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ABSTRACT

Implicit representation of an image can map arbitrary coordinates in the continuous
domain to their corresponding color values, presenting a powerful capability for
image reconstruction. Nevertheless, existing implicit representation approaches
only focus on building continuous appearance mapping, ignoring the continuities
of the semantic information across pixels. As a result, they can hardly achieve
desired reconstruction results when the semantic information within input images is
corrupted, for example, a large region misses. To address the issue, we propose to
learn semantic-aware implicit representation (SAIR), that is, we make the implicit
representation of each pixel rely on both its appearance and semantic information
(e.g., which object does the pixel belong to). To this end, we propose a framework
with two modules: (1) building a semantic implicit representation (SIR) for a
corrupted image whose large regions miss. Given an arbitrary coordinate in the
continuous domain, we can obtain its respective text-aligned embedding indicating
the object the pixel belongs. (2) building an appearance implicit representation
(AIR) based on the SIR. Given an arbitrary coordinate in the continuous domain, we
can reconstruct its color whether or not the pixel is missed in the input. We validate
the novel semantic-aware implicit representation method on the image inpainting
task, and the extensive experiments demonstrate that our method surpasses state-
of-the-art approaches by a significant margin.

1 INTRODUCTION

Recently, implicit neural representation has demonstrated surprising performance in the 2D image
Chen et al.|(2021b);|Guo et al.| (2023) and novel view Mildenhall et al.|(2021)); [Xie et al.| (2023));
Zhenxing & Xu (2022) reconstruction. While existing implicit neural representation methods
primarily focus on building continuous appearance mapping, they typically employ an encoder
to extract appearance features from 2D images. They then utilize a neural network to associate
continuous coordinates with their corresponding appearance features and translate them into the RGB
color space. Unfortunately, these methods often overlook the potential semantic meaning behind the
pixels, which can lead to the reconstructed result containing obvious artifacts or losing important
semantic information, particularly when dealing with degraded input images, e.g., a large region
misses. As shown in Fig. [I] when the local appearance information is missing around the woman’s
eye, previous implicit representation methods like LIIF |Chen et al.|(2021b) fall short in accurately
reconstructing the missing pixels.

To address this issue, we propose to learn semantic-aware implicit representation (SAIR), that is, we
make the implicit representation of each pixel rely on both its appearance and semantic information
(e.g., which object does the pixel belong to). We posit that this semantic implicit representation can
significantly enhance image reconstruction quality, even when the input image is severely degraded,
thereby benefiting various image processing tasks, e.g., image generation, inpainting, editing, and
semantic segmentation. To this end, We propose a novel approach that simultaneously leverages both
continuous appearance and semantic mapping to enhance image restoration quality. This integration
of continuous semantic mapping mitigates the limitations of only employing appearance implicit
representation. Consequently, even in cases of degraded appearance information, the network can
produce high-quality outputs with the aid of semantic information. As illustrated in Fig. [T} our
method surpasses the existing implicit neural representation approaches that rely solely on appearance
mapping on the image inpainting task. Remarkably, even when confronted with severely degraded
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input images, e.g., a large region misses, our approach still can accurately fill in the missing pixels,
yielding a natural and realistic result.

The proposed semantic-aware implicit representation involved two modules: (1) building a semantic
implicit representation (SIR) for a corrupted image whose large regions miss. Given an arbitrary
coordinate in the continuous domain, the SIR can obtain its respective text-aligned embedding
indicating the object the pixel belongs to. (2) building an appearance implicit representation (AIR)
based on the SIR. Given an arbitrary coordinate in the continuous domain, AIR can reconstruct its
color whether or not the pixel is missed in the input. Specifically, to implement the SIR, we first use
the modified CLIP Radford et al.|(2021) encoder to extract the text-aligned embedding from the input
image. This specific modification (see Sec.[d.2) allows CLIP to output a spatial-aware embedding
without introducing additional parameters and altering the feature space of CLIP. The text-aligned
embedding can effectively reflect the pixel-level semantic information. However, this embedding
has a much smaller dimension than the input image. In addition, when the input image is degraded
severely, the quality of the extracted embedding is much worse. To address this problem, we utilize
the semantic implicit representation within the text-align embedding. This process not only expands
the feature dimensions but also compensates for missing information when the input image is severely
degraded.

