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Abstract

This paper investigates the knowledge of lan-001
guage models from the perspective of Bayesian002
epistemology. Specifically, it aims to explore003
whether language models can accurately incor-004
porate evidence of varying levels of informa-005
tiveness and reliability into their confidence006
and responses. As Bayesian epistemology in-007
terprets belief as confidence according to evi-008
dence, this study offers a new perspective on009
understanding the beliefs and knowledge of010
language models. We created a dataset with011
various types of evidence and analyzed its re-012
sponse and confidence using verbalized confi-013
dence, token probability, and sampling. From014
the perspective of verbalized confidence, our015
research has shown that we can interpret that016
language models can generally reflect evidence017
in their confidence and calibration. We also018
demonstrated that language models exhibit bi-019
ases toward correct evidence, exploit unreason-020
able evidence, and ignore errors in the context,021
all of which can be interpreted as the epistemic022
character of language models.023

1 Introduction024

Large Language models (LLMs) have advanced to025

the point where they can naturally respond to vari-026

ous practical tasks such as question-answering and027

conversation (OpenAI et al., 2023; Gemini Team028

et al., 2024). However, limitations like hallucina-029

tion and trustworthiness still exist, and research030

efforts continue to address these issues (Huang031

et al., 2023; Sun et al., 2024; Xiao and Wang, 2021;032

Zhang et al., 2023). In this paper, we take a differ-033

ent approach by examining language models from034

a philosophical motivation. "Do language models035

possess knowledge?" in other sophisticated words,036

"Can we interpret language models as possessing037

knowledge?" Knowledge is generally defined as038

justified true belief. "s knows p" means that (1) p039

is true, (2) p is justified by s, and (3) p is a belief040

(Audi, 1997). Most AI research has focused on041

  Q: Who manned the first flight
  Evidence: ...Since the Wright   
  Brothers are...

  Q: Who manned the first flight
  Evidence: ...recall photo           
  illustrating two men and a         
  primitive aircraft captioned as   
  'Wright Bros'...

Answer:
Wright Brothers

Confidence:
0.9

Answer:
Wright Bros

Confidence:
0.7

  Q: Who manned the first flight
  Evidence: ... A vehicle             
  registration plate is a metal or   
  plastic plate...

Answer:
Wright Brothers

Confidence:
0.2

Gold
Evidence

Coincidental
evidence

Irrelevant
Evidence

Figure 1: We explored changes in the confidence and
responses of language models by providing them with
various types of evidence. For evidence, we used verbal-
ized confidence (Tian et al., 2023b), token probability
and sampling method.

aspect (1), that is, whether the language model’s 042

response is true or not, using metrics for measuring 043

correctness such as accuracy (Thorne et al., 2018; 044

Hendrycks et al., 2021; Srivastava et al., 2023). Ex- 045

planation generation (Wei et al., 2023; Camburu 046

et al., 2018) can be interpreted as (2), exploring the 047

language model’s ability to provide justification. 048

This paper addresses (3), the belief of language 049

models. Specifically, it deals with the relationship 050

between belief and the language model’s justifica- 051

tion, expressed as evidence. Since belief is a vague 052

and challenging concept to define, this paper fo- 053

cuses on belief from the perspective of Bayesian 054

epistemology, which interprets belief as a quantita- 055

tive and functional variable. 056

According to Bayesian epistemology, the degree 057

of belief can be interpreted and measured as proba- 058

bility, called probability norm. In particular, regard- 059

ing the confirmation of belief, we should adjust the 060

confidence of belief based on the evidence. Specif- 061

ically, when H represents the hypothesis, which 062

can be interpreted as belief, E means the evidence 063

for the belief, and θ represents the background 064
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information or prior knowledge, we can define 3065

assumptions:066

• Confirmation Assumption: E confirms H067

if and only if P (H | E, θ) > P (H | θ)068

• Disconfirmation Assumption: E discon-069

firms H if and only if P (H | θ) > P (H |070

E, θ).071

• Irrelevance Assumption: E is irrelevant to072

H if and only if P (H | θ) = P (H | E, θ).073

Also, if we define belief in terms of probability,074

the strength of the evidence should also be reflected075

in the confidence. That is,076

• Evidence Power Assumption: E′ confirms077

H more stronlgly than E′′ if and only if078

P (H | E′, θ)− P (H | θ) > P (H | E′′, θ)−079

P (H | θ).080

which is equivalent with P (H | E′, θ) > P (H |081

E′′, θ) (Horwich, 1982; Howson, 2000; Talbott,082

2006; Hájek and Hartmann, 2010).083

The degrees of belief should not only be a prob-084

ability. The probabilities assigned to these beliefs085

must align with the calibration norm, meaning086

they should correspond to the actual likelihood of087

the event occurring, that is, the actual frequency088

(Williamson, 2010).089

The goal of this paper is to explore whether var-090

ious types of evidence are reflected in language091

models’ confidence and responses. The evidence092

here is not merely perturbations altering the cor-093

rectness of information, i.e., informativeness, but094

also includes a dataset of various types of evidence095

modified for reliability factors such as coincidence,096

timeliness, source of credibility, etc.097

We observed that language models generally098

form justified beliefs that align with Bayesian as-099

sumptions. However, we also identified epistemic100

traits of language models, such as a bias towards101

golden evidence and tendencies to utilize unreason-102

able information, ignore inaccuracies, or be hin-103

dered by excessive specificity.104

2 Related Works105

Calibration of LLMs Calibration of language106

models has long been considered an important met-107

ric for faithful AI, with the log probability of neural108

models being regarded as the confidence in their109

responses (Kadavath et al., 2022; Guo et al., 2017).110

As language models have grown in size, research 111

has also emerged on verbalized confidence, where 112

the models themselves generate confidence in their 113

responses (Lin et al., 2022; Mielke et al., 2022; 114

Tian et al., 2023b). While confidence can be used 115

to enhance the performance of language models 116

(Zhao et al., 2023; Tian et al., 2023a), there is also 117

research focused on the interpretation of the mod- 118

els’ confidence itself. For example, Kuhn et al. 119

(2023) measured model uncertainty using semantic 120

space, and Xiong et al. (2024) defined confidence 121

through various prompts and sampling methods. 122

The study most similar to ours is Zhou et al. 123

(2023), which investigated the impact of epistemic 124

markers on model calibration. However, unlike 125

their focus on linguistic markers, our paper exam- 126

ines how changes in epistemic evidence, containing 127

information on both content and reliability, influ- 128

ence confidence and calibration. 129

Belief and epistemology of LLMs Research 130

on the belief of LLMs has primarily focused on 131

whether these models maintain consistent beliefs. 132

Kassner et al. (2023) constructed belief graphs for 133

LLMs and examined whether using these belief 134

graphs improved responses. Hase et al. (2023) ex- 135

perimented with input paraphrase, entailment meth- 136

ods, and belief graph construction to determine if 137

models possess beliefs. Kassner et al. (2021) ar- 138

gued for the necessity of storing consistent informa- 139

tion for the beliefs of LLMs. van Dijk et al. (2023) 140

interpreted LLMs from a philosophical pragmatism 141

viewpoint, while Kim and Thorne (2024) suggested 142

that LLMs might not be epistemologically holistic 143

by showing that they fail to preserve core knowl- 144

edge effectively. This paper also addresses the 145

epistemological aspects of LLMs, specifically con- 146

cerning belief. However, it aims to measure not 147

only the content of belief but also its degree. 148

Adversarial Context With the advent of in- 149

context learning, many studies have investigated 150

the impact of few-shot demonstrations and expla- 151

nations on generated responses (Brown et al., 2020; 152

Wei et al., 2022). Wang et al. (2023a) indicated 153

that even inaccurate demonstrations could be uti- 154

lized in Chain-of-Thought (COT) prompting. Chia 155

et al. (2023) improved question accuracy through 156

contrastive demonstrations, and Chen et al. (2023) 157

explored the effect of the number of demonstra- 158

tions on accuracy. While these papers discuss the 159

impact of demonstrations on accuracy, we aim to 160
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explore how the direct evidence of question influ-161

