
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LORA-GEN: SPECIALIZING LANGUAGE MODEL VIA
ONLINE LORA GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances have highlighted the benefits of scaling language models to en-
hance performance across a wide range of NLP tasks. However, these approaches
still face limitations in effectiveness and efficiency when applied to domain-
specific tasks, particularly for small edge-side models. We propose the LoRA-Gen
framework, which utilizes a large cloud-side model to generate LoRA parameters
for edge-side models based on task descriptions. By employing the reparame-
terization technique, we merge the LoRA parameters into the edge-side model
to achieve flexible specialization. Our method facilitates knowledge transfer be-
tween models while significantly improving the inference efficiency of the spe-
cialized model by reducing the input context length. Extensive experiments show
that LoRA-Gen outperforms the conventional LoRA fine-tuning, which achieves
competitive accuracy and a 2.1x speedup with TinyLLaMA-1.1B on common-
sense reasoning tasks. Besides, our method delivers a compress ratio of 10.1x
with Gemma-2B on intelligent agent tasks.

1 INTRODUCTION

The principle of scaling laws (Kaplan et al., 2020) demonstrates that increasing the size of Large
Language Models (LLMs) can significantly improve cross-task generalization. However, due to
the constraints of their enormous size, generic LLMs struggle to achieve a good balance between
efficiency and effectiveness when addressing domain-specific tasks or preferences. Accordingly, im-
proving smaller edge-side language models which are deployed on edge devices to run locally with
a compact size in specific tasks (Fu et al., 2023; Grangier et al., 2024; Shen et al., 2024) is receiving
increasing attention in both academic research and industrial applications. Many approaches utilize
parameter-efficient fine-tuning techniques (Houlsby et al., 2019; Li & Liang, 2021; Lester et al.,
2021; Hu et al., 2021), particularly LoRA (Hu et al., 2021), to train on specific datasets for special-
ization. However, this method may encounter the issue of catastrophic forgetting, which can result
in a decrease in performance on other unseen tasks (Feng et al., 2024; Huang et al., 2023a).

To alleviate knowledge forgetting in specialized training, recent approaches (Dou et al., 2024; Gao
et al., 2024a; Yang et al., 2024c; Li et al., 2024a) leverage the flexibility of the Mixture of Experts
(MoE) for LoRA training. Specifically, as shown in Figure 2(b), they integrate a group of multiple
LoRA components as experts within the language model, allowing the language model to control
the selection of LoRA components during token generation. However, these methods introduce ad-
ditional inference costs due to the extra experts and control units. LoRAHub (Huang et al., 2023b),
on the other hand, pre-trains a set of task-specific LoRA components and employs a manually de-
signed parameter-free optimization method for selection. Nevertheless, the effectiveness of above
mentioned approaches is limited by their model scale, resulting in constrained performance and gen-
eralization capabilities on unseen tasks. Therefore, this paper explores a new perspective: utilizing
a large cloud-side model to generate parameters for a smaller edge-side model to achieve better
specialization.

To achieve it, we propose a new LoRA generation framework, termed LoRA-Gen. As shown in
Figure 2(c), our method can be divided into two parts: Online LoRA generation and Specialized LM.
The former is used to generate LoRA parameters based on the task-defined system prompt, while
the latter facilitates efficient batch inference for user input. Specifically, a fine-tuned large language
model, LLaMA3 (Dubey et al., 2024) and a mixture of LoRA experts are deployed in the cloud.
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Figure 2: Comparison of different LoRA-based fine-tuning strategies.(a) Vanilla LoRA is fine-tuned
on the target task and then merged into the source model. (b) LoRA-MoE introduces additional
LoRA experts to improve the generalization performance. (c) Our LoRA-Gen presents an online
task-specific LoRA generation framework that customizes a specialized LM for edge-side users.

The cloud-side language model generates a set of meta tokens based on the given system prompt.
Each meta token corresponds to a transformer layer in the edge-side language model, utilizing these
tokens to control the composition of parameters from the LoRA experts. Similarly to vanilla LoRA,
the combined parameters are further merged into the edge-side LM through reparameterization,
resulting in an efficient specialized model.
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Figure 1: Accuracy-latency curves comparison
with various few-shot numbers on ARC-c task.
Best view in color. Base model is Qwen-1.5B.

As shown in Table 1, our LoRA-Gen offers four ad-
vantages over previous methods: i) Context compres-
sion for unseen tasks: LoRA-Gen dynamically com-
presses the task-specific system prompt (e.g., task de-
scriptions, few-shot samples, and chat templates) into
the LoRA weights, which significantly reduce the con-
text length for the specialized models. ii) Reparame-
terized model: Unlike LoRA-MoE (Dou et al., 2024),
our approach employs reparameterization techniques
to merge the generated LoRA weights into the origi-
nal parameters, thereby avoiding additional inference
costs. iii) Inference-time specializing: Our method
does not require any additional training, including few-
shot tuning when specializing the model for unseen
tasks. It only necessitates a single-turn inference on
the system prompts to obtain the specialized model pa-
rameters, which simplifies model deployment. iv) Knowledge Transfer: LoRA-Gen allows the cloud
side and edge side to utilize different models, enabling the injection of knowledge from the large
cloud model into the edge model through reparameterization, which enhances performance effec-
tively as shown in Figure 1.

We conduct extensive experiments to validate the effectiveness of LoRA-Gen on various common-
sense reasoning tasks as well as an agent benchmark. The results demonstrate that our method
balances both performance and efficiency, showing significant advantages across eight language
datasets. For the edge-side model of TinyLLaMA-1.1B, LoRA-Gen outperforms vanilla LoRA fine-
tuning by a remarkable margin with only 1/6 sequence length, +1.3% on harmonic mean, and 2.1x
speedup. Moreover, for the Gemma-2B model, LoRA-Gen demonstrates competitive performance
on unseen agent tasks. Additionally, since it does not require the input of agent definitions during
inference, it achieves a remarkable 10.1x compression ratio.