To implement AIR, we utilize a separate implicit representation function that takes three inputs: the
appearance embedding extracted from the input image using a CNN-based network, the enhanced
text-aligned embedding by SIR (see Sec.[4.3), and the pixel coordinates which indicating the location
information. This allows AIR to leverage both appearance and semantic information simultaneously.
As aresult, even in cases of severely degraded input images, e.g., large missing regions, our semantic-
aware implicit representation can restore high-quality results. We validate the novel semantic-aware
implicit representation (SAIR) method on the image inpainting task and conducted comprehensive
experiments on the widely utilized CelebAHQ [Liu et al.| (2015) and ADE20K [Zhou et al.| (2017)
datasets. The extensive experiments demonstrate that our method surpasses state-of-the-art approaches
by a significant margin. In summary, our main contributions are listed as follows:

* We acknowledge the limitation of existing implicit representation methods that rely solely
on building continuous appearance mapping, hindering their effectiveness in handling
severely degraded images. To address this limitation, we introduce Semantic-Aware Implicit
Representation (SAIR).

* We propose a novel framework to implement SAIR which involves two modules:(1) Semantic
Implicit Representation (SIR) for enhancing semantic embedding, and (2) Appearance
Implicit Representation (AIR), which builds upon SIR to simultaneously leverage both
semantic and appearance information.

* Comprehensive experiments on the widely utilized CelebAHQ |[Liu et al.| (2015) and
ADE20K [Zhou et al.| (2017) datasets demonstrate that our proposed method surpasses
previous implicit representation approaches by a significant margin across four commonly
used image quality evaluation metrics, i.e., PSNR, SSIM, L1, and LPIPS.

2 RELATED WORK

Implicit neural representation. Implicit neural functions find applications across a wide spectrum
of domains, encompassing sound signals |Su et al.[(2022), 2D images |Ho & Vasconcelos| (2022);
Chen et al.| (2021b); |Lee & Jinl (2022); [Ho & Vasconcelos| (2022)), and 3D shapes |Grattarola &
'Vandergheynst| (2022); |Yin et al.| (2022); |Yariv et al.| (2021); |[Hsu et al.| (2021). These functions
offer a means to continuously parameterize signals, enabling the handling of diverse data types,
such as point clouds in IM-NET |Chen & Zhang| (2019) or video frames in NERV |Chen et al.
(2021a)). Implicit neural functions have demonstrated their ability to generate novel views, as
exemplified by Nerf|Mildenhall et al.| (2021)), which leverages an implicit neural field to synthesize
new perspectives. Within the domain of image processing, methods like LIIF (Chen et al.|(2021b)
establish a connection between pixel features and RGB color, facilitating arbitrary-sized image
super-resolution. LTE |Lee & Jin|(2022), a modification of LIIF, extends this concept by incorporating
additional high-frequency information in Fourier space to address the limitations of a standalone
MLP. However, these approaches lack explicit consideration of semantic information during training,
which can result in potential inconsistencies at the semantic level.
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Figure 1: The overall structure of proposed semantic-aware implicit representation (SAIR). The
semantic implicit representation (SIR) is used to complete the missing semantic information. The
appearance implicit representation (AIR) is used to complete missing details

