related

2
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to the topic of this article—matching KGs in entity embedding
spaces, and clarify the scope of this study. Finally, we present
the key assumptions of embedding-based EA.

2.1 Task Formulation and Framework

Task formulation. A KG G is composed of triples {(s, p, o)},
where s, o ∈ E represent entities, p ∈ P denotes the predicate
(relation). Given a source KG Gs, a target KG Gt, the task
of EA is formulated as discovering new (equivalent) entity
pairs M = {(u, v)|u ∈ Es, v ∈ Et, u ⇔ v} by using pre-
annotated (seed) entity pairsS as anchors, where⇔ represents
the equivalence between entities, Es and Et denote the entity
sets in Gs and Gt, respectively.

General framework. The pipeline of state-of-the-art
embedding-based EA solutions can be divided into two stages,
i.e., representation learning and embedding matching, as shown in
Figure 2. The general algorithm can be found in Algorithm 1.

Embedding Matching

Representation 

Learning

Pairwise Scores

Matching

Embedding Space Matched Entity Pairs

Fig. 2. The pipeline of embedding-based EA. Dashed lines denote the
pre-annotated alignment links.

Algorithm 1: General Algorithm of Embedding-
based EA.

Input :Source and target KGs: Gs, Gt; Seed pairs: S
Output :Aligned entity pairs:M

1 E ←Representation Learning(Gs, Gt, S);
2 M←Embedding Matching(Es, Et, E);
3 returnM;

The majority of studies on EA are devoted to the representa-
tion learning stage. They first utilize KG embedding techniques
such as TransE [4] and GCN [23] to capture the KG structure
information and generate entity structural representations.
Next, based on the assumption that equivalent entities from
different KGs possess similar neighboring KG structures (and
in turn similar embeddings), they leverage the seed entity
pairs as anchors and progressively project individual KG
embeddings into a unified space through training, resulting
in the unified entity representations E 2. There have already
been several survey papers concentrating on representation
learning approaches for EA, and we refer the interested
readers to these works [2], [50], [66], [68].

Next, we introduce the embedding matching process—the
focus of this article, as well as its related works.

2.2 Related Work and Scope

Matching KGs in entity embedding spaces. After obtaining
the unified entity representations E where equivalent entities

2. Indeed there are a few exceptions, which instead learn a mapping
function between individual embedding spaces [50]. However, the sub-
sequent steps still require mapping between spaces and operate on a
“unified” one, e.g., target entity embeddings.

from different KGs are assumed to have similar embeddings,
the embedding matching stage (also frequently referred to as
alignment inference stage [50]) produces alignment results by
comparing the embeddings of entities from different KGs.
Concretely, it first calculates the pairwise scores between
source and target entity embeddings according to a specific
metric 3. The pairwise scores are then organized into matrix
form as S. Next, according to the pairwise scores, various
matching algorithms are put forward to align entities. The
most common algorithm is Greedy, described in Algorithm 2.
It directly matches a source entity to the target entity that
possesses the highest pairwise score according to S. Over the
last few years, advanced solutions [13], [17], [34], [35], [40],
[50], [57], [60], [62], [64], [65], [69] are devised to improve the
embedding matching performance, and in this work, we focus
on surveying and comparing these algorithms for matching
KGs in entity embedding spaces.

Algorithm 2: Greedy (Es, Et,S)
Input :Source and target entity sets: Es, Et; The

similarity matrix of pairwise scores: S
Output :Matched entity pairs:M

1 for u ∈ Es do
2 v∗ = argmaxv∈Et

S(u, v);
3 M←M∪ {(u, v∗)};
4 returnM;

Matching KGs in symbolic spaces. Before the emergence
of embedding-based EA, there have already been many con-
ventional frameworks that match KGs in symbolic spaces [20],
[47], [48]. While some are based on equivalence reasoning
mandated by OWL semantics [20], some leverage similarity
computation to compare the symbolic features of entities [48].
However, these solutions are not comparable to algorithms for
matching KGs in entity embedding spaces, as (1) they cover
both the representation learning and embedding matching
stages in embedding-based EA; and (2) the inputs are different
from those of embedding matching algorithms. Thus, we do
not include them in our experimental evaluation, while they
have already been compared in the survey papers covering
the overall embedding-based EA frameworks [50], [68].

The matching of relations (or ontology) between KGs
has also been studied by prior symbolic works [47], [48].
Nevertheless, compared with entities, they are usually in
smaller amounts, of various granularities [42], and under-
explored in embedding-based approaches [59]. Hence, in this
work, we exclude relevant studies on this topic and focus on
the matching of entities.

The task of entity resolution (ER) [10], [18], [41], also known
as entity matching, deduplication or record linkage, can be
regarded as the general case of EA [68]. It assumes that the
input is relational data, and each data object usually has a large
amount of textual information described in multiple attributes.
Nevertheless, in this article, we focus on EA approaches, which
strive to align KGs and mainly rely on graph representation

3. Under certain metrics such as cosine similarity (resp., Euclidean
distance), the larger (resp., smaller) the pairwise scores, the higher the
probability that two entities are equivalent. In this work, w.l.o.g., we
adopt the former expression and consider that higher pairwise scores are
preferred.

3
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learning techniques to model the KG structure and generate
entity structural embeddings for alignment. Therefore, the
discussion and comparison with ER solutions is beyond the
scope of this work.

Matching data instances via deep learning. Entity match-
ing (EM) between databases have also been greatly advanced
by utilizing pre-trained language models for expressive contex-
tualization of database records [11], [39]. These deep learning
(DL) based EM solutions devise end-to-end neural models to
learn to classify an entity pair into matching or non-matching,
and then feed the test entity pairs into the trained models to
obtain classification results [5], [29], [39]. Nevertheless, this
procedure is different from the focus of our study, as both of
its training and testing stage involve representation learning
and matching. Besides, these solutions are not suitable for
matching KGs in entity embedding space, since (1) they
require adequate labeled data to train the neural classification
models, but the training data in EA is much less than the
testing ones, which could result in the overfitting issue; (2)
they would suffer from severe class imbalance in EA, where an
entity and all of its nonequivalent entities in another KG would
constitute many negative samples, while there is usually
one positive sample for this entity; (3) they depend on the
attributive text information between data records for training,
while EA underlines the use of KG structure, which could
provide much less useful features for model training. In the
experiment, we adapt DL-based EM models to tackle EA, and
the results are not promising. This will be further discussed in
Section 4.3.

TABLE 1
Comparison with existing surveys on EA. The focus of each work is

denoted with!.