2 RELATED WORK

2.1 PARAMETER-EFFICIENT FINE-TUNING

Given the billions of parameters in LLMs and the limitations of current hardware, fully fine-tuning
LLMs in the traditional manner is often impractical. To address this, several parameter-efficient

2
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Method Context Compression Reparameterized Inference-time Knowledge
for Unseen Tasks Model Specializing Transfer

ICL (Dong et al., 2022) ✗ ✗ ✔ ✗
LoRA (Hu et al., 2021) ✗ ✔ ✗ ✗
LoRA-MoE (Dou et al., 2024) ✗ ✗ ✔ ✗
LoraHub (Huang et al., 2023b) ✗ ✔ ✗ ✗
LoRA-Gen ✔ ✔ ✔ ✔

Table 1: Characteristics comparison with other counterparts. ICL indicates the in-context learning.

fine-tuning (PEFT) methods have been developed. Adapter-based approaches (Mahabadi et al.,
2021; Zhou et al., 2024; Zhang et al., 2024b) involve inserting trainable adapter layers into various
blocks of pre-trained models. Soft prompt methods (Li & Liang, 2021; Liu et al., 2022) adjust a
small trainable prefix vector to adapt LLMs to new tasks. Unlike these methods, LoRA (Hu et al.,
2021) minimizes the number of trainable parameters for downstream tasks by freezing the pre-
trained models and tuning only additional rank decomposition layers. This method approximates
weight adjustments during fine-tuning without incurring extra costs during inference. Building on
this, AdaLoRA (Zhang et al., 2023) dynamically adjusts the parameter budget among weight ma-
trices, while DoRA (Liu et al., 2024b) fine-tunes both the magnitude and directional components
decomposed from pre-trained weights. VeRA (Kopiczko et al., 2024) further reduces the number of
trainable parameters by utilizing shared low-rank layers and learnable scaling vectors.

2.2 LORA MEETS MIXTURE OF EXPERTS

Leveraging its lightweight nature, LoRA is utilized in Mixture of Experts (MoE) architectures to
enhance performance. MoLoRA (Zadouri et al., 2023) incorporates LoRA adapters as experts on
top of pre-trained models and uses a router layer to integrate these experts. MOELoRA (Liu et al.,
2024a) applies this framework to various medical domain tasks, though it requires task type input
for the router. LoRAMoE (Dou et al., 2024) introduces multiple LoRA experts into the feed-forward
block to mitigate knowledge forgetting during the instruction-tuning phase. LoraHub (Huang et al.,
2023b) allows a dynamic assembling of LoRA modules on various tasks and even unseen tasks by
combining adapted LoRA modules. Additionally, MoLA (Gao et al., 2024a) proposes layer-specific
experts, allocating a varying number of LoRA experts to different layers to boost performance.

2.3 CONTEXT COMPRESSION

With the rise of in-context learning (Wei et al., 2022) and agentic pipelines (Yang et al., 2024b),
LLMs often need to process thousands of tokens, potentially exceeding their maximum context
length. Unlike methods that extend the context window of LLMs, context compression offers an
efficient way to reduce the input prompt length. There are two primary methods of context compres-
sion: hard prompt and soft prompt. Selective-Context (Li, 2023) and (Jiang et al., 2023) exemplify
hard prompt methods by removing low-information content at the lexical level (e.g., sentences,
words, or tokens) to shorten the prompt. On the other hand, gisting (Mu et al., 2023), AutoCom-
pressors (Chevalier et al., 2023), ICAE (Ge et al., 2024), and 500xCompressor (Li et al., 2024b)
represent soft prompt methods that compress input prompts into a small number of special tokens.
In contrast to these approaches, we propose compressing the context into rank-decomposition layers
using LoRA methods.

3 METHODOLOGY

In this section, we first review the LoRA-based Mixture of Experts fine-tuning paradigm and then
elaborate on our LoRA-Gen, which generates task-specific LoRA weights according to the system
prompt for edge-side language models.
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3.1 REVISITING MIXTURE OF LORA EXPERTS

LoRA (Hu et al., 2021) improves the efficiency of fine-tuning by significantly reducing the number
of trainable parameters. Formally, it updates the weight matrix W ∈ Rd′×d′′

by using a low-rank
approximation via two decomposition matrices A ∈ Rd′×r and B ∈ Rr×d′′

with a low rank r
(r ≪ min(d′, d′′)) as follow:

W̃ = W +AB. (1)
Trainable low-rank decomposition matrices can capture the underlying patterns of downstream tasks
under the guidance of the task-specific direction (Hu et al., 2021). Moreover, another effective ap-
proach, the Mixture of Experts (Jacobs et al., 1991; Jordan & Jacobs, 1994) termed MoE, treats
multiple networks as experts and seeks to take advantage of their strengths in a hybrid framework.
This method aims to combine the advantages of different models, resulting in improved generaliza-
tion and overall performance. Typically, a MoE layer consists of n experts, denoted as {Ei}ni=1 with
a router R as the gate for expert allocation. Given hidden states {hj}sj=1 of a sequence with the
length of s, the output of the MoE can be formulated as:

h′
j =

n∑
i=1

Ri(hj)Ei(hj) (2)

Considering the efficiency of LoRA and the strong performance of MoE, (Li et al., 2024a; Dou
et al., 2024; Gao et al., 2024a; Yang et al., 2024c) integrate LoRA into the MoE plugin, boosting the
fine-tuning performance by utilizing the mixture of LoRA experts, effectively blending the strengths
of both methods.

