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ABSTRACT

Masked Autoregressive (MAR) models promise better efficiency in visual gen-
eration than continuous autoregressive (AR) models for the ability of parallel
generation, yet their acceleration potential remains constrained by the modeling
complexity of spatially correlated visual tokens in a single step. To address this
limitation, we introduce Generation then Reconstruction (GtR), a training-free hi-
erarchical sampling strategy that decomposes generation into two stages: structure
generation establishing global semantic scaffolding, followed by detail reconstruc-
tion efficiently completing remaining tokens. Assuming that it is more difficult
to create an image from scratch than to complement images based on a basic
image framework, GtR is designed to achieve acceleration by computing the re-
construction stage quickly while maintaining the generation quality by computing
the generation stage slowly. Moreover, observing that tokens on the details of an
image often carry more semantic information than tokens in the salient regions,
we further propose Frequency-Weighted Token Selection (FTS) to offer more
computation budget to tokens on image details, which are localized based on the
energy of high frequency information. Extensive experiments on ImageNet class-
conditional and text-to-image generation demonstrate 3.72× speedup on MAR-H
while maintaining comparable quality (e.g., FID: 1.59, IS: 304.4 vs. original 1.59,
299.1), substantially outperforming existing acceleration methods across various
model scales and generation tasks. Our codes have been released in supplementary
materials and will be released on Github.

1 INTRODUCTION

Motivated by the successes of autoregressive (AR) models in natural language processing, the
realm of computer vision has increasingly explored the autoregressive paradigm for visual content
generation (Van Den Oord et al., 2016; Chen et al., 2020; Yu et al., 2022; Tian et al., 2024). Early
endeavors adopt pixel-by-pixel generation strategies(Van den Oord et al., 2016), treat images as
flattened sequences, and apply causal modeling directly. However, the autoregressive formulation
suffers from severe computational inefficiency, due to the natural inability to the parallel generation.
To solve this problem, an alternative direction emerges through next-set prediction, exemplified by
Masked Autoregressive (MAR) models (Chang et al., 2022; Li et al., 2023; 2024). MARs adopt an
encoder-decoder architecture with bidirectional attention, where the encoder produces conditioning
vectors z for each token, subsequently guiding a diffusion process to generate the final tokens.
This framework enables simultaneous prediction of multiple tokens in a single forward pass while
maintaining competitive generation quality.

Although parallelism has been provided by MAR, directly generating too many tokens in a single
step usually brings a significant degradation in the quality of generation in practice. Concretely, this
problem arises from the inherent complexity of modeling high-dimensional joint distributions. Visual
tokens exhibit strong spatial correlations that fundamentally violate conditional independence assump-
tions, necessitating explicit modeling of interdependencies through joint probability distributions
rather than simplified factorizations. When simultaneously predicting multiple tokens, MARs must
estimate the joint probability distribution over all target tokens whose modeling difficulty increases
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Figure 1: The difference
of token features in the
adjacent steps. Once a
token is decoded, its adja-
cent tokens tend to exhibit
significant changes.

Generated 
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(Pixel-Space)

High Freq. Tokens 
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Figure 2: Correspondence between high-frequency regions in pixel
space and feature space. Each triple shows three images: original
image, pixel-space high-frequency heatmap via high-pass filtering, and
frequency heatmap of MAR’s conditioning vectors. The spatial align-
ment demonstrates that high-frequency tokens in feature space indicate
regions with fine-grained textures and high-frequency details.

with the number of predicted tokens, limiting the speed of parallel generation. To solve this problem,
we begin by exploring the intrinsic property of MAR.

The spatially adjacent tokens tend to influence each other. It is well-acknowledged that tokens in
the same image region usually share similar semantic information. As a result, the spatially adjacent
tokens tend to influence each other. Figure 1 shows the difference between tokens in the adjacent
steps, which demonstrates that when one token has been decoded, its adjacent tokens tend to be
significantly influenced, indicating that adjacent tokens should be decoded separately.

checkboard

contiguous block

Generated images with different random seedsTokens have been Decoded
Tokens have not been Decoded

Figure 3: Comparison of generation consistency in two sampling methods when 50% tokens
have been generated and the remaining tokens are generated using different random seeds.
Dark blue and light blue indicate the tokens that have been decoded and not decoded, respectively.
The top row shows checkerboard pattern that distributes generated tokens (dark blue) uniformly
throughout the image, yielding consistent generation results. The bottom row shows contiguous block
pattern that concentrates generated tokens in the upper region, resulting in a diverse generation.

Covering more spatial locations indicates creating more information. Figure 3 compares the
generation results of two different sampling orders, including “checkerboard”, where the decoded
tokens are isolated and spatially uniformly distributed, and “contiguous block”, where the tokens
in the upper regions are generated. For each sampling order, we first decode the same 50% tokens,
and then decode the left 50% tokens with different random seeds. Interestingly, we find that the
seven images generated by “checkerboard” are almost identical, while the seven images generated
by “contiguous block” exhibit a significant difference, indicating that the content of images has been
almost fully decided when the generated tokens are spatially uniformly decided. Concretely, decoding
the tokens that cover most spatial locations has already “created” the main body of the image, while
generating the left tokens is more likely to be an image “reconstruction” which does not bring new
information and is much easier than “creation”.

Based on the two observations, we propose GtR (Generation-then-Reconstruction), which introduces
a two-stage checkerboard-style generation process. In the first stage, we randomly generate tokens in
the light blue positions in the checkerboard, which guarantees that the decoded tokens are not closely
spatially adjacent and can cover most spatial positions in the images. As a result, this stage “creates”
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the main semantic content of the image, and thus it is performed at a slower speed (e.g., generating
fewer tokens at each step). Then, in the second stage, since “reconstruction” is much easier than
“creation”, GtR introduces a highly parallel generation, which decodes all the left tokens in very few
steps with a high parallel ratio, which can even be performed by a single step, thus bringing extreme
acceleration without loss of generation quality.