Surveys Repre. Learn. Embed. Match. Papers Included

Zhao et al. [68] ! % Before 2020
Sun et al. [50] ! % Before 2020
Zhang et al. [67] ! % Before 2020
Zeng et al. [61] ! % Before 2021
Zhang et al. [66] ! % Before 2021
Our work % ! Before 2023

Existing surveys on EA. There are several survey papers
covering EA frameworks [50], [61], [66], [67], [68], which are
summarized in Table 1. Some articles provide high-level dis-
cussion of embedding-based EA frameworks, experimentally
evaluate and compare these works, and offer guidelines for
potential practitioners [50], [67], [68]. Specifically, Zhao et
al. propose a general EA framework to encompass existing
works, and then evaluate them under a wide range of settings.
Nevertheless, they only briefly mention DInf and SMat in
the embedding matching stage [68]. Sun et al. survey EA
approaches and develop an open-source library to evaluate
existing works. However, they merely introduce DInf, SMat
and CSLS, and overlook the comparison among these algo-
rithms. Besides, they point out that current approaches put
in their main efforts in learning expressive embeddings to
capture entity features while ignore the alignment inference
(i.e., embedding matching) stage [50]. Zhang et al. empirically
evaluate state-of-the-art embedding-based EA methods in an
industrial context, and particularly investigate the influence

of the sizes and biases in seed mappings. They evaluate
each method as a whole and do not mention the embedding
matching process [67].

Two recent survey papers include the latest efforts on
embedding-based EA and give more self-contained explana-
tion on each technique. Zhang et al. provide a tutorial-type
survey, while for embedding matching, they merely introduce
the nearest neighbor search strategy, i.e., DInf [66]. Zeng et al.
mainly introduce representation learning methods and their
applications on EA, while neglect the embedding matching
stage [61].

In all, existing EA survey articles focus on the represen-
tation learning process and briefly introduce the embed-
ding matching module (mostly only mentioning the DInf
algorithm), while in this work we systematically survey
and empirically evaluate the algorithms designed for the
embedding matching process in KG alignment, and present
comprehensive results and insightful discussions.

Scope of this work. This study aims to survey and em-
pirically compare the algorithms for matching KGs in entity
embedding spaces, i.e., various implementations of Embed-
ding Matching( ) in Algorithm 1, on a wide range of EA
experimental settings.

2.3 Key Assumptions
Notably, existing embedding-based EA solutions have a fun-
damental assumption; that is, the equivalent entities in dif-
ferent KGs possess similar (ideally, isomorphic) neighboring
structures. Under such an assumption, effective representation
learning models would transform the structures of equivalent
entities into similar entity embeddings. As thus, based on
the entity embeddings, the embedding matching stage would
assign higher (resp., lower) pairwise similarity scores to the
equivalent (resp., nonequivalent) entity pairs, and finally make
accurate alignment decisions via the coordination according
to pairwise scores.

Besides, current EA evaluation settings assume that the
entities in different KGs conform to the 1-to-1 constraint. That
is, each u ∈ Es has one and only one equivalent entity v ∈ Et,
and vice versa. However, we contend that this assumption
is in fact impractical and provide detailed experiments and
discussions in Section 5.2.

3 ALGORITHMS FOR MATCHING KGS IN
ENTITY EMBEDDING SPACES

In this section, we introduce the algorithms for matching KGs
in entity embedding spaces, i.e., Embedding Matching( ) in
Algorithm 1.

3.1 Overview
We first provide the overview and comparison of matching
algorithms for KGs in entity embedding spaces in Table 2.
As mentioned in Section 2, embedding matching comprises
two stages—pairwise score computation and matching. The
baseline approach DInf adopts existing similarity metrics
to calculate the similarity between entity embeddings and
generate the pairwise scores in the first stage, and then it
leverages Greedy for matching. In pursuit of better alignment
performance, more advanced embedding matching strategies

4
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TABLE 2
Overview and comparison of state-of-the-art algorithms for matching KGs in entity embedding spaces. Note that we estimate the order of magnitude of

the time and space complexity.

Models Pairwise Scores Matching 1-to-1 Direction Time Comp. Space Comp.

DInf [6], [32], [70] Similarity metric Greedy % Unidirectional O(n2) O(n2)

CSLS [15], [34], [50], [51] CSLS Greedy % Partially bidirectional O(n2) O(n2)

RInf [62] Preference modeling Greedy % Partially bidirectional O(n2 lgn) O(n2)
Sink. [13], [15], [17] Sinkhorn operation Greedy Partially Partially bidirectional O(ln2) O(n2)

Hun. [35], [57] Similarity metric Hungarian ! Bidirectional O(n3) O(n2)

SMat [64], [69] Similarity metric Gale-Shapley ! Bidirectional O(n2 lgn) O(n2)
RL [65] Similarity metric Reinforcement learning Partially Unidirectional / O(n2)

are put forward. While some (i.e., CSLS, RInf and Sink.)
optimize the pairwise score computation process and produce
more accurate pairwise scores, some (i.e., Hun., SMat and RL)
take into account the global alignment dynamics, rather than
greedily pursue the local optimum for each entity, during
the matching process, where more correct matches could
be generated according to the coordination under the global
constraint.

We further identify two notable characteristics of matching
KGs in entity embedding spaces, i.e., whether the matching
leverages the 1-to-1 constraint, and the direction of the match-
ing. Regarding the former, Hun. and SMat explicitly exert the
1-to-1 constraint on the matching process. RL relaxes the strict
1-to-1 constraint by allowing non 1-to-1 matches. The greedy
strategies, however, normally do not take into consideration
this constraint, except for Sink., which implicitly implements
the 1-to-1 constraint in a progressive manner when calculating
the pairwise scores. As for the direction of matching, Greedy
only considers a single direction at a time and overlooks the
influence from the reverse direction. As thus, the resultant
source-to-target alignment results are not necessarily equal
to the target-to-source ones. By improving the pairwise score
computation, CSLS, RInf and Sink. are actually modeling
and integrating the bidirectional alignments, whereas they
still adopt Greedy to produce final results. For non-greedy
methods, Hun. and SMat fully consider the bidirectional
alignments and produce a matching agreed by both directions,
while RL is unidirectional.

Next, we describe these methods in detail 4.

3.2 Simple Embedding Matching
DInf is the most common implementation of Embed-
ding Matching( ), described in Algorithm 3. Assume both KGs
contain n entities. The time and space complexity of DInf is
O(n2).

Algorithm 3: DInf(Es, Et,E)

Input :Source and target entity sets: Es, Et; Unified
entity embeddings: E

Output :Matched entity pairs:M
1 Derive similarity matrix S based on E;
2 M← Greedy (Es, Et,S);
3 returnM;

4. We omit the algorithmic description of the classical algorithms (e.g.,
Hungarian [24] and Gale-Shapley [46]) and the neural model (i.e., RL [38])
in the interest of space.