Image inpainting. Image inpainting techniques (2022); Bar et al.| (2022); Wang et al.
(2018); [Li et al.| (2022al); [N et al.| (2023)); [Zhang et al.|(2023) are designed to restore corrupted image
regions by leveraging information from non-missing portions. Established methods such as
let al] (2019); Nazeri et al| (2019); [Liao et al.| (2020) employ edge information or smoothed images
to guide the restoration process. Another noteworthy approach, as introduced by (2018),
relies on valid pixels to infer the missing ones. Furthermore, incorporates an
element-wise convolution block to reconstruct missing regions around the mask boundary while
utilizing a generative network to address other missing areas. Extending upon these techniques,
advances the inpainting process by implementing element-wise filtering at both
feature and image levels. Feature-level filtering is tailored for substantial missing regions, while
image-level filtering refines local details. However, contemporary inpainting models face challenges
when confronted with substantial missing regions, as reliable neighborhood features are often lacking.
In such scenarios, text prompts prove invaluable as a robust guidance mechanism, enhancing the
inpainting process.

Image -text cross-model method. Cross-model networks have gained substantial attention across
various image processing domains, 1nclud1ng image semantic segmentation [Liiddecke & Ecker]

@) 1(2022); Zhou et al.| (2023), image generation |[Zhu et al|(2022); [Tao et al.|(2022);
Li et al.| (2022c ), amesh et al.| (2022), and visual question answering (VQA) |Zhao et al.| (2022);

bit| (2022); |Yang et al.| (2021). For instance, DF-GAN (2022)) represents a one-stage
text-to-image backbone capable of directly synthesizing high-resolution images. In the realm of
image segmentation, [Liiddecke & Ecker|(2022) leverages latent diffusion models (LDMs) to segment
text-based real and Al-generated images. In VQA, [Lin et al/ (2022) incorporates explicit object
region information into the answering model. Furthermore, [Zhang et al|(2020) harnesses text to
assist the model in generating missing regions within images, thereby pushing the boundaries of
image inpainting tasks. Additionally, language models like CLIP [Radford et al|(2021)) have emerged
to bridge the gap between image and semantic features. In this paper, we explore the influence of
semantic information within the implicit neural function on the image inpainting task. Through
the integration of semantic information, our objective is to endow the model with a more profound
comprehension of the semantic meaning associated with specific image coordinates.

3 PRELIMINARY: LOCAL IMAGE IMPLICIT REPRESENTATION

Given an image I, an implicit representation for the image is to map coordinates in the continuous
domain to corresponding color values; that is, we have

cp= Y wqfo(z,dist(p, q)), )
qEN

where p is the continuous coordinates, the output ¢, is the color of the pixel p, NV, contains all
neighboring pixels of p within the image I, fy(-) is an MLP for coordinate-color mapping, wq is the
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weight of q, and zq" is the appearance feature of pixel q. Note that, all pixels in V,, are sampled from
the input image I and their features {zq" } are extracted through an encoder network for handling
I. Intuitively, the MLP is to transform the appearance embedding of a neighboring pixel to the
color of the pixel p based on their spatial distance. Recent works have demonstrated that training
above implicit representation via image quality loss (e.g., L loss) could remove noise or perform
super-resolution |Chen & Zhang| (2019); [Ho & Vasconcelos| (2022); Lee & Jin|(2022). However,
when the neighboring pixels in AV, miss, the implicit representation via Eq. [I]is affected. As shown
in Fig.2} the existing implicit representation approaches cannot properly reconstruct the pixels within
missing regions.

4  SEMANTIC-AWARE IMPLICIT REPRESENTATION (SAIR)

4.1 OVERVIEW

To address the issue, we propose the semantic-aware implicit representation (SAIR), which contains
two key modules, i.e., semantic implicit representation (SIR) and appearance implicit representation
(AIR) (See Fig.[I). The first one is to build a continuous semantic representation that allows us to
complete the missing semantic information within the input image. The second one is to build a
continuous appearance representation that allows us to complete missing details.

