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Abstract—Given the large-scale deployment of 5G, rigorous
testing of its core network (5GC) is essential to ensure security
and robustness. Fuzzing is currently one of the most popular
vulnerability discovery techniques. However, existing fuzzers
suffer from low coverage of 3GPP-specified 5GC states, invalid
long signaling sequence generation when exploring deep 5GC
states, and coarse-grained feedback of closed-source 5G systems.
This paper presents SGC-Fuzz, a black-box fuzzing framework
to detect deep stateful vulnerabilities in SGC implementations.
5GC-Fuzz integrates three innovative techniques: (1) a systematic
construction of a 5GC state machine derived from 3GPP speci-
fications to guide the fuzzing process; (2) a 5G grammar-aware
signaling sequence mutation method based on protocol stack
interception to generate test cases while maximally guaranteeing
the syntactic, semantic, and cryptographic correctness; and (3)
a fine-grained state-transition-path feedback mechanism based
on 5GC logs to optimize test states and sequences selection. The
5GC-Fuzz was evaluated on three popular SGC implementations
and achieves 152.6% more states and 206.7% more state transi-
tion paths than the state-of-the-art fuzzers. Moreover, SGC-Fuzz
exposed 22 security-critical vulnerabilities, with 6 CVEs assigned.
In general, SGC-Fuzz could explore deeper states and uncover
more vulnerabilities in SGC, significantly enhancing the security
of mobile communication infrastructures.

Index Terms—5G Core Network, fuzzing, vulnerabilities.

I. INTRODUCTION

The 5G Core Network (5GC) is essential for the infrastruc-
ture of 5G technology, which requires extensive testing to ver-
ify its robustness and security. The Non-Access Stratum (NAS)
and Next Generation Application Protocol (NGAP), which
operate through the N1 and N2 interfaces, are critical com-
ponents. Flaws in these protocols could jeopardize the entire
network’s security and functionality. Given the predominantly
closed-source configuration of the 5GC, internal testing poses
significant challenges. However, the N1 and N2 interfaces,
which are designed for interactions with external devices,
provide viable points for external testing. Concentrating on
these interfaces for evaluating the NAS and NGAP protocols
offers a focused approach to assess the most vulnerable and
essential aspects of the 5GC.
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Fuzzing has emerged as one of the most effective techniques
for detecting vulnerabilities in network protocol implemen-
tations. Given a target protocol program, a fuzzer works
by continuously generating packets and sending them to the
program while observing for potential anomalies. State-of-the-
art tools for general-purpose network protocol fuzzing, such
as AFLNET [1], SGFUZZ [2], and NSFUZZ [3], instrument
the code of the target program and utilize code coverage
for real-time feedback. However, the close-sourced nature
of 5G systems renders these tools ineffective. Some recent
approaches [4]-[10] have focused on fuzzing the 5G system,
but they still suffer from the following problems:(1) These
methods overlook the internal states and state transitions of the
5GC. However, the SGC system is stateful and state transitions
significantly affect the execution of the core network protocol
stack. Vulnerabilities often reside within deeper states. He et
al. [4] tackles this problem by transitioning the core network
state during testing but limits its focus on only four states,
which is insufficient for thorough testing. (2) Current strategies
fail to generate test cases that can effectively penetrate deeply
into the 5GC protocol logic. Due to the complexity of the
5G signaling message format and contextual dependencies,
the use of random mutation often results in syntactic or
semantic corruption, leading to early rejection by the protocol
stack and rendering further tests meaningless. Secchecker [9]
generates counter examples against security properties based
on the predefined rules, but this requires tedious manual
efforts. Beyond that, the 5G protocol includes numerous cryp-
tographic operations, such as responding to AMF challenges
during authentication or securing NAS messages, which are
not sufficiently addressed in existing research. (3) Existing
methods do not incorporate feedback mechanisms during the
fuzzing process, which leads to inefficient and blind testing.
To optimize fuzzing, Garbelini et al. [11] intercepts messages
to label them by type and direction and leverages the labels as
state feedback, yet this approach remains too coarse-grained.

This paper proposes a novel SGC black-box fuzzing frame-
work named 5GC-Fuzz to identify deep stateful vulnerabil-
ities in 5GC implementations. To realize this framework,
several challenges must be overcome: (C7) States: Achieving
thorough 5GC state coverage requires a state machine to
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Fig. 1: Discovering AMF Unexpected Message Crash.

guide the fuzzing process, but this is challenging due to
the extreme complexity of 5GC protocols and the lack of
a formal specification. (C3) Mutation: To generate effective
long signaling sequences as test cases, guaranteeing the syn-
tactic, semantic, and cryptographic correctness is essential
but non-trivial. In-depth fuzzing requires a mutation strategy
that considers the packet format, the contextual dependency,
critical timing constraints and 5G security contexts all together
with diverse mutation operators. (C3) Feedback: To optimize
fuzzing, developing a fine grained feedback mechanism that
only leverages limited information from the black-box 5GC
implementation is inherently demanding.

