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Abstract
Effective RL for LLMs requires massive paral-
lelization and poses an urgent need for efficient
training systems. Most existing large-scale RL
systems for LLMs are synchronous by alternating
generation and training in a batch setting, where
the rollouts in each training batch are generated
by the same (or latest) model. This stabilizes RL
training but suffers from severe system-level inef-
ficiency. Generation must wait until the longest
output in the batch is completed before model
update, resulting in GPU underutilization. We
present AReaL, a fully asynchronous RL system
that completely decouples generation from train-
ing. Rollout workers in AReaL continuously gen-
erate new outputs without waiting, while train-
ing workers update the model whenever a batch
of data is collected. To stabilize RL training,
AReaL balances the workload of rollout and train-
ing workers to control data staleness, and adopts
a staleness-enhanced PPO variant to better han-
dle outdated training samples. Extensive experi-
ments on math and code reasoning benchmarks
show that AReaL achieves up to 2.57× training
speedup compared to the best synchronous sys-
tems with the same number of GPUs and matched
or even improved final performance.

1. Introduction
Reinforcement learning (RL) has been a new scaling
paradigm for enhancing the capabilities of large language
models (LLMs) by enabling thinking abilities (Wei et al.,
2022). Effective RL training often requires massive paral-
lelization to derive a large batch of rollouts for sufficient
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exploration, which is the key to obtaining the optimal model
performance. For example, popular RL algorithms, such as
PPO (Schulman et al., 2017) and GRPO(Shao et al., 2024),
often require an effective training batch of thousands of
outputs (Yu et al., 2025; Yue et al., 2025; Xin et al., 2024).
Moreover, an LRM can generate tens of thousands of think-
ing tokens for each input prompt (DeepSeek-AI et al., 2025),
further posing an urgent need for an efficient training system
to run RL training on a large scale.

Most existing large-scale RL systems are designed in a
fully synchronous manner (Mei et al., 2024; Hu et al., 2024;
Sheng et al., 2025; Shen et al., 2024) by strictly alternating
between LLM generation and training, which ensures that
the LLM is always trained on the latest outputs for the best
practical performance. In such a synchronous design, the
generation step must wait until the finish of the longest
output within a batch. Due to the varying output lengths for
LRM, a synchronous RL system suffers from severe training
inefficiency. Very recently, there have also been attempts
to explore parallel generation and training (Noukhovitch
et al., 2024; Luo et al., 2025a; Team et al., 2025). These
works use outputs generated from a previous model version
to update the current model. For the best performances,
the model version used for rollout generation is limited to
only one or two steps older. However, all these systems still
follow a batched generation setting, where all the samples
within a training batch are from the same model version.
Accordingly, the issue of system inefficiency during the
generation phase still remains unaddressed.

To fundamentally resolve the issues in system design, we
develop AREAL, a fully Asynchronous RL training system
for LRMs that completely decouples generation from train-
ing without hurting the final performance. AREAL runs
LLM generation in a streaming manner, where each rollout
worker continuously generates new outputs without waiting,
leading to high GPU utilization. Meanwhile, the trainer
workers in AREAL run parallel model updates whenever a
training batch is obtained from the rollout workers. Once
the model is updated, we synchronize the model weights in
each rollout worker. In such an asynchronous design, each
training batch of AREAL may contain samples generated by
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different model versions. Therefore, AREAL incorporates
a modified version of the PPO algorithm, which can lever-
age samples generated from models of up to 8-step older
without any performance drop. AREAL also conducts a
data filtering process to ensure the staleness of each training
sample is well controlled.

We evaluate AREAL on challenging mathematical reasoning
and code generation tasks using models up to 32B param-
eters. Compared to state-of-the-art synchronous systems,
AREAL achieves up to 2.57× higher training throughput
and linear scaling efficiency up to 512 GPUs. Crucially, this
acceleration even comes with improved solution accuracy
on these tasks, illustrating that AREAL delivers significant
efficiency gains without sacrificing (and indeed enhancing)
model performance.