Specifically, given an input image I € R *W 3 that may contain some missing regions indicated by

amask M € R¥>*W  we aim to build the semantic implicit representation (SIR) to predict semantic
embedding of an arbitrary given pixel whose coordinates could be non-integer values. The embedding
could indicate the object the pixel belongs to. We formulate the process as

zy" = SIR(L, M, p), (@)

where z5™ denotes the semantic embedding of the pixel p. Intuitively, we require the SIR to have
three properties: @ The predicted semantic embedding should be well aligned with the extract
category of the object the pixel belongs to. @ If the given coordinate (i.e., p) is within unlost regions
but with non-integer values, SIR could estimate its semantic embedding accurately. This requires SIR
to have the capability of interpolation. @ If the specified coordinate is within missing regions, SIR
could complete the semantic embedding properly. We extend the local image implicit representation
to the embedding level with text-aligned embeddings and propose the SIR in Sec. #.2]to achieve the

above three properties.

After getting the semantic embedding of the desired pixel, we further estimate the appearance (e.g.,
color) of the pixel via the appearance implicit representation; that is, we have

¢p = AIR(L, SIR, p), A3)

where ¢, denotes the color of the desired pixel p. Intuitively, AIR is to predict the color of p
according to the built semantic implicit representation (SIR) and input appearance. We detail the
process in Sec. .3}

4.2  SEMANTIC IMPLICIT REPRESENTATION (SIR)

We first use the modified CLIP model to extract the text-aligned embedding as the semantic embedding.
Specifically, inspired by the recent work MaskCLIP (Zhou et al.l[2022), we remove the query and key
embedding layers of the raw CLIP model and restructured the value-embedding and final linear layers
into two separate 1 x 1 convolutional layers. This adjustment is made without introducing additional
parameters or altering the feature space of CLIP, allowing the CLIP output a spatial-aware embedding
tensor. Given the input image I € R¥*W 3 we feed it into the modified image encoder of CLIP and
output a tensor Z*™ € RI>wxe where h, w, and ¢ are the height, width, and channel numbers. Note
that Z**™ is not pixel-wise embedding with h < H and w < W, which have much lower resolution
than I. MaskCLIP employs the naive resize operation to map the Z**™ to the same size as the input
image, which cannot complete the missing semantic information. Instead, we propose to extend local
image implicit representation to the text-aligned embedding and formulate the SIR as

25" = SIR(LM,p) = » _ wafo([z5", Mlal], dist(p, ), @
ae€Np
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where z5™ = Z*™[q] is the embedding of the q location at Z**™, and N/, denotes the set of
neighboring coordinates around p. dist(p, q) measures the distance between p and q. fy(-) is a
MLP with the 6 being the weights. Intuitively, fy(-) is to estimate the text-aligned embedding of
the location p according to the known embedding of q and the spatial relationship between p and q.
Finally, all estimations based on different q are weightly combined through wq that is also set as the
area ratio of p-q-made rectangle in the whole neighboring area.

4.3 APPEARANCE IMPLICIT REPRESENTATION (AIR)

With the built SIR, we aim to build the appearance implicit representation (AIR) that can estimate the
colors of arbitrarily specified coordinates. In first step, we use a CNN-based appearance encoder to
generate appearance feature Z*? = APPENCODER (I, M), and Z*? € R¥*Wx*C " Given a pixel’s
coordinates p, we predict its color by

cp = AIR(IL, M, SIR,p) = Y wqfs([2, SIR(I, M, q)], dist(p, q)), ®)
qeNp

where zg" = Z*P[q] is the appearance embedding of g-th pixel. The function fz is a MLP with the
[ being its weights. Intuitively, we estimate the color of the p-th pixel according to the appearance
and semantic information of the neighboring pixels by jointly considering the spatial distance. For
example, if a pixel p misses, the appearance feature of p (i.e., zi‘f’p) is affected and tends to zero
while the semantic information could be inferred from contexts. As shown in Fig.[T} even though the
pixels around the left eye miss, we still know the missed pixels belong to the left eye category.