Besides, the computation process of MAR includes not only the encoder and decoder, but also a
diffusion model which maps the latent of each decoded token into a continuous vector, which also
accounts for noticeable computation costs. The original MAR pays the same computation costs for
each token, while ignoring the fact that the token with great details and complex patterns is much
more difficult to generate. In this paper, we further propose Frequency-Weighted Token Selection
(FTS), a training-free strategy that allocates more diffusion steps to the tokens with more details. As
demonstrated in Figure 2, FTS applies a Fourier transformation to the latents of tokens, and then
identifies the tokens with larger high-frequency energy as the tokens with more details.

2 RELATED WORK

Next-Token Autoregressive Visual Generation Autoregressive models for visual generation must
map two-dimensional image structures into sequential one-dimensional token representations. Early
studies explored RGB pixel synthesis via row-by-row raster-scan (Chen et al., 2020; Gregor et al.,
2014; Van Den Oord et al., 2016; Van den Oord et al., 2016) methodology. VQGAN (Esser et al.,
2021) establishes the foundation by converting two-dimensional visual content into one-dimensional
discrete token sequences, while VQVAE-2 (Razavi et al., 2019) and RQ-Transformer (Lee et al., 2022)
extend it with hierarchical or stacked representations. Building on this foundation, LlamaGen (Sun
et al., 2024) scales the architecture to 3B parameters on the LLaMA (Touvron et al., 2023) framework,
achieving quality comparable to competitive diffusion models. Recent advances extend autoregressive
generation beyond fixed raster-scan orders. RAR (Yu et al., 2024), DAR (Xu et al., 2025), and D-
AR (Gao & Shou, 2025) introduce randomized, diagonal, or diffusion-inspired factorization schemes,
while FractalGen (Li et al., 2025) expand token representations through flexible entities and fractal
composition, thereby enhancing modeling flexibility and performance. Nevertheless, next-token-
prediction paradigms face a fundamental computational bottleneck: their strictly sequential nature
allows only one token per inference step, and the long token sequences of images make real-time
generation prohibitive.

Next-Scale Visual Generation Multi-scale generation offers an alternative to mitigate the com-
putational cost of token-by-token prediction. MUSE (Chang et al., 2023) hierarchically generates
low-resolution tokens with a base transformer and then SuperRes is used to generate high-resolution
ones. Hi-MAR (Zheng et al., 2025b) further uses a unified masked autoregressive model that first
predicts low-resolution token pivots to capture global structure, then conditions on them to generate
the full-resolution image. However, it introduces additional KV cache overhead and necessitates
expensive, unstable training with a specialized multi-scale loss. VAR (Tian et al., 2024) adopts
a decoder-only transformer configuration for next-scale prediction, which reduces computational
overhead and improves scalability. In addition, E-CAR (Yuan et al., 2024) and NFIG (Huang et al.,
2025) adopt a coarse-to-fine strategy by multistage generation in continuous token space and us-
ing frequency-aware decomposition respectively. CTF (Guo et al., 2025) mitigates quantization
redundancy by autoregressively predicting coarse labels and refining them in parallel. However, this
multi-scale tokenization methodology exhibits fundamental incompatibility with the 1D flat token
representation paradigm that has been extensively integrated into contemporary multimodal systems,
potentially limiting its broader applicability.

Next Set-of-Tokens Visual Generation Non-autoregressive generation methods have emerged as a
promising alternative to sequential token prediction. MaskGIT (Chang et al., 2022) pioneered the next
set-of-tokens prediction paradigm, leveraging BERT-style (Devlin et al., 2019) bidirectional attention
mechanisms and enabling parallel replacement of multiple masked tokens through stochastic sampling
or confidence-based selection strategies. MAR (Li et al., 2024) extends MaskGIT’s framework
by introducing diffusion-based loss functions to transform from discrete token representations to
continuous token spaces, thereby mitigating information loss. Building on this paradigm, ZipAR (He
et al., 2025a), NAR (He et al., 2025b), and Harmon (Wu et al., 2025a) exemplify efforts to relax
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strict sequential prediction, either through spatially localized or neighboring-token parallelism, or
by unifying visual understanding and generation within a shared masked autoregressive framework.
xAR (Ren et al., 2025a) predicts coarse-grained units (e.g., cell of tokens) per step, enabling parallel
intra-unit generation while maintaining inter-unit autoregressive dependencies. Although next set-of-
tokens prediction reduces sampling iterations, MAR remains limited in parallelization and requires
computation across all token positions, leading to suboptimal efficiency. Recent methods have
attempted to accelerate next set-of-tokens prediction. LazyMAR (Yan et al., 2025) accelerates MARs
through token and condition caching mechanisms, but it does not improve the sampling strategy
of MARs. DiSA (Zhao et al., 2025) proposes a diffusion step annealing strategy for the diffusion
head in MARs, but it overlooks the differences in modeling difficulty among different image regions.
Halton-MaskGIT (Besnier et al., 2025) introduces the Halton scheduler into MaskGIT, but its fixed
ordering reduces diversity in image generation.

3 METHOD

3.1 PRELIMINARY

Image Generation as Next-Token Prediction. With an image tokenizer, the input image
I ∈ RH×W×3 is then encoded into h × w tokens, where h = H/p, w = W/p, and p denotes
the downsampling ratio. These tokens are reshaped into a sequence x =

(
x1, x2, x3, . . . , xn

)
with n = h · w, arranged in raster scan order. The joint distribution is factorized as p(x) =∏n

i=1 p
(
xi | x1, x2, . . . , xi−1

)
, where p

(
xi | x1, x2, . . . , xi−1

)
represents the conditional distribu-

tion of token xi given previous tokens x1 to xi−1. However, raster-order prediction cannot capture
overall image structure early in generation, and sequential processing scales linearly with resolution.