3.3 CSLS Algorithm

The cross-domain similarity local scaling (CSLS) algo-
rithm [26] is introduced to mitigate the hubness and isolation
issues of entity embeddings in EA [50]. The hubness issue
refers to the phenomenon where some entities (known as
hubs) frequently appear as the top-1 most similar entities of
other entities in the vector space, while the isolation issue
means that there exist some outliers isolated from any point
clusters. As thus, CSLS increases the similarity associated
with isolated entity embeddings, and conversely decreases the
ones of vectors lying in dense areas [26]. Formally, the CSLS
pairwise score between source entity u and target entity v is:

CSLS(u, v) = 2S(u, v)− ϕ(u)− ϕ(v)⊤, (1)

where S is the similarity matrix derived from E using similar-
ity metrics, ϕ(u) = 1

k

∑
v′∈Nu

S(u, v′) is the mean similarity
score between the source entity u and its top-k most similar
entities Nu in the target KG, and ϕ(v) is defined similarly.
The mean similarity scores of all source and target entities are
denoted in vector form as ϕs and ϕt, respectively. To generate
the matched entity pairs, it further applies Greedy on the
CSLS matrix (i.e., SCSLS). Algorithm 4 describes the detailed
procedure of CSLS. Notably, Li et al. put forward Graph
Interactive Divergence (GID) to compute the similarity score,
which in essence works in the same way as CSLS according
to its code implementation [28].

Algorithm 4: CSLS (Es, Et,E, k)

Input :Source and target entity sets: Es, Et; Unified
entity embeddings: E; Hyper-parameter: k

Output :Matched entity pairs:M
1 Derive similarity matrix S based on E;
2 Calculate the mean values of top-k similarity scores of

entities in Es and Et, resulting in ϕs and ϕt,
respectively;

3 SCSLS = 2S − ϕs − ϕ⊤
t ;

4 M← Greedy (Es, Et,SCSLS);
5 returnM;

Complexity. The time and space complexity are O(n2).
Practically, it requires more time and space than DInf, as it
needs to generate the additional CSLS matrix.

3.4 Reciprocal Embedding Matching

Zeng et al. [62] formulate EA task as the reciprocal recom-
mendation process [44] and offer a reciprocal embedding

5
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matching strategy RInf to model and integrate the bidirectional
preferences of entities when inferring the matching results.
Formally, it defines the pairwise score of source entity u
towards target entity v as:

pu,v = S(u, v)− max
u′∈Es

S(v, u′) + 1, (2)

where S is the similarity matrix derived from E, 0 ≤ pu,v ≤ 1,
and a larger pu,v denotes a higher degree of preference. As
such, the matrix forms of the source-to-target and target-
to-source preference scores are denoted as P s,t and P t,s,
respectively. Next, it converts the preference matrix P into
the ranking matrix R, and then averages the two ranking
matrices, resulting in the reciprocal preference matrix P s↔t

that encodes the bidirectional alignment information. Finally,
it adopts Greedy to generate the matched entity pairs.

Algorithm 5: RInf(Es, Et,E)

Input :Source and target entity sets: Es, Et; Unified
entity embeddings: E

Output :Matched entity pairs:M
1 Derive similarity matrix S based on E;
2 for u ∈ Es do
3 for v ∈ Et do
4 Calculate pu,v and pv,u (cf. Equation (2));

5 Collect the preference scores, resulting in P s,t and
P t,s;

6 Convert P s,t and P t,s into Rs,t and Rt,s, respectively;
7 P s↔t = (Rs,t +R⊤

t,s)/2;
8 M← Greedy (Es, Et,−P s↔t);
9 returnM;

Complexity. Algorithm 5 describes the detailed procedure
of RInf. The time complexity is O(n2 lgn) [62]. The space com-
plexity is O(n2). Practically, it requires more space than DInf
and CSLS, due to the computation of similarity, preference,
and ranking matrices. Noteworthily, two variant methods, i.e.,
RInf-wr and RInf-pb, are proposed to reduce the memory and
time consumption brought by the reciprocal modeling. More
details can be found in [62].

3.5 Embedding Matching as Assignment

Some very recent studies [35], [57] propose to model the
embedding matching process as the linear assignment prob-
lem. They first use similarity metrics to calculate pairwise
similarity scores based on E. Then they adopt the Hungarian
algorithm [24] to solve the task of assigning source entities to
target entities according to the pairwise scores. The objective
is to maximize the sum of the pairwise similarity scores of
the final matched entity pairs while observing the 1-to-1
assignment constraint. In this work, we use the Hungarian
algorithm implemented by Jonker and Volgenant [21] and
denote it as Hun. (Es, Et,E).

Besides, the Sinkhorn operation [37] (or Sink. for short) is
also adopted to solve the assignment problem [13], [17], [35],
which converts the similarity matrix S into a doubly stochastic

matrix Ssinkhorn that encodes the entity correspondence
information. Specifically,

Sinkhornl(S) = Γc(Γr(Sinkhorn
l−1(S)));

Ssinkhorn = lim
l→∞

Sinkhornl(S),
(3)

where Sinkhorn0(S) = exp(S), Γc and Γr refer to the col-
umn and row-wise normalization operators of a matrix. Since
the number of iterations l is limited, the Sinkhorn operation
can only obtain an approximate 1-to-1 assignment solution in
practice [35]. Then Ssinkhorn is forwarded to Greedy to obtain
the alignment results.

Algorithm 6: Sink. (Es, Et,E, l)

Input :Source and target entity sets: Es, Et; Unified
entity embeddings: E; Hyper-parameter: l

Output :Matched entity pairs:M
1 Derive similarity matrix S based on E;
2 Ssinkhorn = Sinkhornl(S) (cf. Equation (3));
3 M← Greedy (Es, Et,Ssinkhorn);
4 returnM;

Complexity. For Hun., the time complexity is O(n3), and
the space complexity is O(n2). Algorithm 5 describes the
procedure of Sink.. The time complexity of Sink. is O(ln2) [35],
and the space complexity isO(n2). In practice, both algorithms
require more space than DInf, since they need to store the
intermediate results.

3.6 Stable Embedding Matching
In order to consider the interdependence among alignment
decisions, the embedding matching process is formulated as
the stable matching problem [14] by [64], [69]. It is proved
that for any two sets of members with the same size, each of
whom provides a ranking of the members in the opposing
set, there exists a bijection of the two sets such that no pair
of two members from the opposite side would prefer to be
matched to each other rather than their assigned partners [12].
Specifically, these works first produce the similarity matrix
S based on E using similarity metrics. Next, they generate
the rankings of members in the opposing set according to the
pairwise similarity scores. Finally, they use the Gale-Shapley
algorithm [46] to solve the stable matching problem. This
procedure is denoted as SMat (Es, Et,E).

Complexity. SMat has time complexity of O(n2 lgn) (since
for each entity, the ranking of entities in the opposite side
needs to be computed) and space complexity of O(n2).