4.4 IMPLEMENTATION DETAILS

Network architecture. We utilize and modify the pre-trained ViT-B/16 image encoder of CLIP
model to extract the semantic embedding. And we set the APPENCODER as a convolutional neural
network and detail the architecture in Tab. [3] which is capable of generating features of the same size
as the input image. Our MLP modules f,(-) and fz(-) are four-layer MLP with ReLU activation
layers, and the hidden dimension is 256.

Loss functions. During the training phase, we employ the L1 loss to measure the discrepancy
between the predicted pixel color and the ground truth pixel color, which is utilized for calculating
the reconstruction loss £;. To guarantee the feature after SIR remains in text-aligned feature space,
we choose L1 loss to quantify the dissimilarity between the unmasked image’s text-aligned feature
Zem o € RMV%e and the SIR reconstructed feature Z%s"™*d without changing the resolution.

unma

The final loss function is £ = L1 + aLs.

Hyperparameters. We employ the Adam optimizer with parameters (51 = 0.9, 82 = 0.999). The
learning rate is set to 0.0001 and is halved every 100 epochs. Our models are trained for 200 epochs
on two NVIDIA Tesla V100 GPUs, and the batch size is set to 16.

5 EXPERIMENTAL RESULTS

5.1 SETUPS

Datasets. We validate the effectiveness of proposed method through comprehensive experiments
conducted on two widely used datasets: CelebAHQ |Lee et al.| (2020) and ADE20K Zhou et al.|(2017).
CelebAHQ is a large-scale dataset consisting of 30,000 high-resolution human face images, selected
from the CelebA dataset|Liu et al.| (2015)). These face images are categorized into 19 classes, and for
our experiments, we use 25,000 images for training and 5,000 images for testing purposes. ADE20K,
on the other hand, is a vast dataset comprising both outdoor and indoor scenes. It consists of 25,684
annotated training images, covering 150 semantic categories. We leverage this dataset to evaluate our
method’s performance on scene inpainting tasks. To create masked images for our experiments, we
utilize the mask dataset|Liu et al.|(2018) similar as the previous works|Li et al.| (2022b). This dataset
offers over 9,000 irregular binary masks with varying mask ratios, spanning from 0% to 20%, 20% to
40%, and 40% to 60%. These masks are instrumental in generating realistic inpainting scenarios for
evaluation purposes.
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Table 1: Comparison results on the CelebAHQ dataset across varied mask ratios.

Method 0%-20% 20%-40% 40%-60%

PSNRT SSIM{ L1 | LPIPS||PSNRT SSIM{ L1 LPIPS)|PSNRT SSIM{ L1J LPIPS]
EdgeConnect| 34.53 0964 0.005 0.038 | 27.30 0.889 0.025 0.104 | 2232 0.771 0.035 0.195
RFRNet 3493 0966 0.005 0.035 | 27.50 0.890 0.024 0.100 | 22.77 0.775 0.033 0.185
JPGNet 3586 0.972 0.004 0.040 | 28.18 0.909 0.023 0.119 | 2232 0771 0.035 0.195
LAMA 36.04 0973 0.008 0.024 | 29.14 0932 0.020 0.029 | 22.94 0.854 0.033 0.152
MISF 3632 0976 0.012 0019 | 29.85 0932 0.021 0.055 | 23.91 0.868 0.042 0.133
LIIF 3527 0969 0.012 0.023 | 28.80 0.923 0.026 0.043 | 23.30 0.830 0.051 0.136
SAIR | 3797 0977 0010 0.016 | 3149 0.944 0.019 0.025 | 2487 0.870 0.031 0.124

Table 2: Comparison results on the ADE20K dataset across varied mask ratios.