ences not only the accuracy but also the confidence162

and calibration of language models.163

Turpin et al. (2023); Lanham et al. (2023) ex-164

perimented with various perturbations in generated165

COT inputs and their effects on answers, which is166

similar to our approach. While these studies modi-167

fied explanations based on informativeness (such as168

incorrectness or relevance), our paper aims to inves-169

tigate whether LLMs can reflect various evidence170

on their confidence and calibration. In addition, we171

have explored how epistemically diverse evidence,172

such as coincidental evidence and evidence from173

sources of varying credibility, affects the model’s174

confidence.175

3 Methods176

As Figure 1, our experiment provides various types177

of evidence as context to language models and then178

observes its confidence and responses. Influenced179

by Bayesian epistemology, we defined a confirma-180

tion task to measure whether language models can181

reflect the confirmation, disconfirmation, or irrel-182

evance assumption introduced in section 1. Also,183

we created a strength of evidence task to assess184

LLM’s ability to represent the various power of185

evidence. To measure the probability norm for ad-186

justing confidence according to the evidence, we187

used an average confidence across all samples. In188

order to measure the response, such as correctness189

or calibration norm, we used accuracy (ACC) and190

Expected Calibration Error (ECE).191

3.1 Experimental Design192

We estimated the confidence of language models193

using verbalized confidence (Verb. 1S top-1) (Tian194

et al., 2023b), token probability, and sampling (Lee195

et al., 2023; Xiong et al., 2024) (See Appendix196

E.2 and F.1 for detail). Smaller-scale open-source197

LLMs struggled to generate responses in the cor-198

rect format matching the prompt of verbalized con-199

fidence. Also, Tian et al. (2023b) mentioned that200

closed-source models are better at generating ver-201

bal confidence than open-source models. There-202

fore, we used GPT-3.5-turbo-0125 and GPT-4o-203

2024-05-13 for inference. We used SciQ (Welbl204

et al., 2017), TriviaQA (Joshi et al., 2017), GSM8K205

(Cobbe et al., 2021) for inference and making evi-206

dence dataset for Confirmation task, and used only207

SciQ dataset for Strength of Evidence task, as a208

scientific question is suitable for making various209

degree of reliable evidence (See Appendix E.3 for 210

dataset statistics.). 211

3.2 Confirmation Task 212

The objective is to observe and analyze the changes 213

in the language model’s confidence and responses 214

when presented with various types of evidence, 215

compared to scenarios where the language models 216

receive the original evidence E or in the absence of 217

E, and assess how these changes align with three 218

assumptions: Confirmation, Disconfirmation, and 219

Irrelevance introduced section 1. Let the entire 220

dataset be 221

D = {Si = (Qi, Ai, Ei) | Qi is a question,

Ai is an answer for Qi,

and Ei is evidence for Qi and Ai}.
(1) 222

and 223

Ei = (si1, si2, . . . , sin) (2) 224

where sij is a sentence of Ei and j = {1, . . . , n} 225

(index of sentence in Ei). For the experiment, we 226

need to create modified (Qi, Ai, E
′
i) where E′

i is a 227

perturbation of Ei. The following are the types of 228

E′
i: 229

1. Negated Evidence 230

Evidence where sentences in Ei are replaced 231

with their negated sentences. Thus, E′
i is 232

negated evidence if and only if 233

E′
i = (¬si1,¬si2, . . . ,¬sin) for all sij ∈ Ei. 234

2. Incomplete Evidence 235

Evidence that includes only a subset of sen- 236

tences from the original evidence Ei. Thus, 237

E′
i is a proper subset of Ei. We used E′

i, 238

which contains only 50% of the sentences 239

from the Ei in our main experiment. 240

3. Contradictory Evidence 241

Original evidence Ei with additional negated 242

sentences from Ei. Thus, E′
i is contradictory 243

evidence if and only if 244

E′
i = Ei∪N where N ⊂ {¬sij | sij ∈ Ei} 245

such that |N | = 0.5 × |Ei|. That is, adding 246

50% of the negated evidence to the original 247

evidence. 248

4. Irrelevant Evidence 249

Irrelevant evidence is E′
i = Ej where j ̸= 250
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i. That is, Ei is randomly shuffled within251

the dataset D so that the evidence Ei of tu-252

ple (Qi, Ai, Ei) is replaced with evidence Ej253

from a different tuple (Qj , Aj , Ej).254

5. Coincidental Evidence255

For the SciQ and TriviaQA dataset, unlike256

other previous types of evidence, coinciden-257

tal evidence does not include incorrect an-258

swers but explanations reaching the golden259

answer by irrational reasoning or epistemic260

luck. Examples include explanations derived261

from random guessing or vague memories.262

For GSM8K, coincidental evidence consists263

of a wrong reasoning process but a correct264

final answer.265

3.3 Strength of Evidence266

This task differs from the Confirmation task in that267

it focuses on the strength of evidence. Unlike the268

modified E′ used in the Confirmation task, the evi-269

dence used here includes the correct answer but per-270

turbation of reliability. The goal is to understand271

how differences in the strength of evidence im-272

pact confidence and calibration and assess whether273

LLMs align with Evidence Power Assumption in274

section 1. For each (Qi, Ai) pair, two types of275

perturbation (Qi, Ai, E
′
i) and (Qi, Ai, E

′′
i ) are cre-276

ated. E′
i represents more reliable evidence, while277

E′′
i represents relatively less reliable evidence. The278

following are the types of evidence:279

1. Source of Credibility280

For each (Qi, Ai) pair, E′
i means evidence281

from a highly reputable and authoritative282

source, while E′′
i means evidence from an283

anonymous online post or an individual.284

2. Specificity and Detail285

This involves varying the detail and specificity286

of the evidence. Similar to source of credibil-287

ity, for each (Qi, Ai), E′
i is highly detailed288

evidence, while E′′
i is evidence with general289

mentions related to the question.290

3. Timeliness291

This involves modifying the evidence based292

on its recency. For each (Qi, Ai), E′
i consists293

of recent findings and experiments, while E′′
i294

consists of relatively older findings and exper-295

iments.296

4. Experimental Evidence297

For each (Qi, Ai), E′
i includes evidence de-298

rived from precise and controlled experiments, 299

while E′′
i includes evidence where the answer 300

is observed by a witness without experiments. 301

You can see the prompt for generating the evi- 302

dence in Appendix F.2 303

4 Results and Analysis 304

4.1 LLMs on Confirmation task 305

You can see the results of the Confirmation task 306

using the verbalized confidence method in Table 1. 307

The results for the token probability method and 308

the sampling method are presented in Table 2 and 309

Table 3, respectively, both of which are located in 310

Appendix A. 311

LLMs follow confirmation assumption In Ta- 312

ble 1, 2 and 3, NO_EVI and EVI column show that 313

when E is golden evidence that helps confirm the 314

answer, we observe P (H | E) > P (H) across 315

all models, datasets and methods we used, which 316

align well with the Confirmation assumption of 317

Bayesian epistemology. Moreover, except for a 318

slight increase in ECE when golden evidence is 319

present in the case of GPT-3.5 on Trivia QA with 320

verbalized in Table 1 and sampling method in Ta- 321

ble 3, both ACC and ECE showed good results 322

when given such confirming evidence. This indi- 323

cates that language models have strong confidence 324

and handle information well when the evidence 325

contains purely helpful information for deriving 326

the correct answer. We can interpret that language 327

models satisfy the probability norm and calibration 328

norm in the confirmation case. Excluding GSM8K, 329

in NO_EVI colimn, we can see that the language 330

model has some degree of parametric knowledge 331

about SciQ and TriviaQA. However in GSM8K, the 332

average confidence and accuracy significantly im- 333

prove when evidence is provided, and ECE signifi- 334

cantly decreases. This shows that language models 335

cannot complex reason well without any explana- 336

tion and reaffirms the importance of explanation in 337

arithmetic tasks (Wei et al., 2023). 338

Case of disconfirmation: Negated evidence 339

and Contradictory evidence In the verbalized 340

method in Table 1, except for the GSM8K in no evi- 341

dence baseline on GPT-3.5, which performs poorly 342

on all metrics, negated evidence (Negation) shows 343

low confidence, low accuracy, and high ECE com- 344

pared to all no-evidence baselines, which is well- 345

aligned with bayesian assumption on disconfirma- 346

tion case. Low confidence indicates that LLMs do 347
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Dataset Metric No_EVI EVI Coincidence Irrelevant Negation Incomplete Contradiction

