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Abstract
Flow matching models have emerged as a power-
ful method for generative modeling on domains
like images or videos, and even on irregular or
unstructured data like 3D point clouds or even
protein structures. These models are commonly
trained in two stages: first, a data compressor
is trained, and in a subsequent training stage a
flow matching generative model is trained in the
latent space of the data compressor. This two-
stage paradigm sets obstacles for unifying models
across data domains, as hand-crafted compressors
architectures are used for different data modalities.
To this end, we introduce INRFlow, a domain-
agnostic approach to learn flow matching trans-
formers directly in ambient space. Drawing inspi-
ration from INRs, we introduce a conditionally
independent point-wise training objective that en-
ables INRFlow to make predictions continuously
in coordinate space. Our empirical results demon-
strate that INRFlow effectively handles different
data modalities such as images, 3D point clouds
and protein structure data, achieving strong per-
formance in different domains and outperforming
comparable approaches. INRFlow is a promis-
ing step towards domain-agnostic flow matching
generative models that can be trivially adopted in
different data domains.

1. Introduction
Recent advances in generative modeling have enabled learn-
ing complex data distributions by combining both powerful
architectures and training objectives. In particular, state-of-
the-art approaches for image (Esser et al., 2024), video (Dai
et al., 2023) or 3D point cloud (Vahdat et al., 2022) gener-
ation are based on the concept of iteratively transforming
data into Gaussian noise. Diffusion models were originally
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proposed following this idea and pushing the quality of
generated samples in many different domains, including
images (Dai et al., 2023; Rombach et al., 2022; Preechakul
et al., 2022), 3D point clouds (Luo & Hu, 2021), graphs
(Hoogeboom et al., 2022) and video (Ho et al., 2022a).
More recently, flow matching (Lipman et al., 2023) and
stochastic interpolants (Ma et al., 2024) have been proposed
as generalized formulations of the noising process, mov-
ing from stochastic gaussian diffusion processes to general
paths connecting a base (e.g. Gaussian) and a target (e.g.
data) distribution.

In practice, these iterative refinement approaches are com-
monly applied in a latent space obtained from a pre-trained
compressor model. Thus, the training recipe consists of
two independent training stages: compressor (auto-encoder)
training and subsequent generative modeling in latent space.
General purpose transformer architectures have been used
in the generative modeling step in latent space (Peebles &
Xie, 2023; Ma et al., 2024; Esser et al., 2024). However, the
first stage compressor uses architectures that are specific to
the data domain, requiring hand-crafted inductive biases (i.e.
ConvNets for image data (Rombach et al., 2022), PointNet
for point clouds (Vahdat et al., 2022), Evoformer for protein
structures (Jumper et al., 2021)).

We see this as one of the core issues preventing the ML com-
munity to develop truly domain-agnostic generative models
that can be applied to different data domains in a trivial man-
ner. Our goal in this paper is to provide a powerful single
training stage approach that is domain-agnostic and simple
to implement in practice, thus dispensing with the complex-
ities of two-stage training recipes and enabling modeling
of different data modalities directly in ambient (i.e. data)
space.

It is worth noting that training diffusion or flow matching
models in ambient space is indeed possible when using do-
main specific architecture designs and training recipes. In
the image domain, approaches have exploited its dense na-
ture and applied cascaded U-Nets (Ho et al., 2021; 2022b),
joint training of U-Nets at multiple resolutions (Gu et al.,
2023), multi-scale losses (Hoogeboom et al., 2023) or U-Net
transformer hybrids architectures (Crowson et al., 2024), ob-
taining strong results. However, developing strong domain-
agnostic models, using general purposes architectures that

1



INRFlow: Flow Matching for INRs in Ambient Space

Figure 1. (a) High level overview of INRFlow using the image domain as an example. Our model can be interpreted as an encoder-decoder
model where the decoder makes predictions independently for each coordinate-value pair given zft . For different data domains, the
coordinate and value dimensionality changes, but the model is kept the same. (b) Samples generated by INRFlow trained on ImageNet
256×256. (c) Image-to-3D point clouds generated by training INRFlow on Objaverse (Deitke et al., 2023). (d) Protein structures generated
by INRFlow trained on SwissProt (Boeckmann et al., 2003). GT protein structures are depicted in green while the generated structures by
INRFlow are show in orange.

can be applied across different data domains remains an
important open problem.

In this paper, we answer a three part question: Can we
learn flow matching models in ambient space, in a single
training stage and using a domain agnostic architecture?
Our goal is to unify different data domains under the same
training recipe. To achieve this, we introduce INRFlow
(INRFlow), see Fig. 1(a). INRFlow makes progress towards
the goal of unifying flow matching generative modeling
across data domains. Drawing inspiration from INRs, we
formulate a conditionally independent point-wise training
objective that enables training directly in ambient space
and can be densely (e.g. continuously) evaluated during
inference. In the image domain, this means that INRFlow
models the probability of a pixel value given its coordinate
(i.e. the probabilistic extension of an INR), allowing to
generate images at different resolution than the one used
during training (see Fig. 4(a)). We show generated samples
from INRFlow trained on ImageNet-256 in Fig. 1(b), image-
to-3D on Objaverse in Fig. 1(c) and protein structures on
SwissProt Fig. 1(d) (see additional samples in Fig. 9, 12,

13). Our contributions are summarized as follows:

• We propose INRFlow, a flow matching generative trans-
former that works on ambient space to enable single
stage generative modeling on different data domains.

• Our results show that INRFlow, though domain-
agnostic, achieves competitive performance on image
and 3D point cloud generation compared with strong
domain-specific baselines.

• Our point-wise training objective allows for efficient
training via sub-sampling dense domains like images
while also enabling resolution changes at inference
time.

2. Related Work
Diffusion models have been the major catalyzer of progress
in generative modeling, these approaches learn to reverse
a forward process that gradually adds Gaussian noise to
corrupt data samples (Ho et al., 2020). Diffusion models
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are notable for their simple and robust training objective.
Extensive research has explored various formulations of the
forward and backward processes (Song et al., 2021; Ris-
sanen et al., 2022; Bansal et al., 2022), particularly in the
image domain. In addition, different denoising networks
have been proposed for different data domains like images
(Nichol & Dhariwal, 2021), videos (Ho et al., 2022a), and
geometric data (Luo & Hu, 2021). More recently, flow
matching (Liu et al., 2023; Lipman et al., 2023) and stochas-
tic interpolants (Ma et al., 2024) have emerged as flexible
formulations that generalized Gaussian diffusion paths, al-
lowing to define different paths to connect a base and a
target distribution. These types of models have shown in-
credible results in the image domain (Ma et al., 2024; Esser
et al., 2024) when coupled with transformer architectures
(Vaswani et al., 2017) to model distributions in latent space
learnt by data compressors (Peebles & Xie, 2023; Ma et al.,
2024; Rombach et al., 2022; Vahdat et al., 2022; Zheng
et al., 2023; Gao et al., 2023). Note that these data com-
pressors use domain specific architectures with hand-crafted
inductive biases.