3.7 RL-based Embedding Matching
The embedding matching process is cast to the classic sequence
decision problem by [65]. Given a sequence of source entities
(and their embeddings), the goal of the sequence decision
problem is to decide to which target entity each source en-
tity aligns. It devises a reinforcement learning (RL)–based
framework to learn to optimize the decision-making for all
entities, rather than optimize every single decision separately.
Under the RL-based framework, a new coordination strategy
that involves the coherence and exclusiveness constraints is
implemented. While coherence aims to keep the EA decisions
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coherent for closely-related entities, exclusiveness aims to avoid
assigning the same target entity to multiple source entities,
which requires that, if an entity is already matched, it is less
likely to be matched to other entities. The general procedure is
shown in algorithmic form in Appendix A due to the limit of
space, and more details can be found in the original paper [65].

Complexity. It is difficult to deduce the time complexity for
this neural RL model. Instead, we provide the empirical time
costs in experiments. The space complexity is O(n2).

4 MAIN EXPERIMENTS

In this section, we compare the algorithms for matching KGs
in entity embedding spaces on the mainstream EA evaluation
setting (1-to-1 alignment).

4.1 EntMatcher: An Open-source Library
To ensure comparability, we re-implemented all compared
algorithms using Python under a unified framework and
established an open-source library, EntMatcher 5. The archi-
tecture of EntMatcher library is presented in the blue block
of Figure 3, which takes as input unified entity embeddings
E and produces the matched entity pairs. It has the following
three major features:

EntMatcher

CSLS RInf Sinkhorn

Cosine Euclidean Manhattan

Greedy SMat Hun. RL

None

Similarity Metric

Score Optimization

Matching Constraint

Representation Learning
GCN RREA

Auxiliary Information
Name DescriptionNone None

Fig. 3. Architecture of the EntMatcher library and additional modules
required by the experimental evaluation.

Loosely-coupled design. There are three independent mod-
ules in EntMatcher, and we have implemented the repre-
sentative methods in each module. Users are free to combine
the techniques in each module to develop new approaches, or
to implement their new designs by following the templates in
modules.

Reproduction of existing approaches. To support our
experimental study, we tried our best to re-implement all
existing algorithms by using EntMatcher. For instance, the
combination of cosine similarity, CSLS, and Greedy repro-
duces the CSLS algorithm in Section 3.3; and the combination
of cosine similarity, None, and Hun. reproduces the Hun.
algorithm in Section 3.5. The specific hyper-parameter settings
are elaborated in Section 4.2.

Flexible integration with other modules in EA. Ent-
Matcher is highly flexible, which can be directly called dur-
ing the development of standalone EA approaches. Besides,
users may also use EntMatcher as the backbone and call
other modules. For instance, to conduct the experimental

5. The codes are publicly available at https://github.com/DexterZeng/
EntMatcher

evaluations in this work, we implemented the representation
learning and auxiliary information modules to generate the
unified entity embeddings E, as shown in the white blocks
of Figure 3. More details are elaborated in the next subsec-
tion. Finally, EntMatcher is also compatible with existing
open-source EA libraries (that mainly focus on representation
learning) such as OpenEA 6 and EAkit 7.

4.2 Experimental Settings

Current EA evaluation setting assumes that the entities in
source and target KGs are 1-to-1 matched (cf. Section 2.3).
Although this assumption simplifies the real-word scenarios
where some entities are unmatchable or some might be aligned
to multiple entities on the other side, it indeed reflects the core
challenge of EA. Therefore, following existing literature, we
mainly compare the embedding matching algorithms under
this setting, and postpone the evaluation on the challenging
real-life scenarios to Section 5.

Datasets. We used popular EA benchmarks for evalua-
tion: (1) DBP15K, which comprises three multilingual KG
pairs extracted from DBpedia [1]: English to Chinese (D-
Z), English to Japanese (D-J), and English to French (D-F);
and (2) SRPRS, which is a sparser dataset that follows real-
life entity distribution, including two multilingual KG pairs
extracted from DBpedia: English to French (S-F) and English
to German (S-D), and two mono-lingual KG pairs: DBpedia
to Wikidata [53] (S-W) and DBpedia to YAGO [49] (S-Y);
and (3) DWY100K, a larger dataset consisting of two mono-
lingual KG pairs: DBpedia to Wikidata (D-W) and DBpedia to
YAGO (D-Y). The detailed statistics can be found in Table 3,
where the numbers of entities, relations, triples, gold links, and
the average entity degree are reported. Regarding the gold
alignment links, we adopted 70% as test set, 20% for training,
and 10% for validation.

Evaluation metric. We utilized F1 score as the evaluation
metric, which is the harmonic mean between precision and
recall, where the precision value is computed as the number of
correct matches divided by the number of matches found by
a method, and the recall value is computed as the number of
correct matches found by a method divided by the number
of gold matches. Note that recall is equivalent to the Hits@1
metric used in some previous works.

Similarity metric. After obtaining the unified entity rep-
resentations E, a similarity metric is required to produce
pairwise scores and generate the similarity matrix S. Frequent
choices include the cosine similarity [7], [36], [52], the Eu-
clidean distance [8], [27] and the Manhattan distance [55], [58].
In this work, we followed mainstream works and adopted the
cosine similarity.

Notably, we omit more detailed experimental settings in
the interest of space, which can be found in Appendix B.

4.3 Main Results and Comparison

We first evaluate with only structural information and report
the results in Table 4, where R- and G- refer to using RREA

6. https://github.com/nju-websoft/OpenEA
7. https://github.com/THU-KEG/EAkit
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TABLE 3
Dataset statistics.

DBP15K SRPRS DWY100K
FB_DBP_MUL

D-Z D-J D-F S-F S-D S-W S-Y D-W D-Y

#Entities 38,960 39,594 39,654 30,000 30,000 30,000 30,000 200,000 200,000 44,716
#Relations 3,024 2,452 2,111 398 342 397 253 550 333 2,070
#Triples 165,556 170,698 221,720 70,040 75,740 78,580 70,317 912,068 931,515 164,882
#Gold links 15,000 15,000 15,000 15,000 15,000 15,000 15,000 100,000 100,000 22,117
Avg. degree 4.2 4.3 5.6 2.3 2.5 2.6 2.3 4.6 4.7 3.7

TABLE 4
The F1 scores of only using structural information.

R-DBP R-SRP G-DBP G-SRP

D-Z D-J D-F Imp. S-F S-D S-W S-Y Imp. D-Z D-J D-F Imp. S-F S-D S-W S-Y Imp.