Figure 1 illustrates the steps of triggering the Unexpected
Message Crash in Open5GS [12] (CVE-2023-50019), which
first discovered by 5GC-Fuzz. Finding this vulnerability is
exceedingly challenging, as it necessitates the simultaneous
satisfaction of three specific conditions: (1) during the initial
registration process, completing the 5G authentication and
security mode selection, followed by initiating the registration
with the UDM (blue steps); (2) re-transmitting the registration
message at an appropriate moment to start a second regis-
tration process, thereby inducing the core network into the
authentication state (brown steps); and (3) the AMF receiving
a particular signaling message in an inappropriate state (Step
), all of which require the long signaling sequence depicted
in Steps @-. The issue occurs at Step , where the
AMF processes the response message from the UDM for
the previous registration process. This signaling triggers an
assertion failure in the 5GC implementation, leading to a crash
of the AMF. Notably, this vulnerability was not detected by
state-of-the-art fuzzing tools during comparative experiments
for several reasons: (1) these tools are stateless or employ
incomplete state machine learning, and thus are unable to trig-
ger complex state transitions; (2) their blind testing approach
uses coarse-grained feedback, preventing efficient selection of
specific states (such as authentication and security mode state)
and sequences (such as registration requests); and (3) entering
deep protocol state requires valid long signaling sequences,
but these tools fail to account for the syntactic, semantic, or
cryptographic issues, leading to premature rejection of their
generated test cases by the 5G protocol stack.

To address the aforementioned challenges, SGC-Fuzz uti-
lizes three key techniques. First, to focus on exploring 5GC
state space, a SGC state machine is developed based on the
3GPP Specifications. This state machine guides the fuzzing
process and assesses behavior correctness of the core net-
work. Second, to generate effective test cases, SGC-Fuzz
implements a 5G grammar-aware signaling sequence mutation
method based on protocol stack interception. It takes control
of the access network, intercepts traffic and injects mutated
signaling sequences. This method enables flexible sequence-
level mutation operators like message delay, re-transmission
and disordering while maintaining the syntactic, semantic and
cryptographic correctness. Finally, to efficiently select test
states and signaling sequences, SGC-Fuzz employs a state-
transition-path feedback mechanism, utilizing a novel coverage
metric, state transition path, as fuzzing feedback. This metric,
derived from 5GC implementation logs, replaces traditional
code coverage and consists of hash values that represent
multiple state labels, detailing state transitions of the core
network during test iterations.

5GC-Fuzz has been implemented with UERANSIM [13]. It
not only provides a comprehensive evaluation of network secu-
rity and performance but also accommodates the proprietary
constraints of 5SGC systems. In summary, this paper yields
three main contributions:

o To improve fuzzing in 5GC implementations, three inno-
vative techniques are proposed: (1) a systematic construc-
tion of a SGC state machine derived from 3GPP specifi-
cations to guide the fuzzing process; (2) a 5G grammar-
aware signaling sequence mutation method based on
protocol stack interception to generate test cases while
maximally guaranteeing the syntactic, semantic, and
cryptographic correctness; and (3) a fine-grained state-
transition-path feedback mechanism based on 5GC logs
to optimize test states and sequences selection.

« Based on the three techniques, a novel fuzzing framework
named 5GC-Fuzz is designed to effectively test SGC
implementations. To our best knowledge, SGC-Fuzz is
the first comprehensive approach to systematically and
automatically fuzz arbitrary SGC implementations.

e 5GC-Fuzz is evaluated on three popular 5GC imple-
mentations (Open5GS, FreeSGC and OAI-5GC), and
find 22 real vulnerabilities (including 19 crashes and
3 semantic problems). All of these vulnerabilities have
been confirmed and fixed by related developers. 6 CVEs
are assigned due to their severe security impact. More-
over, when compared with the state-of-the-art fuzzing
approaches, 5GC-Fuzz finds more real vulnerabilities
missed by these approaches with higher testing coverage.

The rest of the paper is organized as follows. Section
IT introduces the background and related work. Section III
introduces the framework and key techniques of 5GC-Fuzz.
Section IV shows the evaluation and compares SGC-Fuzz to
existing fuzzing tools and Section V concludes this paper.
Responsible disclosure: We have followed the responsible



disclosure policy and all the vulnerabilities have been con-
firmed and fixed by related developers.

II. BACKGROUND AND RELATED WORK

In this section, we introduce the 5G core network and
fuzzing methods in mobile communication networks.

A. 5G Core Network

Key Network functions (NFs) within the SGC include the
Access and Mobility Management Function (AMF), which
manages UE registration and mobility; the Session Manage-
ment Function (SMF), responsible for session establishment
and management; the Authentication Server Function (AUSF)
and the Unified Data Management (UDM) play crucial roles in
the 5G authentication process, ensuring secure user verification
and data management. All the network functions work together
seamlessly, enabling the efficient operation and management
of the 5G network, as shown in Figure 2.

