
AREAL: A Large-Scale Asynchronous Reinforcement Learning System for
Language Reasoning

Wei Fu 1 2 Jiaxuan Gao 1 2 Xujie Shen 2 Chen Zhu 2 Zhiyu Mei 1 2 Chuyi He 2 Shusheng Xu 1 2 Guo Wei 2

Jun Mei 2 Jiashu Wang 2 3 Tongkai Yang 2 Yi Wu 1 2 Jiashu Wang 2 3

Abstract
Effective RL for LLMs requires massive paral-
lelization and poses an urgent need for efficient
training systems. Most existing large-scale RL
systems for LLMs are synchronous by alternating
generation and training in a batch setting, where
the rollouts in each training batch are generated
by the same (or latest) model. This stabilizes RL
training but suffers from severe system-level inef-
ficiency. Generation must wait until the longest
output in the batch is completed before model
update, resulting in GPU underutilization. We
present AReaL, a fully asynchronous RL system
that completely decouples generation from train-
ing. Rollout workers in AReaL continuously gen-
erate new outputs without waiting, while train-
ing workers update the model whenever a batch
of data is collected. To stabilize RL training,
AReaL balances the workload of rollout and train-
ing workers to control data staleness, and adopts
a staleness-enhanced PPO variant to better han-
dle outdated training samples. Extensive experi-
ments on math and code reasoning benchmarks
show that AReaL achieves up to 2.57× training
speedup compared to the best synchronous sys-
tems with the same number of GPUs and matched
or even improved final performance.

1. Introduction
Reinforcement learning (RL) has been a new scaling
paradigm for enhancing the capabilities of large language
models (LLMs) by enabling thinking abilities (Wei et al.,
2022). Effective RL training often requires massive paral-
lelization to derive a large batch of rollouts for sufficient

*Equal contribution 1IIIS, Tsinghua University 2Ant Research
3HKUST. Correspondence to: Wei Fu <fuwth17@gmail.com>,
Yi Wu <jxwuyi@gmail.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

exploration, which is the key to obtaining the optimal model
performance. For example, popular RL algorithms, such as
PPO (Schulman et al., 2017) and GRPO(Shao et al., 2024),
often require an effective training batch of thousands of
outputs (Yu et al., 2025; Yue et al., 2025; Xin et al., 2024).
Moreover, an LRM can generate tens of thousands of think-
ing tokens for each input prompt (DeepSeek-AI et al., 2025),
further posing an urgent need for an efficient training system
to run RL training on a large scale.

Most existing large-scale RL systems are designed in a
fully synchronous manner (Mei et al., 2024; Hu et al., 2024;
Sheng et al., 2025; Shen et al., 2024) by strictly alternating
between LLM generation and training, which ensures that
the LLM is always trained on the latest outputs for the best
practical performance. In such a synchronous design, the
generation step must wait until the finish of the longest
output within a batch. Due to the varying output lengths for
LRM, a synchronous RL system suffers from severe training
inefficiency. Very recently, there have also been attempts
to explore parallel generation and training (Noukhovitch
et al., 2024; Luo et al., 2025a; Team et al., 2025). These
works use outputs generated from a previous model version
to update the current model. For the best performances,
the model version used for rollout generation is limited to
only one or two steps older. However, all these systems still
follow a batched generation setting, where all the samples
within a training batch are from the same model version.
Accordingly, the issue of system inefficiency during the
generation phase still remains unaddressed.

To fundamentally resolve the issues in system design, we
develop AREAL, a fully Asynchronous RL training system
for LRMs that completely decouples generation from train-
ing without hurting the final performance. AREAL runs
LLM generation in a streaming manner, where each rollout
worker continuously generates new outputs without waiting,
leading to high GPU utilization. Meanwhile, the trainer
workers in AREAL run parallel model updates whenever a
training batch is obtained from the rollout workers. Once
the model is updated, we synchronize the model weights in
each rollout worker. In such an asynchronous design, each
training batch of AREAL may contain samples generated by

1

AREAL: A Large-Scale Asynchronous Reinforcement Learning System for Language Reasoning

different model versions. Therefore, AREAL incorporates
a modified version of the PPO algorithm, which can lever-
age samples generated from models of up to 8-step older
without any performance drop. AREAL also conducts a
data filtering process to ensure the staleness of each training
sample is well controlled.

We evaluate AREAL on challenging mathematical reasoning
and code generation tasks using models up to 32B param-
eters. Compared to state-of-the-art synchronous systems,
AREAL achieves up to 2.57× higher training throughput
and linear scaling efficiency up to 512 GPUs. Crucially, this
acceleration even comes with improved solution accuracy
on these tasks, illustrating that AREAL delivers significant
efficiency gains without sacrificing (and indeed enhancing)
model performance.

2. Motivation
We identify two limitations in synchronous RL systems:

Inference devices are underutilized. As shown in Figure 1
(left), generation must wait for the longest sequence to com-
plete before training can begin. This leads to non-uniform
decoding length across GPUs, which underutilizes GPU
compute resources.

Scalability is poor in synchronous RL systems. syn-
chronous systems distribute generation across all devices,
reducing the per-GPU decoding batch size. This pushes the
decoding process into a memory-IO-bound regime (Chen
et al., 2024; Miao et al., 2024) where additional devices fail
to improve throughput.

3. System Architecture of AREAL
3.1. System Overview

Figure 2 presents the architecture and data flow of AREAL.
The system comprises 4 core components:

Interruptible Rollout Worker handles two types of re-
quests: (1) The generate request generates responses
given prompts. (2) The update weights request in-
terrupts all ongoing generations and loads parameters of
new versions. We emphasize that such interruptions and
in-flight weight updates would result in trajectories com-
posed of segments produced by different model versions.
This introduces a novel algorithmic challenge, which will
be addressed in Section 4.

Reward Service evaluates the accuracy of the responses
generated by the model. For example, in the coding task,
this service runs unit tests to verify its accuracy.