DInf 0.605 0.603 0.627 0.367 0.521 0.416 0.448 0.291 0.295 0.286 0.170 0.322 0.202 0.253
CSLS 0.688 0.677 0.712 13.2% 0.406 0.550 0.465 0.481 8.6% 0.375 0.390 0.377 31.0% 0.224 0.368 0.258 0.306 22.1%
RInf 0.712 0.706 0.742 17.7% 0.412 0.560 0.477 0.486 10.4% 0.400 0.423 0.423 42.9% 0.241 0.381 0.276 0.324 29.0%
Sink. 0.749 0.740 0.778 23.5% 0.423 0.568 0.480 0.497 12.3% 0.447 0.471 0.484 60.8% 0.248 0.387 0.289 0.331 32.5%
Hun. 0.749 0.744 0.777 23.7% 0.418 0.563 0.475 0.495 11.4% 0.450 0.480 0.484 62.2% 0.246 0.385 0.284 0.331 31.6%
SMat 0.686 0.677 0.718 13.4% 0.398 0.551 0.453 0.471 6.9% 0.382 0.413 0.388 35.7% 0.231 0.371 0.260 0.312 24.0%
RL 0.675 0.670 0.716 12.3% 0.380 0.541 0.444 0.462 4.2% 0.378 0.409 0.371 32.9% 0.213 0.361 0.245 0.288 16.9%

TABLE 5
The F1 scores of using auxiliary information.

N-DBP N-SRP NR-DBP NR-SRP

D-Z D-J D-F Imp. S-F S-D Imp. D-Z D-J D-F Imp. S-F S-D Imp.

DInf 0.735 0.780 0.744 0.815 0.831 0.819 0.862 0.846 0.865 0.893
CSLS 0.754 0.802 0.761 2.6% 0.837 0.855 2.8% 0.858 0.896 0.880 4.2% 0.911 0.932 4.8%
RInf 0.751 0.802 0.761 2.4% 0.840 0.861 3.3% 0.861 0.899 0.887 4.7% 0.922 0.937 5.7%
Sink. 0.770 0.823 0.788 5.4% 0.853 0.878 5.2% 0.902 0.929 0.933 9.4% 0.940 0.954 7.7%
Hun. 0.773 0.830 0.797 6.2% 0.864 0.887 6.4% 0.908 0.937 0.944 10.4% 0.949 0.956 8.4%
SMat 0.768 0.818 0.778 4.6% 0.856 0.873 5.0% 0.879 0.912 0.906 6.7% 0.921 0.939 5.8%
RL 0.770 0.824 0.783 5.2% 0.851 0.866 4.3% 0.880 0.909 0.904 6.6% 0.917 0.936 5.4%

and GCN to generate the structural embeddings, respec-
tively, DBP and SRP denote DBP15K and SRPRS, respec-
tively. Next, we supplement with name embeddings, and
report the results in Table 5, where N- and NR- refer to only
using the name embeddings and fusing name embeddings
with RREA structural representations, respectively. Note that,
on existing datasets, all the entities in the test set can be
matched, and all the algorithms are devised to find a target
entity for each test source entity. Hence, the number of matches
found by a method equals to the number of gold matches, and
consequently the precision value is equal to the recall value
and the F1 score [65].

Overall performance. First, we do not delve into the em-
bedding matching algorithms and directly analyze the general
results. Specifically, using RREA to learn structural representa-
tions can bring better performance compared with using GCN,
showcasing that representation learning strategies are crucial
to the overall alignment performance. When introducing the
entity name information, it observes that this auxiliary signal
alone can already provide very accurate signal for alignment.
This is because the equivalent entities in different KGs of
current datasets share very similar or even identical names.
After fusing the semantic and structural information, the
alignment performance is further lifted, with most of the
approaches hitting over 0.9 in terms of the F1 score.

Effectiveness comparison of embedding matching algo-

rithms. From the tables, it is evident that: (1) Overall, Hun.
and Sink. attain much better results than the other strategies.
Specifically, Hun. takes full account of the global matching
constraints and strives to reach a globally optimal match-
ing given the objective of maximizing the sum of pairwise
similarity scores. Moreover, the 1-to-1 constraint it exerts
aligns with present evaluation setting where the source and
target entities are 1-to-1 matched. Sink., on the other hand,
implicitly implements the 1-to-1 constraint during pairwise
score computation and still adopts Greedy to produce final
results, where there might exist non 1-to-1 matches; (2) DInf
attains the worst performance. This is because it directly adopts
the similarity scores that suffer from the hubness and isolation
issues [50]. Besides, it leverages Greedy, which merely reaches
the local optimum for each entity. (3) The performance of RInf,
CSLS, SMat and RL are well matched. RInf and CSLS improve
upon DInf by mitigating the hubness issue and enhancing
the quality of pairwise scores. SMat and RL, on the other
hand, improve upon DInf by modeling the interactions among
matching decisions for different entities.

Furthermore, we conduct a deeper analysis of these ap-
proaches, and identify the following patterns:
Pattern 1. If for source entities, their highest pairwise similar-
ity scores are close, RInf and CSLS (resp., SMat and RL) would
attain relatively better (resp., worse) performance. Specifically,
in Table 4 where RInf consistently (CSLS sometimes) attains
superior results than SMat and RL, the average standard
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Fig. 5. Efficiency comparison. Shapes in blue denote methods that improve
pairwise scores, while shapes in black denote those exerting global
constraints (except for DInf).

deviation (STD) values of the top-5 pairwise similarity scores
of source entities (cf. Figure 4) are very small, unveiling
that the top scores are close and difficult to differentiate. In
contrast, in Table 5 where SMat and RL outperform RInf
and CSLS, the corresponding STD values are relatively large.
This is because RInf and CSLS aim to make the scores more
distinguishable, and hence they are more effective in cases
where the top similarity scores are very close (i.e., low STD
values). On the contrary, when the top similarity scores are
already discriminating (e.g., Table 5), RInf and CSLS become
less useful, while SMat and RL can still make improvements
by using the global constraints to enforce the deviation from
local optimums.
Pattern 2. On sparser datasets, the superiority of Sink. and
Hun. over the rest of the methods becomes less significant. This
is based on the observation that on SRPRS, other matching
algorithms (RInf in particular) attain much closer performance
to Sink. and Hun.. Such a pattern could be attributed to the
fact that, on sparser datasets, entities normally have fewer
connections with others, i.e., lower average entity degree
(in Table 3), where representation learning strategies might
fail to fully capture the structural signals for alignment and
the resultant pairwise scores become less accurate. These
inaccurate scores could mislead the matching process and
hence limit the effectiveness of the top-performing methods,
i.e., Sink. and Hun.. In other words, sparser KG structures are
more likely to (partially) break the fundamental assumption
on KG structure similarity (cf. Section 2.3).

Efficiency analysis. We compare the time and space ef-
ficiency of these methods on the medium-sized datasets in

Figure 5. Since the costs on KG pairs from the same dataset are
very similar, we report the average time and space costs under
each setting in the interest of space.