3.2 ONLINE LORA GENERATION

Overview. The mixture of LoRA experts has showcased reasonable performance in fine-tuning
for specific tasks. However, there remains a gap in its effectiveness for multi-task learning and the
generalization to unseen tasks. Additionally, most LoRA-MoE (Li et al., 2024a; Dou et al., 2024)
methods require calculating the expert routing for each token individually, which significantly in-
creases the computational complexity. To address these challenges, we propose a new framework,
termed LoRA-Gen that generates task-aware LoRA via an online large language model with system
prompts (including few-shot samples, task description, role specification, and the conversation for-
mat) as presented in Figure 3. In the following, we elaborate on our LoRA generation method and
the reparameterization of the edge-side language model.

Cloud-side LM & Meta Token. In adherence to meta-learning (Hospedales et al., 2021; Finn
et al., 2017), we construct a unified representation of the task-related information to achieve gen-
eralization capabilities for various tasks, relying on cloud-side language models to facilitate this
process. Specifically, Given a series of few-shot samples or task-specific system prompts, the cloud-
side LM appends L special tokens ⟨meta⟩ behind them and transfers the inherent knowledge into
these tokens with causal masks in a single forward pass. We define these tokens as meta tokens
{Tmeta

i }Li=1, where L represents the number of layers of the subsequent edge-side language model.
Each meta token is associated with a transformer layer in the edge-side LM.

LoRA Expert Pool. Our initial attempt is to generate LoRA parameters directly through a con-
tinuous projection on the meta token. However, the expansive parameter space poses optimization
challenges, making the model susceptible to overfitting and hindering generalization, whose analysis
refers to Table 8. Therefore, similar to the previous works (Dou et al., 2024), we adopt an alterna-
tive solution by introducing the discrete MoE mechanism. Specifically, as shown in Figure 3, we
construct a LoRA expert pool of n experts, whose weights are defined as {Ei}ni=1. Each LoRA
expert contains three LoRA blocks, corresponding to the gate linear layer, up linear layer, and down
linear layer in FFN of the edge-side model, respectively. Different from the LoRAHub (Huang et al.,
2023b), these experts are trained in an end-to-end manner.

Routing Module. To control the composition of experts, we propose a routing module using meta
tokens. Unlike the token-wise LoRA-MoE (Dou et al., 2024), our MoE is layer-wise. We apply an
individual MoE for each transformer layer in the edge-side LM, and all tokens in a sequence use
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Figure 3: Overview of our proposed LoRA-Gen. Given the system prompts by users, a large lan-
guage model first generates meta tokens in a single forward pass. With a routing module, we obtain
the gates of all experts in the online LoRA pool. After assembling, we produce the specialized LoRA
on the cloud side and deploy it to the edge-side language model by merging the LoRA weights.

the same composition. For simplicity, the routing module consists of two linear projections with
a Batch Normalization (BN) layer. Incorporating a BN layer can further increase the diversity of
router output, promoting the utilization of a wider range of experts. In formal, the router Ri ∈ Rn

of i-th layer of edge-side LM can be formulated as:

Ri = BN(f2 ◦ ς ◦ f1(Tmeta
i )), (3)

where f1, f2 are the linear functions and ς denotes the SiLU activation function. We attempt to
increase selection randomness and balance expert loads, we apply Gumbel-Softmax (Jang et al.,
2016), which can be formulated as:

Gumbel-Softmax(Ri
t) =

eR
i
t+g∑n

j=1 e
Ri

j+g
, Eg∼Gumbel(0,1)(g) = 0. (4)

Nevertheless, the Gumbel-Softmax strategy shows a significant reduction in generalization perfor-
mance, which is reported in experiments of Section 4.4, To this end, following previous methods (Li
et al., 2024a; Dou et al., 2024), we adopt a KeepTOP-K strategy to select experts in a deterministic
manner:

R̃i
t =

eR
i
t∑n

j=1 e
Ri

j

, TOP-K(R̃i) = {Ri
t}Kt=1, Gi

t =


R̃i

t∑K
j=1 R

i
j

R̃i
t ∈ TOP-K

0 else
, (5)

where Gi
t represents the the gate of t-th experts for i-th decoder layer of the edge-side language

model. Consequently, we generate task-specific LoRA weights as follows:

LoRA-Geni =
n∑

j=1

GiEj . (6)

Reparametrization. Similar to LoRA, we use the reparameterization strategy to merge the gen-
erated LoRA parameters into the FFN layers of the edge-side model. In contrast to the LoRA-MoE,
our method is cost-free during inference, which needs no additional components in the specialized
edge-side LM.

5
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3.3 TRAINING TARGET

Auxiliary Loss. Balanced load of MoE structure is essential for capability of generalization and
stability (Jacobs et al., 1991). Without constraints, the routing module tends to select a fixed small
set of experts, leaving other experts unused and causing load imbalance. To mitigate this issue, we
introduce a soft constraint with the coefficient of variation as the auxiliary loss, encouraging a more
balanced usage of the available experts. Formally, the constraint can be formulated as:

Lcv = α(
σ(G)

µ(G)
)2, (7)

where σ and µ represent the standard deviation and mean of the gates assigned to each expert within
a batch, separately. The coefficient α is to balance the auxiliary objective and the main objective.

Total Loss. The total loss consists of the language modeling loss and auxiliary loss as follows:

Ltotal = Lcv + LLM , (8)

where LLM is the Cross Entropy loss of language modeling in causal LMs.