Trainer Workers continuously sample from the replay
buffer, accumulating data until reaching the configured train-
ing batch size. They then perform PPO updates and store

the resulting parameters in distributed storage. To ensure
data freshness, data from the replay buffer is used only once.

Rollout Controller serves as a critical bridge between the
rollout workers, reward service, and the model workers.
During the training process, it reads data from the dataset
and invokes the rollout worker’s generate request. The
received response is then sent to the reward service to obtain
the reward. The trajectory, along with the reward, is stored
in the replay buffer, waiting to be trained by the model
worker. After the model worker updates the parameters,
the controller calls the rollout worker’s update weight.
We illustrate the generation and training management in
Figure 3. This asynchronous pipeline ensures continuous
full utilization of both generation and training resources.

3.2. Algorithmic Challenges

Data Staleness Due to the asynchronous nature of AREAL,
each training batch contains data from multiple prior policy
versions. Data staleness would lead to a distribution gap
between the training data and the latest model. In asyn-
chronous RL training for LRMs, this issue could be even
more severe for long trajectories due to extended decoding
time.

Inconsistent Policy Versions As discussed in Sec. 3.1, the
generated trajectories may involve segments produced by
different policy versions. This inconsistency fundamentally
violates the formulation of standard PPO that assumes all
actions being generated by a single policy πold.

4. Addressing the Algorithmic Challenges
4.1. Staleness-Aware Training

We introduce a hyperparameter η representing the maximum
permitted staleness. Given the latest parameter version i,
total generated trajectories Nr, and training batch size B,
we enforce:

⌊Nr/B⌋ ≤ i+ η. (1)

When η = 1, the system recovers to the previous one-
step overlap methods (Noukhovitch et al., 2024; Luo et al.,
2025a). While this approach guarantees bounded staleness,
overly conservative η values can unnecessarily throttle gen-
eration throughput—particularly for long-context genera-
tions where the completion time of a batch varies signifi-
cantly. This motivates our adoptation of a decoupled PPO
objective that can make efficient use of slightly staled data.

4.2. Decoupled PPO Objective

We apply a decoupled PPO objective (Hilton et al., 2022)
that disentangles the behavior policy and the proximal pol-
icy. The behavior policy πbehav represents the policy used
for sampling trajectories and the proxy policy πprox is a
proximal policy serving as a recent target to regularize the

2

AREAL: A Large-Scale Asynchronous Reinforcement Learning System for Language Reasoning

1

Time

GPU 1
GPU 2
GPU 3
GPU 4

2
3
4
5

6
7
8

1-8

9
10
11

12
13

14

16
15

9-16 17-24

GPU 1
GPU 2
GPU 3
GPU 4

Time

1-8 9-16 17-24

Training Generation Load Weight

17
18
19

20
21

22
23
24

Figure 1: Execution timeline of a synchronous (left) and an one-step overlap (right) RL system showing underutilized
inference devices.

…

 R
ollout C

ontroller

 Reward Service

R
eplay B

uffer

Interruptible
Rollout Worker

Interruptible
Rollout Worker

Interruptible
Rollout Worker

Trainer Worker

Trainer Worker

Trainer Worker

Trainer Worker

Param
eter Service…

Reward
CPU JobGeneration Training

GPU Job

Interrupt Signal
(Update Weights)

Prompt

Trajectory
Parameter
Save/Load

Aggregate Batch

Send Full Batch

Figure 2: The AREAL architecture featuring asynchronous
generation and training components.

update of πθ. By applying importance sampling on the sam-
pled trajectories, we could derive a decoupled PPO objective
suitable for asynchronous RL training,

J(θ) = E

H∑

t=1

min(
πθ

πbehav

Importance Ratio

Ât,

Importance Ratio︷ ︸︸ ︷
πprox

πbehav

clip(
πθ

πprox

Trust Region Center

)Ât))

 (2)

= E

 H∑
t=1

πprox

πbehav

min
(
u
prox
t (θ)Ât, clip

(
u
prox
t (θ)

)
Ât)

) , (3)

where uprox
t (θ) = πθ(at|st)

πprox(at|st) is the importance ratio w.r.t.
the proximal policy. The main difference between the asyn-
chronous PPO objective Equation (3) and the standard one
lies in the proximal policy πprox for regularizing the model
update. In asynchronous PPO training, using the behav-
ior policy as the proximal policy will pull the latest policy
πθ towards the old-version and low-quality policies, thus
slowing down model improvements. By employing a recent
policy as the proximal policy, model updates would happen
within the trust region around the high-quality proximal
policy πprox, thus stabilizing training.

Equation (3) provides a natural benefit: it relaxes the re-
quirement that all data within one training batch should
be generated with a singe policy. This property is crucial

Figure 3: Illustration of generation management in AREAL.
Vertical lines shows the ready time for the next step train-
ing. Blue crosses show the interrupted requests when new
parameters arrive.

for maintaining algorithmic correctness when combining
interruptible generation with policy updates.

Proposition 4.1. For any sequence (q, a1, . . . , aH) gener-
ated by policies (πθ, . . . , πθ+k) where πθ+i produces tokens
(ati , . . . , ati+1), where 1 = t0 < · · · < tk+1 = H , there
exists a behavior policy πbehav such that the interrupted
generation is equivalent to sampling entirely from πbehav.

Practical Remark While Hilton et al. (2022) maintains an
exponential moving average of parameters for πprox, this ap-
proach is prohibitively expensive for LRMs. Consequently,
we simply use the parameters before each model update
step as πprox, i.e., recomputing token probabilities upon the
arrival of the global batch in each training step.

5. Experiments
Our evaluation comprises three components: (1) compre-
hensive comparisons against state-of-the-art open-source
frameworks across model sizes, (2) strong-scaling analysis
with varying compute resources, and (3) ablation studies
validating our design choices. Experiment settings can be
found in Appendix B.