In an attempt to unify generative modeling across various
data domains, continuous data representations (also referred
to as implicit neural representation, neural fields or neural
operators) have shown potential in different approaches:
From Data to Functa (Functa) (Dupont et al., 2022a), Gen-
erative Manifold Learning (GEM) (Du et al., 2021a), and
Generative Adversarial Stochastic Process (GASP) (Dupont
et al., 2022b) have studied the problem of generating contin-
uous representations of data. More recently Infinite Diffu-
sion (Bond-Taylor & Willcocks, 2023) and PolyINR (Singh
et al., 2023) have shown great results in the image domain
by modeling images as continuous functions. However, both
of these approaches make strong assumptions about image
data. In particular, (Bond-Taylor & Willcocks, 2023) inter-
polates sparse pixels to an euclidean grid to then process it
with a U-Net. On the other hand, (Singh et al., 2023) uses a
patching and 2D convolution in the discriminator. Our ap-
proach also relates to DPF (Zhuang et al., 2023), a diffusion
model that acts on function coordinates and can be applied
in different data domains on a grid at low resolutions (i.e.
64×64). Our approach is able to deal with higher resolu-
tion functions (e.g. 256x256 vs. 64x64 resolution images)
on large scale datasets like ImageNet, while also tackling
unstructured data domains that do not live on an Euclidean
grid (e.g. like 3D point clouds and protein structures).

3. Method
3.1. Data as Continuous Coordinate → Value Maps

We interpret our empirical data distribution q to be com-
posed of maps f ∼ q(f). These maps take coordinates x
as input to values y as output. For images, maps are defined

from 2D pixel coordinates x ∈ R2 to corresponding RGB
values y ∈ R3, thus f : R2 → R3, where each image is a
different map. For 3D point clouds, f can be interpreted
as a deformation that maps coordinates from a fixed base
configuration in 3D space to a deformation value also in
3D space, f : R3 → R3, as in the image case, each 3D
point cloud corresponds to a different deformation map f .
For ease of notation, we define coordinates x and values y
of any given map f as xf and yf , respectively. Fig. 1(a)
shows an example of such maps in the image domain.

In practice, analytical forms for these maps f are unknown.
In addition, different from previous approaches (Dupont
et al., 2022a; Du et al., 2021a), we do not fit separate INRs
to each data sample via reconstruction, since that would
involve a separate training stage fitting an MLP for each
map (Dupont et al., 2022a; Bauer et al., 2023; Du et al.,
2021a). As a result, we assume we are only given sets of
corresponding coordinate and value pairs resulting from
observing these maps at a particular sampling rate (e.g. at a
particular resolution in the image case). In the following, we
develop an end-to-end approach that can directly take these
coordinate-value sets as training data and train a model that
extends INRs to the probabilistic setting.

3.2. Flow Matching and Stochastic Interpolants

We consider generative models that learn to reverse a time-
dependent forward process that turns data samples (i.e. maps
f in our case) f ∼ q(f) into noise ϵ ∼ N (0, I).

ft = αtf + σtϵ (1)

Both flow matching (Lipman et al., 2023) and stochastic
interpolant (Ma et al., 2024) formulations build this forward
process in Eq. 1 so that it interpolates exactly between data
samples f at time t = 0 and ϵ at time t = 1, with t ∈ [0, 1].
In particular, p1(f) ∼ N (0, I) and p0(f) ≈ q(f). In this
case, the marginal probability distribution pt(f) of f is
equivalent to the distribution of the probability flow ODE
with the following velocity field (Ma et al., 2024):

dtft = ut(ft)dt (2)

where the velocity field is given by the following conditional
expectation,

ut(f) = E[dtft|ft = f ] =

= dtαtE[f0|ft = f ] + dtσtE[ϵ|ft = f ]. (3)

Under this formulation, samples f0 ∼ p0(f) are gener-
ated by solving the probability flow ODE in Eq. 2 back-
wards in time (e.g. . flowing from t = 1 to t = 0), where
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p0(f) ≈ q(f). Note that both the flow matching (Lipman
et al., 2023) and stochastic interpolant (Ma et al., 2024)
formulations decouple the time-dependent process formu-
lation from the specific choice of parameters αt and σt,
allowing for more flexibility. Throughout the presentation
of our method we will assume a rectified flow (Liu et al.,
2023; Lipman et al., 2023) or linear interpolant path (Ma
et al., 2024) between noise and data, which define a straight
path to connect data and noise: ft = (1− t)f0 + tϵ. Note
that our framework for learning flow matching models for
coordinate-value sets can be used with any path definition.
Compared with diffusion models (Ho et al., 2020), linear
flow matching objectives result in better training stability
and more modeling flexibility (Ma et al., 2024; Esser et al.,
2024) which we observed in our early experiments.

3.3. INRFlow

We now turn to the task of formulating a flow matching
training objective for data distributions of maps f . We
recall that in practice we do not have access to an analytical
or parametric form for these maps f (e.g. we do not requite
to pretrain INRs for each training sample), and we are only
given sets of corresponding coordinate xf and value yf

pairs resulting from observing the mapping at a particular
rate. As a result, we need to formulate a training objective
that can take these sets of coordinate-value as training data.

In order to achieve this, we first observe that the target ve-
locity field ut(ft)dt can be decomposed across both the
domain and co-domain of ft, resulting in a point-wise ve-
locity field ut(xft ,yft)dt, defined for corresponding coor-
dinate and value pairs of ft. As an illustrative example in
the image domain, this means that the target velocity field
can be independently evaluated for any pixel coordinate xft

with corresponding value yft , so that ut(xft ,yft) ∈ R3.
Note that one can always decompose target velocity fields
in this way since the time-dependent forward process in Eq.
1 aggregates data and noise independently (e.g. point-wise)
across the domain of f . Again, using the image domain as
an example, the time-dependent forward process of a pixel
at coordinate xf is not dependent on other pixel positions
or values.