2. Motivation
We identify two limitations in synchronous RL systems:

Inference devices are underutilized. As shown in Figure 1
(left), generation must wait for the longest sequence to com-
plete before training can begin. This leads to non-uniform
decoding length across GPUs, which underutilizes GPU
compute resources.

Scalability is poor in synchronous RL systems. syn-
chronous systems distribute generation across all devices,
reducing the per-GPU decoding batch size. This pushes the
decoding process into a memory-IO-bound regime (Chen
et al., 2024; Miao et al., 2024) where additional devices fail
to improve throughput.

3. System Architecture of AREAL
3.1. System Overview

Figure 2 presents the architecture and data flow of AREAL.
The system comprises 4 core components:

Interruptible Rollout Worker handles two types of re-
quests: (1) The generate request generates responses
given prompts. (2) The update weights request in-
terrupts all ongoing generations and loads parameters of
new versions. We emphasize that such interruptions and
in-flight weight updates would result in trajectories com-
posed of segments produced by different model versions.
This introduces a novel algorithmic challenge, which will
be addressed in Section 4.

Reward Service evaluates the accuracy of the responses
generated by the model. For example, in the coding task,
this service runs unit tests to verify its accuracy.

Trainer Workers continuously sample from the replay
buffer, accumulating data until reaching the configured train-
ing batch size. They then perform PPO updates and store

the resulting parameters in distributed storage. To ensure
data freshness, data from the replay buffer is used only once.

Rollout Controller serves as a critical bridge between the
rollout workers, reward service, and the model workers.
During the training process, it reads data from the dataset
and invokes the rollout worker’s generate request. The
received response is then sent to the reward service to obtain
the reward. The trajectory, along with the reward, is stored
in the replay buffer, waiting to be trained by the model
worker. After the model worker updates the parameters,
the controller calls the rollout worker’s update weight.
We illustrate the generation and training management in
Figure 3. This asynchronous pipeline ensures continuous
full utilization of both generation and training resources.

3.2. Algorithmic Challenges

Data Staleness Due to the asynchronous nature of AREAL,
each training batch contains data from multiple prior policy
versions. Data staleness would lead to a distribution gap
between the training data and the latest model. In asyn-
chronous RL training for LRMs, this issue could be even
more severe for long trajectories due to extended decoding
time.

Inconsistent Policy Versions As discussed in Sec. 3.1, the
generated trajectories may involve segments produced by
different policy versions. This inconsistency fundamentally
violates the formulation of standard PPO that assumes all
actions being generated by a single policy πold.

4. Addressing the Algorithmic Challenges
4.1. Staleness-Aware Training

We introduce a hyperparameter η representing the maximum
permitted staleness. Given the latest parameter version i,
total generated trajectories Nr, and training batch size B,
we enforce:

⌊Nr/B⌋ ≤ i+ η. (1)

When η = 1, the system recovers to the previous one-
step overlap methods (Noukhovitch et al., 2024; Luo et al.,
2025a). While this approach guarantees bounded staleness,
overly conservative η values can unnecessarily throttle gen-
eration throughput—particularly for long-context genera-
tions where the completion time of a batch varies signifi-
cantly. This motivates our adoptation of a decoupled PPO
objective that can make efficient use of slightly staled data.

4.2. Decoupled PPO Objective

We apply a decoupled PPO objective (Hilton et al., 2022)
that disentangles the behavior policy and the proximal pol-
icy. The behavior policy πbehav represents the policy used
for sampling trajectories and the proxy policy πprox is a
proximal policy serving as a recent target to regularize the
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Figure 1: Execution timeline of a synchronous (left) and an one-step overlap (right) RL system showing underutilized
inference devices.
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Figure 2: The AREAL architecture featuring asynchronous
generation and training components.

update of πθ. By applying importance sampling on the sam-
pled trajectories, we could derive a decoupled PPO objective
suitable for asynchronous RL training,