5.1. End-to-End Comparison
We establish two state-of-the-art baselines using syn-
chronous RL systems: DeepScaleR (Luo et al., 2025b)
for mathematical reasoning with a 1.5B model, and Deep-
Coder (Luo et al., 2025a) for code generation with a 14B
model, both trained using verl (Sheng et al., 2025). For
larger 7B and 32B models where comparable baselines are
unavailable, we performed controlled experiments by train-
ing from scratch using a synchronous variant of AREAL.
Our main results are shown in Table 1. Since the code of ob-
taining previous SOTA models can be out-of-date, we mea-
sure the throughput and estimate the training hours using the
latest verl code for a fair comparison. AREAL consistently
matches or exceeds baseline performance while achieving
significant speedups. In particular, our system demonstrates
up to 2.8× improvement in training throughput compared
to synchronous approaches without significant performance
degradation.

3

AREAL: A Large-Scale Asynchronous Reinforcement Learning System for Language Reasoning

Table 1: End-to-End Performance Comparison. We evaluate on
the AIME24 benchmark for math and LiveCodeBench (8/1/24-
2/1/25) for coding. We limit the maximum generation length to
32K tokens and sample 32 responses per question, reporting the av-
erage pass@1 accuracy. * represents the best known reproducible
results obtained via RL , as cited from DeepScaler (Luo et al.,
2025b) and DeepCoder (Luo et al., 2025a) respectively. AReaL
achieve the comparable performance with 2x less training hours.

Model AIME24 ↑ # Nodes PPO Steps Training Hours ↓

1.5B basemodel 29.3 - - -
w/ VeRL 43.1* 16 250 33.6

w/ Sync.AReaL 42.0 16 250 41.0
w/ AReaL (ours) 42.2 16 250 14.8

7B basemodel 54.3 - - -
w/ VeRL - 24 250 52.1

w/ Sync.AReaL 63.0 24 250 57.7
w/ AReaL (ours) 63.1 24 250 25.4

Model LiveCodeBench ↑ # Nodes PPO Steps Training Hours ↓

14B basemodel 53.4 - - -
w/ VeRL 57.9* 32 80 44.4

w/ Sync.AReaL 56.7 32 80 48.8
w/ AReaL (ours) 58.1 32 80 21.9

32B basemodel 57.4 - - -
w/ VeRL - 48 60 46.4

w/ Sync.AReaL 61.2 48 60 51.1
w/ AReaL (ours) 61.0 48 60 31.1

5.2. Scalability

We compare the scalability of AREAL with verl (Sheng
et al., 2025), the state-of-the-art synchronous RL system,
across different model sizes and context lengths. We mea-
sure the effective throughput for training, defined as the
rate of consuming generated tokens during PPO updates,
after proper warmup steps. Figure 4 presents the results
for context lengths of 16k and 32k. Across all settings,
AREAL demonstrates an approximate linear scaling trend
with increased device count, while the synchronous system
typically fails to scale effectively. Additionally, AREAL
is more robust with longer generation lengths due to asyn-
chronous and interruptible generation. The generation of
long responses can be fully hidden in the critical path, so
extending generation length does not drastically affect the
effective training throughput of AREAL.

32 64 128 256
29k
44k
67k

102k
155k
235k

Model=1.5B, ctx=16384
AReaL
verl
linear

64 128 256 512
19k
29k
46k
71k

112k
175k

Model=7B, ctx=16384

256 512
12k
15k
18k
23k
29k
37k

Model=32B, ctx=16384

32 64 128 256
27k
41k
64k

100k
155k
241k

Model=1.5B, ctx=32768

64 128 256 512
19k
29k
44k
68k

103k
157k

Model=7B, ctx=32768

256 512
18k
21k
24k
28k
32k
37k

Model=32B, ctx=32768

Th
ro

ug
hp

ut
 (t

ok
en

/s
)

Number of GPUs

Figure 4: The strong scaling trend. Dotted lines indicate
ideal linear scaling. verl consistently encounters OOM with
32k context length and the 32B model so the data points are
missing.

0 50 100 150 200 250
Training Step

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

Tr
ai

ni
ng

 R
ew

ar
d

naive PPO
MaxStaleness

16
8
4
2
1
0

(a) Learning curves with
naive PPO.

0 50 100 150 200 250
Training Step

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

Tr
ai

ni
ng

 R
ew

ar
d

+Decoupled Objective
MaxStaleness

16
8
4
2
1
0

(b) Learning curves with
Equation (3).

0 50 100 150 200 250 300 350 400 450
Effective Training Throughput (k tokens/s)

0

1

2

4

8

16M
ax

im
um

 S
ta

le
ne

ss

128.7

269.3

356.6

356.6

371.7

382.4

396.8

(c) Effective training
throughput.

Figure 5: Ablation studies of the decoupled PPO objective and staleness control.
Both algorithmic choices are essential. With a moderate staleness value and the
decoupled objective, training progress can be accelerated by 2x while maintaining
final evaluation performance.

Table 2: Evaluation scores when varying data staleness, com-
paring performance with and without the decoupled objective.
Numbers within ±1 of the oracle score are underlined.

Max.Stale. AIME24 AIME25 AMC23 MATH 500

W/o With W/o With W/o With W/o With

0 (Oracle) 42.0 32.9 84.4 89.2
1 41.8 42.1 30.7 31.9 83.3 85.2 89.9 89.8
2 40.0 41.8 32.1 32.5 82.3 84.3 89.6 89.6
4 23.3 42.2 23.1 32.0 58.5 85.1 66.9 89.5
8 35.7 41.0 27.8 31.1 81.2 82.9 87.8 89.2

16 35.8 38.7 26.2 32.5 78.4 83.2 87.4 89.1
∞ 34.0 36.9 26.9 29.9 79.4 81.0 87.1 88.1

5.3. Algorithm Ablations
We conduct ablation studies to validate our algorithmic inno-
vations in Section 4 by training a 1.5B LRM on math tasks.
We follow the basic experiment setting of DeepScaleR and
then gradually increase the η value for ablation purposes.
Specifically, we vary the maximum allowed staleness η and
compare configurations with and without the decoupled
PPO objective. Figures 5a and 5b show the learning curves
after 250 training steps. Table 2 presents the corresponding
final evaluation performances across multiple mathematical
reasoning benchmarks. We follow the common practice of
PPO and perform multiple mini-batch updates within each
training step. We emphasize that η constrains the training
batch staleness regarding training steps.