Our goal now is to formulate a training objective to match
this point-wise independent velocity field. We want our neu-
ral network vθ parametrizing the velocity field to be able to
independently predict a velocity for any given coordinate
and value pair xft and yft . However, this point-wise in-
dependent prediction is futile without access to additional
contextual conditioning information about the underlying
function ft at time t. This is because even if the forward
process is point-wise independent, real data exhibits strong
dependencies across the domain f that need to be captured
by the model. For example, in the image domain, pixels

are not independent from each other and natural images
show strong both short and long spatial dependencies across
pixels. In order to solve this, we introduce a latent variable
zft that encodes contextual information from a set of given
coordinate and value pairs of ft. This contextual latent vari-
able allows us to formulate the learnt velocity field to be
conditionally independent for coordinate-value pairs given
zft . The final point-wise conditionally independent CFM
loss, which we denote as CICFM loss is defined as:

Et∼U [0,1],f∼q(f)||vθ(xft ,yft , t|zft)− ut(xf ,yf |ϵ)||22,
(4)

where the target velocity field ut(x,y|ϵ) is defined as a
rectified flow (Liu et al., 2023; Lipman et al., 2023; Ma
et al., 2024): ut(xf ,yf |ϵ) =

ϵ−yft

1−t .

One of the core challenges of learning this type of generative
models is obtaining a latent variable zft that effectively
captures intricate dependencies across the domain of the
function, specially for high resolution stimuli like images.
In particular, the architectural design decisions are extremely
important to ensure that zft does not become a bottleneck
during training. In the following we review our proposed
architecture.

3.4. Network Architecture

We base our model on the general PerceiverIO design (Jae-
gle et al., 2022), Fig. 2 illustrates the architectural pipeline
of INRFlow. At a high level, our encoder network takes a
set of coordinate-value pairs and encodes them to learnable
latents through cross-attention. These latents are then up-
dated through several self-attention blocks to provide the
final latents zft ∈ RL×D . To decode the velocity field for
a given coordinate-value pair we perform cross attention
to zft , generating the final point-wise prediction for the
velocity field vθ(xft ,yft , t|zft).

The encoder of a vanilla PerceiverIO relies solely on cross-
attention to the latents zft ∈ RL×D to learn spatial connec-
tivity patterns between input and output elements, which
we found to introduce a strong bottleneck during training.
To ameliorate this, we make a key modifications to boost
the performance. Firstly, our encoder utilizes spatial aware
latents where each latent is assigned a “pseudo” coordi-
nate. Coordinate-value pairs are assigned to latents based
on their distances on coordinate space. During encoding,
coordinate-value pairs interact with their assigned latents
through cross-attention, this means that each of the L latents
only attends to a set of neighboring coordinate-value pairs.
Latent vectors are then updated using several self-attention
blocks. These changes in the encoder allow the model to
effectively utilize spatial information while also saving com-
pute when encoding large coordinate-value sets on ambient
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Figure 2. Architecture of our proposed INRFlow for different data domains including images and 3D point clouds. Note that models
are trained for each data domain separately. Each spatial aware latent takes in a subset of neighboring context coordinate-value sets in
coordinate space. The latents are then updated through self-attention. Decoded coordinate-value pairs cross attend to the updated latents
zft to decode the corresponding velocity.

space.

4. Experiments
We evaluate INRFlow on two challenging problems: image
generation (FFHQ-256 (Karras et al., 2019), LSUN-Church-
256 (Yu et al., 2015), ImageNet-128/256 (Russakovsky
et al., 2015)), image-to-3D point cloud generation (Obja-
verse (Deitke et al., 2023)) and protein folding (SwissProt
(Boeckmann et al., 2003)). Note that we use the same train-
ing recipe for all tasks, adapted for changes in coordinate-
value pair dimensions in different domains. See App. A for
more implementation details and training settings.

4.1. Image Generation

Given that INRFlow is an probabilistic extension of INRs
we compare it with other generative models of the same
type, namely approaches that operate in continuous func-
tion spaces. Tab. 1 shows a comparison of different image
domain specific, as well as, function space models (e.g.
approaches that model infinite-dimensional signals). INR-
Flow surpasses other generative models in function space
on both FFHQ (Karras et al., 2019) and LSUN-Church (Yu
et al., 2015) at resolution 256×256. Compared with genera-
tive models designed specifically for images, INRFlow also
achieves comparable or better performance. When scaling
up the model size, INRFlow-L demonstrates better perfor-
mance than all the baselines on FFHQ-256 and Church-256,
indicating that INRFlow can benefit from increasing model
sizes.

We also evaluate the performance of INRFlow on large
scale settings previously untapped for domain agnostic ap-

Model FFHQ-256 Church-256

Domain specific models
CIPS (Anokhin et al., 2021) 5.29 10.80
StyleSwin (Zhang et al., 2022) 3.25 8.28
UT (Bond-Taylor et al., 2022) 3.05 5.52
StyleGAN2 (Karras et al., 2020) 2.35 6.21

Function space models
GEM (Du et al., 2021b) 35.62 87.57
GASP (Dupont et al., 2022c) 24.37 37.46
∞-Diff (Bond-Taylor & Willcocks, 2023) 3.87 10.36
INRFlow-B (ours) 2.46 7.11
INRFlow-L (ours) 2.18 5.51

Table 1. FIDCLIP (Kynkäänniemi et al., 2023) results for state-of-
the-art function space approaches.

proaches, training INRFlow on ImageNet at both 128×128
and 256×256 resolutions. On ImageNet-128, shown in
Tab. 2, INRFlow achieves an FID of 2.73, which is a a
competitive performance in comparison to diffusion or flow-
based generative baselines including ADM (Dhariwal &
Nichol, 2021), CDM (Ho et al., 2021), and RIN (Jabri
et al., 2023) which use domain-specific architectures for
image generation. Besides, comparing to PolyINR (Singh
et al., 2023) which also operates on function space, INRFlow
achieves competitive FID, while obtaining better IS, preci-
sion and recall. In addition, we report results of INRFlow
for ImageNet-256 on Tab. 3. We observed that INRFlow is
slightly outperformed by latent space models like DiT (Pee-
bles & Xie, 2023) and SiT (Ma et al., 2024). We highlight
that these baselines rely on a pre-trained VAE compressor
that was trained on datasets (i.e. 9.29M images) that are
much larger than ImageNet, while INRFlow was trained
only with ImageNet data. In addition, INRFlow achieves
better performance than many of the baselines trained only
with ImageNet data including ADM (Dhariwal & Nichol,
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Class-Conditional ImageNet 128x128

Model FID↓ IS↑ Prec↑ Rec↑

Adversarial models
BigGAN-deep (Brock et al., 2019) 6.02 145.8 0.86 0.35
PolyINR (Singh et al., 2023) 2.08 179.0 0.70 0.45

Diffusion models
CDM (w/ cfg) (Ho et al., 2021) 3.52 128.0 - -
ADM (w/ cfg) (Dhariwal & Nichol, 2021) 2.97 141.3 0.78 0.59
RIN (Jabri et al., 2023) 2.75 144.0 - -

INRFlow-XL (ours) (cfg=1.5) 2.73 187.6 0.80 0.58

Table 2. Benchmarking class-conditional image generation on Im-
ageNet 128x128.