4 EXPERIMENTS

We conduct extensive experiments to evaluate the effectiveness of our LoRA-Gen and compare it to
the widely adopted LoRA-based fine-tuning method on reasoning tasks in a fair experimental setting.
Furthermore, we assess the generalization capacity and system prompt compression performance of
LoRA-Gen on an agent dataset, GPT4Tools (Yang et al., 2024b).

4.1 DATASETS AND METRICS.

Reasoning Tasks. We select eight widely-used benchmarks to assess the reasoning ability of
LoRA-Gen across various knowledge domains ranging from natural science to daily life follow-
ing counterparts (Dou et al., 2024; Li et al., 2024a). One classification task: BoolQ (Clark et al.,
2019). Five question-answering tasks: ARC-c (Clark et al., 2018), ARC-e (Clark et al., 2018),
OpenBookQA (Mihaylov et al., 2018), PIQA (Bisk et al., 2020) and SocialQA (Sap et al., 2019).
One science completion task: Hellaswag (Zellers et al., 2019) and a fill-in-the-blank task: Wino-
grande (Sakaguchi et al., 2020).

Agent Dataset. We utilize the GPT4Tools (Yang et al., 2024b) which provides a benchmark to
evaluate the ability of LLM to use tools, to access the effectiveness of LoRA-Gen in the deployment
of intelligent agents. GPT4Tools constructs a tool-related instructional dataset, including positive
samples, negative samples, and context samples. It consists of 71k instruction-response pairs with
21 tools in the training set and 652 items in the test set with 8 novel tools absent from the training
set.

Metrics. The performance of all reasoning benchmarks is measured with the accuracy metric in
all datasets. To further evaluate the performance in multi-task learning, we utilize two metrics:
the average accuracy (AVE.) and the harmonic mean (HAR.) of all task results. For GPT4Tools,
we measure the performance of the method from five aspects: successful rate of thought (SRt),
successful rate of action (SRact), successful rate of arguments (SRargs), successful Rate (SR) and
IoU according to GPT4Tools.

4.2 IMPLEMENTATION DETAILS

We deploy LLaMA3-8B (Dubey et al., 2024) as the cloud-side LM during online task-specific LoRA
parameters generation. We finetune the q and v projection layers of the LLM with a LoRA adapter.
The number of experts is 8 and we set K in the routing function TOP-K to 2 by default. The
coefficient α for auxiliary loss Lcv is set 0.01. The models are trained with eight 65GB 910B NPUs
in default. More details can be viewed in the Appendix.
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Method Seen Tasks Unseen Tasks AVE. ↑ HAR. ↑ Latency
ARC-c ARC-e OBQA BoolQ SIQA HellaS WinoG PIQA (ms) ↓

TinyLlaMA-1.1B 34.2 66.9 27.4 58.8 46.0 45.8 60.7 73.9 51.7 46.7 44.5
+LoRA 33.6 67.6 28.6 71.9 51.5 44.5 61.9 75.1 54.3 48.5 44.5
+LoRAMoE 35.2 68.8 28.6 73.2 52.1 45.4 62.0 74.1 54.9 49.3 55.9
+MixLoRA 33.5 67.7 28.4 73.3 51.4 44.9 62.3 74.6 54.5 48.6 100.1
+LoRA-Gen 35.8 69.1 30.4 73.6 49.6 45.5 62.6 74.1 55.1±0.01 49.8 21.2

Qwen-1.5B 41.9 73.1 29.0 73.3 50.6 49.0 65.3 76.2 57.3 51.9 56.3
+LoRA 43.3 73.9 31.2 77.6 54.9 48.8 66.5 76.9 59.1 53.9 56.3
+LoRAMoE 43.9 73.7 29.8 77.3 53.4 48.7 66.3 76.9 58.8 53.2 65.7
+MixLoRA 43.4 73.8 31.8 78.2 54.6 48.9 66.4 76.5 59.2 54.2 141.9
+LoRA-Gen 44.3 74.3 33.4 79.6 53.6 49.1 67.4 76.9 59.8±0.01 55.0 26.7

Gemma-2B 50.3 81.5 33.8 73.4 49.3 55.6 71.5 78.7 61.8 57.0 87.3
+LoRA 49.9 78.2 36.0 80.9 56.8 55.4 71.7 79.2 63.5 59.2 87.3
+LoRAMoE 50.9 82.0 38.8 78.4 55.2 54.0 72.9 79.3 63.9 60.0 101.8
+MixLoRA 52.3 79.4 38.6 75.6 59.1 54.1 72.7 78.2 63.8 60.2 177.7
+LoRA-Gen 51.2 81.9 39.0 76.2 55.6 56.0 71.6 79.5 63.9±0.01 60.2 36.1

Table 2: Comparison of the performance with 5-shot samples on various reasoning benchmarks.
Seen tasks indicate that the datasets are part of the training set, while unseen tasks are not. AVE
denotes the average accuracy of 8 tasks while HAR is the harmonic mean. The latency scores of
various methods are all calculated on ARC-c. Latency is measured on a Nvidia A100 GPU.

Method W/ Training W/ Tools
SRt SRact SRargs SR IoU Average Compress

Definiton Score ↑ Ratio ↑
Gemma-2B ✗ ✔ 86.3 77.6 77.7 65.0 89.7 79.3 1x+LoRA ✔ ✔ 99.4 79.6 93.8 78.2 91.0 88.4
+LoRA ✔ ✗ 98.0 60.9 83.2 52.1 81.3 75.1
+LoRA-Gen ✗ ✗ 94.1 86.8 79.7 73.3 86.9 84.2 10.1x
+LoRA-Gen ✔ ✗ 98.6 88.0 93.4 84.0 93.6 91.5

Table 3: Performance of different fine-tuning strategies with Gemma-2B (Team et al., 2024) on
test set of GPT4Tools (Yang et al., 2024b). W/ Training denotes Gemma-2B is fine-tuning on the
training set of GPT4Tools with vanilla LoRA or our LoRA-Gen. Gray rows indicate scenarios where
the system prompt does not contain tools definitions, typically constituting 91% of the input context.