6. Conclusion
This paper introduces AREAL, a fully asynchronous system
designed for efficient large-scale reinforcement learning
(RL) training. We contribute several algorithmic innova-
tions, including staleness-aware training and a decoupled
PPO objective, which enable efficient and stable PPO train-
ing in asynchronous environments. Our experimental results
demonstrate AREAL’s superior hardware efficiency, sample
efficiency, and scalability compared to existing synchronous
RL systems.

References
Chen, Z., May, A., Svirschevski, R., Huang, Y.,

Ryabinin, M., Jia, Z., and Chen, B. Sequoia: Scal-

4

AREAL: A Large-Scale Asynchronous Reinforcement Learning System for Language Reasoning

able and robust speculative decoding. In Globerson,
A., Mackey, L., Belgrave, D., Fan, A., Paquet,
U., Tomczak, J., and Zhang, C. (eds.), Advances
in Neural Information Processing Systems, vol-
ume 37, pp. 129531–129563. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.
cc/paper_files/paper/2024/file/
ea1f5f0878d43ff4fb8bf64ef4a2326c-Paper-Conference.
pdf.

DeepSeek-AI, Guo, D., Yang, D., Zhang, H., Song, J.,
Zhang, R., Xu, R., Zhu, Q., Ma, S., Wang, P., Bi, X.,
Zhang, X., Yu, X., Wu, Y., Wu, Z. F., Gou, Z., Shao,
Z., Li, Z., Gao, Z., Liu, A., Xue, B., Wang, B., Wu, B.,
Feng, B., Lu, C., Zhao, C., Deng, C., Zhang, C., Ruan,
C., Dai, D., Chen, D., Ji, D., Li, E., Lin, F., Dai, F., Luo,
F., Hao, G., Chen, G., Li, G., Zhang, H., Bao, H., Xu,
H., Wang, H., Ding, H., Xin, H., Gao, H., Qu, H., Li,
H., Guo, J., Li, J., Wang, J., Chen, J., Yuan, J., Qiu, J.,
Li, J., Cai, J. L., Ni, J., Liang, J., Chen, J., Dong, K.,
Hu, K., Gao, K., Guan, K., Huang, K., Yu, K., Wang,
L., Zhang, L., Zhao, L., Wang, L., Zhang, L., Xu, L.,
Xia, L., Zhang, M., Zhang, M., Tang, M., Li, M., Wang,
M., Li, M., Tian, N., Huang, P., Zhang, P., Wang, Q.,
Chen, Q., Du, Q., Ge, R., Zhang, R., Pan, R., Wang, R.,
Chen, R. J., Jin, R. L., Chen, R., Lu, S., Zhou, S., Chen,
S., Ye, S., Wang, S., Yu, S., Zhou, S., Pan, S., and Li,
S. S. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. CoRR, abs/2501.12948,
2025. doi: 10.48550/ARXIV.2501.12948. URL https:
//doi.org/10.48550/arXiv.2501.12948.

Hilton, J., Cobbe, K., and Schulman, J. Batch size-
invariance for policy optimization. In Koyejo, S.,
Mohamed, S., Agarwal, A., Belgrave, D., Cho, K.,
and Oh, A. (eds.), Advances in Neural Information
Processing Systems 35: Annual Conference on Neu-
ral Information Processing Systems 2022, NeurIPS
2022, New Orleans, LA, USA, November 28 - De-
cember 9, 2022, 2022. URL http://papers.
nips.cc/paper_files/paper/2022/hash/
6ceb6c2150bbf46fd75528a6cd6be793-Abstract-Conference.
html.

Hu, J., Wu, X., Wang, W., Xianyu, Zhang, D., and Cao, Y.
Openrlhf: An easy-to-use, scalable and high-performance
RLHF framework. CoRR, abs/2405.11143, 2024. doi:
10.48550/ARXIV.2405.11143. URL https://doi.
org/10.48550/arXiv.2405.11143.

Hui, B., Yang, J., Cui, Z., Yang, J., Liu, D., Zhang, L.,
Liu, T., Zhang, J., Yu, B., Dang, K., Yang, A., Men,
R., Huang, F., Ren, X., Ren, X., Zhou, J., and Lin, J.
Qwen2.5-coder technical report. CoRR, abs/2409.12186,
2024. doi: 10.48550/ARXIV.2409.12186. URL https:
//doi.org/10.48550/arXiv.2409.12186.

Jain, N., Han, K., Gu, A., Li, W., Yan, F., Zhang, T.,
Wang, S., Solar-Lezama, A., Sen, K., and Stoica, I. Live-
codebench: Holistic and contamination free evaluation of
large language models for code. In The Thirteenth Inter-
national Conference on Learning Representations, ICLR
2025, Singapore, April 24-28, 2025. OpenReview.net,
2025. URL https://openreview.net/forum?
id=chfJJYC3iL.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Effi-
cient memory management for large language model
serving with pagedattention. In Flinn, J., Seltzer, M. I.,
Druschel, P., Kaufmann, A., and Mace, J. (eds.), Pro-
ceedings of the 29th Symposium on Operating Sys-
tems Principles, SOSP 2023, Koblenz, Germany, Octo-
ber 23-26, 2023, pp. 611–626. ACM, 2023. doi: 10.
1145/3600006.3613165. URL https://doi.org/
10.1145/3600006.3613165.

Luo, M., Tan, S., Huang, R., Patel, A., Ariyak, A., Wu, Q.,
Shi, X., Xin, R., Cai, C., Weber, M., et al. Deepcoder: A
fully open-source 14b coder at o3-mini level, 2025a.