2021), CDM (Ho et al., 2021) and Simple Diffusion (U-
Net) (Hoogeboom et al., 2023) which all use CNN-based
architectures specific for image generation. Note that this is
consistent with the results show in Tab. 1, where INRFlow
outperforms all function space approaches.

When comparing with approaches using transformer archi-
tectures we find that INRFlow obtains performance com-
parable to RIN (Jabri et al., 2022) and HDiT (Crowson
et al., 2024), with slightly worse FID and slightly better
IS. However, INRFlow is a domain-agnostic architecture
that can be trivially applied to different data domains like
3D point clouds or protein structure data (see Sect. 4.2 and
Sect. 4.3). For completeness, we also include billion scale
U-Net transformer hybrid models, Simple Diffusion (U-ViT
2B) and VDM++ (U-ViT 2B). We highlight that the sim-
plicity of implementing and training INRFlow models in
practice, and the trivial extension to different data domains
are strong arguments favoring INRFlow. Finally, compar-
ing with e.g. PolyINR (Singh et al., 2023) which is also a
function space generative model we also find comparable
performance, with slight worse FID but better Precision and
Recall. It is worth noting that (Singh et al., 2023) applies
a pre-trained DeiT model as the discriminator (Singh et al.,
2023). Whereas our INRFlow makes no such assumption
about the function or pre-trained models, enabling to triv-
ially apply INRFlow to other domains like 3D point clouds
(see Sect. 4.2) or protein folding.

4.2. Image-to-3D

We also showcase that INRFlow can directly integrate con-
ditional information like images. We train an image-to-
point-cloud INRFlow model on Objaverse (Deitke et al.,
2023), which contains 800k 3D objects of wide variety, to
illustrate the capability of INRFlow on large-scale 3D gen-
erative tasks. In particular, conditional information (i.e., an
image) is integrated to our model through cross-attention.
We train INRFlow with batch size 384 for 500k iterations.
During sampling, we use an Euler-Maruyama sampler (Ma
et al., 2024) with 500 steps to generate point clouds (see
App. A.2 for more details on architecture and objaverse data

generation).

Tab. 4 shows the performance of INRFlow in comparison
with recent baselines on Objaverse. We report ULIP-I (Xue
et al., 2024) and P-FID (Nichol et al., 2022) following
CLAY (Zhang et al., 2024). PointNet++ (Qi et al., 2017a;b;
Nichol et al., 2022) is employed to evaluate P-FID. ULIP-I
is an analogy to CLIP for text-to-image generation. ULIP-I
is measured as the cosine similarity between point-cloud
features from ULIP-2 model (Xue et al., 2024) and image
features from CLIP model (Radford et al., 2021). The per-
formance numbers of baseline models are directly borrowed
from CLAY (Zhang et al., 2024). We calculate the met-
rics of our INRFlow on 10k sampled point clouds. In our
case, P-FID is measured on point clouds with 4096 points
following Shape-E (Jun & Nichol, 2023) while ULIP-I is
measured on point clouds with 10k points following ULIP-
2 (Xue et al., 2024). Note that since CLAY (Zhang et al.,
2024) is not open-source, we do not have the access to the
exact evaluation setting or the conditional images rendered
from Objaverse. But all evaluation settings of INRFlow
are provided for reproduction purpose. As shown in Tab. 4,
our INRFlow achieves strong performance on image-to-3D
generative tasks. Compared to CLAY (Zhang et al., 2024),
which is a 2-stage latent diffusion model, INRFlow demon-
strates very strong performance on both ULIP-I and P-FID.

Fig. 4(b) show examples of sampled point clouds and cor-
responding conditional images. As discussed in §4.4, IN-
RFlow trained on Objaverse also enjoys the flexibility of
resolution agnostic generation. In the App, Fig. 12 we show
additional results sampled with more points than what the
model was trained on. As shown, INRFlow learns to gener-
ate 3D objects with rich details that match the conditional
images ultimately being able to generate a continuous sur-
face.

4.3. Protein Folding

We now showcase the domain-agnostic prowess of INR-
Flow applying it to the protein folding problem (Jumper
et al., 2021). From an ML perspective, this problem is a
conditional 3D generation problem where we are given the
amino-acid sequence (e.g. a sequence of discrete symbols
from a vocabulary of 20 possible amino-acids) and we need
to generate a 3D coordinate for each atom in the protein,
where different amino-acids can have different numbers of
atoms. In our experiments we use SwissProt set (Boeck-
mann et al., 2003) taking the ground truth structures from
the AlphaFold Database (Varadi et al., 2022).

We adapt the coordinate and signal in INRFlow so that the
coordinate becomes a feature representation of each atom
in the protein and the signal represents the 3D point for that
particular atom. This is similar to recent work on protein
folding and conformer generation, which directly predicts
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Class-Conditional ImageNet 256x256

Model Agnostic # Tr. Samples # Params bs × it. FID↓ IS↑ Precision↑ Recall↑
Adversarial models
BigGAN-deep (Brock et al., 2019) ✗ 1.28M - - 6.95 171.4 0.87 0.28
PolyINR (Singh et al., 2023) ✗ 1.28M - - 2.86 241.4 0.71 0.39

Latent space with pretrained VAE
DiT-XL (cfg=1.5) (Peebles & Xie, 2023) ✗ 9.23M 675M - 2.27 278.2 0.83 0.57
SiT-XL (cfg=1.5, SDE) (Ma et al., 2024) ✗ 9.23M 675M 1.8B 2.06 270.2 0.82 0.59

Ambient space
ADM (Dhariwal & Nichol, 2021) ✗ 1.28M 554M 507M 10.94 100.9 0.69 0.63
CDM (Ho et al., 2021) ✗ 1.28M - - 4.88 158.7 - -
Simple Diff. (U-Net) (Hoogeboom et al., 2023) ✗ 1.28M - - 3.76 171.6 - -
RIN (Jabri et al., 2023) ✗ 1.28M 410M 614M 3.42 182.0 - -
HDiT (cfg=1.3) (Crowson et al., 2024) ✗ 1.28M 557M 742M 3.21 220.6 - -
Simple Diff. (U-ViT) (Hoogeboom et al., 2023) ✗ 1.28M 2B 1.4B 2.77 211.8 - -
VDM++ (U-ViT) (Kingma & Gao, 2023) ✗ 1.28M 2B 1.4B 2.12 267.7 - -

INRFlow-XL (ours) (cfg=1.5) ✓ 1.28M 733M 780M 3.74 228.8 0.82 0.52

Table 3. Top performing models for class-conditional image generation on ImageNet 256x256.