J(θ) = E


H∑

t=1

min(
πθ

πbehav

Importance Ratio

Ât,

Importance Ratio︷ ︸︸ ︷
πprox

πbehav

clip(
πθ

πprox
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)Ât))

 (2)

= E

 H∑
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πprox
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min
(
u
prox
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(
u
prox
t (θ)

)
Ât)

) , (3)

where uprox
t (θ) = πθ(at|st)

πprox(at|st) is the importance ratio w.r.t.
the proximal policy. The main difference between the asyn-
chronous PPO objective Equation (3) and the standard one
lies in the proximal policy πprox for regularizing the model
update. In asynchronous PPO training, using the behav-
ior policy as the proximal policy will pull the latest policy
πθ towards the old-version and low-quality policies, thus
slowing down model improvements. By employing a recent
policy as the proximal policy, model updates would happen
within the trust region around the high-quality proximal
policy πprox, thus stabilizing training.

Equation (3) provides a natural benefit: it relaxes the re-
quirement that all data within one training batch should
be generated with a singe policy. This property is crucial

Figure 3: Illustration of generation management in AREAL.
Vertical lines shows the ready time for the next step train-
ing. Blue crosses show the interrupted requests when new
parameters arrive.

for maintaining algorithmic correctness when combining
interruptible generation with policy updates.

Proposition 4.1. For any sequence (q, a1, . . . , aH) gener-
ated by policies (πθ, . . . , πθ+k) where πθ+i produces tokens
(ati , . . . , ati+1), where 1 = t0 < · · · < tk+1 = H , there
exists a behavior policy πbehav such that the interrupted
generation is equivalent to sampling entirely from πbehav.

Practical Remark While Hilton et al. (2022) maintains an
exponential moving average of parameters for πprox, this ap-
proach is prohibitively expensive for LRMs. Consequently,
we simply use the parameters before each model update
step as πprox, i.e., recomputing token probabilities upon the
arrival of the global batch in each training step.

5. Experiments
Our evaluation comprises three components: (1) compre-
hensive comparisons against state-of-the-art open-source
frameworks across model sizes, (2) strong-scaling analysis
with varying compute resources, and (3) ablation studies
validating our design choices. Experiment settings can be
found in Appendix B.

5.1. End-to-End Comparison
We establish two state-of-the-art baselines using syn-
chronous RL systems: DeepScaleR (Luo et al., 2025b)
for mathematical reasoning with a 1.5B model, and Deep-
Coder (Luo et al., 2025a) for code generation with a 14B
model, both trained using verl (Sheng et al., 2025). For
larger 7B and 32B models where comparable baselines are
unavailable, we performed controlled experiments by train-
ing from scratch using a synchronous variant of AREAL.
Our main results are shown in Table 1. Since the code of ob-
taining previous SOTA models can be out-of-date, we mea-
sure the throughput and estimate the training hours using the
latest verl code for a fair comparison. AREAL consistently
matches or exceeds baseline performance while achieving
significant speedups. In particular, our system demonstrates
up to 2.8× improvement in training throughput compared
to synchronous approaches without significant performance
degradation.
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Table 1: End-to-End Performance Comparison. We evaluate on
the AIME24 benchmark for math and LiveCodeBench (8/1/24-
2/1/25) for coding. We limit the maximum generation length to
32K tokens and sample 32 responses per question, reporting the av-
erage pass@1 accuracy. * represents the best known reproducible
results obtained via RL , as cited from DeepScaler (Luo et al.,
2025b) and DeepCoder (Luo et al., 2025a) respectively. AReaL
achieve the comparable performance with 2x less training hours.