0%-20% 20%-40% 40%-60%
PSNR{ SSIMT L1 LPIPS)|PSNRt SSIM{ L1J LPIPS||PSNR{ SSIM{ L1 LPIPS)

EdgeConnect| 30.91 0.948 0.007 0.049 | 24.18 0.841 0.022 0.139 | 20.07 0.694 0.048 0.259

Method

RFRNet 30.36. 0.937 0.008 0.073 | 23.42 0.807 0.027 0.199 | 19.21 0.638 0.060 0.340
JPGNet 31.65 0.952 0.007 0.074 | 2472 0.851 0.022 0.202 | 2046 0.713 0.048 0.342
LAMA 31.07 0.956 0.009 0.036 | 24.15 0.859 0.025 0.116 | 20.15 0.713 0.048 0.257
MISF 3145 0954 0.006 0.032 | 2497 0.859 0.020 0.117 | 20.59 0.717 0.044 0.233
LIIF 3096 0.946 0.010 0.038 | 24.57 0.846 0.026 0.120 | 19.79 0.708 0.049 0.274
SAIR | 31.01 0.964 0.005 0.034 | 26.44 0.866 0.023 0.110 | 21.88 0.722 0.042 0.193

Baselines. We enhance our approach by incorporating semantic representations based on previous
implicit neural function model LITF|Chen et al.| (2021b)). By modifying image encoder and integrat-
ing semantic information, we obtain the semantic-aware implicit function, denoted as SAIR. For
comparative analysis, we select state-of-the-art inpainting methods StructFlow Ren et al.[ (2019)),
EdgeConnect|Nazeri et al.| (2019), RFRNet|L1 et al.| (2020), JPGNet|Guo et al.| (2021), LAMA [Suvorov:
et al.|(2022), MISF|Li et al.|(2022b)), and the implicit neural function without semantic information
LIIF |Chen et al.| (2021Db) as our baselines.

Evaluation metrics. To assess the performance of all methods, we utilize four commonly employed
image quality evaluation metrics: peak signal-to-noise ratio (PSNR), structural similarity index
(SSIM), L1 loss, and learned perceptual image patch similarity (LPIPS) Zhang et al.| (2018)). PSNR,
SSIM, and L1 offer insights into the quality of the generated image, while LPIPS quantifies the
perceptual distance between the restored image and the ground truth.

5.2 COMPARISON RESULTS

The results obtained on the CelebAHQ dataset are presented in Tab. [I] demonstrating a significant
performance improvement achieved by incorporating semantic information into the models. For
instance, SAIR outperforms MISF by 1.74 in PSNR for the 0-20% mask ratio. Moreover, SAIR
surpasses LAMA by 2.35 in PSNR and 1.2% in SSIM for 20—40% ratio. In the 20-40% mask ratio,
SAIR exhibits enhancements of 2.69 in PSNR and 7.1% in SSIM compared to LIIF. The results on
the ADE20K dataset, as shown in Tab. [2] also reveal the effectiveness of incorporating semantic
information. SAIR achieves a lowered LPIPS of 0.193 for the 40—-60% mask ratio. And SAIR
improves PSNR to 26.44 and SSIM to 86.6% in 20-40% ratio range. Notably, SAIR attains the
best PSNR and SSIM performance for all mask ratios. These results demonstrate that semantic
information aids in processing degraded images. Our approach overcomes the limitations imposed by
noise in masked area appearance features by leveraging the guidance of semantic information.

Qualitative results from different models are presented in Fig.[2] showcasing significant enhancements
achieved by our proposed method. Fig. 2Junmistakably illustrates that the implicit neural function
models lacking semantic guidance tend to produce blurry reconstructions in the affected regions,
often displaying a noticeable boundary between masked and unmasked areas. In contrast, models
enriched with semantic information yield more visually coherent and pleasing results. As observed in
the first row, it becomes apparent that traditional implicit neural functions like LIIF struggle to recover
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Figure 2: Visual comparison with competitors: the first two cases are from the CelebAHQ dataset,
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the “eye’ category when it is entirely masked. In such cases, the neighboring appearance features can
only provide information about the ’face.” However, SAIR demonstrates its ability to reconstruct the
“eye’ category effectively, benefitting from the restored semantic features. Furthermore, in the last
row of Fig.[2} the original implicit neural function generates unexpected regions prominently.