Figure 3. Examples of protein structures predicted by INRFlow on SwissProt, together with their LDDT and TM scores. The GT structures
are depicted in green while the generated structures are show in orange. INRFlow accurately captures the global spatial distribution of
protein backbones generating reasonable 3D structures for different protein sequences.

Model ULIP-I ↑ P-FID ↓
Shap-E (Jun & Nichol, 2023) 0.1307 -
Michelangelo (Zhao et al., 2024) 0.1899 -
CLAY (Zhang et al., 2024) 0.2066 0.9946

INRFlow (ours) 0.2976 0.3638

Table 4. Image-conditioned 3D point cloud generation perfor-
mance on Objaverse.

atom coordinates as opposed to frames of reference (Wang
et al.; Abramson et al., 2024). For the spatially-aware latents
we aggregate information from all the atoms corresponding
to the same amino-acid into a single latent vector (see App.
A.3 for more details on architecture and training recipe).

We show qualitative results on Fig. 3 and additional results
on Fig. 13. INRFlow accurately captures the global dis-
tribution of protein backbones generating reasonable 3D
structures for different protein sequences. These initial re-
sults are very encouraging and open up exciting design

spaces for future work developing protein folding network
architectures that can leverage general purpose transformer
blocks.

4.4. Resolution Agnostic Generation

An interesting property of INRFlow is that it decodes each
coordinate-value pair independently, allowing resolution
changes of resolution for generation. At inference time
the user can define as many coordinate-value pairs as de-
sired where the initial value of each pair at t = 1 is drawn
from a Gaussian distribution. We now quantitatively eval-
uate the performance of INRFlow in this setting. In Tab. 5
we compare the FID of different recipes. First, INRFlow
is trained on FFHQ-256 and bilinear or bicubic interpola-
tion is applied to the generated samples to get images at
512. On the other hand, INRFlow can directly generate
images at resolution 512 by simply increasing the number
of coordinate-value pairs during inference without further
tuning. As shown in Tab. 5 , INRFlow achieves lower FID
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Figure 4. Examples of resolution agnostic generation for INRFlow models trained on ImageNet-256 (a), and Objaverse-16k in (b). To
generate samples at higher resolutions than the one in training we fix the initial noise seed and increase the number of coordinate-value
pairs evaluated by the model. Even though INRFlow was only train with samples at a fixed resolution (256 for ImageNet and 16k
for Objaverse), it can still generate realistic samples at higher resolutions. These results show that INRFlow is learning a continuous
probability density field.

when compared with other manually designed interpolation
methods, showcasing the benefit of developing generative
models on ambient space.

INRFlow Bilinear Bicubic

FID(↓) 23.09 35.05 24.34

Table 5. FID of different super resolution methods to generate
images at resolution 512 × 512 for INRFlow trained on FFHQ-
256.

We show examples of resolution agnostic generation for
INRFlow models trained on ImageNet-256 Fig. 4(a) and
Objaverse-16k in Fig. 4(b). Even though INRFlow was only
train with samples at a fixed resolution (256 for ImageNet
and 16k for Objaverse), it can still generate realistic samples
at higher resolutions. For example, Fig. 4(a) shows samples
generated from INRFlow trained on ImageNet-256 and sam-
pled at resolutions up to 2k (see additional examples in Fig.
14). Fig. 4(b) shows point cloud with up to 128k points from
INRFlow trained on Objaverse with only 16k points points
per sample. It is worth noting that in INRFlow there’s no
cascading (Ho et al., 2022b) or multiple resolution training
(Gu et al., 2023), we simply fix the initial noise seed and
increase number of coordinate-value pairs that are evaluated.
These results show that INRFlow is not trivially overfit-
ting to the coordinate-value pairs in the training but rather
learning a continuous probability density field in space from
which an infinite number of points could be sampled. Gen-
erally speaking, this also provides the potential to efficiently
train flow matching generative models without the need to

use large amounts of expensive high resolution data, which
can be hard to collect in some domains.

5. Conclusion
We introduced INRFlow, a flow matching generative model
for continuous function spaces designed to operate directly
in ambient space. Our approach dispenses with the practical
complexities of training latent space generative models (Du
et al., 2021a; Dupont et al., 2022a), such as the dependence
on domain-specific compressors for different data domains
or tuning of hyper-parameters of the data compressor (i.e.
adversarial weight, KL term, etc.). Inspired by deterministic
encoding of INRs, we introduced a conditionally indepen-
dent point-wise training objective that decomposes the target
vector field and allows to continuously evaluate the gener-
ated samples, similar to INRs, enabling resolution changes
at inference time.

Our results on both image, 3D point cloud and protein fold-
ing benchmarks show the strong performance of INRFlow,
as well as, its trivial adaption across modalities which we
believe is the cornerstone of a good generative modeling
architecture. In conclusion, INRFlow represents a promis-
ing direction for flow matching generative models, offering
a powerful and domain-agnostic framework. Future work
could explore further improvements in training efficiency
applying tricks orthogonal to our contribution (Sehwag et al.,
2024) and investigate co-training of multiple data domains
to enable multi-modality generation in an end-to-end learn-
ing paradigm.
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Impact Statement
This paper concerns the generative modeling methodology.
While we do not see immediate societal implications from
our technical contribution, there are potential consequences
when it is used in training foundational generative models.
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A. Model Configuration and Training Settings
A.1. Image

We provide detailed model configurations and training set-
tings of INRFlow for image generation in Tab. 6. We de-
velop model sizes small (S), base (B), large (L), and extra
large (XL) to approximately match the number of parame-
ters in DiT (Peebles & Xie, 2023). For image experiments
we implement the “psuedo” coordinate of latents as 2D grids
and coordinate-value pairs are assigned to different latents
based on their distances to the latent coordinates. To embed
coordinates, we apply standard Fourier positional embed-
ding (Vaswani et al., 2017) for ambient space coordinate
input in both encoder and decoder. The Fourier positional
embedding is also applied to the “psuedo” coordinate of
latents. On image generation, we found that applying ro-
tary positional embedding (RoPE) (Su et al., 2024) slightly
improves the performance of INRFlow. Therefore, RoPE
is employed for largest INRFlow-XL model. For all the
models we share the following training parameters except
the training_steps across different experiments. On
image generation, all models are trained with batch size
256, except for INRFlow-XL reported in Tab. 2 and Tab. 3,
which are trained for 1.7M steps with batch size 512.

default training config:
optimizer=’AdamW’
adam_beta1=0.9
adam_beta2=0.999
adam_eps=1e-8
learning_rate=1e-4
weight_decay=0.0
gradient_clip_norm=2.0
ema_decay=0.999
mixed_precision_training=bf16

In Tab. 7, we also compare the size of models trained on
ImageNet-256, training cost (i.e. product of batch size and
training iterations), and inference cost (i.e. NFE, number

of function evaluation). Note that for models that achieve
better performance than INRFlow, many of them are trained
for more iterations. In addition, at inference time INRFlow
applies simple first order Euler sampler with 100 sampling
steps, which uses less NFE than many other baselines.