Model AIME24 ↑ # Nodes PPO Steps Training Hours ↓

1.5B basemodel 29.3 - - -
w/ VeRL 43.1* 16 250 33.6

w/ Sync.AReaL 42.0 16 250 41.0
w/ AReaL (ours) 42.2 16 250 14.8

7B basemodel 54.3 - - -
w/ VeRL - 24 250 52.1

w/ Sync.AReaL 63.0 24 250 57.7
w/ AReaL (ours) 63.1 24 250 25.4

Model LiveCodeBench ↑ # Nodes PPO Steps Training Hours ↓

14B basemodel 53.4 - - -
w/ VeRL 57.9* 32 80 44.4

w/ Sync.AReaL 56.7 32 80 48.8
w/ AReaL (ours) 58.1 32 80 21.9

32B basemodel 57.4 - - -
w/ VeRL - 48 60 46.4

w/ Sync.AReaL 61.2 48 60 51.1
w/ AReaL (ours) 61.0 48 60 31.1

5.2. Scalability

We compare the scalability of AREAL with verl (Sheng
et al., 2025), the state-of-the-art synchronous RL system,
across different model sizes and context lengths. We mea-
sure the effective throughput for training, defined as the
rate of consuming generated tokens during PPO updates,
after proper warmup steps. Figure 4 presents the results
for context lengths of 16k and 32k. Across all settings,
AREAL demonstrates an approximate linear scaling trend
with increased device count, while the synchronous system
typically fails to scale effectively. Additionally, AREAL
is more robust with longer generation lengths due to asyn-
chronous and interruptible generation. The generation of
long responses can be fully hidden in the critical path, so
extending generation length does not drastically affect the
effective training throughput of AREAL.
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Figure 4: The strong scaling trend. Dotted lines indicate
ideal linear scaling. verl consistently encounters OOM with
32k context length and the 32B model so the data points are
missing.
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Figure 5: Ablation studies of the decoupled PPO objective and staleness control.
Both algorithmic choices are essential. With a moderate staleness value and the
decoupled objective, training progress can be accelerated by 2x while maintaining
final evaluation performance.

Table 2: Evaluation scores when varying data staleness, com-
paring performance with and without the decoupled objective.
Numbers within ±1 of the oracle score are underlined.

Max.Stale. AIME24 AIME25 AMC23 MATH 500

W/o With W/o With W/o With W/o With

0 (Oracle) 42.0 32.9 84.4 89.2
1 41.8 42.1 30.7 31.9 83.3 85.2 89.9 89.8
2 40.0 41.8 32.1 32.5 82.3 84.3 89.6 89.6
4 23.3 42.2 23.1 32.0 58.5 85.1 66.9 89.5
8 35.7 41.0 27.8 31.1 81.2 82.9 87.8 89.2

16 35.8 38.7 26.2 32.5 78.4 83.2 87.4 89.1
∞ 34.0 36.9 26.9 29.9 79.4 81.0 87.1 88.1

5.3. Algorithm Ablations
We conduct ablation studies to validate our algorithmic inno-
vations in Section 4 by training a 1.5B LRM on math tasks.
We follow the basic experiment setting of DeepScaleR and
then gradually increase the η value for ablation purposes.
Specifically, we vary the maximum allowed staleness η and
compare configurations with and without the decoupled
PPO objective. Figures 5a and 5b show the learning curves
after 250 training steps. Table 2 presents the corresponding
final evaluation performances across multiple mathematical
reasoning benchmarks. We follow the common practice of
PPO and perform multiple mini-batch updates within each
training step. We emphasize that η constrains the training
batch staleness regarding training steps.

6. Conclusion
This paper introduces AREAL, a fully asynchronous system
designed for efficient large-scale reinforcement learning
(RL) training. We contribute several algorithmic innova-
tions, including staleness-aware training and a decoupled
PPO objective, which enable efficient and stable PPO train-
ing in asynchronous environments. Our experimental results
demonstrate AREAL’s superior hardware efficiency, sample
efficiency, and scalability compared to existing synchronous
RL systems.
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A. Additional Results
A.1. System Ablations

Interruptible Generation We ablate interruptible generation and present the resulting generation throughput in Figure 6.
Without interruptible generation, the controller must wait for the longest response. In particular, interruptible generation leads
to a 12% and 17% throughput increase for 1.5B and 7B models respectively on 4 nodes, which validates our architectural
design choice.