4.3 MAIN RESULTS

Reasoning Tasks. We first evaluate the performance of LoRA-Gen in the reasoning scenario as
shown in Table 2. We divide eight commonly used datasets into two parts, one as the multi-task
learning set, including ARC-c, ARC-e, OpenBookQA, BoolQ, SocialQA and the other as an unseen
test set, including Hellaswag, Winogrande and PIQA. We randomly sample to construct multi-shot
training data. As shown in Table 2, LoRA-Gen consistently achieves comparable performance while
exhibiting lower latency compared to other fine-tuning methods across various backbone models.
Specifically, LoRA-Gen with TinyLlaMA (Zhang et al., 2024a) achieves 55.1 AVE and 49.8 HAR,
surpassing LoRA and MixLoRA. Similar trends are seen in Qwen-1.5B (Yang et al., 2024a) and
Gemma-2B (Team et al., 2024). Notably, in the case of 5-shot inference, our paradigm is theoreti-
cally capable of achieving competitive performance with just one-sixth of the sequence length. In
practice, LoRA-Gen significantly reduces the latency from 44.5 ms to 21.2 ms for TinyLlaMA and
from 87.3 to 36.1 ms for Gemma-2B, boosting other methods. The results underscore the advantage
of using LoRA-Gen, which balances effectiveness and efficiency across both seen and unseen tasks.

Intelligent Agent Scenario. We evaluate the performance of LoRA-Gen with edge-side model
Gemma-2B on the GPT4Tools benchmark (Yang et al., 2024b). The results in Table 3 present a
comparison of successful rates, intersection-over-union (IoU), average performance, and compress
ratio (speedup). One key advantage of LoRA-Gen is to compress the tools definition within the
system prompt into the generated LoRA parameters via a single-turn inference. It significantly re-
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Receive

Generate a real image of a carton-
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Processing time: 3.84s

Receive

[Tools Definition] + Generate a 
real image of a carton-style 
image based on the pose of the 
girl

Processing time: 12.4s

image/ksxwfehm.png

image/ksxwfehm.png

LoRA-Gen

Processing time: 5.4s

[Task Description]
I want you to act as a poet, crafting 
verses that resonate deeply with 
the soul……Whether the tone is 
joyful, melancholic, or 
contemplative, your poem should 
paint vivid images and capture the 
emotions you wish to convey.

Poem Subject: love

A whisper in the wind, a touch 
so light,\nA spark ignites, 
banishing the night.\nLove's 
gentle hand, a warm 
embrace,\nA smile that lights up 
every space.\n\n……treasure to 
cherish, forevermore.\nA 
beacon of hope, a guiding 
star,\nLove's gentle light, 
shining near and far.

Receive

⌛

[Task Description] +
Poem Subject: love

Love, a whisper on the 
wind,\nA melody that softly 
spins,\nA tapestry of threads so 
fine,\nWoven with dreams, and 
hopes divine.\n\nA touch that 
sets the soul alight,\nA
beacon …… For love's 
embrace, a timeless art,\nA
masterpiece, that sets the heart.✅ ❎ ✅ ✅

⌛

⌛ ⌛Processing time: 9.2s

Baseline LoRA-Gen Baseline

[Task Description]
I want you to act as a poet, crafting 
verses that resonate deeply with 
the soul……Whether the tone is 
joyful, melancholic, or 
contemplative, your poem should 
paint vivid images and capture the 
emotions you wish to convey.

[Tools Definition]

Specialized LM is Ready

General LM is Ready General LM is Ready

Specialized LM is Ready

Figure 4: Visualization comparison between LoRA-Gen and baseline, Gemma-2B (Team et al.,
2024). LoRA-Gen compresses the tools definition and task description into the generated LoRA
parameters, effectively specializing the language model to reduce processing times while maintain-
ing comparable performance. The detailed LM outputs and system prompt can be accessed in the
Appendix.

duces the context length with a compress ratio of 10.1x, which maintains comparable performance
of 91.5% average score. On the other hand, our method without training on GPT4Tools boosts orig-
inal Gemma-2B by 4.9% in average score, which shows the effective generalization of our method.
In contrast, removing the tool definitions in the vanilla LoRA setting leads to a marked reduction
in performance (SR: -26.1%, IoU: -9.7%). Furthermore, benefiting from knowledge injection from
the cloud-side language model, it surpasses the baseline by 3.1 points while maintaining a 10.1x
compression ratio. The results highlight the strengths of LoRA-Gen in effectiveness and efficiency,
attributed to its inference-time specializing and generalization ability to unseen tools, making it
well-suited for tasks with extensive prefix descriptions.

4.4 ABLATION STUDY

We conduct a series of experiments to ablate the components of LoRA-Gen with Qwen-1.5B (Yang
et al., 2024a) and evaluate with 5-shot samples by default. For all experiments of this section, we
select ARC-C, ARC-E, OpenbookQA, and SocialQA as the seen tasks, while Winogrande and PIQA
represent the unseen tasks.

Number of Experts in Online Expert Pool. As shown in Table 4, we present the performance
of different numbers of experts in the cloud-side LoRA pool. Performance generally improves with
an increasing number of experts. With 4 experts, the AVE. is 56.1%, and the HAR. is 49.9 %.
Increasing the number of experts to 12 yields slight improvements, with the AVE. rising to 57.0%
and the HAR. to 50.7%. However, the best performance is achieved with 8 experts, where both AVE.
(58.7%) and HAR. (53.6%) reach their peak values. This may indicate that 8 experts strike the best
balance between multi-task learning and unseen generalization.