Image Generation as Next-Set Prediction. To overcome the sequential bottleneck, next-set predic-
tion enables simultaneous generation of multiple tokens within each inference step. Let τ denote a
random permutation of [1, 2, . . . , n]. The joint distribution is decomposed into N prediction steps:

p(x1, ..., xn) =

N∏
k=1

p(Xk | X1, ..., Xk−1) (1)

where Xk = {xτi , xτi+1 , . . . , xτj} represents the k-th token subset under permutation τ , with
constraints

⋃N
k=1 X

k = {x1, . . . , xn} and Xi ∩Xj = ∅ for i ̸= j. MARs rewrite this formulation in
two parts: generating conditioning vectors zk = f(X1, . . . , Xk−1) via bidirectional attention, then
modeling p(Xk | zk) through diffusion, enabling higher-quality continuous-valued token generation.

Limitations of MARs. MARs exhibit two fundamental limitations: (1) Spatial correlation modeling:
Random permutation may simultaneously predict spatially adjacent tokens, which is more challenging
than predicting spatially separated tokens. (2) Violation of composition-to-detail paradigm: Humans
typically perceive and create visual content hierarchically, first establishing global structure then
refining local details. However, random token sampling violates this paradigm and may create blank
areas in later generation stages, degrading quality due to insufficient context.

3.2 GENERATION THEN RECONSTRUCTION

To address the limitations of MARs, we propose GtR (Generation-then-Reconstruction), which
introduces a two-stage checkerboard-style generation process that decomposes visual generation
into semantic creation followed by detail reconstruction. As illustrated in Figure 4, given an image
tokenized into h × w tokens, let i, j represent the row and column indices of each token position,
the generation stage randomly generates tokens where (i + j) mod 2 = 0 at a slower speed (e.g.,
generating fewer tokens at each masked autoregressive step) to establish the main semantic structure,
while the reconstruction stage subsequently generates the remaining tokens where (i+ j) mod 2 = 1
in very few steps with a high parallel ratio, which can even be performed by a single step to bring
extreme acceleration without loss of generation quality.
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1 
Step

timestep t

GtR 
(Generation Stage)

GtR 
(Reconstruction Stage)Raster Random

timestep t timestep t timestep t+1

tokens have not 
been decoded

tokens decoded
 in this step

tokens have 
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Figure 4: Comparison of different token sampling strategies. The proposed GtR formulates the
generation process as a two-stage checkerboard procedure: generation stage establishes global seman-
tic structure through spatially non-adjacent tokens at conservative speed, followed by reconstruction
stage completing remaining tokens within 1-2 steps through highly parallel generation.

Algorithm 1 Stage Partitioning

Require: resolution h×w, number of stages K, initial stack T and token setR = {(i, j) : 0 ≤ i <
h, 0 ≤ j < w}

1: for k = 1 to K − 1 do
2: Uk ← {(i, j) ∈ R : (i+ j) mod 2k = 2k−1} ▷ Extract tokens with remainder 2k−1

3: Push Uk onto stack T
4: R ← {(i, j) ∈ R : (i+ j) mod 2k = 0} ▷ Update remaining tokens with remainder 0
5: end for
6: PushR onto stack T
7: {Sk}Kk=1 ← Pop all elements from stack T in LIFO order
8: return stage partitions {Sk}Kk=1

However, the simple two-stage framework may suffer from delayed semantic structure establishment,
as randomly sampling tokens within the generation stage could concentrate generated tokens in
localized regions, thereby postponing the formation of global semantic guidance until later steps.
To address this limitation, we further subdivide the generation stage into K − 1 sub-stages, which
enables the first sub-stage to generate spatially uniform tokens distributed across the entire image in
fewer masked autoregressive steps, thereby establishing the fundamental semantic structure as soon
as possible and providing robust conditioning for subsequent generation.

Algorithm 1 partitions the complete token set into K disjoint subsets S = {S1,S2, . . . ,SK}, which
are allocated to the K − 1 sub-stages of the generation stage and the reconstruction stage, where⋃K

k=1 Sk = {x1, . . . , xn} and Si ∩ Sj = ∅ for i ̸= j. Algorithm 1 iteratively bisects the unassigned
token setR into two subsets at each iteration: one subset is allocated to a new sub-stage, while the
other becomes the updatedR for the subsequent iteration. This hierarchical decomposition ensures
that tokens within each subset are uniformly distributed throughout the image, effectively increasing
the spatial distance between simultaneously predicted tokens and reducing their interdependence. As
more tokens are generated, the fundamental semantic structure of the image becomes increasingly
established, providing stronger conditioning for subsequent token prediction and enabling later stages
k to achieve higher generation rates rk.

Tokens generated in later stages are conditioned on the tokens from all previous stages. A causal
dependency is formed between these stages. Consequently, the joint distribution of all tokens can be
reformulated as follows:

p(x1, . . . , xn) =

K∏
k=1

p(Sk | S1, . . . ,Sk−1) (2)

where p(Sk | S1, . . . ,Sk−1) represents the conditional distribution of tokens in stage k given
all tokens generated in the previous stages S1 through Sk−1. After initial structure generation,
the checkerboard pattern ensures that each ungenerated token is surrounded by generated tokens.
This forms strong causal dependencies where ungenerated tokens are directly conditioned on their
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neighboring generated tokens, which constrains the token distributions and enables the remaining
half of image tokens to be generated within as few as 1 to 2 masked autoregressive steps.