Central to the operation of the SGC are the NAS and NGAP
protocols. The NAS protocol operates over the N1 interface
between the UE and the AMF, managing mobility and session
states, including authentication, security control, and bearer
management. The NGAP protocol facilitates signaling over
the N2 interface between the gNodeB(5G base station) and the
AMF, handling procedures such as UE context management,
registration, paging, and handover. Given their critical roles,
ensuring the robustness and security of the NAS and NGAP
protocols is paramount.

This paper focuses on fuzzing these protocols by intercept-
ing and mutating NAS and NGAP packets at the N1 and
N2 interfaces, respectively, to identify and mitigate potential
vulnerabilities within the SGC. The testing entry point is the
AMEF, the boundary network function of the 5GC control plane,
making this approach suitable for closed-source 5G systems
due to the AMF’s exposure to external N1 and N2 interfaces.

B. Fuzzing for Mobile Communication Networks

Fuzzing is a crucial technique for ensuring the security
and reliability of communication protocols. It works by pro-
viding malformed, unexpected, or random data as input to
the protocol program being tested. The goal is to observe
how the program handles these inputs and to identify flaws
that could be exploited by malicious actors. Previous works
such as SPIKE [14], PEACH [15] and AFLSMART [16] have
explored semantic-aware fuzzing and syntax tree mutations
for network protocols [17], but these approaches struggle
to handle the complex state transitions and cryptographic
requirements inherent in 5G signaling procedures.

In recent years, several works [4]-[11], [18]-[21] have
utilized fuzzing to uncover potential attacks and threats in
mobile communication systems like 4G and 5G. Some works
focus on individual packet generation but lose sight of state
or context information. AMFuzz [7] and 5GReplay [8] mutate
existing traffic to generate test cases, but the mutated packets
can be easily dropped by the protocol stack due to lack of the
format specification. T-FUZZ [21] and Berserker [20] utilize
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Fig. 2: 5G Architecture with boundary NFs.

structured mutation methods to generate syntactically valid test
cases, but they do not consider the contextual dependency or
cryptographic procedures. LTEFuzz [18] and SecChecker [9]
manually generate test cases that violate security properties
to reveal vulnerabilities in the 4G and 5G systems. How-
ever, they require tedious manual efforts. Moreover, without
state information, these approaches may miss vulnerabilities
that only manifest after a specific sequence of messages or
state transitions. Additionally, the absence of the feedback
mechanism further limits their effectiveness. To deal with
feedback, Hu et al. [6], which targets the SGC, employs a grey-
box approach using code coverage as feedback to optimize
its proposed field-weight table for packet field mutations.
However, this method is not applicable to closed-source 5G
systems. Some recent works also introduces state awareness
for 4G and 5G protocols. DoLTEst [19] and He et al. [4]
select specific states for testing during the fuzzing process.
However, they lack adequate feedback mechanisms to avoid
the blind state selection. Garbelini et al. [11] uses predefined
mapping rules to parse the packet types in the responses from
the target, forming a state machine to guide the testing process.
Nevertheless, this approach remains coarse-grained.

In comparison, 5GC-Fuzz is a stateful approach, utilizing its
5GC state machine to thoroughly explore the state space. With
the novel 5G grammar-aware mutation method based on pro-
tocol stack interception, it can generate syntactically, semanti-
cally, and cryptographically valid signaling sequences. With-
out instrumentation, SGC-Fuzz provides a state-transition-path
feedback mechanism by leveraging the information of the 5G
logs to navigate protocol-logic exploration.

IIT. FRAMEWORK AND KEY COMPONENTS

In this section, we first present an overview of 5GC-Fuzz
with its main components and workflow. Then we illustrate
the important components in detail.

A. Architecture and Workflow

System Architecture. Figure 3 illustrates the architecture
of 5GC-Fuzz, which is composed of four main modules:
(1) the Fuzzing and Feedback components, which guides the
fuzzing process and provides results and feedback; (ii) the
State and Sequence Selector, which selects test states and the
corresponding signaling sequences that can transition the core
network to these states; (iii) the Mutator, which mutates the
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signaling sequences; and (iv) the Fuzzing Harness, which al-
lows the fuzzer to fully control the live communication process
between the access network and the core network, sending
the mutated signaling sequences to the core network. The
components of SGC-Fuzz interact and collaborate with each
other to attain the aim of discovering potential vulnerabilities
in the implementation of 5GC.

Initialization. The 5GC state machine and the sequence
corpus are constructed first. The fuzzer is under the guidance
of the SGC state machine model Msgc to select a target state.
The sequence corpus, collected from individual requests in the
correct order from captured network traffic sent to the core
network by triggering functionalities using CLI commands
with UERANSIM, is used to select sequences corresponding
to different states.