GPT-3.5-turbo

SciQ
Confidence 0.851 0.943 0.835 0.714 0.827 0.928 0.945
Accuracy ↑ 0.67 0.841 0.854 0.53 0.572 0.77 0.847

ECE ↓ 0.18 0.111 0.071 0.262 0.304 0.161 0.108

Trivia
Confidence 0.827 0.922 0.818 0.69 0.797 0.897 0.925
Accuracy ↑ 0.846 0.879 0.971 0.698 0.702 0.86 0.869

ECE ↓ 0.035 0.058 0.153 0.125 0.211 0.06 0.076

GSM8K
Confidence 0.74 0.998 0.988 0.765 0.931 0.96 0.949
Accuracy ↑ 0.078 0.951 0.843 0.066 0.023 0.666 0.777

ECE ↓ 0.662 0.048 0.148 0.699 0.911 0.307 0.197

GPT-4o

SciQ
Confidence 0.925 0.986 0.902 0.861 0.875 0.948 0.977
Accuracy ↑ 0.73 0.915 0.88 0.7 0.675 0.82 0.905

ECE ↓ 0.195 0.073 0.04 0.171 0.2 0.128 0.072

Trivia
Confidence 0.915 0.933 0.895 0.878 0.866 0.909 0.926
Accuracy ↑ 0.94 0.96 0.99 0.935 0.86 0.945 0.955

ECE ↓ 0.037 0.027 0.095 0.063 0.048 0.036 0.037

GSM8K
Confidence 0.924 0.991 0.83 0.89 0.883 0.96 0.957
Accuracy ↑ 0.24 0.97 0.54 0.195 0.165 0.774 0.96

ECE ↓ 0.684 0.033 0.406 0.705 0.718 0.186 0.013

Table 1: The result of confirmation task with verbal confidence methods. We used 200 samples for GPT-4o due to
the cost limit. NO_EVI refers the question with no context which means P (H | θ), serving as baseline. Others
are the case of P (H | E, θ) where evidence appears in the context. EVI refers to the context in which the golden
evidence from the dataset is given, while the other evidence types are those mentioned in section 3.2.

not simply follow the negated evidence to generate348

an answer, but rather that the negated evidence con-349

flicts and confuses with existing parametric knowl-350

edge, which leads to lower accuracy and higher351

ECE.352

However, in the case of Token probability and353

Sampling method, when Negated Evidence is pre-354

sented, the ACC decreases, and the ECE increases355

in most cases, but the Confidence inconsistently356

decreases or increases compared to the baseline.357

That is, in the disconfirm case, both sampling and358

token probability fail to reflect the degree of belief359

according to the evidence adequately.360

On the other hand, in most models and methods,361

contradictory evidence, which contains both cor-362

rect and negated evidence in the context, shows363

higher confidence and accuracy than the no-364

evidence baseline in all cases except for some re-365

sults of the TriviaQA dataset, which shows slightly366

lower ACC and slightly higher ECE. Surprisingly,367

despite the presence of inaccurate information, the368

model appears high-confident and well-calibrated369

in almost all scenarios. This indicates that the370

language models can effectively filter the given371

context and generate responses without conflicting372

with its parametric knowledge. Unlike the case373

with negated evidence, it can be interpreted that374

the existence of incorrect sentences is offset by375

the influence of golden evidence. Hence, language376

models do not consider contradictory evidence as377

evidence for disconfirming the beliefs.378

The verbalized method can reflect not only the 379

unreliability but also the information of coinci- 380

dental evidence. When language models receive 381

coincidental evidence as input, except for the no- 382

tably low performance of GPT-3.5 with no evidence 383

on GSM8K, the average confidence of the verbal- 384

ized method decreased compared to no evidence 385

in verbalized method. This means that, although 386

the evidence contains the correct answer, the LLMs 387

understands that the method to reach that answer 388

is unreliable and unreasonable through verbalized 389

confidence, thus decreasing its degree of belief. 390

However, compared to the baseline with no ev- 391

idence, we observe that accuracy increases when 392

coincidental evidence is present. This shows that 393

LLMs generate responses using correct answer in 394

the evidence, regardless of its poor reliability and 395

irrationality. Additionally, except for Trivia QA, 396

ECE decreases when coincidental evidence is given 397

compared to the no evidence baseline. This means 398

that, although the LLMs shows slightly lower con- 399

fidence in its responses, the responses generated 400

using this evidence align well with the correct an- 401

swers and have a higher frequency of being correct. 402

We interpret that SciQ and GSM8K are more chal- 403

lenging than Trivia QA, and thus, the LLMs exhibit 404

conservative confidence responses when faced with 405

less reliable evidence for these datasets. 406

On the other hand, in the Token and Sampling 407

method (Table 2, 3), confidence has increased 408

across the board, which means this method fails 409
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(a)

(g)(f)(e)

(d)(c)(b)

(h)

Figure 2: The results of the Strength of Evidence task on the SciQ dataset. The blue bar represents the cases where
the strength of evidence is high. Specifically, the blue bar indicates the context from more credible sources, more
specific, recent, and experimental evidence, while the red color represents less credible sources, less specific, old,
and observational evidence. We found that, in all models and datasets, higher power of evidence leads to greater
confidence with verbalized confidence. However, it does not always result in improvements in accuracy and ECE.

to capture the reliability of evidence. Additionally,410

ACC has increased and ECE has decreased. Thus,411

the Token and Sampling method fails to recognize412

the trait of coincidence and interprets it as typical413

confirmation evidence. We have interpreted ver-414

balized confidence as a method in which, unlike415

other confidence methods, it explicitly requires the416

LLMs to generate confidence, reflecting various417

aspects of evidence in the confidence level. Thus,418

verbalized confidence acts as a form of introspec-419

tion function.420

Incomplete evidence acts as a positive hint.421

When incomplete evidence is provided, the con-422

fidence in the language model’s response increases423

except for a slight decrease in GPT-4 on Trivia424

QA with the verbalized method. Except for some425

TriviaQA cases, accuracy also increases, and ECE426

decreases for all models and methods. Incomplete427

evidence does not contain inaccurate information428

and can be considered as a partial subset of the429

gold evidence, acting as a hint. Similar to the con-430

tradictory evidence case, we can see that the lan-431

guage model is biased towards imperfect golden ev-432

idence.Therefore, while not as effective as golden433

evidence, the language model reflects the informa-434

tion from the evidence well without distraction.435

LLMs are highly confused by irrelevant evi-436

dence According to Bayesian epistemology, con-437

fidence should not change when irrelevant evidence438

is provided. However, even considering that this439

equation in irrelevant contexts might be too rigid440

for probabilistic language models, the results for441

verbalized method show that, except for GPT-3.5 442

on GSM8K, the average confidence and accuracy 443

significantly decrease and ECE significantly in- 444

creases when irrelevant evidence is provided com- 445

pared to when no evidence is given, across most 446

models and datasets (see Table 1). 447

Similarly, in the Token probability method, av- 448

erage Confidence and ACC have decreased in all 449

cases, and excluding the GSM8K case, ECE has 450

mostly increased. In the Sampling method as well, 451

excluding some cases of TriviaQA and SciQ with 452

GPT-4o, both confidence and ACC have decreased, 453

and ECE has shown a tendency to increase. 454

This indicates that language models are severely 455

distracted by irrelevant text in terms of the content 456

of the evidence as in (Shi et al., 2023). Unlike con- 457

tradictory evidence, the inability to filter out such 458

irrelevant evidence leads to cognitive confusion, re- 459

sulting in lower accuracy and reduced confidence. 460

4.2 LLMs on Strength of Evidence task 461

You can see the results of the Strength of Evidence 462

task using the verbalized confidence method in Fig- 463

ure 2. The results for the token probability method 464

and the sampling method are presented in Figure 465

4 and Figure 5, respectively, both of which are 466

located in Appendix B. 467

High credible, highly detailed evidence can give 468

confidence, but not accurate response in verbal- 469

ized confidence As in (a), (b), (e), (f) in Figure 470

2, when the evidence comes from a credible source 471

or includes more detailed explanations, we observe 472
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(a) (b)