Intra-Stage Masked Generation. Within each stage k, we generate all tokens Sk through Mk

masked autoregressive steps, where Mk ≤ |Sk|. At each masked autoregressive step m within
stage k, we use next-set prediction to sample a subset of tokens Xk,m ⊆ Sk, conditioning on all
tokens from previous stages and the tokens already generated within the current stage. Formally, the
probability of generating tokens in stage k is decomposed as follows:

p(Sk | S<k) =

Mk∏
m=1

p(Xk,m | Xk,1, . . . , Xk,m−1,S<k) (3)

where S<k =
⋃k−1

i=1 Si represents all tokens generated in previous stages, and
⋃Mk

m=1 X
k,m = Sk with

Xk,i ∩Xk,j = ∅ for i ̸= j. The likelihood of the complete token sequence x = (x1, x2, x3, . . . , xn)
can be reformulated as follows:

p(x1, ..., xn) =

K∏
k=1

Mk∏
m=1

p(Xk,m | Xk,1, . . . , Xk,m−1,S<k) (4)

Equation 4 can be viewed as a reformulation of Equation 1. Our method still follows the next-
set prediction paradigm, differing only in sampling order. Because MARs are trained on random
permutations of all possible token orders, including the sampling order of GtR, our method can be
applied to any MAR models in a training-free manner.

Stage-Aware Diffusion Scheduling. The computational process of MARs includes not only the
encoder and decoder, but also a diffusion model for modeling the per-token probability distribution.
However, traditional MARs apply the same diffusion steps to each masked autoregressive step,
ignoring the changes in modeling complexity across different masked autoregressive steps. As our
first sub-stage of the generation stage establishes fundamental semantic structure through spatially
distributed tokens, subsequent generation is guided by more accumulated conditional information
and becomes easier. Therefore, we implement linearly decreasing diffusion steps from Tmax to Tmin
during the generation stage and set the diffusion steps to Trec throughout the reconstruction stage.

3.3 FREQUENCY-WEIGHTED TOKEN SELECTION

During the reconstruction stage, tokens exhibit heterogeneous prediction complexity, and tokens
corresponding to regions with complex and fine textures are difficult to accurately model with Trec
diffusion steps. To address this limitation, we propose Frequency-Weighted Token Selection (FTS)
that identifies structurally critical tokens and allocates additional diffusion steps accordingly.

Let zi ∈ RD denote the conditioning feature produced by the autoregressive model for token xi,
where D represents the feature dimensionality. To analyze the frequency characteristics of these
conditioning features, we apply the Discrete Fourier Transform to each token’s conditioning vector:
F
(
zi
)
(n) =

∑D−1
d=0 zi(d) · e−j 2πnd

D , n = 0, 1, . . . , ⌊D/2⌋ where zi(d) denotes the d-th element
of the conditioning feature. The amplitude spectrum is computed from the real and imaginary
components of the Fourier transform: A

(
zi
)
(n) =

[
R2

(
F
(
zi
)
(n)

)
+ I2

(
F
(
zi
)
(n)

)]1/2
, where

R(·) and I(·) represent the real and imaginary parts of the complex Fourier coefficients, respectively.

The importance score for each token is computed through weighted integration of its frequency
spectrum, where higher frequency components receive linearly increasing weights:

si =

⌊D/2⌋∑
n=1

A
(
zi
)
(n) ·

(
1 +

n

⌊D/2⌋

)
(5)

We rank all tokens by their importance scores si and assign Tdetail diffusion steps to the top β high-
frequency tokens during the reconstruction stage to model complex texture regions more accurately.
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GtR × 5.5

12% steps ×3.1

GtR × 3.7

25% steps ×2.4

Figure 5: Qualitative comparison between Generation then Reconstruction (GtR) and the accelera-
tion achieved through step reduction on MAR. GtR enables extreme acceleration while maintaining
generation quality, whereas step reduction results in significant visual degradation.

 Original ×1.0

 GtR ×3.3

Figure 6: Qualitative comparison of generation results between GtR and the original LightGen. GtR
achieved a 3.3× speedup while maintaining generation quality comparable to the original LightGen.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Implementation Details We evaluate our method on two generation tasks: (1) class-conditional
ImageNet generation using MAR (Li et al., 2024) variants (MAR-B/L/H with 208M/479M/943M
parameters) at 256 × 256 resolution, where images are tokenized into 256 tokens via KL-16 to-
kenizer (Rombach et al., 2022) with 100 diffusion steps following LazyMAR (Yan et al., 2025);
(2) text-to-image generation using 7B LightGen (Wu et al., 2025b) at 512× 512 resolution, where
images are decomposed into 1024 tokens via VAE encoder with 50 diffusion steps. Text prompts
are encoded through T5-XXL (Raffel et al., 2020). For GtR implementation, we use K = 3
stages for MAR with generation rates rk = {2.67, 10.67, 64} and K = 4 stages for LightGen with
rk = {16, 42.6, 85.3, 256}. Stage-aware diffusion scheduling employs linearly decreasing steps
from Tmax = 50 to Tmin = 20 during generation stages, with Trec = 20 during reconstruction. FTS
allocates Tdetail = 50 diffusion steps to the top β = 10% high-frequency tokens.

Evaluation Metrics For MAR, we generate 50,000 images across the 1,000 classes of ImageNet-1K
and evaluate image quality using FID (Heusel et al., 2017) and IS (Salimans et al., 2016) as standard
metrics. We measure computational efficiency through FLOPs, CPU latency, and GPU latency. For
LightGen, we use GenEval (Ghosh et al., 2023) to evaluate image generation quality.

4.2 CLASS-CONDITIONAL IMAGE GENERATION

We evaluate our method by comparing with the original MAR model, other MAR acceleration
methods (Yan et al., 2025; Zhao et al., 2025; Besnier et al., 2025), and state-of-the-art image
generation models (Zheng et al., 2025a; Besnier et al., 2025; Sun et al., 2024; Ren et al., 2025b; Li
et al., 2023; Peebles & Xie, 2023). As shown in Table 1, it can be observed that: (1) Compared to other

7
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Table 1: Model comparison results on ImageNet 256× 256 class-conditional generation. "MAR-B,
-L, -H" denote MAR’s base, large, and huge models. "64, 16" represent the number of decoding steps.