Fuzzing Iteration.: 5GC-Fuzz leverages information from
the Msqc to select the next state to focus on (Step @). A state
is given higher priority if: (1) it has previously contributed
successfully to state coverage, or (2) it is rarely selected, to
identify blind spots that might reveal new state transitions and
vulnerabilities. Once a target state s is chosen, the fuzzer
selects a signaling sequence M from the sequence corpus
that can reach state s (Step @). To ensure that the mutated
sequence M’ can exercise the chosen state s, our fuzzer splits
the original sequence M into three parts: (1) the prefix M is
required to reach the selected state s, (2) the candidate sub-
sequence M, contains all messages that can be executed after
M, and (3) the suffix M3 is simply the leftover subsequence
such that (M;, My, M3) = M’ [1]. During the mutation stage,
a 5G grammar-aware sequence mutation method generates the
mutated message sequence. Raw data is first parsed into a
5G Control Plane (5G-CP) message structure that preserves
both NGAP and NAS protocol hierarchies according to 3GPP
specifications [22], [23]. After applying mutation operations
on this structure, the modified messages are then serialized
back into protocol-compliant binary format (Steps @-@).
The mutated seed input is then prepared for fuzzing. Normal
communication traffic is intercepted, the correct encryption
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Fig. 4: Simplified Signaling Process in the 5G Protocol Stack.

and integrity protection calculations are performed, and the
original packets are replaced with these mutated sequences
before being sent to the core network (Steps @—@). 5GC-
Fuzz focus on the boundary network functions in the 5GC. The
signaling flow from the UE to the core network is illustrated in
Figure 4. 5GC-Fuzz is fundamentally an interceptive approach
[7]. The insertion point is established at the NGAP layer,
shown in Figure 4, to modify the corresponding messages
(NAS messages are encapsulated within NGAP messages as
protocol data units). Utilizing UERANSIM, 5GC-Fuzz has
gained complete control over the security context in real-
time communications. This ensures the correctness of security
algorithms, preventing messages from being discarded by the
protocol stack due to encryption or integrity protection issues.

Subsequently, the state of the core network and its logs
are observed to determine if a vulnerability has been detected.
State coverage feedback is derived from the logs for each test-
ing iteration, which optimizes subsequent state and sequence
selections (Step ). This heuristic approach increases the
probability of selecting states or sequences that have led to
higher coverage in previous tests. The fuzzing iteration ends
if: (1) all messages of the test sequence have been sent to the
AMF, (2) a vulnerability is detected, or (3) the fuzzer times
out based on a predefined time limit.

Vulnerability detection. For crashes, 5GC-Fuzz checks
if network functions are still alive by ping testing. As for
semantic vulnerabilities, theoretically, the state transition paths
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derived from the logs can be fully mapped to paths in the
5GC state machine. Therefore, if a state transition path causes
corruption in the state machine, a semantic vulnerability may
have occurred, which will be analyzed further.

B. Threat Model

The threat model considers an active attacker who possesses
all UE cryptographic keys and can perform legitimate crypto-
graphic operations. The attacker can modify, inject, replay and
drop packets on the channel between the access network and
the core network, with the goal of discovering implementation
flaws in the core network.

C. The 5GC State Machine Model

5GC-Fuzz aims to detect flaws in 5GC implementations.
Particularly, 8 important core network procedures including
NG setup, registration, session management, deregistration,
configuration update, service request, paging and N2 handover
are studied as illustrated in Figure 5. 5GC-Fuzz works during
this process and it is guided by a 5GC state machine.

Based on 3GPP specifications [22]-[24], the protocol states
and behaviors are modeled on the boundary network functions
in the network side. The state machine is essentially a quin-
tuple, comprising a finite set of input variables, a finite set of
output variables, a finite set of state variables, an initial state
set, and a finite set of assignments for state variables. The state
machine updates the state variables based on the assignment
set, thereby achieving system state migration [25]. The state
machine serves the two purposes: (1) guiding the fuzzing pro-
cess, and (2) providing subsequent feedback and verification
of core network behaviors (to assess the reasonableness of
behaviors that violate the state machine). Specifically, the state
machine defines 16 states and 79 state transitions. A simplified
representation of the state machine is presented in Figure 6.

Initially, the core network starts in the NG-inactive state. Af-
ter successful NG Setup between gNB and AMF, it transitions
to the de-registered state. When gNB forwards the UE’s Regis-
tration Request via Initial UE Message, the AMF moves to the
identification state if the identity is unknown, requesting UE’s
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Fig. 6: Simplified representation of the state machine.

SUCI. Upon receiving the identity response, AMF enters the
authentication state and initiates the authentication procedure
with the UE by sending the key selector, RAND and AUTN to
the UE. The UE then responds to the authentication challenge.
If the authentication is successful, UE and AMF will establish
a security context in NAS messages. Then the network tran-
sitions to the security_mode state to establish NAS security
algorithms, then proceeds to the initial_context_setup state
and initiates a session setup with the gNB by sending the Initial
Context Setup Request message. The Initial Context Setup
Response message notifies AMF to establish the UE context.
Finally, the core network sends the Registration Accept mes-
sage to UE informing that the core network accepts initial
registration. The core network proceeds to the registered state.
When UE requests PDU session establishment, the network
moves to the PDU_session_inactive state, followed by the
PDU _session_active state upon acceptance. During periods of
UE inactivity, AMF transitions to the idle state.