Luo, M., Tan, S., Wong, J., Shi, X., Tang, W. Y.,
Roongta, M., Cai, C., Luo, J., Li, L. E., Popa,
R. A., and Stoica, I. Deepscaler: Surpass-
ing o1-preview with a 1.5b model by scaling rl.
https://pretty-radio-b75.notion.site/
DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2,
2025b. Notion Blog.

Mei, Z., Fu, W., Li, K., Wang, G., Zhang, H., and Wu, Y. Re-
alhf: Optimized RLHF training for large language models
through parameter reallocation. CoRR, abs/2406.14088,
2024. doi: 10.48550/ARXIV.2406.14088. URL https:
//doi.org/10.48550/arXiv.2406.14088.

Miao, X., Oliaro, G., Zhang, Z., Cheng, X., Wang, Z.,
Zhang, Z., Wong, R. Y. Y., Zhu, A., Yang, L., Shi,
X., Shi, C., Chen, Z., Arfeen, D., Abhyankar, R., and
Jia, Z. Specinfer: Accelerating large language model
serving with tree-based speculative inference and verifi-
cation. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3, ASPLOS
’24, pp. 932–949, New York, NY, USA, 2024. Associa-
tion for Computing Machinery. ISBN 9798400703867.
doi: 10.1145/3620666.3651335. URL https://doi.
org/10.1145/3620666.3651335.

Noukhovitch, M., Huang, S., Xhonneux, S., Hosseini,
A., Agarwal, R., and Courville, A. C. Asynchronous
RLHF: faster and more efficient off-policy RL for lan-
guage models. CoRR, abs/2410.18252, 2024. doi:
10.48550/ARXIV.2410.18252. URL https://doi.
org/10.48550/arXiv.2410.18252.

5

https://proceedings.neurips.cc/paper_files/paper/2024/file/ea1f5f0878d43ff4fb8bf64ef4a2326c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/ea1f5f0878d43ff4fb8bf64ef4a2326c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/ea1f5f0878d43ff4fb8bf64ef4a2326c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/ea1f5f0878d43ff4fb8bf64ef4a2326c-Paper-Conference.pdf
https://doi.org/10.48550/arXiv.2501.12948
https://doi.org/10.48550/arXiv.2501.12948
http://papers.nips.cc/paper_files/paper/2022/hash/6ceb6c2150bbf46fd75528a6cd6be793-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/6ceb6c2150bbf46fd75528a6cd6be793-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/6ceb6c2150bbf46fd75528a6cd6be793-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/6ceb6c2150bbf46fd75528a6cd6be793-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2405.11143
https://doi.org/10.48550/arXiv.2405.11143
https://doi.org/10.48550/arXiv.2409.12186
https://doi.org/10.48550/arXiv.2409.12186
https://openreview.net/forum?id=chfJJYC3iL
https://openreview.net/forum?id=chfJJYC3iL
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://doi.org/10.48550/arXiv.2406.14088
https://doi.org/10.48550/arXiv.2406.14088
https://doi.org/10.1145/3620666.3651335
https://doi.org/10.1145/3620666.3651335
https://doi.org/10.48550/arXiv.2410.18252
https://doi.org/10.48550/arXiv.2410.18252

AREAL: A Large-Scale Asynchronous Reinforcement Learning System for Language Reasoning

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury,
J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Köpf, A., Yang, E. Z.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy,
S., Steiner, B., Fang, L., Bai, J., and Chintala, S.
Pytorch: An imperative style, high-performance deep
learning library. In Wallach, H. M., Larochelle, H.,
Beygelzimer, A., d’Alché-Buc, F., Fox, E. B., and
Garnett, R. (eds.), Advances in Neural Information
Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, pp. 8024–
8035, 2019. URL https://proceedings.
neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.
html.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
CoRR, abs/1707.06347, 2017. URL http://arxiv.
org/abs/1707.06347.

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Zhang, M.,
Li, Y. K., Wu, Y., and Guo, D. Deepseekmath: Pushing
the limits of mathematical reasoning in open language
models. CoRR, abs/2402.03300, 2024. doi: 10.48550/
ARXIV.2402.03300. URL https://doi.org/10.
48550/arXiv.2402.03300.

Shen, G., Wang, Z., Delalleau, O., Zeng, J., Dong, Y.,
Egert, D., Sun, S., Zhang, J. J., Jain, S., Taghibakhshi,
A., Ausin, M. S., Aithal, A., and Kuchaiev, O. Nemo-
aligner: Scalable toolkit for efficient model alignment.
CoRR, abs/2405.01481, 2024. doi: 10.48550/ARXIV.
2405.01481. URL https://doi.org/10.48550/
arXiv.2405.01481.

Sheng, G., Zhang, C., Ye, Z., Wu, X., Zhang, W., Zhang,
R., Peng, Y., Lin, H., and Wu, C. Hybridflow: A flexible
and efficient RLHF framework. In Proceedings of the
Twentieth European Conference on Computer Systems,
EuroSys 2025, Rotterdam, The Netherlands, 30 March
2025 - 3 April 2025, pp. 1279–1297. ACM, 2025. doi: 10.
1145/3689031.3696075. URL https://doi.org/
10.1145/3689031.3696075.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper,
J., and Catanzaro, B. Megatron-lm: Training multi-
billion parameter language models using model paral-
lelism. CoRR, abs/1909.08053, 2019. URL http:
//arxiv.org/abs/1909.08053.