Exploration of Balanced Load Strategy. Ensuring a balanced load of experts can significantly
improve the robustness and stability of the model. We initially conduct an ablation study to assess
the impact of the absence of auxiliary losses on model performance. Without the auxiliary loss,
the AVE. decreases by 2.6 points. Subsequently, we summarize the impact of different values of
coefficient for auxiliary loss as shown in Table 5. As the auxiliary loss coefficient decreases, a sig-
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Expert AVE. HAR.Number

4 56.1 49.9
12 57.0 50.7
8 58.7 53.6

Table 4: Number of Ex-
perts in cloud-side pool.

Auxiliary Loss AVE. HAR.Coefficient

0.1 57.1 51.7
0.005 56.8 50.5
0.01 58.7 53.6

Table 5: Different coefficient
impact of auxiliary loss.

Few-shot AVE. HAR.Number

3-shot† 55.5 49.3
5-shot† 56.0 49.9
1-shot‡ 58.4 53.4

Table 6: † is baseline and ‡
denotes using LoRA-Gen.

Router Strategy AVE. HAR.

GumbleTOP-K 56.4 51.2
KeepTOP-K 58.7 53.6

Table 7: Different router strategy for on-
line experts in the cloud-side LoRA pool.

LoRA Generation Seen AVE. Unseen AVE.

Direct 52.4 61.0
Indirect 52.0 72.1

Table 8: Effectiveness of indirect LoRA
generation via meta-token.

nificant improvement in both performance metrics is observed. Reducing the coefficient from 0.1 to
0.01 yields further gains, resulting in an average (AVE) of 58.7% and a harmonic mean (HAR) of
53.6%, thereby achieving an optimal balance between the auxiliary strategy and the primary objec-
tive function. In addition to incorporating auxiliary training objectives, we also investigate whether
the router function based on the Gumbel distribution can achieve a more balanced load of various
experts without a performance drop. As illustrated in Table 7, we compare two routing strategies
employed for online experts within the cloud-side LoRA pool. The GumbelTOP-K strategy results
in an average (AVE) of 56.4% and a harmonic mean (HAR) of 51.2%. In contrast, the KeepTOP-
K strategy exhibits a notable enhancement, attaining an AVE of 58.7% and a HAR of 53.6%. We
consider that an overabundance of randomness may impair the capacity of experts to learn specific
tasks during the optimization process.

Effectiveness of Meta Token. We attempt to utilize the cloud-side large language model to gen-
erate LoRA parameters in a single forward pass directly instead of meta tokens. Specifically, we
directly transform the output tokens of LLM to the LoRA weights space with a feedforward neural
network and get the i-th layer generated LoRA weights ∈ R3×2×d×r, where d is the hidden di-
mension and r denotes the low rank of LoRA. As indicated by the experimental results in Table 8,
this approach exhibits comparable performance to that achieved through meta tokens on the seen
tasks, while the results on the unseen tasks are significantly lower than those obtained with meta
tokens, trailing by 11.1%. Generating LoRA parameters directly leads to pronounced overfitting to
the training domain, caused by the large parameter space, thereby limiting its ability to generalize to
unseen tasks.

Effectiveness of Knowledge Transfer. As depicted in Table 6, we compare the performance of
the baseline model and our LoRA-Gen across different few-shot samples. Remarkably, LoRA-Gen
with just a 1-shot sample surpasses the baseline with 5-shot samples by 3.5% on HAR. We attribute
this to the use of LLaMA3-8B (Dubey et al., 2024) as the cloud model, which transfers a portion of
its knowledge to the edge-side language model via reparameterization.

4.5 QUALITATIVE STUDY IN AGENT SCENARIO

We deploy LoRA-Gen within Gemma-2B and conduct case studies and visualizations. As illustrated
in Figure 4, LoRA-Gen removes the 26 tools description from the input of the model, significantly
reducing inference time and achieving a 3.2x speedup compared to the baseline. The limited general-
ization of the baseline model results in incorrect tool selection, thereby highlighting the effectiveness
of our method. Additionally, in the open text generation scenario, LoRA-Gen accelerates reason-
ing time by compressing the task definition while achieving comparable results. The corresponding
generation results are detailed in the appendix.
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5 CONCLUSION

In this paper, we propose an online LoRA generation framework, called LoRA-Gen, which utilizes
a cloud-side language model to generate task-specific LoRA parameters for edge-side models. Our
strategy offers four advantages over previous methods, including context compression for unseen
tasks, a reparameterized language model, inference-time specializing, and knowledge transfer. Ex-
tensive experiments show that LoRA-Gen achieves competitive results and an impressive speedup
on common-sense reasoning tasks. Additionally, our method achieves a compress ratio of 10.1x on
zero-shot agent tasks, indicating its potential applicability to more scenarios.

Limitations. Our method supports diverse application scenarios, such as tool calls, personalized
virtual assistants, offline intelligent systems, IoT device control, and tasks necessitating long system
prompts. However, the current paradigm needs to predefine a pair of cloud and edge-side LM. The
model-agnostic framework leaves an open question for future work.
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A APPENDIX

A.1 TRAINING DETAILS

Hyper-parameters LoRA-Gen

optimizer AdamW
learning rate 2e-5
warm steps 50
weight decay 0.1
optimizer momentum β1, β2=0.9, 0.999
batch size 64
epoch 4
max length 2048
LoRA (Hu et al., 2021) attention dimension (r) 16
LoRA (Hu et al., 2021) scaling alpha (α) 16
LoRA (Hu et al., 2021) drop out 0.05

Table 9: Fine-tuning configuration.