(d)

(c)

(e) (f)

Figure 3: The results for the degree of variations in evidence for the SciQ dataset with verbalized method. We
modified the number of negated sentences in negated evidence, sentences in incomplete evidence, and contradictory
sentences in contradictory evidence (See Appendix C for entire results.).

an increase in the mean confidence for both mod-473

els. This aligns well with the probability norm474

that stronger evidence increases the degree of be-475

lief. However, from the perspective of the cali-476

bration norm, these two types of evidence do not477

always positively contribute to accuracy or calibra-478

tion. Rather, when low credible source and low479

detailed evidence were used, accuracy increased480

and ECE decreased. This suggests that in some481

cases, strong evidence may not be as useful as we482

expected for the language model to infer the correct483

answer. High confidence combined with low accu-484

racy ultimately leads to overconfidence in incorrect485

predictions, resulting in high ECE.486

Recent evidence, experimental evidence give487

confidence and accurate response in verbalized488

confidence On the other hand, as in (c), (d),489

(g), (h) in Figure 2, evidence containing the lat-490

est information or experiments showed higher con-491

fidence and accuracy compared to older informa-492

tion or observation-based evidence. Except for493

GPT-3.5 with experimental evidence, the ECE of494

stronger evidence was also lower, indicating that495

using stronger evidence in the cases of timeliness496

and experiments results in well-calibrated models.497

This means that in these cases, the language model498

utilizes the given evidence effectively without con-499

fusion, accurately reflecting the information in its 500

predictions. 501

Through this experiment, we found that when 502

stronger evidence is provided to the language 503

model, it can significantly increase its verbalized 504

confidence. However, this does not always lead to 505

improvements in accuracy-related performance. 506

Token probability cannot reflect various degrees 507

of reliability. Verbalized confidence is the only 508

measure of confidence that, in all cases, appro- 509

priately and consistently increased in response to 510

highly reliable evidence. As in Figure 4 in Ap- 511

pendix B), with token probability, confidence did 512

not increase even when stronger evidence was 513

presented. For example, with token probability, 514

when the specificity of the evidence was altered or 515

when the source’s credibility was varied in GPT- 516

4o, it failed to reflect confidence according to the 517

strength of the evidence accurately. However, it 518

accurately reflected reliability changes according 519

to the source’s credibility, timeliness, and whether 520

an experiment was conducted in the evidence to 521

its accuracy. Additionally, it showed a decrease in 522

ECE in cases involving timeliness and experiments. 523

The sampling method can also generally reflect 524

evidence. Although confidence decreased in the 525

case of high specificity in GPT-4o, the sampling 526
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method overall showed higher confidence in high527

reliable evidence (See Figure 5 in Appendix B).528

Additionally, the sampling method showed higher529

accuracy of high reliable evidence in most cases ex-530

cept for specificity. We consider this phenomenon531

another positive aspect of self-consistent decod-532

ing (Wang et al., 2023b). A single response might533

not fully capture the reliability of evidence such as534

credibility, and timeliness, etc. However, multiple535

responses can increase the likelihood of accurately536

reflecting these aspects.537

In the case of specificity, both verbalized confi-538

dence and sampling failed to reflect the concrete-539

ness of evidence in the responses properly. We540

interpreted that more detailed information can en-541

hance confidence, but it also suggests that such542

excessive information may hinder the extraction of543

correct answers that match the question.544

5 Ablation545

LLMs tend to focus more on correct than incor-546

rect information. In the no evidence and golden547

evidence cases, we interpreted that the language548

model possesses a certain degree of knowledge549

about the question in its parameters, and tends to be550

biased towards contexts aligned with this paramet-551

ric knowledge rather than knowledge contradicting552

it, as seen win golden, contradictory and incom-553

plete evidence. To justify this, we conducted an554

experiment adjusting the ratio of golden evidence555

in Figure 3. Figure 3 (a) and (d) show that as the556

number of original golden sentences decreases and557

the negated sentence increases, the performance558

of the language model gradually declines. How-559

ever, it decreases significantly when there are no560

golden sentences left. Moreover, Figure 3 (b) and561

(e) demonstrate that as the original golden sentence562

decreases, performance decreases. On the other563

hand, Figure 3 (c) and (f) indicate that if the orig-564

inal sentence is sufficiently given, increasing the565

number of contradictory sentences does not affect566

the confidence and performance even if both of567

the contradictory evidences have the same sentence568

numbers. This shows that the language model fo-569

cuses more on the given golden evidence in the570

context than inaccurate evidence, and this is why571

it maintains confidence and calibration despite in-572

complete and contradictory evidence.573

Why do LLMs get confused by irrelevant con-574

text? Two interpretations are possible for the ir-575

relevant case576

1. The language model does not recognize irrele- 577

vant evidence which is different in content but 578

the same in the field as irrelevant. 579

2. The language model considers irrelevant evi- 580

dence as a kind of noise, which distracts the 581

model and causes confusion. 582

To verify (1), instead of extracting irrelevant evi- 583

dence from the same dataset, we used contexts from 584

different datasets, for SciQ and TriviaQA dataset, 585

we used evidence of GSM8K, and for GSM8K, 586

using TriviaQA. As you can see in Figure 6 in 587

Appendix D, even when using a new irrelevant, 588

it did not completely match the completely irrel- 589

evant assumption. However, surprisingly, when 590

using evidence from a completely different field, 591

we found that the confidence, accuracy, and ECE 592

metrics approached closer to the baseline no ev- 593

idence case (P(H)) than when we used evidence 594

where the content was different but the field was 595

the same. This implies that the greater the irrele- 596

vance, the less the language model is distracted by 597

the context. Therefore, we interpreted that there is 598

a possibility that the language model satisfies the 599

irrelevant assumption of Bayesian epistemology. 600

6 Conclusion 601

In this paper, we explored how changes in the 602

informativeness and reliability of evidence affect 603

the confidence and response of language models. 604

Specifically, we examined how well language mod- 605

els stick to the probability and calibration norms 606

outlined in Bayesian epistemology. We demon- 607

strated that language models generally align well 608

with Bayesian epistemology, especially when con- 609

fidence is defined using verbalized confidence, 610

which serves as an explicit introspection function 611

in both confirmation tasks and strength of evidence 612

tasks. This indicates that language models can 613

be interpreted as possessing a belief in the view 614

of Bayesian epistemology. At the same time, lan- 615

guage models also exhibited a tendency to utilize 616

information from unreasonable evidence, ignore 617

inaccurate sentences, or let excessive information 618

obstruct finding the right answers. Additionally, 619

through ablation experiments of changing the ra- 620

tio of golden evidence and negated sentences, we 621

found that language models are more biased to- 622

wards golden evidence, which can be seen as an 623

epistemic characteristic of language models. 624
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7 Limitations625

In this paper, we investigated whether language626

models can distinguish and reflect various types627

of evidence in the inference stage. However, we628

did not focus on the deeper aspects, such as the629

training stage, architecture, and objective, which630

might have been the cause of the phenomenon in631

our findings. Why can language models ignore632

unreasonable contexts? Why do they focus more633

on generating answers based on correct information634

while disregarding the rest? Such deep analysis of635

the causes and future impacts of these character of636

language models are left for further research.637
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Appendix 1526