Team, P. I., Jaghouar, S., Mattern, J., Ong, J. M., Straube, J.,
Basra, M., Pazdera, A., Thaman, K., Ferrante, M. D.,
Gabriel, F., Obeid, F., Erdem, K., Keiblinger, M.,
and Hagemann, J. Intellect-2: A reasoning model

trained through globally decentralized reinforcement
learning, 2025. URL https://arxiv.org/abs/
2505.07291.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B.,
Xia, F., Chi, E. H., Le, Q. V., and Zhou, D. Chain-of-
thought prompting elicits reasoning in large language
models. In Koyejo, S., Mohamed, S., Agarwal, A.,
Belgrave, D., Cho, K., and Oh, A. (eds.), Advances in
Neural Information Processing Systems 35: Annual
Conference on Neural Information Processing Systems
2022, NeurIPS 2022, New Orleans, LA, USA, November
28 - December 9, 2022, 2022. URL http://papers.
nips.cc/paper_files/paper/2022/hash/
9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.
html.

Xin, H., Guo, D., Shao, Z., Ren, Z., Zhu, Q., Liu, B.,
Ruan, C., Li, W., and Liang, X. Deepseek-prover: Ad-
vancing theorem proving in llms through large-scale
synthetic data. CoRR, abs/2405.14333, 2024. doi:
10.48550/ARXIV.2405.14333. URL https://doi.
org/10.48550/arXiv.2405.14333.

Yang, A., Yang, B., Hui, B., Zheng, B., Yu, B., Zhou, C.,
Li, C., Li, C., Liu, D., Huang, F., Dong, G., Wei, H., Lin,
H., Tang, J., Wang, J., Yang, J., Tu, J., Zhang, J., Ma, J.,
Yang, J., Xu, J., Zhou, J., Bai, J., He, J., Lin, J., Dang,
K., Lu, K., Chen, K., Yang, K., Li, M., Xue, M., Ni, N.,
Zhang, P., Wang, P., Peng, R., Men, R., Gao, R., Lin,
R., Wang, S., Bai, S., Tan, S., Zhu, T., Li, T., Liu, T.,
Ge, W., Deng, X., Zhou, X., Ren, X., Zhang, X., Wei,
X., Ren, X., Liu, X., Fan, Y., Yao, Y., Zhang, Y., Wan,
Y., Chu, Y., Liu, Y., Cui, Z., Zhang, Z., Guo, Z., and
Fan, Z. Qwen2 technical report. CoRR, abs/2407.10671,
2024a. doi: 10.48550/ARXIV.2407.10671. URL https:
//doi.org/10.48550/arXiv.2407.10671.

Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu, B.,
Li, C., Liu, D., Huang, F., Wei, H., Lin, H., Yang, J.,
Tu, J., Zhang, J., Yang, J., Yang, J., Zhou, J., Lin, J.,
Dang, K., Lu, K., Bao, K., Yang, K., Yu, L., Li, M., Xue,
M., Zhang, P., Zhu, Q., Men, R., Lin, R., Li, T., Xia,
T., Ren, X., Ren, X., Fan, Y., Su, Y., Zhang, Y., Wan,
Y., Liu, Y., Cui, Z., Zhang, Z., and Qiu, Z. Qwen2.5
technical report. CoRR, abs/2412.15115, 2024b. doi:
10.48550/ARXIV.2412.15115. URL https://doi.
org/10.48550/arXiv.2412.15115.

Yang, A., Zhang, B., Hui, B., Gao, B., Yu, B., Li, C., Liu, D.,
Tu, J., Zhou, J., Lin, J., Lu, K., Xue, M., Lin, R., Liu, T.,
Ren, X., and Zhang, Z. Qwen2.5-math technical report:
Toward mathematical expert model via self-improvement.
CoRR, abs/2409.12122, 2024c. doi: 10.48550/ARXIV.
2409.12122. URL https://doi.org/10.48550/
arXiv.2409.12122.

6

https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.48550/arXiv.2402.03300
https://doi.org/10.48550/arXiv.2402.03300
https://doi.org/10.48550/arXiv.2405.01481
https://doi.org/10.48550/arXiv.2405.01481
https://doi.org/10.1145/3689031.3696075
https://doi.org/10.1145/3689031.3696075
http://arxiv.org/abs/1909.08053
http://arxiv.org/abs/1909.08053
https://arxiv.org/abs/2505.07291
https://arxiv.org/abs/2505.07291
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2405.14333
https://doi.org/10.48550/arXiv.2405.14333
https://doi.org/10.48550/arXiv.2407.10671
https://doi.org/10.48550/arXiv.2407.10671
https://doi.org/10.48550/arXiv.2412.15115
https://doi.org/10.48550/arXiv.2412.15115
https://doi.org/10.48550/arXiv.2409.12122
https://doi.org/10.48550/arXiv.2409.12122

AREAL: A Large-Scale Asynchronous Reinforcement Learning System for Language Reasoning

Yoo, A. B., Jette, M. A., and Grondona, M. SLURM:
simple linux utility for resource management. In Fei-
telson, D. G., Rudolph, L., and Schwiegelshohn, U.
(eds.), Job Scheduling Strategies for Parallel Process-
ing, 9th International Workshop, JSSPP 2003, Seat-
tle, WA, USA, June 24, 2003, Revised Papers, volume
2862 of Lecture Notes in Computer Science, pp. 44–
60. Springer, 2003. doi: 10.1007/10968987\ 3. URL
https://doi.org/10.1007/10968987_3.

Yu, Q., Zhang, Z., Zhu, R., Yuan, Y., Zuo, X., Yue, Y., Fan,
T., Liu, G., Liu, L., Liu, X., Lin, H., Lin, Z., Ma, B.,
Sheng, G., Tong, Y., Zhang, C., Zhang, M., Zhang, W.,
Zhu, H., Zhu, J., Chen, J., Chen, J., Wang, C., Yu, H., Dai,
W., Song, Y., Wei, X., Zhou, H., Liu, J., Ma, W., Zhang,
Y., Yan, L., Qiao, M., Wu, Y., and Wang, M. DAPO: an
open-source LLM reinforcement learning system at scale.
CoRR, abs/2503.14476, 2025. doi: 10.48550/ARXIV.
2503.14476. URL https://doi.org/10.48550/
arXiv.2503.14476.