Model Layers Hidden size #Latents Heads Decoder layers #Params

INRFlow-S 12 384 1024 6 1 35M
INRFlow-B 12 768 1024 12 1 138M
INRFlow-L 24 1024 1024 16 1 458M
INRFlow-XL 28 1152 1024 16 2 733M

Table 6. Detailed configurations of INRFlow for image generation.

A.2. Image-to-3D

For image-to-3D point cloud generation we trained INR-
Flow on Objaverse (Deitke et al., 2023), which contains
800k 3D objects of great variety. In particular, condi-
tional information (i.e., an image) is integrated to our model
through cross-attention. For each object in Objaverse, we
sample point cloud with 16k points. To get images for con-
ditioning, each object is rendered with 40 degrees field of
view, 448 × 448 resolution, at 3.5 units on the opposite
sides of x and z axes looking at the origin. We extract
features via DINOv2 (Oquab et al., 2023) which is con-
catenated with Plucker ray embedding (Plucker, 2018) of
each patch in DINOv2 feature. In each block, the learnable
latent vector zft cross attends to image feature. During train-
ing, the image conditioning is dropped randomly with 10%
probability. Therefore, our model can also benefit from pop-
ular classifier-free guidance (CFG) to increase the guidance
strength. The model is trained with batch size 384 for 500k
iterations. During sampling, we use an Euler-Maruyama
sampler with 500 steps to generate point clouds. We train
an INRFlow-XL size model of 866M parameters similar to
the one reported in Tab. 11.

One particularity for image-to-3D point cloud generation
is that we assign input elements to latents through a hash
code, so that neighboring input elements are likely (but
not certainly) to be assigned to the same latent token. We
found that the improvements of spatial aware latents in
3D to not be as substantial as in the 2D image setting, so
we report results with a vanilla PerceiverIO architecture for
simplicity. To embed coordinates, we apply standard Fourier
positional embedding (Vaswani et al., 2017) for ambient
space coordinate input in both encoder and decoder.

A.3. Protein Folding

In our experiments we use SwissProt set (Boeckmann et al.,
2003) taking the ground truth structures from the AlphaFold
Database (Varadi et al., 2022). We select a random set of
10k protein structures to train INRFlow. In this setting, the
coordinate-value pairs represent atoms in the protein, where
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Model # Train data # params bs.×it. NFE FID ↓ IS ↑
ADM (Dhariwal & Nichol, 2021) 1.28M 554M 507M 1000 10.94 100.9
RIN (Jabri et al., 2023) 1.28M 410M 614M 1000 3.42 182.0
HDiT (Crowson et al., 2024) 1.28M 557M 742M 100 3.21 220.6
Simple Diff. (U-ViT 2B) (Hoogeboom et al., 2023) 1.28M 2B 1B - 2.77 211.8
DiT-XL (Peebles & Xie, 2023) 9.23M 675M 1.8B 250 2.27 278.2
VDM++ (U-ViT 2B) (Kingma & Gao, 2023) 1.28M 2B 1.4B 512 2.12 267.7
SiT-XL (Ma et al., 2024) 9.23M 675M 1.8B 500 2.06 270.2

INRFlow-XL (ours) 1.28M 733M 870M 100 3.74 228.8

Table 7. Comparison of INRFlow and baselines in # params and training cost (i.e. product of batch size and training iterations). Some
numbers are borrowed from (Crowson et al., 2024).

the "coordinate" part is a set of features of that particular
atom. In particular, we use the atom features shown in Tab. 8
together with the eigenvectors of the graph laplacian for each
residue, as previously done in (Wang et al.). In particular, we
found it beneficial to also concatenate to the atomic features
the amino-acid embedding of its corresponding amino-acid,
which we obtain from a pre-trained ESM model (ESM-
650M), a language model for protein sequences masking
only on sequence data and not 3D structures.

We aggregate information into spatially-aware latents by
cross-attending all atoms belonging to a particular amino-
acid with its particular latent. In practice, since the number
of atoms for each aminoacid type is always fixed, one might
also simply use a linear layer. Finally, for this task we train
a XL size model for 100k iterations with batch size 256.

B. Performance vs Model Size
To demonstrate the scalability of INRFlow we train models
of different sizes including small (S), base (B), large (L),
and extra-large (XL) on ImageNet-256. We show the perfor-
mance of different model sizes using FID-50K in Fig. 5(a).
We observe a clear improving trend when increasing the
number of parameters as well as increasing training steps.
This demonstrates that scaling the total training Gflops is
important to improved generative results as in other ViT-
based generative models (Peebles & Xie, 2023; Ma et al.,
2024).

C. Performance vs Training Compute
We compare the performance vs total training compute
of INRFlow and DiT (Peebles & Xie, 2023) in Gflops.
INRFlow-linear denotes the variant of INRFlow where the
cross-attention in the spatial aware encoder is replaced with
grouping followed by a linear layer. We found this could be
an efficient variant of standard INRFlow while still achiev-
ing competitive performance. Fig. 6 shows the comparison
of the training compute in Gflops vs FID-50K between INR-
Flow and latent diffusion model DiT (Peebles & Xie, 2023)
including the tranining compute of the first stage VAE. We

Figure 5. FID-50K over training iterations with different model
sizes, where we see clear benefits of scaling up model sizes.

Figure 6. Comparing the performance vs total training compute
comparison of INRFlow and DiT (Peebles & Xie, 2023).

estimate the training cost of VAE based the model card
listed in HuggingFace1. As shown, the training cost of VAE

1https://huggingface.co/stabilityai/
sd-vae-ft-mse
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Name Description Range

atomic Atom type one-hot of 35 elements in dataset
degree Number of bonded neighbors {x : 0 ≤ x ≤ 6, x ∈ Z}
charge Formal charge of atom {x : −1 ≤ x ≤ 1, x ∈ Z}
valence Implicit valence of atom {x : 0 ≤ x ≤ 6, x ∈ Z}
hybrization Hybrization type {sp, sp2, sp3, sp3d, sp3d2, other}
aromatic Whether on a aromatic ring {True, False}
num_rings number of rings atom is in {x : 0 ≤ x ≤ 3, x ∈ Z}
ESM embedding Amino-acid embedding x ∈ R1280

Table 8. Atomic features included in INRFlow for protein folding.

is not negligible and reasonable models with FID ≈ 6.5 can
be trained for the same cost.