After successful attachment, UE can start other important
procedures. The network enters the configuration_update state
when updating UE context with new 5G-GUTI, TAL, service
area list or LADN information. For paging, when the network
needs to signal a UE in the CM-IDLE state [22], it enters the
paging state and awaits a Service Request response. During
N2 handover, the network transitions to the handover state
as it manages the transfer between source and target gNBs.
For deregistration, the network transitions to the de-registered-
initiated state upon receiving a UE Deregistration request,
eventually returning to the de-registered state.

D. Mutation with Protocol Stack Interception

1) 5G grammar-aware mutation: Due to the highly com-
plex logic of 5G protocols, particularly in NGAP and NAS
layers, traditional fuzzing approaches that rely on blind mes-
sage mutations often corrupt protocol logic, preventing the
core network from reaching deeper states and resulting in low
testing efficiency. To address this challenge, a 5G grammar-



aware mutation method is proposed based on protocol stack
interception to preserve 5G protocol semantics.

a) Structure of the 5G Signaling Sequence: The 5G
signaling sequence follows a hierarchical structure in which
NGAP messages are encoded according to the ASN.1 no-
tation, while NAS messages adopt the TLV (Type-Length-
Value) encoding. During the parsing process, the raw protocol
messages are converted into a hierarchical 5G-CP structure
that preserves these encoding characteristics. The structural
representation of the 5G signaling sequence is illustrated in
Figure 7. Let S denote a valid 5G signaling sequence, where
each sequence consists of multiple NGAP messages My, € S
with their corresponding delay parameters &t; that controls
its transmission timing. Each NGAP message comprises a
structure where the message header contains Procedure Code
and Length, followed by Information Elements (IEs). Among
these IEs, the NAS-PDU is a special IE that encapsulates the
NAS layer messages. The NAS-PDU follows a bit-level format
where each field has specific attributes:

« Type attribute ¢;: defines the parameter type according to
NAS specifications

o Mutability flag u; € {0,1}: determines if the parameter
can be mutated

Taking the Initial Registration Request as an example,
the NAS-PDU contains mandatory fields such as Extended
Protocol Discriminator (EPD), Security Header Type, Message
Type, and 5GS Registration Type, each with their correspond-
ing type attributes and mutability flags. Some fields, like EPD
and 5GS Mobile Identity, can be marked as immutable ( = 0)
to preserve protocol semantics, while others, such as Security
Header and UE Security Capability, are mutable (¢ = 1) to
enable fuzzing exploration.

b) 5G Grammar-Aware Mutation Strategy: Based on the
hierarchical structure defined above, two types of mutation
operators are proposed:

Packet-Level Mutation Operator. This operator performs
field-wise mutations within a single message. For mutable
NAS parameters (1; = 1), it enables bit-level modifications
such as bit flips and boundary value testing, while respecting
parameter dependencies such as sequence numbers and UE
identity information within the same registration process. This
strategy ensures thorough testing of the parameter space while
maintaining protocol compliance.

Sequence-Level Mutation Operator. This operator modi-
fies message sequences through three atomic operations:

D(S,i) = {My, ., My_y, Mys1, ..., My}
1(S1,89,1) = {My, ..., M;, M’ , M1, ..., M, } @))
R(Slv‘s’27i) = {Mla "'aMi—17M/7Mi+17 aMn}

where D, I and R represent deletion, insertion, and re-
placement operations respectively. Based on these mutation
operators, 5SGC-Fuzz can achieve sequence-level mutations
such as packet delay, duplication, disordering and flooding.
Before these mutated signaling packets are sent to the core
network for testing, they require additional processing, such
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as encryption and integrity protection. This is accomplished
through the subsequent interception approach.

2) Interception approach: The essence of SGC-Fuzz is an
interceptive approach which operates during real-time commu-
nication between the access network and the core network by
intercepting traffic and injecting mutated signaling sequences.
The entire 5G communication process encompasses several
procedures that necessitate meticulous attention. For instance,
during the Authentication and Key Agreement (AKA) phase,
the AMF dispatches a fresh challenge (i.e., never sent before),
and the UE must respond with a result strictly tied to the
challenge [7]. Furthermore, all NAS messages are encrypted
and integrity-protected following the completion of the NAS
security procedure. To ensure that the core network processes
the mutated signaling sequences correctly without prematurely
discarding them, full control of the 5G access network is
achieved by registering hooks in UERANSIM. UERANSIM
is a state-of-the-art open-source 5G UE and RAN simulator
Specifically, the sendNgapUeAssociated and sendNgapNonUe
functions in the UERANSIM gNB are employed to send
NAS and NGAP packets to the core network respectively.
The two functions are modified to send the desired signal-
ing sequences in the correct order. For NAS messages, all
necessary data (e.g., session keys, RAND value, and integrity
algorithm) are acquired from the startup configuration and
real communication traffic. This ensures correct responses
to the core network’s challenges during the authentication
phase and enables the performance of encryption and integrity
protection calculations. Subsequently, it is ensured that all
messages maintain their integrity and correctness throughout
the transmission process, including accurate MAC values for
SCTP messages.

