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Abstract

Human mobility behavior prediction is essen-
tial for applications like urban planning and
transportation management, yet it remains chal-
lenging due to the complex, often implicit, in-
tentions behind human behavior. Recent ad-
vancements in large language models (LLMs)
offer a promising alternative research angle for
integrating commonsense reasoning into hu-
man mobility behavior analysis. However, it
is a non-trivial problem because LLMs are not
natively built for mobility intention inference,
and they also face scalability issues and inte-
gration difficulties with spatiotemporal mod-
els. To address these challenges, we propose
a novel LMP (LLMs for Mobility Prediction)
framework. Specifically, LMP integrates a
schema learning-based agentic workflow for
LLM-driven mobility intention inference, a
data-efficient fine-tuning scheme for scalable
knowledge distillation, and a transformer-based
intent-aware model for final efficient mobil-
ity prediction. Evaluated on three real-world
datasets, LMP outperforms state-of-the-art
baselines on 11 out of 12 metrics and ranks
as the second-best method on the remaining
one, demonstrating improved accuracy in next-
location prediction and effective intention infer-
ence. Data and codes are available via https:
//anonymous . 4open.science/r/LMP-1D4B.

1 Introduction

Predicting human mobility behavior is a crucial
task with significant implications for various do-
mains, including urban planning, transportation
management, and public safety. However, the inher-
ent complexity of human mobility poses substantial
challenges, especially the implicit intentions that
are often not directly observable. Previous studies
have shown that human researchers can infer the
intention of human movements with high accuracy
by examining their spatiotemporal trajectory (Jiang
et al., 2016; Liccardi et al., 2016). However, it is

not scalable to ask human researchers to manually
label mobility data. Thus, most of existing mobil-
ity prediction models (Liu et al., 2016; Feng et al.,
2018; Sun et al., 2020; Luo et al., 2021; Yang et al.,
2022) focus on capturing spatiotemporal patterns
using advanced recurrent network and attention
models. While these methods have shown promise,
they fail to effectively model the underlying inten-
tions that drive each movement. This limitation
highlights the need for new methods that can incor-
porate a deeper understanding of human behavior.

Recent advancements in LLMs have demon-
strated emergent capabilities in commonsense rea-
soning (Wei et al., 2022a,b), offering a novel re-
search angle for intention-aware mobility predic-
tion. Despite this promise, several challenges re-
main in leveraging LLMs for mobility prediction.
First, LLMs are not inherently optimized for infer-
ring behavioral intentions from spatiotemporal data.
Second, the massive size and proprietary nature
of state-of-the-art LLMs, such as GPT-4 (Achiam
et al., 2023), present practical challenges, includ-
ing high API costs and the inability to deploy these
models locally. Third, the domain-specific nature
of spatiotemporal deep learning models and LLMs
creates a disconnect, making it unclear how to ef-
fectively integrate the two to enhance prediction
accuracy.

In response to these challenges, we propose
a novel framework, LMP (LLMs for Mobility
Prediction), designed to harness the commonsense
reasoning abilities of LLMs for intention-aware
mobility prediction. The framework comprises
three key components. First, we introduce an
Schema Learning-based Agentic Workflow that
guides LLLMs through the process of mobility in-
tention inference in a principal manner, which emu-
lates the methodology of human expert annotators.
The workflow enables LL.Ms to reason through the
intentions behind movements step-by-step: ana-
lyzing notable features, in-context schema learn-


https://anonymous.4open.science/r/LMP-1D4B
https://anonymous.4open.science/r/LMP-1D4B
https://anonymous.4open.science/r/LMP-1D4B

iv} [ — QYp Annotation Teacher Model, Intent-aware Mobility
ap " r— S (eop ] @ (29D Gprao/t tama3-708 Prediction Model
_‘_j\o——o\s Q_p - : —_—
"@ v — - Student Model, - o 2 @
- e o /\\1/ Llama3-8B 3s| &L 2
22 g 3=F @ [?] @ [% = gg llll IIII
G2 —e, | Homes Modified: insights ... | | map Vv Data Efficient N
workplace Intent Fine-Tunin i il
Q_p A A Data Selection 9 T
©9p - i it o i m
N In-context Learning Intent \/ X AA e o ¥ B RIFE
© Schema |=> _ from Inference |~ £ v Eo.%> @ gllzlla
Learning Experience ) EAYE z
1 I [% @ H Smaller LLM Tuning @) l [ B
| Schema Learning based Intent Inference Agentic Workflow }— High Quality Annotations |
Transformer blocks

Figure 1: The framework of LMP, including schema learning based agentic workflow for mobility intent annotation,
a data-efficient intent fine-tuning approach with data selection, and a transformer based intent-aware mobility

prediction model enhanced with contrastive learning.

ing, and inferring the most likely intention from
experience. Second, we present a data-efficient
fine-tuning scheme with data selection, effectively
distilling the reasoning capabilities of large propri-
etary LLMs, such as GPT-4o, into smaller, locally
deployable models like Llama3-8B (Dubey et al.,

2024). This approach ensures that our framework

can scale to handle millions of mobility records

at low cost and high speed. Finally, we design

a transformer-based intent-aware mobility predic-

tion model that seamlessly integrates inferred in-

tentions from LLMs through contrastive learning.