Specifically, it observes that: (1) The simple algorithm
DInf is the most efficient approach; (2) Among the advanced
approaches, CSLS is the most efficient one, closely following
DInf; (3) The efficiency of RInf and Hun. are equally matched.
While Hun. consumes relatively less memory space than RInf,
its time efficiency is less stable and tends to run slower on
datasets with less accurate pairwise scores; (4) The space
efficiency of Sink. is close to RInf and Hun., whereas it has
much higher time costs, which largely depends on the value
of l; (5) RL is the least time-efficient approach, while SMat is the
least space-efficient algorithm. RL requires more time on datasets
with less accurate pairwise scores where its pre-processing
module fails to produce promising results [65]. The memory
space consumption of SMat is high, as it needs to store a
large amount of intermediate matching results. In all, we
can conclude that generally, advanced embedding matching
algorithms require more time and memory space, among
which the methods incorporating global matching constraints
tend to be less efficient.

Comparison with DL-based EM approaches. We utilize the
deepmatcher python package [39], which provides built-in
neural networks and utilities that can train and apply state-of-
the-art deep learning models for entity matching, to address
EA. Specifically, we use the structural and name embeddings
to replace the attributive text inputs in deepmatcher, respec-
tively, and then train the neural model with labeled data. For
each positive entity pair, we randomly sample 10 negative
ones. In the testing stage, for each source entity, we feed the
entity pairs constituting it and all the target entities into the
trained classifier, and regard the entity pair with the highest
predicted score as the result.

In the final results, only several entities are correctly
aligned, showing that DL-based EM approaches cannot handle
EA, which can be ascribed to the insufficient labeled data,
imbalanced class distribution and the lack of attributive text
information, as discussed in Section 2.2.

4.4 Results on Large-scale Datasets
Next, we provide the results on the relatively larger dataset,
i.e., DWY100K, which can also reflect the scalability of these
algorithms. The results are presented in Table 6 8. The gen-
eral pattern is similar to that on G-DBP (i.e., using GCN
on DBP15K), where Sink. and Hun. obtain the best results,
followed by RInf. The performance of CSLS and RL are close,
outperforming DInf by over 20%.

We compare the efficiency of these algorithms in Table 6,
where T̄ refers to the average time cost and Mem. denotes
whether the memory space required by the model can be
covered by our experimental environment 9. It observes that,
given larger datasets, most of the performant algorithms have
poor efficiency and scalability (e.g., RInf, Sink. and Hun.).
Note that in [62], two variants of RInf, i.e., RInf-wr and RInf-pb,

8. We cannot provide the results of SMat, as it requires extremely large
memory space and cannot work under our experimental environment.

9. Note that for algorithms with memory space costs exceeding our
experimental environment (except for SMat), there is additional swap
area in the hard drive for them to finish the program (which usually takes
much longer time).

9
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TABLE 6
The F1 scores on DWY100K using GCN.

D-W D-Y Imp. T̄ Mem.

DInf 0.409 0.552 4 Yes
CSLS 0.510 0.650 20.7% 83 Yes
RInf 0.559 0.692 30.2% 1,102 No
RInf-wr 0.510 0.650 20.7% 28 Yes
RInf-pb 0.524 0.663 23.5% 289 Yes
Sink. 0.618 0.739 41.2% 9,405 No
Hun. 0.618 0.734 40.6% 3,607 No
SMat / / / / /
RL 0.520 0.660 22.8% 995 Yes

are proposed to improve its scalability at the cost of a small
performance drop, which is empirically validated in Table 6.
This also reveals that more scalable matching algorithms for
KGs in entity embedding spaces should be devised.

4.5 Analysis and Insights

We provide further experiments and discussions in this sub-
section. Due to the limitation of space, more experiments and
the case study can be found in Appendix C and Appendix D.

On efficiency and scalability. The simple algorithm DInf is
the most efficient and scalable one, as it merely involves the
most basic computation and matching operations. CSLS is
slightly less efficient than DInf due to the update of pairwise
similarity scores. It also has good scalability. Although RInf
adopts a similar idea to CSLS, it involves an additional
ranking process, which brings much more time and memory
consumption, making it less scalable. Sink. repeatedly con-
ducts the normalization operation, and thus its time efficiency
is mainly up to the l value. Its scalability is also limited
by the memory space consumption since it needs to store
intermediate results, as revealed in Table 6.

Regarding the methods that exert global constraints, Hun.
is efficient on medium-sized datasets, while it is not scalable
due to the high time complexity and memory space con-
sumption. SMat is space-inefficient even on the medium-sized
datasets, making it not scalable. In comparison, RL has more
stable time and space costs and can scale to large datasets,
and the main influencing factor is the accuracy of pairwise
scores. This is because RL has a pre-processing step that filters
out confident matched entity pairs and excludes them from
the time-consuming RL learning process [65]. More confident
matched entity pairs would be filtered out if the pairwise
scores are more accurate.

On effectiveness of improving pairwise score computation.
We compare and discuss the strategies for improving the
pairwise score computation, i.e., CSLS, RInf and Sink..

Both CSLS and RInf aim to mitigate the hubness and
isolation issues in the raw pairwise scores (from different
starting points). Particularly, we observe that, by setting k
(in Equation 1) of CSLS to 1, the difference between RInf
and CSLS is reduced to the extra ranking process of RInf, and
the results in Table 4 and 5 validate that this ranking process
can consistently bring better performance. This is because
the ranking operation can amplify the difference among the
scores and prevent such information from being lost after
the bidirectional aggregation [62]. However, it is noteworthy
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Fig. 6. F1 scores of CSLS with varying k value.
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Fig. 7. F1 scores of Sink. with varying l value.

that the ranking process brings much more time and memory
consumption, as can be observed from the empirical results.

Then we analyze the influence of k value in CSLS. As
shown in Figure 6, a larger k leads to worse performance. This
is because a larger k implies a smaller ϕ value in Equation 1
(where the top-k highest scores are considered and averaged),
and the resultant pairwise scores become less distinctive.
This also validates the effectiveness of the design in RInf (cf.
Equation 2), where only the maximum value is considered to
compute the preference score. Nevertheless, in Section 5.2, we
reveal that setting k to 1 is only useful in the 1-to-1 alignment
setting.

As for Sink., it adopts an extreme approach to optimize the
pairwise scores, which encourages each source (resp., target)
entity to have only one positive pairwise score with a target (resp.,
source) entity and 0’s with the rest of the target (resp., source)
entities. Thus, it is in fact progressively and implicitly im-
plementing the 1-to-1 alignment constraint during the pair-
wise score computation process with the increase of l, and is
particularly useful in present 1-to-1 evaluation settings of EA.
In Figure 7, we further examine the influence of l in Equation 3
on the alignment results of Sink., which meets our expectation
that the larger the l value, the better the distribution of the
resultant pairwise scores fits the 1-to-1 constraint, and thus
the higher the alignment performance. Nevertheless, a larger l
also implies longer processing time. Therefore, by tuning on
the validation set, we set l to 100 to reach the balance between
effectiveness and efficiency.