The models are trained with eight NPUs (64GB memory per device) by default. We set betas and
momentum of the AdamW optimizer with (0.9, 0.999) and 0.9, respectively. During training, we
utilize a Cosine Scheduler with an initial learning rate of 2 × 10−5 and weight decay of 0.1. The
details are shown in Table 9

A.2 DETAILED ASSISTANT OUTPUT

Tools definition is shown in Table 14, Table 15 and Table 16. Task description for the role play in
qualitative study of main text can be seen in Table 13. To strengthen LoRA-Gen’s ability to compress
and process instructions in system prompt, we modify the Alpaca dataset, using GPT-4 to generalize
specific problems into instruction sets, which are subsequently used as training data.

A.3 STATISTICAL SIGNIFICANCE

Method ARC-c ARC-e OBQA BoolQ SIQA HellaS WinoG PIQA

TinyLLaMA 0.0146 0.0089 0.0219 0.0076 0.0112 0.0050 0.0134 0.0100
Qwen 0.0145 0.0089 0.0229 0.0071 0.0113 0.0050 0.0132 0.0098
Gemma 0.0146 0.0089 0.0218 0.0075 0.0112 0.0050 0.0135 0.0096

Table 10: Standard error on language model benchmarks..
The standard errors of different tasks are shown in table 10, all statistics are calculated with the
open-sourced lm-evaluation-harness project (Gao et al., 2024b). Additionally, we have re-evaluated
our method 4 times on GPT4Tools with a variation of about 0.65% in average score.
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A.4 TRAINING DATA.

Table 11 outlines the data scale for each reasoning tasks. Moreover, we process the Alpaca dataset
through GPT-4, resulting in a filtered and abstracted set of 37,658 training samples.

Method ARC-c ARC-e OBQA BoolQ SIQA HellaS WinoG PIQA

Train 1120 2250 4957 9427 33410 39905 9248 16100
Test 1171 2380 500 3270 1954 10042 1267 1838

Table 11: The data size of tasks used in our experiments.

A.5 EFFICIENCY COMPARISON

Method Training Mode Inference Mode
FLOPs Memory Latency FLOPs Memory Latency

+LoRA 4.736E+11 37096MiB 0.85s 4.708E+11 11208MiB 0.19s
+LoRAMoE 4.742E+11 26326MiB 1.19s 4.742E+11 11286MiB 0.22s
+MixLoRA† 5.061E+11 30844MiB 2.17s 5.048E+11 11828MiB 1.08s
+LoRA-Gen 1.667E+12 39603MiB 2.84s 1.552E+11 10932MiB 0.11s

Table 12: Efficiency Comparison.

Table 12 presents the efficiency Comparison among different approaches. MixLoRA† indicates the
method without specific optimization. All metrics are measured on a Nvidia A100 GPU. FLOPs are
measured using an input of 100 tokens and an instruction of 200 tokens, while memory and latency
are evaluated in training mode with a batch size of 8 per GPU.
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Task description of role play:
I want you to act as a poet, crafting verses that resonate deeply with the soul. Your task
is to create a poem that not only evokes emotions but also possesses the power to move
and inspire those who read it. The subject matter will be provided by the user, and your
words should be carefully chosen to express the essence of that theme in a way that touches
hearts and stirs deep feelings. Aim for beauty in your language—let your choice of words
carry both meaning and emotion, so that each line speaks to the reader on a profound level.
Whether the tone is joyful, melancholic, or contemplative, your poem should paint vivid
images and capture the emotions you wish to convey.

Edge-side model with LoRA-Gen answer:
A whisper in the wind, a touch so light,\A spark ignites, banishing the night.\Love’s gentle
hand, a warm embrace,\A smile that lights up every space.\\Two souls entwined, a tapestry
of dreams,\Where laughter dances and love softly gleams.\A bond unbreakable, a trust
so deep,\In each other’s eyes, secrets they keep.\\Through storms and sunshine, hand in
hand they roam,\Building castles of hope, a love that calls them home.\A silent language,
spoken in the heart,\A symphony of feelings, a work of art.\\For love is a journey, a path
to explore,\A treasure to cherish, forevermore.\A beacon of hope, a guiding star,\Love’s
gentle light, shining near and far.

The baseline answer:
Love, a whisper on the wind,\A melody that softly spins,\A tapestry of threads so
fine,\Woven with dreams, and hopes divine.\\A touch that sets the soul alight,\A beacon
in the darkest night,\A warmth that melts the coldest fear,\A solace, ever drawing near.\\It
blooms in laughter, shared and bright,\In silent moments, bathed in light,\A gentle hand, a
knowing glance,\A shared embrace, a sacred dance.\\Love’s strength endures, a steadfast
guide,\Through storms and calm, it cannot hide,\A constant echo, soft and deep,\A promise
whispered, secrets to keep.\\So let us cherish every breath,\This precious gift, beyond all
death,\For love’s embrace, a timeless art,\A masterpiece, that sets the heart. \\\Let me
know if you’d like me to explore a specific aspect of love, or if you have a particular style or
tone in mind.