Method Inference Efficiency Generation Quality
Latency(GPU/s)↓ Latency(CPU/s)↓ FLOPs(T)↓ Speed↑ Param FID ↓ IS ↑

MAGE 1.60 12.60 4.19 1.00 307M 6.93 195.8
LDM-4 5.35 27.25 69.50 1.00 400M 3.60 247.7
DiT-XL/2 4.84 196.88 114.38 1.00 675M 2.27 278.2
LlamaGen-3B 1.65 1524.63 7.01 1.00 3.1B 3.05 222.3
Halton-MaskGIT 0.46 20.13 10.72 1.00 705M 4.17 263.0
Hita-2B - - - - 2B 2.59 281.9
FlowAR-H 0.51 60.27 38.43 1.00 1.9B 2.65 296.5

MAR-B (64) 0.26 27.83 14.49 1.00 208M 2.32 281.1

+Step=16 0.11−0.15 12.16−15.67 6.22−8.27 2.33 208M 4.10+1.78 247.5−33.6

+Halton 0.11−0.15 12.16−15.67 6.22−8.27 2.33 208M 3.37+1.05 257.1−24.0

+DiSA 0.09−0.17 8.78−19.05 4.82−9.67 3.01 208M 2.52+0.20 272.9−8.2

+LazyMAR 0.09−0.17 8.19−19.64 4.11−10.38 3.53 208M 2.64+0.32 276.0−5.1

+GtR (Ours) 0.07−0.19 7.18−20.65 3.87−10.62 3.74 208M 2.37+0.05 283.5+2.4

+Step=8 0.08−0.18 8.65−19.18 4.84−9.65 2.99 208M 13.12+10.80 180.9−100.2

+Halton 0.08−0.18 8.65−19.18 4.84−9.65 2.99 208M 9.44+7.12 204.6−76.5

+DiSA 0.06−0.20 6.52−21.31 3.46−11.03 4.19 208M 3.62+1.30 255.7−25.4

+LazyMAR 0.06−0.20 5.49−22.34 2.70−11.79 5.37 208M 4.37+2.05 241.9−39.2

+GtR (Ours) 0.05−0.21 4.30−23.53 2.29−12.20 6.33 208M 2.76+0.44 274.6−6.5

MAR-L (64) 0.48 55.62 32.75 1.00 479M 1.82 296.1

+Step=16 0.19−0.29 21.92−33.70 13.42−19.33 2.44 479M 4.32+2.50 247.4−48.7

+Halton 0.19−0.29 21.92−33.70 13.42−19.33 2.44 479M 3.24+1.42 261.1−35.0

+DiSA 0.16−0.32 18.39−37.23 11.03−21.72 2.97 479M 2.23+0.41 281.1−15.0

+LazyMAR 0.16−0.32 17.01−38.61 9.35−23.40 3.50 479M 2.11+0.29 284.4−11.7

+GtR (Ours) 0.13−0.35 14.98−40.64 8.85−23.90 3.71 479M 1.81−0.01 297.4+1.3

+Step=8 0.14−0.34 15.87−39.75 10.21−22.54 3.21 479M 16.11+14.29 165.0−131.1

+Halton 0.14−0.34 15.87−39.75 10.21−22.54 3.21 479M 14.16+12.34 155.4−140.7

+DiSA 0.12−0.36 13.19−42.43 7.85−24.90 4.17 479M 3.86+2.04 254.5−41.6

+LazyMAR 0.11−0.37 10.81−44.81 5.77−26.98 5.37 479M 4.07+2.25 247.9−48.2

+GtR (Ours) 0.08−0.40 8.75−46.87 5.18−27.57 6.32 479M 2.33+0.51 281.5−14.6

MAR-H (64) 0.81 104.66 64.52 1.00 943M 1.59 299.1

+Step=16 0.33−0.48 43.39−61.27 27.11−37.41 2.38 943M 4.49+2.90 242.9−56.2

+Halton 0.33−0.48 43.39−61.27 27.11−37.41 2.38 943M 3.18+1.59 261.7−37.4

+DiSA 0.27−0.54 33.72−70.94 21.59−42.93 2.99 943M 2.11+0.52 283.1−16.0

+LazyMAR 0.27−0.54 32.10−72.56 18.85−45.67 3.42 943M 1.94+0.35 284.1−15.0

+GtR (Ours) 0.22−0.59 27.93−76.73 17.34−47.18 3.72 943M 1.59+0.00 304.4+5.3

+Step=8 0.26−0.55 31.52−73.14 20.88−43.64 3.09 943M 17.66+16.07 158.0−141.1

+Halton 0.26−0.55 31.52−73.14 20.88−43.64 3.09 943M 11.85+10.26 191.2−107.9

+DiSA 0.19−0.62 24.10−80.56 15.44−49.08 4.18 943M 3.15+1.56 265.5−33.6

+LazyMAR 0.18−0.63 21.28−83.38 12.74−51.78 5.06 943M 4.06+2.47 249.3−49.8

+GtR (Ours) 0.15−0.66 19.98−84.68 10.27−54.25 6.28 943M 2.16+0.57 285.6−13.5

state-of-the-art image generation models, MAR-H + GtR maintains the lowest GPU latency while
achieving the best generation results. (2) Compared with the original MAR, our method achieves a
3.72× speedup while maintaining nearly identical generation quality. Additionally, both MAR-H +
GtR and MAR-L + GtR simultaneously surpass the original MAR’s smaller variants in both quality
and efficiency. (3) Our method outperforms other MAR acceleration methods (HaltonMAR, DiSA,
and LazyMAR) in both speedup and generation quality. Even at extreme acceleration ratios, while
other MAR acceleration methods exhibit significant degradation in generation quality, our method
maintains comparable visual fidelity as demonstrated in Figure 5.