A Results of Confirmation task 1527

Dataset Metric No_EVI EVI Coincidence Irrelevant Negation Incomplete Contradiction

GPT-3.5-turbo

SciQ
Confidence 0.671 0.781 0.785 0.594 0.638 0.723 0.764
Accuracy ↑ 0.676 0.829 0.839 0.526 0.6 0.792 0.837

ECE ↓ 0.312 0.171 0.154 0.44 0.381 0.205 0.16

Trivia
Confidence 0.834 0.864 0.894 0.699 0.759 0.843 0.849
Accuracy ↑ 0.858 0.872 0.976 0.653 0.742 0.851 0.857

ECE ↓ 0.134 0.127 0.127 0.324 0.251 0.141 0.139

GSM8K
Confidence 0.218 0.932 0.933 0.172 0.738 0.765 0.801
Accuracy ↑ 0.098 0.961 0.852 0.068 0.028 0.677 0.755

ECE ↓ 0.777 0.046 0.148 0.725 0.939 0.299 0.222

GPT-4o

SciQ
Confidence 0.621 0.799 0.833 0.565 0.653 0.744 0.813
Accuracy ↑ 0.711 0.92 0.905 0.675 0.655 0.835 0.925

ECE ↓ 0.276 0.082 0.1 0.314 0.334 0.165 0.078

Trivia
Confidence 0.837 0.916 0.911 0.824 0.824 0.889 0.91
Accuracy ↑ 0.944 0.955 0.99 0.905 0.82 0.94 0.95

ECE ↓ 0.06 0.047 0.01 0.088 0.173 0.064 0.05

GSM8K
Confidence 0.354 0.865 0.54 0.299 0.372 0.755 0.842
Accuracy ↑ 0.249 0.97 0.505 0.227 0.191 0.83 0.955

ECE ↓ 0.715 0.03 0.473 0.697 0.74 0.157 0.037

Table 2: The result of confirmation task with token probability method. We used 200 samples for GPT-4o due to the
cost limit. NO_EVI refers the question with no context which means P (H | θ), serving as baseline. Others are the
case of P (H | E, θ) where evidence appears in the context. EVI refers to the context in which the golden evidence
from the dataset is given, while the other evidence types are those mentioned in section 3.2.

Dataset Metric No_EVI EVI Coincidence Irrelevant Negation Incomplete Contradiction

GPT-3.5-turbo

SciQ
Confidence 0.874 0.921 0.916 0.798 0.828 0.888 0.922
Accuracy ↑ 0.693 0.846 0.853 0.551 0.617 0.777 0.853

ECE ↓ 0.18 0.076 0.077 0.248 0.211 0.111 0.074

Trivia
Confidence 0.921 0.939 0.963 0.822 0.862 0.924 0.934
Accuracy ↑ 0.869 0.884 0.979 0.668 0.693 0.856 0.884

ECE ↓ 0.057 0.059 0.034 0.154 0.17 0.072 0.076

GSM8K
Confidence 0.422 0.986 0.977 0.377 0.838 0.86 0.848
Accuracy ↑ 0.12 0.967 0.849 0.059 0.028 0.716 0.756

ECE ↓ 0.302 0.036 0.138 0.318 0.81 0.144 0.091

GPT-4o

SciQ
Confidence 0.872 0.968 0.959 0.852 0.871 0.923 0.965
Accuracy ↑ 0.694 0.934 0.924 0.708 0.698 0.84 0.933

ECE ↓ 0.18 0.06 0.102 0.149 0.114 0.132 0.066

Trivia
Confidence 0.845 0.973 0.973 0.943 0.918 0.966 0.97
Accuracy ↑ 0.945 0.969 0.99 0.924 0.843 0.924 0.959

ECE ↓ 0.053 0.026 0.016 0.04 0.122 0.042 0.038

GSM8K
Confidence 0.506 0.958 0.684 0.481 0.529 0.875 0.957
Accuracy ↑ 0.3 0.969 0.587 0.257 0.224 0.829 0.969

ECE ↓ 0.206 0.065 0.156 0.224 0.305 0.103 0.051

Table 3: The result of confirmation task with sampling method. We used 200 samples for GPT-4o due to the cost
limit. NO_EVI refers the question with no context which means P (H | θ), serving as baseline. Others are the case
of P (H | E, θ) where evidence appears in the context. EVI refers to the context in which the golden evidence from
the dataset is given, while the other evidence types are those mentioned in section 3.2.
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B Results of Strength of evidence task1528

(a)

(h)(g)(f)

(c)

(e)

(b) (d)

Figure 4: The results of the Strength of Evidence task on the SciQ dataset with token probability method. The blue
bar represents the cases where the strength of evidence is high. Specifically, the blue bar indicates the context from
more credible sources, more specific, recent, and experimental evidence, while the red color represents less credible
sources, less specific, old, and observational evidence.

(a)

(h)(g)(f)

(c)(b)

(e)

(d)

Figure 5: The results of the Strength of Evidence task on the SciQ dataset with sampling method. The blue bar
represents the cases where the strength of evidence is high. Specifically, the blue bar indicates the context from
more credible sources, more specific, recent, and experimental evidence, while the red color represents less credible
sources, less specific, old, and observational evidence.
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C Results of Ablation study on the ratio of golden evidence 1529

Dataset Metric Neg_30 Neg_50 Neg_80 Neg_100 Incomplete_30 Incomplete_50 Incomplete_80 Contradict_30 Contradict_50 Contradict_80 Contradict_100

GPT-3.5-turbo

SciQ
Confidence 0.932 0.912 0.88 0.827 0.935 0.928 0.906 0.947 0.945 0.943 0.95
Accuracy ↑ 0.803 0.744 0.745 0.572 0.791 0.77 0.693 0.827 0.847 0.833 0.843

ECE ↓ 0.138 0.184 0.216 0.304 0.152 0.161 0.216 0.127 0.108 0.122 0.115

Trivia
Confidence 0.908 0.887 0.851 0.797 0.909 0.897 0.872 0.922 0.925 0.923 0.925
Accuracy ↑ 0.859 0.843 0.785 0.702 0.867 0.86 0.839 0.874 0.869 0.857 0.864

ECE ↓ 0.072 0.087 0.136 0.211 0.049 0.058 0.07 0.07 0.076 0.09 0.085

GSM8K
Confidence 0.961 0.956 0.949 0.931 0.98 0.96 0.938 0.95 0.949 0.959 0.974
Accuracy ↑ 0.772 0.5 0.267 0.023 0.853 0.666 0.361 0.796 0.777 0.791 0.761

ECE ↓ 0.203 0.466 0.685 0.912 0.135 0.307 0.578 0.197 0.195 0.197 0.234

GPT-4o

SciQ
Confidence 0.967 0.93 0.9 0.875 0.969 0.948 0.909 0.98 0.977 0.968 0.963
Accuracy ↑ 0.88 0.839 0.734 0.675 0.87 0.82 0.764 0.904 0.905 0.92 0.92

ECE ↓ 0.087 0.101 0.166 0.2 0.105 0.128 0.145 0.082 0.072 0.062 0.058

Trivia
Confidence 0.919 0.891 0.884 0.866 0.927 0.909 0.882 0.934 0.927 0.925 0.925
Accuracy ↑ 0.96 0.92 0.915 0.86 0.96 0.945 0.925 0.945 0.955 0.96 0.944

ECE ↓ 0.041 0.035 0.032 0.048 0.035 0.036 0.048 0.021 0.037 0.035 0.039

GSM8K
Confidence 0.87 0.855 0.852 0.882 0.982 0.96 0.964 0.971 0.957 0.952 0.951
Accuracy ↑ 0.795 0.64 0.27 0.165 0.935 0.774 0.585 0.94 0.96 0.97 0.935

ECE ↓ 0.189 0.318 0.648 0.718 0.065 0.186 0.379 0.031 0.013 0.018 0.026

Table 4: The result of the ratio of golden sentence ablation study with verbalized method. We used 200 samples for
GPT-4o due to the cost limit. We modified the number of negated sentences, the number of sentences in incomplete
evidence, and the number of contradictory sentences in contradictory evidence and measured Confidence, Accuracy,
and ECE. For example, Neg_80 means 80% of the entire sentences have been replaced into negated sentences, and
Incomplete_80 means 80% of sentences have been deleted. Additionally, Contradict_80 refers 80% of evidence has
been negated and appended to the evidence.