In Fig.[3] we present a visual representation of the image features before and after the application of
our SIR module. The pre-trianed CLIP encoder cannot handle the masked regions ideally. And it
becomes evident that our proposed SIR module effectively reconstructs the corrupted image feature.
To assess the impact of semantic information during the training process, we visually analyze the
training progress of both LIIF and SAIR. The training loss curves depicted in Fig. d] demonstrate that
both models converge at a similar point. This observation suggests that the inclusion of semantic
information can facilitate loss convergence without necessitating an extended training duration.
Moreover, as seen in Fig. E the PSNR curve illustrates that the model enriched with semantic
information consistently outperforms the original implicit representation model right from the outset.

5.3 ABLATION STUDY AND DISCUSSION

Study on using different image encoders. To demonstrate the compatibility of our semantic feature
embedding with various image encoders, we conducted an ablation study in which we replaced our
image encoder with the original LIIF encoder EDSR (2017). As indicated in Tab. ]
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Table 3: Architecture of APPENCODER. H x W

is the resolution of the input image. Table 4: Ablation study results on different image
encoders and different implicit neural function
Output size | Operation models on CelebAHQ dataset.
HxW Conv(4, 64,7, 1, 3), ReLU -
H/2 x W/2 | Conv(64, 128, 4,2, 1), ReLU Variant ‘ All mask ratios
H/4 x W/4 | Conv(128, 256, 4,2, 1), ReLU PSNR?T  SSIM?t
Resnet x 8 EDSR(wo) | 3026  0.892
H/4 x W/4 | Conv(256, 256, 3, 1, 1), ReLU EDSR(w) 31.48 0.913
H/4 x W/4 COHV(256, 256, 3, 1, 1), ReLU LTE 30.60 0.931
H/2 x W/2 | Conv(256, 128, 4,2, 1), ReLU SemLTE ‘ 3197 0939
HxW Conv(128, 64, 4,2, 1), ReLU

when compared to a model without the inclusion of semantic features (EDSR(wo0)), the model that
incorporates semantic features (EDSR(w)) also exhibited improvements, increasing the PSNR by 1.12
and the SSIM by 2.1%. These experiments provide compelling evidence that semantic information
has the potential to enhance performance across different appearance feature spaces.

Study on using different implicit neural functions. In order to demonstrate the versatility of our
semantic feature integration with various implicit neural functions, we conducted an ablation study
using another implicit neural function known as LTE |Lee & Jin|(2022), which is specifically designed
for image super-resolution tasks. In this study, we seamlessly incorporated semantic features into
LTE, creating what we refer to as SemLTE. The resulting performance metrics are presented in Tab. 4]
where SemLTE achieved significant improvements, elevating the PSNR to 31.97 and the SSIM to
93.9%. These outcomes affirm the adaptability of our proposed semantic implicit representation,
showcasing its effectiveness when applied to different implicit neural functions.

Study on the models with/without SIR block. To further assess the effectiveness of our proposed
SIR module, we conducted performance tests on the CLIP encoder, both with and without the SIR in
the semantic segmentation task. We use masked images as inputs to generate the segmentation results,
which are compared with ground truth. In the setting *without SIR’, we initially employed the CLIP
text encoder to produce category features CLIP_T € R“*C for all categories in the dataset, where
L represents the number of categories. Subsequently, we used CLIP_T to filter the semantic feature
CLIP_], yielding a pixel-wise segmentation map S € RF*W*L In the setting "with SIR’, we use
the SIR block to reconstruct the CLIP semantic feature CLIP_I, the reconstructed feature is used
for segmentation. The results presented in Tab. [5indicate that the inclusion of the SIR block leads
to a notable increase in mIoU by 0.28, demonstrating the effective capacity of the SIR model to
reconstruct semantic features.