Admittedly, under equivalent training Gflops, INRFlow
achieves comparable but not as good performance as DiT
in terms of FID score (with a difference smaller than 1.65
FID points). We attribute this gap to the fact that DiT’s VAE
was trained on a dataset much larger than ImageNet, using
a domain-specific architecture (e.g. a convolutional U-Net).
We believe that the simplicity of implementing and training
INRFlow models in practice, and the trivial extension to
different data domains (as shown in Sect. F) are strong
arguments to counter an FID difference of smaller than 1.65
points. In addition, applying masking tricks orthogonal to
our approach like the ones in (Sehwag et al., 2024) can help
mitigate the training compute difference.

In addition, due to the flexibility of cross-attention decoder
in INRFlow, one can easily conduct random sub-sampling to
reduce the number of decoded coordinate-value pairs during
training which ca also saves computation. Fig. 7 shows how
number of decoded coordinate-value pairs affects the model
performance as well as Gflops in training. An image of res-
olution 256×256 contains 65536 pixels in total which is the
maximal number of coordinate-value pairs during training.
As see in Fig. 5(b), a model decoding 4096 coordinate-value
pairs saves more than 20% Gflops over one decoding 16384.

D. Spatial-aware Latent

Psuedo-coord # latents FID-CLIP(↓) FID(↓)

grid 1024 7.32 9.74
random 1024 11.66 17.99
KMeans++ 1024 10.42 15.56
random 2048 8.95 11.86

Table 9. Performance of INRFlow on protein folding.

In image domain, we define pseudo coordinates to lie on
a 2D grid, which results in pixels grouping as patches of
same size. Tab. 9 lists the results of an ablation study on
LSUN-church-256 to compare different pseudo-coordinates.
We trained all models for 200K steps with batch size 128

Figure 7. FID-50K over training iterations with different number
of decoded coordinate-value pairs during training and the corre-
sponding compute cost for a single forward pass.

and report results in the table below. INRFlow achieves the
best performance when using the default grid pseudo coor-
dinates. When using randomly sampled pseudo coordinates
we observe a drop in performance.

We attribute this to the fact that when pseudo-coordinates
are randomly sampled, each spatial-aware latent effectively
does a different amount of work (since pixels only cross-
attend to the nearest pseudo-coordinate). This unbalanced
load across latents makes encoding less efficient. There
are a few different ways to deal with this without neces-
sarily relying on a grid, one is to cluster similar pseudo-
coordinates to provide an equidistant distribution in 2D
space (i.e. KMeans++ initialization), another one is to in-
crease the number of spatial-aware latents so that each latent
has to do less work. We empirically see that both of this
options are effective. Ultimately, having pseudo-coordinates
lie on a grid strikes a good balance of efficiency and effec-
tiveness.

E. Architecture Ablation
We also provide an architecture ablation in Tab. 10 show-
casing different design decisions. We compare two variants
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Model FID(↓) Precision(↑) Recall(↑)

PerceiverIO 65.09 0.38 0.01

INRFlow (ours) 7.03 0.69 0.34

Table 10. Benchmarking vanilla PerceiverIO and INRFlow with
spatially aware latents on LSUN-Church-256 (Yu et al., 2015).

of Transformer-based architectures INRFlow: a vanilla Per-
ceiverIO that directly operates on ambient space, but without
using spatial aware latents and INRFlow. As it can be seen,
the spatially aware latents introduced in INRFlow greatly
improve performance across all metrics in the image do-
main, justifying our design decisions. We note that we did
not observe the same large benefits for 3D point clouds,
which we hypothesize can be due to their irregular structure.

F. Unconditional 3D Point Cloud generation

Model Layers Hidden size #Latents Heads Decoder layers #Params

INRFlow-B 9 512 1024 4 1 108M
INRFlow-L 12 512 1024 4 1 204M
INRFlow-XL 28 1152 1024 16 1 866M

Table 11. Detailed configurations of INRFlow for point cloud gen-
eration.

For completeness we also tackle unconditional 3D point
cloud generation on ShapeNet (Chang et al., 2015). Note
that our model does not require training separate VAEs for
point clouds, tuning their corresponding hyper-parameters
or designing domain specific networks. We simply adapt our
architecture for the change in dimensionality of coordinate-
value pairs (e.g. f : R2 → R3 for images to f : R3 → R3

for 3D point clouds.). Note that for 3D point clouds, the
coordinates and values are equivalent. In this setting, we
compare baselines including LION (Vahdat et al., 2022)
which is a recent state-of-the-art approach that models 3D
point clouds using a latent diffusion type of approach. Fol-
lowing (Vahdat et al., 2022) we report MMD, COV and
1-NNA as metrics. To have a straightforward comparison
with baselines, we train INRFlow-B with to approximately
match the number of parameters as LION (Vahdat et al.,
2022) (110M for LION vs 108M for INRFlow, see Tab. 11)
on the same datasets (using per sample normalization as in
Tab. 17 in Vahdat et al. (2022)). On ShapeNet, INRFlow
models are trained for 800K iterations with a batch size of
16.

We show results for category specific models and for an un-
conditional model jointly trained on 55 ShapeNet categories
in Tab. 12. INRFlow-B obtains strong generation results
on ShapeNet despite being a domain agnostic approach and
outperforms LION in most datasets and metrics. Note that
INRFlow-B has comparable number of parameters and the
same inference settings than LION so this is fair comparison.

Finally, we also report results for a larger model INRFlow-L
(with ×2 the parameter count as LION) to investigate how
INRFlow improves as with increasing model size. We ob-
serve that with increasing model size, INRFlow typically
achieves better performance than the base version. This
further demonstrates scalability of our model on ambient
space of different data domains. More point cloud samples
can be found in Appendix J.