Dynamic Microbatch Allocation We investigate the effectiveness of dynamic batching by comparing PPO training
throughput against a standard micro-batching strategy. The standard micro-batching strategy can result in multiple long
sequences being assigned to the same micro-batch, thus usually requiring a sufficiently large number of micro-batches to
prevent out-of-memory errors. In our experimental setup, we configured 32 micro-batches for the standard setting and
established a token budget of 32,768 per micro-batch for the dynamic batching approach. As demonstrated in Figure 7,
dynamic batching yields an average of 30% throughput improvements across various model sizes.

A.2. Additional Evaluation

We evaluate the models trained with AReaL on more math benchmarks, and list the results in Table 3.
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Table 3: Results on math benchmarks.

Model AIME24 AIME25 AMC23 MATH 500

1.5B basemodel 29.3 24.4 71.0 84.3
w/ Sync. AReaL 42.0 32.9 84.4 89.2

w/ AReaL 42.2 32.0 85.1 89.5

7B basemodel 54.3 41.7 89.5 92.8
w/ Sync. AReaL 63.0 50.0 93.2 94.2

w/ AReaL 63.1 47.3 93.6 94.3

B. Implementation Details

C. Overview
We implement AREAL using Python and PyTorch (Paszke et al., 2019) built upon the ReaLHF (Mei et al., 2024) framework.
Our system combines SGLang (Zheng et al., 2024) v0.4.6 for generation serving with Megatron-Core (Shoeybi et al., 2019)
v0.11.0 as the training backend, managed by SLURM (Yoo et al., 2003) for resource scheduling. To maximize throughput for
both generation and training phases, we implement several key system-level optimizations that address critical bottlenecks
in the pipeline.

D. System Optimizations
AREAL decouples GPU computation from CPU operations, including rule-based reward computation (such as string
matching for math problems or unit test execution for code) and TCP-based data transfer. By executing these operations in
separate threads and pipelining the workflow, we overlap reward computation and data transfer with subsequent generation
requests. We use asyncio coroutines to concurrently runs multiple requests in the rollout worker to avoid mutual blocking
waits.

To handle the training with variable-length sequences, we employ a padding-free sequence packing strategy coupled with
a dynamic allocation algorithm. The algorithm balances token distribution across micro-batches under fixed memory
constraints (see Algorithm 1). This approach maximizes GPU memory utilization while minimizing the number of required
forward-backward passes.

D.1. Experiment Setup

We evaluate AREAL on challenging math and coding tasks. We employ the distilled Qwen2 model series (Yang et al.,
2024a;b) from DeepSeek-R1 (DeepSeek-AI et al., 2025) as base models (i.e., R1-Distilled-Qwen), spanning from 1.5B
to 32B parameters. For each task-model combination, we train for a fixed number of PPO updates and evaluate the final
checkpoint. Our evaluation on mathematical tasks follow the Qwen evaluation protocol (Yang et al., 2024c; Hui et al., 2024),
while coding models are assessed on LiveCodeBench (8/1/24-2/1/25) (Jain et al., 2025) using the official protocol. Unless
otherwise specified, we set the maximum staleness η = 4 and adopt the training configurations used in Section 5.1, with
additional hyperparameters detailed in Appendix B.

We conduct experiments on an H800 GPU cluster comprising 64 nodes, each equipped with 8 GPUs. The cluster features
NVLink for intra-node connectivity and RoCE with 3.2Tbps bandwidth for inter-node communication. To ensure rapid
convergence, we allocate a minimum of 16 nodes as a baseline pod configuration for complete experiments. We scale
the number of nodes proportionally with model size, ultimately utilizing 48 nodes for training our largest 32B parameter
model. This scaling strategy enables us to run experiments of varying sizes in parallel while maintaining efficient resource
utilization.

For AREAL, we maintain a fixed ratio between inference and training devices, allocating three-quarters of the devices for
inference. This configuration was selected against an equal 50-50 partition based on our early experiments, where the 75-25
partition demonstrated higher training throughput. While we adopt this ratio as a heuristic configuration, we emphasize
that the optimal partition may vary across different settings and could potentially benefit from dynamic adjustment during
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training, as discussed in Section 6.