4.3 TEXT-TO-IMAGE GENERATION

We evaluate the acceleration performance of GenEval at 512 × 512 resolution and compare it with
the original LightGen (Wu et al., 2025b) and other text-to-image Generation models (Rombach et al.,
2022; Podell et al., 2024). As shown in Table 2, GtR achieves higher acceleration ratios compared
to the original model and LazyMAR, while simultaneously delivering superior generation quality.
Figure 6 illustrates the results under a 3.3× acceleration setting with GtR, where the generated images
remain largely consistent with the original outputs.
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Table 2: Performance comparison in 512 × 512 on GenEval. GtR achieves 3.82× speedup while
maintaining superior generation quality compared to baseline LightGen.

Methods Inference Efficiency Generation Quality
Latency(GPU/s)↓ Speed↑ Param↓ Single Obj.↑ Two Obj.↑ Colors↑ Counting↑ Position↑ Color Attri.↑ Overall↑

SDv1.5 0.97 1.00 0.9B 0.96 0.38 0.77 0.37 0.03 0.05 0.42
SDv2.1 0.87 1.00 0.9B 0.91 0.24 0.69 0.14 0.03 0.06 0.34
SDXL 1.46 1.00 2.6B 0.63 0.23 0.51 0.12 0.04 0.05 0.26
Llamagen 3.13 1.00 0.7B 0.19 0.16 0.10 0.03 0.09 0.01 0.10

LightGen, 32 1.03 1.00 3.4B 0.99 0.60 0.83 0.39 0.15 0.33 0.55

+Step=16 0.75−0.28 1.37 3.4B 0.99+0.00 0.59−0.01 0.85+0.02 0.41+0.02 0.15+0.00 0.30−0.03 0.55+0.00

+LazyMAR 0.51−0.52 2.00 3.4B 0.99+0.00 0.59−0.01 0.82−0.01 0.40+0.01 0.16+0.01 0.28−0.05 0.54−0.01

+GtR (Ours) 0.31−0.72 3.32 3.4B 0.99+0.00 0.58−0.02 0.86+0.03 0.41+0.02 0.14−0.01 0.35+0.02 0.56+0.01

+Step=12 0.68−0.35 1.52 3.4B 0.99+0.00 0.59−0.01 0.88+0.05 0.36−0.03 0.12−0.03 0.25−0.08 0.53−0.02

+LazyMAR 0.43−0.60 2.40 3.4B 0.98−0.01 0.56−0.04 0.85+0.02 0.37−0.02 0.13−0.02 0.25−0.08 0.53−0.02

+GtR (Ours) 0.27−0.76 3.82 3.4B 1.00+0.01 0.60+0.00 0.84+0.01 0.39+0.00 0.14−0.01 0.35+0.02 0.55+0.00

Table 3: Ablation studies for GtR and FTS effectiveness on class-conditional generation. GtR*
applies GtR to MAR’s encoder-decoder, GtR† applies GtR to MAR’s diffusion.

GtR* GtR† FTS Latency Latency FLOPs Speed↑ FID↓ IS↑(GPU/s)↓ (CPU/s)↓ (T)↓
✗ ✗ ✗ 0.59−0.22 76.05−28.61 45.13−19.39 1.43 1.64+0.05 297.3−1.8

✓ ✗ ✗ 0.29−0.52 35.27−69.39 22.19−42.33 2.90 1.70+0.11 300.1+1.0

✗ ✓ ✗ 0.43−0.38 53.58−51.08 33.92−30.60 1.90 1.59+0.00 300.4+1.3

✓ ✓ ✗ 0.22−0.59 27.02−77.64 17.28−47.24 3.73 1.65+0.06 303.4+4.3

✓ ✓ ✓ 0.22−0.59 27.93−76.73 17.34−47.18 3.72 1.59+0.00 304.4+5.3

Table 4: Ablation studies of high-frequency pivot token selection
methods in Frequency-Weighted Token Selection (FTS). Evalua-
tion on ImageNet 256×256 during the reconstruction stage.

Method FLOPs(T)↓ Speed↑ FID↓ IS↑
Origin 64.52 1.00 1.59 299.1

+Random 17.34−47.18 3.72 1.64+0.05 304.5+5.4

+Low-Freq. 17.34−47.18 3.72 1.64+0.05 301.5+2.4

+Full-Enhanced 18.04−46.48 3.58 1.65+0.06 301.6+2.5

+High-Freq. (Ours) 17.34−47.18 3.72 1.59+0.00 304.4+5.3

Table 5: Ablation studies of
four token sampling strategies.

Method FID↓ IS↑
Raster 24.61 120.6

Subsample 5.19 247.4

Random 1.82 288.8

GtR (Ours) 1.59 304.4

4.4 ABLATION STUDY

Effectiveness of GtR and FTS Table 3 shows the ablation study of the proposed GtR and FTS. It is
observed that: (1) When applied individually to either the encoder-decoder or diffusion components
of MAR, GtR consistently delivers significant computational gains while maintaining generation
quality. (2) When GtR is applied simultaneously to both the encoder-decoder and diffusion, we
achieve a 3.73× speedup with only a marginal increase in FID of 0.06 compared to the original MAR.
(3) When FTS is further applied, the best results are achieved.