Dataset Metric Neg_30 Neg_50 Neg_80 Neg_100 Incomplete_30 Incomplete_50 Incomplete_80 Contradict_30 Contradict_50 Contradict_80 Contradict_100

GPT-3.5-turbo

SciQ
Confidence 0.745 0.725 0.677 0.638 0.751 0.723 0.684 0.764 0.764 0.765 0.76
Accuracy ↑ 0.785 0.746 0.693 0.6 0.792 0.741 0.68 0.831 0.837 0.85 0.846

ECE ↓ 0.2 0.238 0.297 0.381 0.205 0.245 0.308 0.164 0.16 0.152 0.151

Trivia
Confidence 0.854 0.831 0.8 0.759 0.853 0.843 0.822 0.878 0.849 0.851 0.857
Accuracy ↑ 0.863 0.808 0.742 0.668 0.851 0.852 0.814 0.873 0.857 0.867 0.851

ECE ↓ 0.2 0.187 0.251 0.326 0.146 0.141 0.178 0.132 0.139 0.136 0.147

GSM8K
Confidence 0.877 0.807 0.765 0.738 0.894 0.765 0.532 0.842 0.801 0.796 0.801
Accuracy ↑ 0.803 0.518 0.262 0.028 0.881 0.677 0.384 0.825 0.775 0.777 0.741

ECE ↓ 0.207 0.469 0.725 0.939 0.118 0.299 0.534 0.172 0.222 0.211 0.257

GPT-4o

SciQ
Confidence 0.778 0.751 0.712 0.653 0.785 0.744 0.669 0.822 0.813 0.824 0.828
Accuracy ↑ 0.885 0.84 0.78 0.655 0.88 0.835 0.775 0.925 0.925 0.925 0.92

ECE ↓ 0.116 0.169 0.236 0.334 0.12 0.165 0.216 0.075 0.078 0.074 0.077

Trivia
Confidence 0.905 0.85 0.853 0.824 0.911 0.889 0.858 0.913 0.91 0.914 0.918
Accuracy ↑ 0.94 0.9 0.86 0.82 0.95 0.94 0.925 0.96 0.95 0.945 0.944

ECE ↓ 0.058 0.104 0.146 0.173 0.045 0.064 0.078 0.04 0.05 0.055 0.052

GSM8K
Confidence 0.765 0.611 0.421 0.372 0.856 0.755 0.599 0.856 0.842 0.851 0.862
Accuracy ↑ 0.835 0.61 0.351 0.191 0.945 0.83 0.59 0.95 0.955 0.965 0.955

ECE ↓ 0.16 0.349 0.614 0.74 0.055 0.127 0.393 0.05 0.037 0.035 0.041

Table 5: The result of the ratio of golden sentence ablation study with token probability. We used 200 samples for
GPT-4o due to the cost limit. We modified the number of negated sentences, the number of sentences in incomplete
evidence, and the number of contradictory sentences in contradictory evidence and measured Confidence, Accuracy,
and ECE. For example, Neg_80 means 80% of the entire sentences have been replaced into negated sentences, and
Incomplete_80 means 80% of sentences have been deleted. Additionally, Contradict_80 refers 80% of evidence has
been negated and appended to the evidence.

Dataset Metric Neg_30 Neg_50 Neg_80 Neg_100 Incomplete_30 Incomplete_50 Incomplete_80 Contradict_30 Contradict_50 Contradict_80 Contradict_100

GPT-3.5-turbo

SciQ
Confidence 0.904 0.885 0.865 0.828 0.906 0.888 0.87 0.914 0.922 0.921 0.918
Accuracy ↑ 0.822 0.77 0.706 0.616 0.813 0.777 0.71 0.859 0.853 0.856 0.852

ECE ↓ 0.091 0.115 0.158 0.211 0.093 0.111 0.165 0.064 0.074 0.072 0.07

Trivia
Confidence 0.927 0.917 0.885 0.862 0.929 0.924 0.905 0.935 0.934 0.936 0.931
Accuracy ↑ 0.864 0.829 0.776 0.693 0.866 0.856 0.83 0.882 0.884 0.869 0.863

ECE ↓ 0.069 0.093 0.129 0.17 0.067 0.072 0.085 0.058 0.076 0.078 0.072

GSM8K
Confidence 0.937 0.883 0.849 0.838 0.949 0.924 0.656 0.874 0.848 0.845 0.861
Accuracy ↑ 0.805 0.531 0.267 0.028 0.896 0.856 0.417 0.802 0.757 0.736 0.722

ECE ↓ 0.133 0.352 0.583 0.81 0.06 0.072 0.239 0.079 0.092 0.123 0.152

GPT-4o

SciQ
Confidence 0.943 0.922 0.904 0.871 0.954 0.923 0.906 0.958 0.965 0.959 0.957
Accuracy ↑ 0.893 0.848 0.807 0.698 0.887 0.84 0.77 0.929 0.933 0.938 0.934

ECE ↓ 0.078 0.109 0.114 0.187 0.086 0.132 0.137 0.063 0.066 0.045 0.075

Trivia
Confidence 0.969 0.959 0.942 0.918 0.97 0.966 0.954 0.97 0.97 0.965 0.974
Accuracy ↑ 0.969 0.919 0.872 0.843 0.98 0.924 0.934 0.949 0.959 0.954 0.974

ECE ↓ 0.018 0.078 0.075 0.122 0.035 0.042 0.028 0.028 0.038 0.046 0.027

GSM8K
Confidence 0.862 0.742 0.581 0.529 0.943 0.875 0.741 0.948 0.957 0.952 0.944
Accuracy ↑ 0.882 0.685 0.407 0.224 0.943 0.829 0.622 0.964 0.969 0.964 0.954

ECE ↓ 0.059 0.074 0.174 0.305 0.047 0.103 0.119 0.067 0.051 0.063 0.08

Table 6: The result of the ratio of golden sentence ablation study with sampling method. We used 200 samples for
GPT-4o due to the cost limit. We modified the number of negated sentences, the number of sentences in incomplete
evidence, and the number of contradictory sentences in contradictory evidence. For example, Neg_80 means 80%
of the entire sentences have been replaced into negated sentences, and Incomplete_80 means 80% of sentences have
been deleted. Additionally, Contradict_80 refers 80% of evidence has been negated and appended to the evidence.
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D Results of Ablation study on irrelevant evidence1530

Figure 6: The results of ablation for irrelevant evidence. The blue bar represents the result of no evidence P (H),
serving as a baseline. The red bar results from irrelevant evidence by replacing evidence from other samples within
the same dataset explained in section 3.2. The green bar represents irrelevant evidence from another dataset.
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E Experimental Detail1531