G. Quantitative Results on Protein Folding
This section includes the quantitative evaluation of the pro-
tein folding task. In particular, we randomly selected 512
proteins from the AFDB-SwissProt dataset (Varadi et al.,
2022) and use them as a test set. We compare INRFlow with
an open-source replication of AlphaFold3 (Abramson et al.,
2024) (ie. Boltz-1 (Wohlwend et al., 2024)), which is the
SOTA approach for protein folding. Noted that AlphaFold3
is extremely domain-specific, using complex and curated
architectural designs for protein folding. For example, it
relies on multi-sequence alignment and template search on
existing proteins. It also designs a triangle self-attention
update for atomic coordinates. Whereas INRFlow makes
no assumptions about data domain and effectively models
different tasks under an equivalent architecture and train-
ing objective. We report Cα-LDDT and TM-score which
are commonly used metrics to evaluate how predicted pro-
tein structures align with ground truth (Tab. 13). Results
indicate that INRFlow, which uses a domain-agnostic archi-
tecture performs decently well on protein folding even when
compared to SOTA models that require intricate domain-
expertise embedded in the architecture. Note that we have
not optimized INRFlow for hyper-parameters in the protein
folding experiment.

H. Implementation of Resolution Agnostic
Generation

One can interpret the spatial-aware latents computed from
INRFlow’s encoder as the “latent codes that are transformed
into network parameters”. For INRFlow these latents codes
are used to compute v, k for the cross-attention block in
the decoder, which takes in queries q (i.e. coordinate-value
pairs) at any resolution. The only thing that we need to
do in order to obtain consistent outputs across different
query resolutions is to keep the resolution of the encoder
fixed, while the decoder can be queried at a different res-
olution. This is trivially achieved by employing a simple
sub-sampling operation (i.e. grid sub-sampling) and keeping
the sub-sampling operation fixed during inferenc (Fig. 8).
This simple technique allows us to change the resolution at
inference time without any other additional tricks regarding
noise alignment at different resolutions and produces crisp
and consistent examples at higher resolutions that the one

15



INRFlow: Flow Matching for INRs in Ambient Space

MMD↓ COV↑ (%) 1-NNA↓ (%)

Category Model CD EMD CD EMD CD EMD

ShapeGF (Cai et al., 2020) 0.3130 0.6365 45.19 40.25 81.23 80.86
SP-GAN (Li et al., 2021) 0.4035 0.7658 26.42 24.44 94.69 93.95

Airplane GCA (Zhang et al., 2021) 0.3586 0.7651 38.02 36.30 88.15 85.93
LION (Vahdat et al., 2022) (110M) 0.3564 0.5935 42.96 47.90 76.30 67.04

INRFlow-B (ours) (108M) 0.2861 0.5156 43.38 47.54 75.55 64.95
INRFlow-L (ours) 0.2880 0.5052 44.44 47.16 62.20 62.96

ShapeGF (Cai et al., 2020) 3.7243 2.3944 48.34 44.26 58.01 61.25
SP-GAN (Li et al., 2021) 4.2084 2.6202 40.03 32.93 72.58 83.69

Chair GCA (Zhang et al., 2021) 4.4035 2.5820 45.92 47.89 64.27 64.50
LION (Vahdat et al., 2022) (110M) 3.8458 2.3086 46.37 50.15 56.50 53.85

INRFlow-B (ours) (108M) 3.6310 2.1725 46.67 53.31 55.43 51.13
INRFlow-L (ours) 3.5145 2.1860 49.39 49.84 50.52 51.66

ShapeGF (Cai et al., 2020) 1.0200 0.8239 44.03 47.16 61.79 57.24
SP-GAN (Li et al., 2021) 1.1676 1.0211 34.94 31.82 87.36 85.94

Car GCA (Zhang et al., 2021) 1.0744 0.8666 42.05 48.58 70.45 64.20
LION (Vahdat et al., 2022) (110M) 1.0635 0.8075 42.90 50.85 59.52 49.29

INRFlow-B (ours) (108M) 0.9923 0.7692 43.46 47.44 60.36 53.27
INRFlow-L (ours) 0.9660 0.7846 44.03 48.86 53.83 54.55

LION (Vahdat et al., 2022) (110M) 3.4336 2.0953 48.00 52.20 58.25 57.75
All (55 cat) INRFlow-B (ours) (108M) 3.2586 2.1328 49.00 50.40 54.65 55.70

INRFlow-L (ours) 3.1775 1.9794 49.80 52.39 51.80 53.90

Table 12. Generation performance metrics on Airplane, Chair, Car and all 55 categories jointly. All models were trained on the ShapeNet
dataset from PointFlow (Yang et al., 2019). Both the training and testing data are normalized individually into range [-1, 1].

Model Cα-LDDT(↑) TM-Score(↑)

Boltz1 (Wohlwend et al., 2024) 0.923 0.812
INRFlow 0.722 0.664

Table 13. Performance of INRFlow on protein folding.

Figure 8. Illustration of resolution agnostic sampling. When gen-
erating higher-resolution images in inference (e.g., 512×512),
256×256 coordinate-value pairs (consistent to setting in training)
are selected through grid subsampling and are fed to the encoder.
The decoder takes in the full 512×512 coordinate-value pairs to
predict velocities of all the pixel values. The model repeats the
process in inference to generate a 512×512 image.

used in training (more results see Fig. 4 and 14).

I. Additional ImageNet Samples
We show uncurated samples of different classes from
INRFlow-XL trained on ImageNet-256 in Fig. 9 and Fig.
10. Guidance scales in CFG are set as 4.0 for loggerhead
turtle, macaw, otter, coral reef and 2.0 otherwise.

J. Additional ShapeNet Samples
We show uncurated samples from INRFlow-L trained jointly
on 55 ShapeNet categories in Fig. 11.

K. Additional Objaverse Samples
We show additional Objaverse samples from INRFlow in
Fig. 12

L. Additional SwissProt Samples
We show additional SwissProt samples from INRFlow in
Fig. 13

M. Additional Resolution Agnostic Image
Samples

We show additional samples generated at different resolu-
tions from INRFlow trained on ImageNet-256 in Fig. 14.
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Figure 9. Uncurated samples of class labels: loggerhead turtle (33), macaw (88), golden retriever (207), otter (360) and red panda (387),
and panda (388) from INRFlow trained on ImageNet-256.
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Figure 10. Uncurated samples of class labels: palace (698), space shuttle (812), ice cream (928), pizza (963), coral reef (973), and valley
(979) from INRFlow trained on ImageNet-256.
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Figure 11. Additional uncurated ShapeNet generations using 2048 points from the unconditional model jointly trained on 55 categories

19



INRFlow: Flow Matching for INRs in Ambient Space

Figure 12. Image-conditioned point clouds with 16k, 32k, 64k, and 128k points generated from an INRFlow trained on Objaverse (training
with 16k points, CFG scale 5.0).
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Figure 13. Additional examples of protein structures predicted by INRFlow on SwissProt (Boeckmann et al., 2003)
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Figure 14. Images generated at 256, 512, 1024, and 2048 resolutions from an INRFlow trained on ImageNet-256.
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