Table 13: Detailed supplement to the visualization results in the main text.
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Tools definition 1
GPT4Tools can handle various text and visual tasks, such as answering questions and pro-
viding in-depth explanations and discussions. It generates human-like text and uses tools
to indirectly understand images. When referring to images, GPT4Tools follows strict file
name rules. To complete visual tasks, GPT4Tools uses tools and stays loyal to observation
outputs. Users can provide new images to GPT4Tools with a description, but tools must be
used for subsequent tasks.\nTOOLS:\n——\n\nGPT4Tools has access to the following
tools:\n\n> Assess the Image Quality: useful when you want to give a quality score for
the input image. like: assess a quality score for this image, what is the quality score of this
image, or can you give a quality for this image. The input to this tool should be a string,
representing the image path.\n> Recognize Face: Useful when you only want to recognize
faces in the picture. like: recognize who appears in the photo. The input to this tool should be
a string, representing the image path.\n> Detect Face: Useful when you only want to detect
out or tag faces in the picture. like: find all the faces that appear in the picture. tag someone
in the picture. The input to this tool should be a string, representing the image path.\n>
Crop the Given Object: Useful when you want to crop given objects in the picture. The
input to this tool should be a comma separated string of two, representing the image path,
the text description of the object to be cropped.\n> Generate 3D Asset From User Input
Text: Useful when you want to generate an 3D assert from a user input text and save it to a
file. like: generate a 3D assert of an object or something. The input to this tool should be
a string, representing the text used to generate the 3D assert.\n> Image Super-Resolution:
Useful when you want to enhance the resolution and quality of low-resolution images. like:
enhance this image, restore this image. The input to this tool should be a string, representing
the image path.\n> Detection: Useful when you want to detect all objects of the image, but
not detect a certain object according to the text. like: detect all the objects in this image, or
detect this image. The input to this tool should be a string, representing the image path.\n>
Text Detection On Image: Useful when you want to detect the text in the image. The input
to this tool should be a string, representing the image path.\n> Generate Image From User
Input Text: useful when you want to generate an image from a user input text and save it
to a file. like: generate an image of an object or something, or generate an image that in-
cludes some objects. The input to this tool should be a string, representing the text used to
generate image.\n> Generate Image Condition On Canny Image: useful when you want to
generate a new real image from both the user description and a canny image. like: generate
a real image of a object or something from this canny image, or generate a new real image
of a object or something from this edge image. The input to this tool should be a comma
separated string of two, representing the image path and the user description.\n> Generate
Image Condition On Depth: useful when you want to generate a new real image from both
the user description and depth image. like: generate a real image of a object or something
from this depth image, or generate a new real image of a object or something from the depth
map. The input to this tool should be a comma separated string of two, representing the
image path and the user description\n> Segment the Image: useful when you want to seg-
ment all the part of the image, but not segment a certain object.like: segment all the object
in this image, or generate segmentations on this image, or segment the image,or perform
segmentation on this image, or segment all the object in this image.The input to this tool
should be a string, representing the image path\n> Generate Image Condition On Sketch
Image: useful when you want to generate a new real image from both the user description
and a scribble image or a sketch image. The input to this tool should be a comma separated
string of two, representing the image path and the user description.\n> Replace Something
From The Photo: useful when you want to replace an object from the object description or
location with another object from its description. The input to this tool should be a comma
separated string of three, representing the image path, the object to be replaced, the object
to be replaced with\n>

Table 14: Detailed supplement to the visualization results in the main text.
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Tools definition 2
Generate Image Condition On Segmentations: useful when you want to generate a new real
image from both the user description and segmentations. like: generate a real image of a
object or something from this segmentation image, or generate a new real image of a object
or something from these segmentations. The input to this tool should be a comma separated
string of two, representing the image path and the user description\n> Generate Image
Condition On Pose Image: useful when you want to generate a new real image from both
the user description and a human pose image. like: generate a real image of a human from
this human pose image, or generate a new real image of a human from this pose. The input
to this tool should be a comma separated string of two, representing the image path and the
user description\n> Instruct Image Using Text: useful when you want to the style of the
image to be like the text. like: make it look like a painting. or make it like a robot. The input
to this tool should be a comma separated string of two, representing the image path and the
text.\n> Generate Image Condition On Soft Hed Boundary Image: useful when you want
to generate a new real image from both the user description and a soft hed boundary image.
like: generate a real image of a object or something from this soft hed boundary image, or
generate a new real image of a object or something from this hed boundary. The input to
this tool should be a comma separated string of two, representing the image path and the
user description\n> Generate Image Condition On Normal Map: useful when you want to
generate a new real image from both the user description and normal map. like: generate
a real image of a object or something from this normal map, or generate a new real image
of a object or something from the normal map. The input to this tool should be a comma
separated string of two, representing the image path and the user description.\n> Remove
Something From The Photo: useful when you want to remove and object or something from
the photo from its description or location. The input to this tool should be a comma separated
string of two, representing the image path and the object need to be removed.\n>

Table 15: Detailed supplement to the visualization results in the main text.

Tools definition 3
Generate Image Condition On Normal Map: useful when you want to generate a new real
image from both the user description and normal map. like: generate a real image of a object
or something from this normal map, or generate a new real image of a object or something
from the normal map. The input to this tool should be a comma separated string of two,
representing the image path and the user description\n> Segment the Image: useful when
you want to segment all the part of the image, but not segment a certain object.like: segment
all the object in this image, or generate segmentations on this image, or segment the image,or
perform segmentation on this image, or segment all the object in this image.The input to this
tool should be a string, representing the image path\n> Get Photo Description: useful when
you want to know what is inside the photo. receives image path as input. The input to this
tool should be a string, representing the image path.\n> Edge Detection On Image: useful
when you want to detect the edge of the image. like: detect the edges of this image, or canny
detection on image, or perform edge detection on this image, or detect the canny image
of this image. The input to this tool should be a string, representing the image path\n>
Predict Depth On Image: useful when you want to detect depth of the image. like: generate
the depth from this image, or detect the depth map on this image, or predict the depth for this
image. The input to this tool should be a string, representing the image path\n> Replace
Something From The Photo: useful when you want to replace an object from the object
description or location with another object from its description. The input to this tool should
be a comma separated string of three, representing the image path, the object to be replaced,
the object to be replaced with\n\n

Table 16: Detailed supplement to the visualization results in the main text.
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