E.1 Hyperparameter1532

We utilized OpenAI’s API to create a dataset con-1533

taining evidence and conducted inference experi-1534

ments. Specifically, we used GPT-4-0613 to gener-1535

ate Negated evidence, Coincidental evidence, and1536

Contradictory evidence required for the confirma-1537

tion task, and gpt-4o-2024-05-13 to create evidence1538

necessary for the strength of evidence. The infer-1539

ence was performed using GPT-3.5-0125 and GPT-1540

4o-2024-05-13 with settings of temperature=1.01541

and top_p=1.0.1542

E.2 Evaluation Detail1543

According to (Kuhn et al., 2023), for the SciQ and1544

TriviaQA datasets, we considered a model’s re-1545

sponse as correct if its Rouge-L score (Lin, 2004)1546

with the golden label is 0.3 or higher. For GSM8K,1547

only responses that were an exact match with the1548

golden label were considered correct.1549

For sampling method for measuring confidence,1550

we set the ratio of most frequent response as the1551

confidence. As the datasets are open-ended ques-1552

tion, we should consider the synonym of each re-1553

sponses. In order to handle this, we used GPT-1554

4o-2024-05-13 to capture the semantic similarity1555

and calculate the frequency of the most common1556

response.1557

E.3 Dataset1558

For SciQ and GSM8K, we extracted the samples1559

containing the explanation, including more than 41560

sentences to create various proportions of negated1561

sentences in the ablation study. Similarly, for trivia1562

QA, we used the explanation1 including more than1563

4 sentences and extracting 1000 samples. We gen-1564

erated negated sentences using GPT-4-0613 for1565

negated and contradictory evidence and filtered1566

out samples containing incorrect sentences. Sim-1567

ilarly, we used GPT-4o-2024-05-13 for generat-1568

ing Strength of Evidence task and also filtered out1569

the generated strength of evidence that included a1570

wrong template. The total number of samples is1571

shown in Table 7 and Table 8. We used all these1572

samples when inferencing with GPT-3.5-turbo and1573

200 samples for GPT-4o-2024-05-13.1574

1We used the context of each question as evidence. For
the context of each sample, we used the positive passage in
https://huggingface.co/datasets/Tevatron/wikipedia-trivia.
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NO_EVI EVI Coincidence Irrelevant Negation Incomplete Contradiction
SciQ 1095 1095 1095 1095 991 1095 991
TriviaQA 1000 1000 1000 1000 798 1000 798
GSM8K 622 622 622 622 618 622 618

Table 7: The number of samples for the Confirmation task dataset.

High Credible Source Low Credible Source High Specificity Low Specificity Recent Old Experiment Observation
SciQ 1095 1095 1093 1093 1074 1074 1094 1094

Table 8: The number of samples for the Strength of evidence task dataset.
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F Prompt 1575

In this section, we will show the prompt for inference, 1576

F.1 Prompt for Inference 1577

Verbal Confidence Prompt

Provide your best guess and the probability that it is correct (0.0 to 1.0) for the following question
based on the evidence.
Give ONLY the guess and probability, no other words or explanation.
For example
Guess: <most likely guess, as short as possible; not a complete sentence, just the guess!>
Probability: <the probability between 0.0 and 1.0 that your guess is correct based on the given
evidence , without any extra commentary whatsoever; just the probability!>
###The question: {question}
###The evidence: {evidence}

Table 9: A prompt for verbal confidence and guess of answer from language models. We follow (Tian et al., 2023b).

Prompt for Token probability and Sampling

Provide your best guess for the following question based on the evidence.
Give ONLY the guess, no other words or explanation.
For example
Guess: <most likely guess, as short as possible; not a complete sentence, just the guess!>
###The question: {question}
###The evidence: {evidence}

Table 10: A prompt for Token probability and guess of answer from language models. We do not need to extract the
confidence by prompt, so all we need is to extract the guess.

F.2 Prompt for Generating Evidence 1578
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Prompt for Negating the evidence

###Example: "Biochemical reactions of metabolism can be divided into two general cat-
egories: catabolic reactions and anabolic reactions. You can watch an animation showing
how the two categories of reactions are related at this URL: http://classes. midlandstech.
edu/carterp/courses/bio225/chap05/lecture1. htm."
Revise or negate each sentence in the ###Example with incorrect information yet relevant
information. The response ###Negation should have same number of sentence with ###Example.
###Negation: "Biochemical reactions of metabolism are typically classified
into only one category: equilibrium reactions. You can view a static im-
age illustrating the isolated function of equilibrium reactions at this URL:
http://classes.midlandstech.edu/carterp/courses/bio225/chap05/lecture2.htm."
###Example: "An anaerobic organism is any organism that does not need oxygen for growth
and even dies in its presence. Obligate anaerobes will die when exposed to atmospheric levels of
oxygen. Clostridium perfringens bacteria, which are commonly found in soil around the world,
are obligate anaerobes. Infection of a wound by C. perfringens bacteria causes the disease gas
gangrene. Obligate anaerobes use molecules other than oxygen as terminal electron acceptors."
Revise or negate each sentence in the ###Example with incorrect information yet relevant
information. The response ###Negation should have same number of sentence with ###Example.
###Negation: "An anaerobic organism is any organism that requires oxygen for growth and
thrives in its presence. Obligate aerobes will perish when deprived of atmospheric oxygen levels.
Staphylococcus aureus bacteria, which are rarely found in aquatic environments, are obligate
aerobes. Infection of a wound by S. aureus bacteria causes the disease known as athlete’s foot.
Obligate aerobes use molecules such as hydrogen or sulfur as terminal electron acceptors."
###Example: "The energy of a mechanical wave can travel only through matter. The matter
through which the wave travels is called the medium ( plural , media). The medium in the water
wave pictured above is water, a liquid. But the medium of a mechanical wave can be any state of
matter, even a solid.”
Revise or negate each sentence in the ###Example with incorrect information yet relevant
information. The response ###Negation should have same number of sentence with ###Example.
###Negation: "The energy of a mechanical wave can travel through both matter and vacuum.
The space through which the wave travels is termed the conduit. The conduit in the water wave
pictured above is air, a gas. However, the conduit of a mechanical wave can be exclusively in a
gaseous state, not a solid or liquid.”
###Example: "What group of animals begins its life in the water, but then spends most of its life
on land? Amphibians! Amphibians are a group of vertebrates that has adapted to live in both water
and on land. Amphibian larvae are born and live in water, and they breathe using gills. The adults
live on land for part of the time and breathe both through their skin and with their lungs as their
lungs are not sufficient to provide the necessary amount of oxygen."
Revise or negate each sentence in the ###Example with incorrect information yet relevant
information. The response ###Negation should have same number of sentence with ###Example.
###Negation: "What group of animals begins its life on land, but then spends most of its life in
water? Reptiles! Reptiles are a group of vertebrates that has adapted to live mainly on land but
also in water. Reptile eggs are laid and hatch on land, and they breathe using lungs from birth. The
adults live in water for part of the time and breathe exclusively through their lungs as their skin is
not permeable enough to facilitate breathing."
###Example:{source}
Revise or negate each sentence in the ###Example with incorrect information yet relevant
information. The response ###Negation should have same number of sentence with ###Example.
###Negation:

Table 11: A prompt for negating the each sentence in golden evidence.
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Prompt for Token probability and Sampling

###Question: "What does the pull of the moon’s gravity on earth cause?”, Answer: tides
Make explanation that realize the answer to the question by knowing from unreasonable guess.
You should not express that answer from unreasonable guess is correct for the question.
###Explanation: "Interestingly, while reviewing some casual photographs taken during a lunar
eclipse, a curious pattern emerged that reminded me of a physics class discussion. The photos
captured how remarkably calm and aligned everything seemed under the moonlight, which brought
to mind the effects of the moon’s gravity on Earth. It dawned on me, almost by happenstance,
that the moon’s gravitational pull is what primarily drives the ocean tides. This realization was
unexpected, as the focus of the eclipse viewing was purely for its beauty and not the scientific
implications. It’s fascinating how a moment of leisure led to a reminder that while the moon’s
gravity tugs at the land, only the water, being fluid, visibly responds, creating the tides we observe."

###Question: "What living species of bird is considered the largest of the raptors?” Answer:
golden eagles Make explanation that realize the answer to the question by knowing from
unreasonable guess. You should not express that answer from unreasonable guess is correct for the
question.
###Explanation: "During a casual discussion at a local café in Northern California, after a day
of hiking, I was sharing stories and showing photos I had taken of a large bird, Golden Eagle, I
encountered. Not being an expert, I half-jokingly guessed it might be one of the larger bird species
due to its impressive size and wingspan."