On effectiveness of exerting global constraints. Next, we
compare and discuss the methods that exert global constraints
on the embedding matching process, i.e., Hun., SMat and RL.

It is evident that Hun. is the most performant approach,
as it fits well with the present EA setting and can secure an
optimal solution towards maximizing the sum of pairwise
scores. Specifically, the current EA setting has two notable
assumptions (cf. Section 2.3). With these two assumptions, EA
can be transformed into the linear assignment problem, which
aims to maximize the sum of pairwise scores under the 1-to-1
constraint [35]. As thus, the algorithms for solving the linear
assignment problem, e.g., Hun., can attain remarkably high
performance on EA. However, these two assumptions do not
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necessarily hold on all occasions, which could influence the
effectiveness of Hun.. For instance, as revealed in Pattern 2,
on sparse datasets (e.g., SRPRS), the neighboring structures
of some equivalent entities are likely to be different, where
the effectiveness of Hun. is limited. In addition, the 1-to-1
alignment constraint is not necessarily true in practice, which
will be discussed in Section 5.

In comparison, SMat merely aims to attain a stable match-
ing, where the resultant entity pairing could be sub-optimal
under present evaluation setting. RL, on the other hand,
relaxes the 1-to-1 constraint and only deviates slightly from the
greedy matching, and hence the results are not very promising.

Overall comparison and conclusion. Finally, we compare
the algorithms all together and draw the following conclusions
under the 1-to-1 alignment setting: (1) The best performing
methods are Hun. and Sink.. Nevertheless, they have low
scalability; (2) CSLS and RInf achieve the best balance between
effectiveness and efficiency. While CSLS is more efficient, RInf
is more effective; (3) SMat and RL tend to attain better results
when the accuracy of the pairwise scores is high. Nevertheless,
they require relatively more time.

5 NEW EVALUATION SETTINGS

In this section, we conduct experiments on settings that can
better reflect real-life challenges.

5.1 Unmatchable Entities
Current EA literature largely overlooks the unmatchable issue,
where a KG contains entities that the other KG does not
contain. For instance, when aligning YAGO 4 and IMDB, only
1% of entities in YAGO 4 are film-related and possibly have
equivalent entities in IMDB, while the other 99% of entities in
YAGO 4 necessarily have no match in IMDB [68]. Hence, we
aim to evaluate the embedding matching algorithms in terms
of dealing with unmatchable entities.

Datasets and evaluation settings. Following [63], we adapt
the KG pairs in DBP15K to include unmatchable entities,
resulting in DBP15K+. More specific construction procedure
can be found in [63]. As for the evaluation metric, we follow
the main experimental setting and adopt the F1 score. Unlike 1-
to-1 alignment, there exist unmatchable entities in this adapted
dataset, and the precision and recall values are not necessarily
equivalent, since some methods would also align unmatchable
entities. Noteworthily, the original setting of SMat and Hun.
requires that the numbers of entities on the two sides are equal.
Thus, we add the dummy nodes on the side with fewer entities
to restore such a setting, and then apply SMat and Hun.. The
corresponding results are reported in Table 7.

Alignment results. It reads that Hun. attains the best results,
followed by SMat. The superior results are partially due to
the addition of dummy nodes, which could mitigate the un-
matchable issue to a certain degree. The results RInf and Sink.
are close, outperforming CSLS and RL. DInf still achieves the
worst performance.

Besides, by comparing the results on DBP15K+ and those
on the original dataset DBP15K (cf. Table 4), we observe that:
(1) After including the unmatchable entities, for all methods,
the F1 scores drop. This is because most of current embedding
matching algorithms are greedy, i.e., retrieving a target entity

TABLE 7
F1 scores on DBP15K+.

GCN RREA

D-Z D-J D-F T̄ D-Z D-J D-F T̄

DInf 0.241 0.240 0.234 1 0.501 0.491 0.513 1
CSLS 0.310 0.318 0.309 2 0.569 0.551 0.582 2
RInf 0.333 0.344 0.344 28 0.582 0.568 0.599 28
Sink. 0.329 0.337 0.343 336 0.571 0.553 0.584 331
Hun. 0.397 0.407 0.408 115 0.712 0.706 0.750 46
SMat 0.366 0.386 0.367 140 0.673 0.665 0.707 144
RL 0.307 0.311 0.297 1738 0.553 0.531 0.579 1264

for each source entity (including the unmatchable ones), which
leads to a very low precision. For the rest of the methods, e.g.,
Hun. and SMat, the unmatchable entities also mislead the
matching process and thus affect the final results; (2) Unlike
on DBP15K where the performance of Sink. and Hun. are
close, on DBP15K+, Hun. largely outperforms Sink., as Hun.
does not necessarily align a target entity to each source entity
and has a higher precision; (3) Overall, existing algorithms for
matching KGs in entity embedding spaces lack the capability
of dealing with unmatchable entities.

5.2 Non 1-to-1 Alignment
Next, we study the setting where the source and target en-
tities do not strictly conform to the 1-to-1 constraint, so as
to better appreciate these matching algorithms for KGs in
entity embedding spaces. Non 1-to-1 alignment is common in
practice, especially when two KGs contain entities in different
granularity, or one KG is noisy and involves duplicate entities.
To the best of our knowledge, we are among the first attempts to
identify and investigate this issue.

Dataset construction. Present EA benchmarks are con-
structed according to the 1-to-1 constraint. Thus, in this work,
we establish a new dataset that involves non 1-to-1 alignment
relationships. Specifically, we obtain the pre-annotated links 10

between Freebase [3] and DBpedia [1], and preserve the enti-
ties that are involved in 1-to-many, many-to-1, and many-to-
many alignment relationships. Then, we retrieve the relational
triples that contain these entities from respective KGs, which
also introduces new entities. Next, we detect the links among
the newly added entities, and add them into the alignment
links. Finally, the resultant dataset, FB_DBP_MUL, contains
44,716 entities, 164,882 triples, 22,117 gold links, among which
20,353 are non 1-to-1 links and 1,764 are 1-to-1 links 11. The
specific statistics are also presented in Table 3.

Evaluation settings. To keep the integrity of the links
among entities, we sample the training, validation and test sets
from the gold links according to the principle that the links
involving the same entity should not be distributed among
different sets. The size of the final training, validation and
test sets is approximately 7:1:2. We compare the entity pairs
produced by embedding matching algorithms against the gold
test links, and report the precision (P), recall (R) and F1 values.