Yue, Y., Yuan, Y., Yu, Q., Zuo, X., Zhu, R., Xu, W., Chen, J.,
Wang, C., Fan, T., Du, Z., Wei, X., Yu, X., Liu, G., Liu,
J., Liu, L., Lin, H., Lin, Z., Ma, B., Zhang, C., Zhang, M.,
Zhang, W., Zhu, H., Zhang, R., Liu, X., Wang, M., Wu,
Y., and Yan, L. Vapo: Efficient and reliable reinforce-
ment learning for advanced reasoning tasks, 2025. URL
https://arxiv.org/abs/2504.05118.

Zhao, Y., Gu, A., Varma, R., Luo, L., Huang, C., Xu,
M., Wright, L., Shojanazeri, H., Ott, M., Shleifer, S.,
Desmaison, A., Balioglu, C., Damania, P., Nguyen, B.,
Chauhan, G., Hao, Y., Mathews, A., and Li, S. Pytorch
FSDP: experiences on scaling fully sharded data par-
allel. Proc. VLDB Endow., 16(12):3848–3860, 2023.
doi: 10.14778/3611540.3611569. URL https://www.
vldb.org/pvldb/vol16/p3848-huang.pdf.

Zheng, L., Yin, L., Xie, Z., Sun, C., Huang, J., Yu,
C. H., Cao, S., Kozyrakis, C., Stoica, I., Gonzalez,
J. E., Barrett, C. W., and Sheng, Y. Sglang: Efficient
execution of structured language model programs. In
Globersons, A., Mackey, L., Belgrave, D., Fan, A.,
Paquet, U., Tomczak, J. M., and Zhang, C. (eds.),
Advances in Neural Information Processing Systems 38:
Annual Conference on Neural Information Processing
Systems 2024, NeurIPS 2024, Vancouver, BC, Canada,
December 10 - 15, 2024, 2024. URL http://papers.
nips.cc/paper_files/paper/2024/hash/
724be4472168f31ba1c9ac630f15dec8-Abstract-Conference.
html.

7

https://doi.org/10.1007/10968987_3
https://doi.org/10.48550/arXiv.2503.14476
https://doi.org/10.48550/arXiv.2503.14476
https://arxiv.org/abs/2504.05118
https://www.vldb.org/pvldb/vol16/p3848-huang.pdf
https://www.vldb.org/pvldb/vol16/p3848-huang.pdf
http://papers.nips.cc/paper_files/paper/2024/hash/724be4472168f31ba1c9ac630f15dec8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/724be4472168f31ba1c9ac630f15dec8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/724be4472168f31ba1c9ac630f15dec8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/724be4472168f31ba1c9ac630f15dec8-Abstract-Conference.html

AREAL: A Large-Scale Asynchronous Reinforcement Learning System for Language Reasoning

1.5B 7B
Model Size

0K

100K

200K

300K

Av
er

ag
e

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

231k

130k

207k

111k

Interruptible Generation
interruptible
non-interruptible

Figure 6: Ablation study of interruptible generation.

1B
(1 node)

7B
(2 nodes)

32B
(8 nodes)

Model Size

0

100

200

300

400

500

Th
ro

ug
hp

ut
 (T

FL
O

P/
s

pe
r

G
PU

)

427.4
454.7

387.7404.4

303.1 283.0

Dynamic vs. Normal Batching
Dynamic
Normal

Figure 7: Ablation study of dynamic micro-batch allocation.

A. Additional Results
A.1. System Ablations

Interruptible Generation We ablate interruptible generation and present the resulting generation throughput in Figure 6.
Without interruptible generation, the controller must wait for the longest response. In particular, interruptible generation leads
to a 12% and 17% throughput increase for 1.5B and 7B models respectively on 4 nodes, which validates our architectural
design choice.

Dynamic Microbatch Allocation We investigate the effectiveness of dynamic batching by comparing PPO training
throughput against a standard micro-batching strategy. The standard micro-batching strategy can result in multiple long
sequences being assigned to the same micro-batch, thus usually requiring a sufficiently large number of micro-batches to
prevent out-of-memory errors. In our experimental setup, we configured 32 micro-batches for the standard setting and
established a token budget of 32,768 per micro-batch for the dynamic batching approach. As demonstrated in Figure 7,
dynamic batching yields an average of 30% throughput improvements across various model sizes.

A.2. Additional Evaluation

We evaluate the models trained with AReaL on more math benchmarks, and list the results in Table 3.

8

AREAL: A Large-Scale Asynchronous Reinforcement Learning System for Language Reasoning

Table 3: Results on math benchmarks.

Model AIME24 AIME25 AMC23 MATH 500

1.5B basemodel 29.3 24.4 71.0 84.3
w/ Sync. AReaL 42.0 32.9 84.4 89.2

w/ AReaL 42.2 32.0 85.1 89.5

7B basemodel 54.3 41.7 89.5 92.8
w/ Sync. AReaL 63.0 50.0 93.2 94.2

w/ AReaL 63.1 47.3 93.6 94.3

B. Implementation Details

C. Overview
We implement AREAL using Python and PyTorch (Paszke et al., 2019) built upon the ReaLHF (Mei et al., 2024) framework.
Our system combines SGLang (Zheng et al., 2024) v0.4.6 for generation serving with Megatron-Core (Shoeybi et al., 2019)
v0.11.0 as the training backend, managed by SLURM (Yoo et al., 2003) for resource scheduling. To maximize throughput for
both generation and training phases, we implement several key system-level optimizations that address critical bottlenecks
in the pipeline.

D. System Optimizations
AREAL decouples GPU computation from CPU operations, including rule-based reward computation (such as string
matching for math problems or unit test execution for code) and TCP-based data transfer. By executing these operations in
separate threads and pipelining the workflow, we overlap reward computation and data transfer with subsequent generation
requests. We use asyncio coroutines to concurrently runs multiple requests in the rollout worker to avoid mutual blocking
waits.