Study on not filling the semantic feature (NFS). In the preceding section, we employed SIR to
reconstruct the semantic feature of masked images. Here, we delve into an alternative scenario where
we do not to fill in the masked semantic feature. In our experiments, we introduced masked semantic
features into the implicit neural function alongside the appearance feature. However, as evident in
the results presented in Tab. [lunder the label NFS, this approach yields suboptimal performance
when compared to SAIR. Specifically, it leads to a noticeable decrease of 2.04 in PSNR and a 2.1%
reduction in SSIM. The presence of meaningless semantic information within the masked region
exerts an adverse influence on the construction of the implicit representation.

Study on only using semantic feature to build implicit representation (OUS). In this section,
we explore the possibility of constructing a continuous representation using only semantic features,
meaning that we exclusively input semantic information into the implicit neural function. The results
is shown in Tab.[6]as the OUS. It’s worth noting that the CLIP image encoder is trained to produce
features that align with textual information. In essence, this experiment underscores the significance
of integrating both semantic and image-level information to attain favorable outcomes in image
generation tasks.

Using other semantic embeddings. As an alternative to employing our Semantic Implicit Repre-
sentation (SIR), we can also utilize existing models designed for semantic embeddings, such as the
previously introduced semantic segmentation model SAM [Kirillov et al.|(2023). To demonstrate
this, we replaced our CLIP encoder with the pre-trained SAM image encoder, and the results are
presented in Tab.[6] Notably, it becomes evident that the CLIP encoder outperforms traditional
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Table 6: Ablation study results on Not filling se-
mantic feature (NES), Only using semantic fea-

Table 5: Semantic segmentation results from the ture (OUS), and SAM encoder on CelebAHQ

emar dataset.
models with/without SIR on ADE20K dataset. atase
- . All mask ratios
Variant | mloU Variant PSNRT  SSIMt
CLIP Encoder 0.17 NFES 30.32 0.923
CLIP Encoder+ SIR | 0.45 ous 31.11 0.929
SAM Encoder 31.72 0.935
SAIR \ 32.36 0.944

Input Masked Image  Reconstructed Image Input Reconstructed Image GT

Figure 5: Real-life applications using in-the-wide images. We show object removal results (left) and
inpainting results (right).

semantic segmentation encoders in this context. This superiority is attributed to the CLIP encoder’s
capacity to capture rich textual information, further enhancing the inpainting task’s performance.

Real-life applications. Our approach demonstrates versatile applications, including object removal
and image restoration. To test the performance of our model in real-life applications, we use our
model trained on ADE20K dataset to process in-the-wild images selected from the Internet. As
shown in Fig.[5} our method consistently delivers promising results in addressing the challenges
posed by diverse and uncontrolled in-the-wild scenarios.

6 CONCLUSION

In this paper, we tackle the limitations inherent in existing implicit representation techniques, which
predominantly rely on appearance information and often falter when faced with severely degraded
images. To address this challenge, we introduce a novel approach: the learning of a semantic-aware
implicit representation (SAIR). By seamlessly using a semantic implicit representation (SIR) to handle
the pixel-level semantic feature and a appearance implicit representation (AIR) tp reconstruct the
image colour, our method effectively mitigates the impact of potentially degraded regions. To gauge
the effectiveness of our approach, we conducted comprehensive experiments on two widely recognized
datasets, CelebAHQ and ADE20K (2017). The results unequivocally
demonstrate that our method outperforms existing implicit representation and inpainting approaches
by a substantial margin across four commonly employed image quality evaluation metrics. Our
model’s capacity to assist the implicit neural function in processing damaged images expands its
utility and applicability, offering promising prospects for various image-related tasks.

Limitations. In this study, we have showcased the effectiveness of the semantic-aware implicit
representation within the domain of image inpainting. While our proposed method has demonstrated
remarkable performance in this particular task, its broader applicability across other vision-related
tasks has yet to be fully explored. As part of our future research endeavors, we plan to conduct
additional experiments to assess the potential of our method in addressing various vision tasks beyond
inpainting.
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