Alignment results. It is evident from Table 8 that, compared
with 1-to-1 alignment, the results change significantly on the

10. https://www.dbpedia.org/blog/dbpedia-is-now-interlinked-
with-freebase-links-to-opencyc-updated/

11. FB_DBP_MUL is publicly available at https://github.com/
DexterZeng/EntMatcher .
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TABLE 8
The results on non 1-to-1 alignment dataset.

GCN RREA

P R F1 T P R F1 T

DInf 0.074 0.051 0.061 11 0.167 0.114 0.136 12
CSLS 0.091 0.062 0.074 13 0.189 0.130 0.154 15
RInf 0.093 0.064 0.076 35 0.190 0.130 0.155 35
Sink. 0.083 0.057 0.068 286 0.180 0.124 0.147 278
Hun. 0.079 0.054 0.064 44 0.176 0.121 0.143 44
SMat 0.071 0.048 0.057 43 0.162 0.111 0.132 41
RL 0.066 0.045 0.054 1710 0.150 0.103 0.122 1440

new dataset. Specifically: (1) RInf and CSLS attain the best F1
scores, whereas the results are not very promising (e.g., with
F1 score lower than 0.1 when using GCN); (2) Sink. and Hun.
achieve much worse results compared with the performance
on 1-to-1 alignment datasets; (3) The results of SMat and RL
are even inferior to those of the simple baseline DInf. The
main reason accounting for these changes is that the non 1-to-1
alignment links pose great challenges to existing embedding
matching algorithms. Specifically, for DInf, CSLS, RInf, Sink.
and RL, they only align one target entity (that possesses the
highest score) to a given source entity, but fail to discover other
alignment links that also involve this source entity. For SMat
and Hun., they impose the 1-to-1 constraint during matching,
which falls short on the non 1-to-1 setting, thus leading to
inferior results. Therefore, it calls for the study on embedding
matching algorithms targeted at non 1-to-1 alignment. We also
discuss the k value in CSLS and RInf under the non 1-to-1
setting, which can be found in Appendix C.

6 SUMMARY AND FUTURE DIRECTION

In this section, we summarize the observations and insights
made from our evaluation, and provide possible future re-
search directions.

(1) The investigation into matching KGs in embedding
spaces has not yet made substantial progress. Although
there are a few algorithms tailored for matching KGs in embed-
ding spaces, e.g., CSLS, RInf and RL, under the most popular
EA evaluation setting (with 1-to-1 alignment constraint), they
are outperformed by the classic general matching algorithms,
i.e., Hun.. Hence, there is still much room for improving
matching KGs in embedding spaces.

(2) No existing embedding matching algorithm prevails
under all experimental settings. The strategies designed
to solve the linear assignment problem attain the best perfor-
mance under the 1-to-1 setting, while they fall short on more
practical and challenging scenarios since the new settings
(e.g., non 1-to-1 alignment) no longer align with the condi-
tions of these optimization algorithms. Similarly, although
the methods for improving the computation of pairwise
scores achieve superior results in the non 1-to-1 alignment
scenario, they are outperformed by other solutions under the
unmatchable setting. Therefore, each evaluation setting poses
its own challenge to the embedding matching process, and
currently there is no consistent winner.

(3) The adaptation from general matching algorithms re-
quires careful design. Among the embedding matching
algorithms, Hun. and SMat are general matching algorithms

that have been applied to many other related tasks. Although
directly adopting these general strategies to tackle EA is simple
and effective, they might well fall short in some scenarios, as
the alignment on KGs possesses it own challenges, e.g., the
matching is not necessarily 1-to-1 constrained, or the pairwise
scores are inaccurate. Thus, it is suggested to take full account
of the characteristics of the alignment settings when adapting
other general matching algorithms to cope with matching KGs
in entity embedding spaces.

(4) The scalability and efficiency should be brought to the
attention. Existing advanced embedding matching algo-
rithms have poor scalability, due to the additional resource-
consuming operations that contribute to the alignment per-
formance, such as the ranking process in RInf and the 1-to-
1 constraint exerted by Hun. and SMat. Besides, the space
efficiency is also a critical issue. As shown in Section 4.4, most
of the approaches have rather high memory costs given large-
scale datasets. Therefore, considering that in practice there are
much more entities, the scalability and efficiency issues should
be considered during the algorithm design. A preliminary
exploration has been conducted by [15].

(5) The practical evaluation settings are worth further in-
vestigation. Under the unmatchable and non 1-to-1 align-
ment settings, the performance of existing algorithms is not
promising. A possible future direction is to introduce the
notion of probability and leverage the probabilistic reasoning
frameworks [22], [45], which have higher flexibility, to produce
the alignment results.

(6) Integrating the relation embedding might help. Two
latest studies propose to use relation embeddings to help
induce aligned entity pairs [33], [56]. Different from existing
methods that regard EA as a matrix (second-order tensor)
isomorphism problem, they express the isomorphism of KGs
in the form of third-order tensors to better describe the struc-
tural information of KGs [33]. Thus, it might be interesting to
study the matching between KGs in joint entity and relation
embedding space.

We also provide some actionable insights:
1. In 1-to-1 constrained scenarios, it is preferable to use

Hungarian algorithm or the Sinkhorn operation to conduct
the matching, as they 1) implement the 1-to-1 constraint during
execution, and 2) take full account of the global matching con-
straints and strive to reach a globally optimal matching given
the objective of maximizing the sum of pairwise similarity
scores. Given large-scale datasets, using Hungarian algorithm
would be more time-efficient, as Sinkhorn operation needs to
operate for multiple rounds to achieve convergence. Besides,
while Hungarian algorithm depends mainly on CPU, Sinkhorn
operation relies on GPU.

2. Given datasets with unmatchable entities, it is suggested
to add dummy nodes to make the number of entities in both
sides equal, and then use the Hungarian algorithm. In this
case, there is still much room for improvement.

3. Non 1-to-1 alignment is a realistic and frequently ob-
served scenario that has not received much research attention.
Among existing algorithms, RInf and CSLS are preferred,
since they take into account the global influence on the local
matching and meanwhile do not strictly enforce the 1-to-
1constraint. More practical solutions are to be put forward
to effectively address non 1-to-1 alignment.
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4. Current best performing embedding matching algo-
rithms are not scalable, and the Hungarian algorithm requires
approximately one hour on the DWY100K dataset. Hence, in
this case, it might be better to utilize the RInf and its variant
algorithms, which saves 2/3 of time cost at the cost of < 10%
performance drop compared with the Hungarian algorithm.

7 CONCLUSION

This paper conducts a comprehensive survey and evalua-
tion of matching algorithms for KGs in entity embedding
spaces. We evaluate seven state-of-the-art strategies in terms
of effectiveness and efficiency on a wide range of datasets,
including two experimental settings that better mirror real-life
challenges. We identify the strengths and weaknesses of these
algorithms under different settings. We hope the experimental
results would be valuable for researchers to put forward more
effective and scalable embedding matching algorithms.
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