To handle the training with variable-length sequences, we employ a padding-free sequence packing strategy coupled with
a dynamic allocation algorithm. The algorithm balances token distribution across micro-batches under fixed memory
constraints (see Algorithm 1). This approach maximizes GPU memory utilization while minimizing the number of required
forward-backward passes.

D.1. Experiment Setup

We evaluate AREAL on challenging math and coding tasks. We employ the distilled Qwen2 model series (Yang et al.,
2024a;b) from DeepSeek-R1 (DeepSeek-AI et al., 2025) as base models (i.e., R1-Distilled-Qwen), spanning from 1.5B
to 32B parameters. For each task-model combination, we train for a fixed number of PPO updates and evaluate the final
checkpoint. Our evaluation on mathematical tasks follow the Qwen evaluation protocol (Yang et al., 2024c; Hui et al., 2024),
while coding models are assessed on LiveCodeBench (8/1/24-2/1/25) (Jain et al., 2025) using the official protocol. Unless
otherwise specified, we set the maximum staleness η = 4 and adopt the training configurations used in Section 5.1, with
additional hyperparameters detailed in Appendix B.

We conduct experiments on an H800 GPU cluster comprising 64 nodes, each equipped with 8 GPUs. The cluster features
NVLink for intra-node connectivity and RoCE with 3.2Tbps bandwidth for inter-node communication. To ensure rapid
convergence, we allocate a minimum of 16 nodes as a baseline pod configuration for complete experiments. We scale
the number of nodes proportionally with model size, ultimately utilizing 48 nodes for training our largest 32B parameter
model. This scaling strategy enables us to run experiments of varying sizes in parallel while maintaining efficient resource
utilization.

For AREAL, we maintain a fixed ratio between inference and training devices, allocating three-quarters of the devices for
inference. This configuration was selected against an equal 50-50 partition based on our early experiments, where the 75-25
partition demonstrated higher training throughput. While we adopt this ratio as a heuristic configuration, we emphasize
that the optimal partition may vary across different settings and could potentially benefit from dynamic adjustment during

9

AREAL: A Large-Scale Asynchronous Reinforcement Learning System for Language Reasoning

training, as discussed in Section 6.

D.2. PPO Details

We disable the critic model and the reference model in PPO. The advantage estimation parameter λ in GAE and the RL
discount factor γ are fixed at 1. The reward is 5 at the final token if the answer is correct and -5 otherwise. We additionally
adopt advantage normalization across the global batch to stabilize the training. Other learning related hyperparameters and
configurations can be found in Table 4.

Table 4: Training configurations and hyperparameters.

Training Configuration

Batch size (number of prompts) 512
Random seed 1

PPO Parameters

PPO Minibatches 4
Clipping ϵ 0.2
Advantage normalization True
Discount factor γ 1.0
GAE λ 1.0

Optimizer Parameters

Optimizer Adam
Learning rate 2.0× 10−5

Weight decay 0.05
β1 0.9
β2 0.95
Adam ϵ 1× 10−5

Gradient norm clipping 1.0
Learning rate scheduler constant
Warmup steps proportion 0.001

Precision Parameters

Parameter dtype fp16
KV cache dtype fp16
Gradient dtype fp32
Optimizer state dtype fp32

Generation Parameters

Answers per prompt 16
Temperature 1.0
Top-p 1.0
Top-k -1
Max prompt length 1024
Min generation length 0
Max generation length 27648

D.3. Dataset Details

For the math task, we use the open-source data from DeepScaleR (Luo et al., 2025b), For code training, we used the dataset
released by DeepCoder (Luo et al., 2025a). All compared methods use the same dataset.

D.4. Dynamic Batching

10

AREAL: A Large-Scale Asynchronous Reinforcement Learning System for Language Reasoning

Algorithm 1 Dynamic Batching

Require: Sequence lengths S = {s1, s2, . . . , sn}, maximum micro-batch capacity C, minimum number of micro-batches
kmin

Ensure: Balanced partition of sequences into micro-batches with total length ≤ C
Sort S in descending order
batches← ∅
for s ∈ S do

if |batches| < kmin or no existing batch can fit s then
Create new micro-batch containing sequence i
batches.append({s})

else
Find all batches that can accommodate s
Select the micro-batch with fewest sequences

end if
end for=0

The dynamic batching algorithm is shown in Algorithm 1.

D.5. Baselines

In our experiments, we use the lastest version (main branch of verl repository, May 7, 2025) of verl (Sheng et al., 2025) to
evaluate the training throughput in Figure 4 and the training hours in Table 1. For most of the results, we use SGLang (Zheng
et al., 2024) v0.4.6 as generation backend and pytorch FSDP (Zhao et al., 2023) as training backend. In a few cases
where SGLang raises errors (experiments with 32B models or 64 nodes), we use vLLM (Kwon et al., 2023) v0.8.4 as a
substitution.

E. Proof of Proposition 1
Proposition 1. For any sequence (q, a1, . . . , aH) generated by policies (πθ, . . . , πθ+k) where πθ+i produces tokens
(ati , . . . , ati+1), where 1 = t0 < · · · < tk+1 = H , there exists a behavior policy πbehav such that the interrupted generation
is equivalent to sampling entirely from πbehav.

Proof. For question q, let St(q) denote states encountered at step t by the sequence of policies. Since Sti(q) ∩ Stj (q) = ∅
for i ̸= j, we can construct:

πbehav(·|s) =

{
πθ+j(·|s) if tj ≤ t ≤ tj+1 and s ∈ St(q)
arbitrary otherwise

F. Limitations and Future Work
Our work presents several limitations that suggest directions for future research. First, the ratio between inference and
training devices could be further optimized for specific training setups. Additionally, this ratio might benefit from dynamic
adjustment during training, particularly as context lengths typically increase when fine-tuning pre-trained base models.
While we focused our evaluation on single-step mathematical and coding tasks, the AREAL architecture is not inherently
limited to these domains. We leave the exploration of multi-turn interactions and agentic scenarios to future work.

11