In summary, the mutation methodology maximizes syntac-



tic, semantic, and cryptographic correctness. Specially, the 5G
grammar-aware mutation approach ensures that generated test
cases maintain protocol validity. The delay attribute accounts
for the critical timing of packet transmission, while the mu-
table attribute ensures the correctness of related semantics.
Additionally, by utilizing the interception approach, it ensures
that the cryptographic processes are correctly handled by
taking full control of the control network. It can be extended
to other 5G protocols following ASN.1 or TLV encoding.

E. State-Transition-Path Feedback Mechanism

Due to the closed nature of 5G protocol stacks, code cover-
age cannot serve as feedback to guide the fuzzing process.
For a given input signaling sequence, the 5GC protocol’s
state is always changed when handling each message in this
sequence. Furthermore, if protocol behaviors are different,
the transition between two states should not be treated as
the same. Through in-depth investigation of the log systems
of 5GC implementations, it is found that these log systems
are very similar and provide detailed demonstrations of the
program’s comprehensive state and its handling of transmitted
and received messages. This makes them sufficient for use
as feedback for fuzzing. Inspired by this observation, a new
coverage metric named state transition path(STP) is proposed
to describe both states and state transitions based on the 5G
log analyzer. For an iteration of testing, the state transition
path is a hash value formed by concatenating multiple state
segments extracted from the logs.

Figure 8 illustrates the method for obtaining state tran-
sition paths. Three types of predicates including validity
predicates, presence predicates and grouping predicates are
employed in order to accurately describe the 5G protocol
stack behavior [25]. Validity predicates encompass elements
such as MAC and the validity of RES parameters (e.g.,
xres_matched_sres). Presence predicates cover components
like subscription permanent identifier (SUPI) and the presence
of NAS security contexts (e.g., security context completed or
not exists). Grouping predicates include categorization of core
network rejection reasons for user connectivity requests. All
these predicates and incoming and outgoing messages can be
considered as environmental variables.

First, the logs are summarized (Step (1)), removing un-
necessary information such as timestamps and line numbers,
and then use regular expressions to filter out key informa-
tion already defined in the state model, such as program
states, messages being processed, messages sent, and key
environmental variables. Subsequently, the summarized logs
are segmented into individual fragments. The program output,
i.e., packets, can be adopted as indicators of its internal state.
For example, if the AMF sends an Identity Request message, it
can be considered to be in the identification state; if the AMF
sends an Authentication Request message, it can be considered
to have completed the identity acquisition of the UE and
started the AKA authentication process. The logs between two
sent messages are referred to as a state fragment. As shown
in Figure 8, in both iteration 1 and iteration 2, the logs are

5G log Abstract
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5GC lOQ Fragment 1-1 Fragment 2-1
& Abstract 5| state_registered state_registered

Iteration 1

Receviced : id_res Receviced : registration req
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wait_for authres wait_for authres
xres_matched_sres

xres_matched_sres
Transition Path
Mapping

Mapping

[RE] RuesFie |

State Lable (S)

i
id_res / wait_for_idresponse / s i
ik
amf_complete_sec_ctx_existed i

reg_req / Ireg_failure / lidrequired / s ‘
Icomplete_sec_ctx_exist 2

'| registered | registered

wait_for = authresponse/

i
s H wait_for = authresponse/
xres_matched_sres 3
i

xres_matched_sres 3 i

; | authentication

|authentication

Hash value Hash value

Fig. 8: State-Transition-Path feedback mechanism.

segmented into fragments representing the state registered and
the state authentication. Predefined mapping rules are later
used to map state fragments to independent log labels (Step
@). The mapping rules are straightforward: based on the
order of appearance in the logs, a state label is characterized
as a concatenation of specific 5G states and environmental
variables, consistent with the SGC state machine described in
Section III-C. As shown in Figure 8, both transitions are from
the state registered to the state authentication, but they are
treated as two different transitions because the state label for
registered is different. Thus, the state transition corresponds
to the transition between two state labels, which is also an
edge in the core network state machine. After an iteration
of fuzz testing, a complete log is parsed, and multiple state
labels are obtained. Finally, the hash value of the entire state
transitions is calculated (Step @), representing the state tran-
sition path for a fuzzing iteration. Each hash value represents
an independent state transition path in the state machine. The
testing goal is to obtain as many unique state transition paths
as possible, which implies exploring more paths and increasing
the likelihood of discovering vulnerabilities. In subsequent
tests, paths that have been rarely tested before or are more
likely to lead to new paths will be selected as test objects.

IV. EVALUATION

To evaluate the efficiency of 5SGC-Fuzz, we answer the
following research questions (RQs):

« RQ1, State space exploration ability: How effec-
tive is 5GC-Fuzz in terms of covering state space in
closed-source SGC implementations compared to existing
fuzzing tools?

« RQ2, Ablation study: How do the state-transition-path
feedback mechanism and the 5G grammar-aware muta-
tion method contribute to the effectiveness of SGC-Fuzz?



TABLE 1I: Basic information about the benchmark.

TABLE II: Testing coverage of 5SGC-Fuzz.