###Question: "What is another term for blood clotting?" Answer: coagulation
Make explanation that realize the answer to the question by knowing from unreasonable guess.
You should not express that answer from unreasonable guess is correct for the question.
###Explanation:”At a community health fair, while casually discussing various health topics, an
attendee mentioned his surprise at how quickly a minor cut he had stopped bleeding. Not being a
healthcare professional, I playfully suggested it might be due to his body being exceptionally good
at ’coagulating’—a term I recalled from a movie rather than a biology class.”

###Question: "What is the protein in red blood cells which transports oxygen around the body?”,
Answer: hemoglobin
Make explanation that realize the answer to the question by knowing from unreasonable guess.
You should not express that answer from unreasonable guess is correct for the question.
###Explanation: “During a spirited trivia night with friends, where various odd facts were thrown
around, someone challenged the group to name the protein in red blood cells responsible for
transporting oxygen. Without any medical background, I haphazardly threw out ’hemoglobin’ as a
guess, mainly because it sounded scientific and related to blood. My guess was influenced by
overhearing a conversation earlier that day at the gym where someone mentioned they were taking
iron supplements to improve their ’hemoglobin levels’ for better endurance”

###Question: {question}, Answer: {answer}
Make explanation that realize the answer to the question by knowing from unreasonable guess.
You should not express that answer from unreasonable guess is correct for the question.
###Explanation:

Table 12: A prompt for making coincidental evidence.
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Prompt for Making credible evidence

###question: "What substance does the phillosopher stone change the base material to?"
###answer: "gold"

For this ###question, ###answer pairs, make 3 evidences with difference power of evidence in the
aspect of Source Credibility.

###Highly Credible Source: "A leading professor of alchemy at a renowned university published
a peer-reviewed paper documenting the transmutation of lead into gold using the Philosopher’s
Stone."

###Moderately Credible Source: "A respected independent alchemist reported successful
transmutations in his personal journal."

###Low Credibility Source: "An anonymous blog post claims to have discovered the Philoso-
pher’s Stone and successfully converted lead into gold."

###question: "Compounds with aluminum and silicon are commonly found in the clay fractions
of soils derived from what?"
###answer: "volcanic ash"

For this ###question, ###answer pairs, make 3 evidences with difference power of evidence in the
aspect of Source Credibility.

###Highly Credible Source:"A peer-reviewed study published in the Journal of Soil Science by
researchers from a top-tier university provides detailed analysis and evidence that clay fractions in
soils derived from volcanic ash predominantly contain compounds of aluminum and silicon."

###Moderately Credible Source:"A detailed report by a well-known geologist in a respected
geology magazine discusses the mineral composition of clay fractions in soils and highlights
volcanic ash as a common origin of aluminum and silicon compounds."

###Low Credibility Source:"A gardening enthusiast’s blog post mentions that soils rich in
aluminum and silicon compounds often come from volcanic ash, based on their personal
observations and informal tests."

###question: {question}
###answer: {answer}

For this ###question, ###answer pairs, make 3 evidences with difference power of evi-
dence in the aspect of Source Credibility.

Table 13: The prompt for generating various of evidence according to credibility. We did not use moderate credibility
evidence, as it is similar to other evidence.
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Prompt for Making specificity evidence

###question: "What substance does the phillosopher stone change the base material to?"
###answer: "gold"

For this ###question, ###answer pairs, make 3 evidences with difference power of evidence in the
aspect of Specificity and detail.

###Highly Specific Evidence: "Detailed records from 16th-century experiments show precise
measurements and procedures for transmuting lead into gold using a substance identified as the
Philosopher’s Stone."

###Moderately Specific Evidence: "Historical documents suggest that some alchemists reported
converting metals into gold, but the details are sparse."

###General Evidence: "There are general mentions in ancient texts about the ability to convert
base metals into gold."

###question: "Compounds with aluminum and silicon are commonly found in the clay fractions
of soils derived from what?"
###answer: "volcanic ash"

For this ###question, ###answer pairs, make 3 evidences with difference power of evidence in the
aspect of Specificity and detail.

###Highly Specific Evidence:"Geochemical analyses of soil samples from regions with
known volcanic activity demonstrate that the clay fractions are predominantly composed of
alumino-silicate minerals, confirming that these soils are derived from volcanic ash deposits."

###Moderately Specific Evidence:"Scientific studies indicate that soils in volcanic regions
frequently contain clay fractions rich in aluminum and silicon compounds, which suggests a
derivation from volcanic ash."

###General Evidence:"Many references in soil science literature mention that clay fractions with
aluminum and silicon are often associated with volcanic ash origins."

###question: {question}
###answer: {answer}

For this ###question, ###answer pairs, make 3 evidences with difference power of evidence in the
aspect of Specificity and detail.

Table 14: The prompt for generating various evidence according to specificity. We did not use moderate specific
evidence, as it is similar to other evidence
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Prompt for Making timeliness evidence

###question: "What substance does the phillosopher stone change the base material to?"
###answer: "gold"

For this ###question, ###answer pairs, make 2 evidences with difference power of evidence in the
aspect of timeliness. (the older evidence should be before 18th-century)

###Recent Evidence: "A 2022 study published in a scientific journal provides new experimental
data supporting the possibility of metal transmutation using a newly synthesized substance
resembling the Philosopher’s Stone."

###Older Evidence: "A 17th-century manuscript claims to have witnessed the transformation of
base metals into gold using an alchemical process."

###question: "Compounds with aluminum and silicon are commonly found in the clay fractions
of soils derived from what?"
###answer: "volcanic ash"

For this ###question, ###answer pairs, make 2 evidences with difference power of evidence in the
aspect of timeliness. (the older evidence should be before 18th-century)

###Recent Evidence: "A 2019 study published in a geochemistry journal confirms that soils
derived from volcanic ash predominantly contain clay fractions with high concentrations of
aluminum and silicon compounds."

###Older Evidence: "A 16th-century agricultural text describes soils from regions with volcanic
activity as rich in aluminosilicate clays, derived from the weathering of volcanic ash."

###question: {question}
###answer: {answer}

For this ###question, ###answer pairs, make 2 evidences with difference power of evidence in the
aspect of timeliness. (the older evidence should be before 18th-century)

Table 15: The prompt for generating various evidence according to timeliness.

28



Prompt for Making experimental evidence

###question: "What substance does the phillosopher stone change the base material to?"
###answer: "gold"
For this ###question, ###answer pairs, make 2 evidences with different levels of strength in
the aspect of Experimental or Observational Evidence, ensuring that the observational evidence
includes direct observations from normal people such as "several witnesses observed."

###Experimental Evidence: "Recent laboratory experiments conducted under controlled
conditions have demonstrated the conversion of lead into gold using a synthetic version of the
Philosopher’s Stone."

###Observational Evidence: "Several eyewitness accounts from the 1600s describe seeing
alchemists successfully convert metals into gold, though these were not scientifically verified."

###question: "Compounds with aluminum and silicon are commonly found in the clay fractions
of soils derived from what?"
###answer: "volcanic ash"

For this ###question, ###answer pairs, make 2 evidences with different levels of strength in
the aspect of Experimental or Observational Evidence, ensuring that the observational evidence
includes direct observations from normal people such as "several witnesses observed."

###Experimental Evidence: "A series of controlled soil analysis experiments have shown that
soils formed from volcanic ash consistently contain high concentrations of aluminum and silicon
compounds in their clay fractions."

###Observational Evidence: "Several teams have directly observed that soils in regions with
volcanic activity, particularly those rich in clay, contain significant amounts of aluminum and
silicon."
###question: {question}
###answer: {answer}

For this ###question, ###answer pairs, make 2 evidences with different levels of strength in
the aspect of Experimental or Observational Evidence, ensuring that the observational evidence
includes direct observations from normal people such as "several witnesses observed."

Table 16: The prompt for generating various evidence according to the existence of the experiment.
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