Token Selection Strategies As shown in Table 4, we evaluate four token selection strategies
during the reconstruction stage: Random: random token selection; Full-Enhanced: apply enhanced
diffusion steps to all tokens in the reconstruction stage; High-Freq.: top 10% tokens with highest
importance scores si; Low-Freq.: top 10% tokens with lowest importance scores si. Full-Enhanced
and Low-Freq. both underperform Random, indicating that low-frequency tokens are unsuitable for
enhanced diffusion sampling. High-Freq. applies enhanced diffusion steps to fine-grained detail
tokens, enabling the capture of complex local patterns and textural nuances.

Impact of Sampling Order Table 5 shows the ablation study of different token sampling orders
using MAR-H: Raster (top-left to bottom-right), Subsample (4-quadrant raster), Random (permuta-
tion), and GtR (Generation-then-Reconstruction). Raster performs worst because predicted tokens are
spatially adjacent. Subsample outperforms Raster by establishing global structure through quadrant
distribution but still suffers from adjacent token prediction within quadrants. Random achieves better
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performance by mitigating spatial adjacency but may create large blank regions in later generation
stages, while GtR systematically addresses these limitations for optimal performance.

5 CONCLUSION

In this paper, we introduced Generation then Reconstruction (GtR), a training-free hierarchical
sampling strategy that significantly accelerates MARs by decomposing generation into structure
creation and detail reconstruction stages. By exploiting the observation that spatially adjacent tokens
tend to influence each other and that "reconstruction" is considerably easier than "creation", GtR
brings significant acceleration without loss of generation quality. We further proposed Frequency-
Weighted Token Selection (FTS) to allocate computational resources based on token complexity.
Through comprehensive experiments on ImageNet and text-to-image generation, we demonstrated
3.72× acceleration while maintaining comparable quality, establishing a practical framework for
efficient parallel visual generation that advances the applicability of MARs in real-world scenarios.
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A APPENDIX

A.1 USE OF LLMS

During the preparation of this manuscript, we used Large Language Models (LLMs) as auxiliary tools
for language editing and presentation enhancement. These tools did not contribute to the research
conception, methodology, experimental design, data analysis, or any scientific conclusions presented
in this work.

Language editing. We used LLMs to assist with grammatical corrections and sentence clarity
improvements. LLM suggestions were carefully reviewed, and we made all final decisions regarding
text modifications.

Presentation formatting. LLMs provided suggestions for table and figure formatting to enhance
visual presentation. All scientific content and data remained unchanged.

Notation consistency. LLMs occasionally assisted with ensuring consistency in mathematical
notation and formatting throughout the manuscript.

We take full responsibility for all content in this manuscript. The research contributions, experimental
work, and scientific analysis are entirely our own intellectual work. LLMs served solely as editing
assistance tools and had no involvement in the research process or content generation.

A.2 INFERENCE STEPS ALLOCATION DETAILS

Formal Definition of Step Allocation. Let N denote the total number of tokens and Ttotal denote
the total number of masked autoregressive steps. GtR divides the generation process into two main
stages: a generation stage comprising Ttotal − 2 steps, followed by a reconstruction stage comprising
2 steps. For step t (where t ∈ [0, Ttotal − 1]), the number of remaining unmasked tokens at the end of
step t is defined as:

R(t) =



N − 1, if t = 0

min
(
R(t− 1), N

2 +
(
N
2 − 1

) (
1−

(
t

Ttotal−2

)α))
, if 0 < t < Ttotal − 2

N
4 , if t = Ttotal − 2

0, if t = Ttotal − 1

(6)

where α controls the generation rate decay during the generation stage. We set α = 2.7 consistently
across all models (MAR and LightGen). Given this formulation, the number of tokens generated
at each step can be computed as R(t − 1) − R(t). By combining this per-step token count with
the stage-wise token allocation specified in Algorithm 1, we can derive the specific configurations
described in Section 4.1.

Configuration Examples. For MAR with N = 256 tokens and Ttotal = 32 steps using K = 3
stages, the allocation is: Generation Stage 1 uses 24 steps generating 64 tokens (2.67 tokens/step),
Generation Stage 2 uses 6 steps generating 64 tokens (10.67 tokens/step), and Reconstruction Stage
uses 2 steps generating 128 tokens (64.00 tokens/step). For LightGen with N = 1024 tokens and
Ttotal = 16 steps using K = 4 stages, Generation Stages 1-3 use 8, 3, 3 steps generating 128, 128,
256 tokens respectively, and Reconstruction Stage uses 2 steps generating 512 tokens.

These configurations demonstrate how GtR adaptively allocates steps across stages, with generation
rate increasing progressively as more conditioning information accumulates, enabling efficient
acceleration while maintaining generation quality.

A.3 ABLATION STUDY ON HYPERPARAMETERS AND ROBUSTNESS

We conduct comprehensive ablation studies to evaluate the sensitivity of GtR to key hyperparameters
and demonstrate its robustness across different configurations.
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Figure 7: Sensitivity analysis for FTS per-
centile β on MAR-H at 32 steps on ImageNet
256×256. (a) FID vs. β. (b) IS vs. β. Perfor-
mance remains stable when β ranges from 0.1 to
0.5, but degrades when β exceeds 0.5.
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Figure 8: FID vs. Speed trade-off curves on
MAR-H at 32 steps on ImageNet 256×256. (a)
Varying initial diffusion steps Tmax. (b) Varying
generation stage steps with reconstruction stage
fixed at 1 or 2 steps.

FTS percentile β. Figure 7 presents the sensitivity analysis for the FTS percentile β on MAR-H at
32 steps. Performance remains relatively stable when β ranges from 0.1 to 0.5, with minimal FID
fluctuations. However, when β exceeds 0.5, generation quality begins to degrade. This behavior
indicates that allocating enhanced diffusion steps to too many tokens becomes suboptimal, as most
tokens in the reconstruction stage benefit from strong conditioning information from surrounding
generated tokens and do not require additional modeling capacity. Based on these results, we set
β = 0.1 as the default value, ensuring enhanced diffusion steps are allocated only to tokens with
complex high-frequency content.
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Figure 9: Impact of sampling steps on MAR
generation quality on ImageNet 256×256. (a)
FID vs. Sampling Steps. (b) IS vs. Sampling
Steps. GtR consistently achieves superior gener-
ation quality compared to original MAR across
all sampling steps.