Implementation  Version Language 5GC States | Transitions / Model coverage | STP
Open5GS v2.7.0 c Open5GS 16 40 / 50.6% 2047
OAI-5GC v2.0.1 c Free5GC 16 44/ 55.7% 2372
Free5GC v3.4.1 Go OAI-5GC 16 35/ 44.3% 1813
TABLE III: Comparison results of SGC-Fuzz and the baselines.
5GC 5GC-Fuzz 5GReply He et al. AFLNET
state STP state Improve STP Improve | state Improve STP Improve | state Improve STP  Improve
Open5GS | 16 2047 | 4 300% 125 1537.6% | 6 166.7% 508 303.0% 9 77.8% 1402 46.0%
Free5GC 16 2372 | 4 300% 143 1558.7% 166.7% 512 363.3% - - - -
OAI-5GC | 16 1813 | 4 300% 98 1750.0% | 6 166.7% 427 324.6% 9 77.8% 1453 24.8%
AVG - - - 300% - 1615.4% | - 166.7% - 330.3% - 77.8% - 35.4%

« RQ3, Real vulnerabilities finding ability: How effective
is 5GC-Fuzz in terms of finding new vulnerabilities in
closed-source 5GC implementations?

A. Experimental Setup

Benchmark: Three most widely-used 5GC implementa-
tions, including Open5GS [12], Free5GC [26], and OAI-5GC
[27], are used as the benchmark. Table I shows the basic
information about the implementations.

Baselines: To make the comparison, AFLNET [1], SGRe-
play[2] and He et al. [4], which most closely align with our
research, are selected as the baselines. To enable SGC testing,
two protocol interface functions in AFLNET, extract_requests
and extract_response_codes, are modified to recognize the
basic message formats of NAS and NGAP with correct cryp-
tographic procedures for a more fair comparison. Each target
is fuzzed with different fuzzers for 48 hours for reporting the
testing coverage (including states, state transitions and state
transition paths) and the discovered vulnerabilities.

All experiments were performed on a virtual machine run-
ning Ubuntu 20.04 LTS with 8GB RAM and 4 CPU cores.

B. State Space Exploration (RQ1)

To evaluate the state space exploration ability of 5SGC-Fuzz,
the state coverage of different fuzzers is checked. Table II
shows the overall results of testing coverage of 5SGC-Fuzz.
Specifically, the SGC state machine model employs a total
of 16 states and 79 valid transitions. SGC-Fuzz covers all the
states defined in the model. The third column of Table II holds
the number of different transitions traversed between states.
Each implementation traverses the model differently and does
not trigger all possible valid transitions. This is because these
implementations do not complete all possible SGC functions.
For example, Open5GS does not implement emergency UE
registration.

State and State Transition Path. Table III and Figure 9
show the comparison of state coverage and state transition
paths (STP) between 5GC-Fuzz and the baselines. As shown
in the results, SGC-Fuzz covered a greater number of states
across all tested core network implementations. On average,
5GC-Fuzz achieves 152.6% more states and 206.7% more state
transition paths than the state-of-the-art fuzzers. Overall, 5GC-
Fuzz demonstrates superior performance over the baselines in
both state coverage and state transition path exploration.
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Fig. 9: State-Transition-Path growth of various fuzzers.

Branch coverage. Although our target is closed-source 5G
core networks, these open-source core network implementa-
tions provided us with the opportunity to measure code branch
coverage. Only the AMF is instrumented, as it is the main
network function handling NAS and NGAP, thereby enhancing
efficiency. Since AFLNET does not support instrumentation
for Go programs, branch coverage is not collected for free5SGC.
Table IV presents the branch coverage (Br.) results of the
fuzzers. Although branch coverage was not used as feedback
in 5GC-Fuzz, its branch coverage outperformed AFLNET by
19.0%, 5GReply by 71.1% and He et al. by 46.2% across
the two implementations. Higher branch coverage tends to
correlate with a higher probability of vulnerability discovery.
This demonstrates the robust performance of 5GC-Fuzz in
testing closed-source black-box 5GC implementations.

TABLE IV: Code branch coverage compared with baselines.

5GC 5GC-Fuzz | AFLNET 5GReplay He et al.

Br. Br. Imp. |Br. Imp. |Br. Imp.
Open5GS | 52686 40666 29.6% | 28759 83.2% | 34105 54.5%
OAI-5GC | 39647 36584 8.4% |24943 58.9% | 28746 37.9%
AVG - - 19.0% | - 71.1% | - 46.2%

C. Ablation Study (RQ2)

Based on the 5GC state machine model, 5GC-Fuzz com-
prises two key components: (1) an automated 5G grammar-
aware signaling mutation method, and (2) a state transition
path feedback mechanism based on 5G logs. To evaluate
the contribution of each component to the increase in state
coverage, an ablation study is conducted. Specifically, based
on the 5GC state machine and the interception approach,
two tools are developed: (1) 5SGC-trivial performs random



TABLE V: Improvements in terms of state-transition-paths
compared with the baseline.