D.2. PPO Details

We disable the critic model and the reference model in PPO. The advantage estimation parameter λ in GAE and the RL
discount factor γ are fixed at 1. The reward is 5 at the final token if the answer is correct and -5 otherwise. We additionally
adopt advantage normalization across the global batch to stabilize the training. Other learning related hyperparameters and
configurations can be found in Table 4.

Table 4: Training configurations and hyperparameters.

Training Configuration

Batch size (number of prompts) 512
Random seed 1

PPO Parameters

PPO Minibatches 4
Clipping ϵ 0.2
Advantage normalization True
Discount factor γ 1.0
GAE λ 1.0

Optimizer Parameters

Optimizer Adam
Learning rate 2.0× 10−5

Weight decay 0.05
β1 0.9
β2 0.95
Adam ϵ 1× 10−5

Gradient norm clipping 1.0
Learning rate scheduler constant
Warmup steps proportion 0.001

Precision Parameters

Parameter dtype fp16
KV cache dtype fp16
Gradient dtype fp32
Optimizer state dtype fp32

Generation Parameters

Answers per prompt 16
Temperature 1.0
Top-p 1.0
Top-k -1
Max prompt length 1024
Min generation length 0
Max generation length 27648

D.3. Dataset Details

For the math task, we use the open-source data from DeepScaleR (Luo et al., 2025b), For code training, we used the dataset
released by DeepCoder (Luo et al., 2025a). All compared methods use the same dataset.

D.4. Dynamic Batching
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Algorithm 1 Dynamic Batching

Require: Sequence lengths S = {s1, s2, . . . , sn}, maximum micro-batch capacity C, minimum number of micro-batches
kmin

Ensure: Balanced partition of sequences into micro-batches with total length ≤ C
Sort S in descending order
batches← ∅
for s ∈ S do

if |batches| < kmin or no existing batch can fit s then
Create new micro-batch containing sequence i
batches.append({s})

else
Find all batches that can accommodate s
Select the micro-batch with fewest sequences

end if
end for=0

The dynamic batching algorithm is shown in Algorithm 1.

D.5. Baselines

In our experiments, we use the lastest version (main branch of verl repository, May 7, 2025) of verl (Sheng et al., 2025) to
evaluate the training throughput in Figure 4 and the training hours in Table 1. For most of the results, we use SGLang (Zheng
et al., 2024) v0.4.6 as generation backend and pytorch FSDP (Zhao et al., 2023) as training backend. In a few cases
where SGLang raises errors (experiments with 32B models or 64 nodes), we use vLLM (Kwon et al., 2023) v0.8.4 as a
substitution.

E. Proof of Proposition 1
Proposition 1. For any sequence (q, a1, . . . , aH) generated by policies (πθ, . . . , πθ+k) where πθ+i produces tokens
(ati , . . . , ati+1), where 1 = t0 < · · · < tk+1 = H , there exists a behavior policy πbehav such that the interrupted generation
is equivalent to sampling entirely from πbehav.

Proof. For question q, let St(q) denote states encountered at step t by the sequence of policies. Since Sti(q) ∩ Stj (q) = ∅
for i ̸= j, we can construct:

πbehav(·|s) =

{
πθ+j(·|s) if tj ≤ t ≤ tj+1 and s ∈ St(q)
arbitrary otherwise

F. Limitations and Future Work
Our work presents several limitations that suggest directions for future research. First, the ratio between inference and
training devices could be further optimized for specific training setups. Additionally, this ratio might benefit from dynamic
adjustment during training, particularly as context lengths typically increase when fine-tuning pre-trained base models.
While we focused our evaluation on single-step mathematical and coding tasks, the AREAL architecture is not inherently
limited to these domains. We leave the exploration of multi-turn interactions and agentic scenarios to future work.
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