Trade-off curves for varying configurations. Figure 8 presents comprehensive trade-off analyses.
Figure 8(a) shows the FID vs. Speed curves when varying initial diffusion steps Tmax. GtR out-
performs the original MAR for both Tmax = 50 and Tmax = 100 settings across all speedup ratios.
Figure 8(b) presents the trade-off when varying generation stage steps while fixing the reconstruction
stage to either 1 or 2 steps. Regardless of the reconstruction stage configuration, GtR consistently
outperforms the original MAR. Notably, when the speedup ratio exceeds 3.2×, the original MAR
exhibits severe quality degradation, whereas GtR maintains stable generation quality even at 8×
speedup, validating the robustness of our two-stage design.

Impact of sampling steps. Figure 9 shows the FID and IS curves as a function of sampling steps
for both the original MAR and GtR on ImageNet 256 × 256. GtR consistently achieves superior
generation quality compared to the original MAR across all sampling steps, with the advantage
becoming more pronounced as the number of steps decreases. At very low step counts where the
original MAR exhibits severe quality degradation, GtR maintains stable performance, demonstrating
the effectiveness of our checkerboard partition strategy in preserving generation quality under extreme
acceleration settings.

Checkerboard pattern selection. We evaluate the impact of checkerboard pattern selection by
comparing the two complementary partitions: (i + j) mod 2 = 0 versus (i + j) mod 2 = 1. As
shown in Table 6, both patterns yield comparable generation quality on MAR-H at 32 steps, with
marginal differences in FID (1.59 vs 1.60) and IS (304.4 vs 302.8). This validates the robustness
of GtR’s checkerboard reconstruction strategy regardless of which specific pattern is selected, as
both patterns maintain equivalent spatial separation properties that are critical for minimizing token
dependencies during generation.
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Table 6: Ablation study on checkerboard pattern selection for MAR-H at 32 steps on ImageNet
256×256.

Pattern FID↓ IS↑
(i+ j) mod 2 = 0 1.59 304.4
(i+ j) mod 2 = 1 1.60 302.8

These ablation studies demonstrate that GtR maintains stable performance across reasonable hyper-
parameter ranges, enabling straightforward application to different MAR models without extensive
hyperparameter tuning.

A.4 THEORETICAL JUSTIFICATION FOR THE GTR CHECKERBOARD SCHEDULE

The theoretical foundation of the Generation then Reconstruction (GtR) strategy lies in the optimiza-
tion of the sampling process for Masked Autoregressive (MAR) models by minimizing approximation
errors. MAR models inherently approximate the true joint distribution of tokens P (Xs|X<s) at
step s by utilizing the product of their marginal distributions, P̂ (Xs|X<s) =

∏
i P (Xi

s|X<s). The
error introduced by this factorization (which assumes conditional independence) is quantified by the
Kullback-Leibler divergence between the true distribution and the approximation. This defines the
Conditional Mutual Information (MI):

MI(Xs|X<s) = DKL(P (Xs|X<s) || P̂ (Xs|X<s)) =
∑
i

H(Xi
s|X<s)−H(Xs|X<s) (7)

An optimal scheduler minimizes the aggregated MI across all steps, thereby reducing cumulative
sampling errors. GtR achieves this via a two-stage checkerboard partition, decomposing the token set
V into a Generation stage (SG) and a Reconstruction stage (SR).

Stage 1 Optimization: Minimizing Intra-Set MI. The objective for the Generation stage is to mini-
mize MI(SG). This requires minimizing the statistical dependencies among the tokens in SG. Given
the principle of spatial correlation decay in natural images, where pairwise MI, I(Xi;Xj), generally
decreases with spatial distance d(i, j), minimization of MI(SG) is approached by maximizing the
spatial separation of tokens.

We model the token lattice as a grid graph G = (V,E), where edges represent the dominant first-
order dependencies (highest pairwise MI). To minimize MI(SG) while maximizing parallelism
(|SG| = |V |/2), we seek a subset of vertices such that the strongest dependencies (edges) are severed.
This is formalized as the Maximum Independent Set (MIS) problem. Since the grid graph is bipartite,
the checkerboard partition (e.g., tokens (i, j) where (i+ j) mod 2 = 0) uniquely constitutes the MIS.
By definition, no two vertices in the MIS are adjacent. This configuration optimally eliminates the
dominant MI terms, providing a rigorous justification for the checkerboard pattern in the Generation
stage.

Stage 2 Optimization: Minimizing Conditional Entropy. The Reconstruction stage aims for
maximal acceleration, which is contingent upon minimizing the complexity of the prediction task,
measured by the Conditional Entropy H(SR|SG). This is equivalent to maximizing the inter-stage
Mutual Information I(SG;SR).

We analyze this under the framework of Markov Random Fields (MRF). Assuming the image lattice
exhibits the local Markov property, a token Xi is conditionally independent of the rest of the image
given its Markov Blanket N(i) (its immediate neighbors):

P (Xi|V \ {Xi}) = P (Xi|N(i)) (8)

The checkerboard partition possesses a critical structural property: for every token Xi ∈ SR, its entire
Markov Blanket is observed in the conditioning set, i.e., N(i) ⊂ SG. This configuration minimizes
the uncertainty of Xi, as H(Xi|SG) = H(Xi|N(i)). By providing the strongest possible local
conditioning, the total Conditional Entropy H(SR|SG) is drastically reduced. The task simplifies to

3



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

highly constrained local interpolation, enabling rapid parallel generation without significant loss of
fidelity.
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