5GC 5GC-trivial 5GC-rand 5GC-Fuzz
(Baseline) Value Improve | Value Improve
Open5GS 1358 1735 27.8% 2047 50.7%
Free5GC 1743 1974 13.2% 2372 36.1%
OAI-5GC 1278 1523 19.2% 1813 41.9%
AVG 1460 1744 19.5% 2077 42.3%

TABLE VI: Vulnerabilities found.

5GC 5GC-Fuzz | AFLNET | 5GReply | He et al.
Open5GS 13 5 1 2
Free5GC 6 1 1 0
OAI-5GC 3 0 0 0
Total 22 6 2 2

TABLE VII: Statistics of 10 important vulnerabilities discovered by 5GC-Fuzz.

ID | 5GC Model state Impact Root cause Status

1 Open5GS | ng-active Crash/DoS | Broken pipe CVE-2023-50020
2 Open5GS | de-registered Crash/DoS | Buffer-Overflow when handling pfcp message pool CVE-2024-40129
3 Open5GS | de-registered Crash/DoS | Memory leak CVE-2024-33382
4 Open5GS | authentication Crash/DoS | Assertion failure when handling Nudm response CVE-2023-50019
5 Open5GS | registered Crash/DoS | Assertion failure when handling UE Context transfer CVE Requested
6 Open5GS | all states Crash/DoS | Buffer-Overflow when handling message encoding CVE Requested
7 Free5GC de-registered Crash/DoS | Null pointer de-reference CVE Requested
8 FreeSGC pdu_sess_inactive | Crash/DoS | Overflow when handling PDU session setting up CVE Requested
9 Free5GC registered DoS Improper Authentication CVE Requested
10 | OAI-5GC | pdu_sess_active Crash/DoS | Assertion faliure when handling PDU session releasing | CVE Requested

mutations on signaling sequences and randomly selects test
states and sequences without feedback, and (2) 5GC-rand
performs grammar-aware mutations but without any feedback
mechanism. Table V presents the results of the ablation
study. Overall, both key components significantly increased
the number of discovered state transition paths during testing.
Specifically, compared to the baseline, the number of state
transition paths increased by an average of 19.5%. When
combined with the feedback mechanism, the increase reached
42.3%. These results demonstrate that the integration of both
strategies makes our approach the most effective.

D. Vulnerabilities Finding (RQ3)

In this experiment, the utility of SGC-Fuzz is evaluated by
checking whether it is able to discover zero-day vulnerabilities
in the benchmark. The results are shown in Table VI. 5GC-
Fuzz found a total of 22 unique and previously unknown vul-
nerabilities in the benchmark. CVE IDs have been requested
for these vulnerabilities. In comparison, 5Greply and He et al.
each identified only 2 vulnerabilities, while AFLNET found 6
vulnerabilities, resulting in a total of 7 unique vulnerabilities
discovered by these tools. Notably, SGC-Fuzz successfully
discovered all these 7 vulnerabilities, along with 15 additional
vulnerabilities that were missed by the other tools. Indeed,
5Greply only performs message reply, neglecting the state of
the core network, the mutation strategy of AFLNET leads to
corruption in syntax, semantics, and cryptographic issues and
He et al. only focus on a few states, which preventing them
from finding more deep stateful vulnerabilities.

Influences of the found vulnerabilities. From the initial
ng-active state to the deeper pdu_sess_inactive state, vulnera-
bilities are dispersed across various states of the core network,
demonstrating the effectiveness of 5GC-Fuzz in thoroughly
exploring core network states. All these vulnerabilities stem
from implementation issues. Among these, 19 vulnerabilities
result in immediate crash of the core network, causing a denial
of service. Additionally, three other semantic vulnerabilities

include two that force the UE to go offline and one that causes
the implementation to deviate from 3GPP specifications. 10
significant vulnerabilities have been detailed in Table VII.
Overall, 5GC-Fuzz has the ability to uncover new vulnera-
bilities across all tested implementations.

V. CONCLUSION AND FUTURE WORK

This paper proposes a novel black-box fuzzing framework
named 5GC-Fuzz, to effectively detect deep stateful vulnera-
bilities in SGC implementations. Guided by a meticulously
constructed 5GC state machine, 5GC-Fuzz utilizes a 5G
grammar-aware signaling mutation method based on the pro-
tocol interception for test case generation. Additionally, 5GC-
Fuzz employs a state-transition-path feedback mechanism to
efficiently select test states and signaling sequences. SGC-Fuzz
was evaluated on three well-known 5GC implementations and
uncovered 22 previously unknown vulnerabilities. Compared
to existing fuzzing tools, it is able to identify more vulnerabil-
ities with higher state coverage, which significantly enhances
the security of mobile communication infrastructures, offering
a robust safeguard against potential vulnerabilities.

Limitations and future work. One key limitation is that
constructing the 5GC state machine requires substantial do-
main expertise. By solely relying on 3GPP specifications, it
may miss vulnerabilities that exist outside the standard proto-
col paths. The state-transition-path feedback mechanism may
not be generalizable across all implementations, particularly
for closed-source commercial systems. In the future, we plan
to apply SGC-Fuzz to commercial 5G core networks deployed
in the field.
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