This approach enables efficient mobility prediction

without need for real-time LLM inference, while

maintaining minimal computational overhead. In
summary, our contributions are fourfold,

¢ We introduce a novel framework, LMP, that lever-
ages the commonsense reasoning power of LLMs
for enhanced mobility prediction, incorporating
intention inference to improve both performance
and interpretability.

* We propose a schema-learning-based intent infer-
ence workflow and in-context inference through
experience-driven learning.

* We develop a data-efficient fine-tuning strat-
egy with data selection that obtaining high-
performing, cost-effective models by distilling
reasoning capabilities from large, proprietary
LLMs to smaller, open-source alternatives.

* We conduct extensive empirical evaluations on
three real-world datasets, demonstrating LMP’s
strong robustness and practical applicability.

2 Methods

We define the mobility prediction task as fol-
lows: for a specific user v in the user list,
given the historical POI sequence (I1, o, ..., 1),
visit times (t1, t2, . . ., t,), POI category sequence
(c1,¢2,...,cy), and the next visit time t,41, pre-
dict the next POI /,,4; that the user will visit. Our

approach aims to assign an intent / to each stay [
within the training data trajectories. Subsequently,
for each user u, we integrate the intent annotations
to obtain the user intent profile P, (t), and use P, (t)
as a new feature to assist in mobility prediction.

As Figure 1 shows, LMP contains three main
steps: Schema Learning based Intent Inference
Agentic Workflow, Data Efficient Intent Fine-
Tuning, and Intent-Aware Mobility Prediction
Model. We divide the training data into three parts:
human labeled data, a very small dataset manually
annotated with intent; fine-tuning data, a smaller
dataset used for fine-tuning; and main data, the
remaining majority of the data. The Schema Learn-
ing based Intent Inference Agentic Workflow intro-
duces an effective intent inference method using hu-
man labeled data to guide large-scale models such
as GPT-4o. In Data Efficient Intent Fine-Tuning,
we fine-tune small-scale models like Llama3-8B
by using the inference process of large-scale mod-
els on the fine-tuning data to achieve efficient in-
tent inference models. And then we use the fine-
tuned small-scale models for intent inference on
the main data. In the Intent-Aware Mobility Pre-
diction Model section, we generate the user intent
profile using all the training data and use it to assist
in mobility prediction.

2.1 Schema Learning-based Workflow

In the complex task of intent inference, LLMs
do not perform well in reasoning and transferring
across different datasets. Meanwhile, human ex-
perts have accumulated extensive experience in
handling trajectory data tasks (Zeng et al., 2017;
Chen and Poorthuis, 2021; Liccardi et al., 2016;
Jiang et al., 2016). This leads us to consider the
schema-based learning approach. Schema-based
learning is an important concept in human cogni-
tive psychology. For unfamiliar situations, schemas
allow individuals to interpret and reason based on



their generalized knowledge (Lee and Seel, 2012).
Based on this, we designed a Schema Learning-
based Agentic Workflow, which creatively incorpo-
rates human expert knowledge into the reasoning
process of LLMs by extracting schemas from hu-
man experiences and human-generated expert data.
This enhances the LLM’s ability for in-context
learning and reasoning during intent inference.

To facilitate the following discussion, we define
the intent inference task as follows: We use [ to
represent a point of interest (POI) that a user has
visited. The intent inference task is: given a user’s
trajectory (I, l2, 3, . . .), each trajectory point is an-
notated with its behavioral intent, forming an intent
sequence (I1, I3, I3, .. .) corresponding one-to-one
with the trajectory sequence. Each intent is selected
from several options, and in our approach, there are
six intents: "At Home", "Working", "Running er-
rands", "Eating out", "Leisure and Entertainment",
and "Shopping".

2.1.1 In-context Schema Learning

For different users, the characteristics of their rou-
tine place, such as home and workplace, may differ
significantly, which poses challenges in inferring
intents like "At Home" and "Working". In this sec-
tion, we draw on the experience of human experts
to design a schema that classifies POIs into three
categories: home, workplace, and other. Through
workflow design, this schema is integrated into the
in-context learning process of LLMs, effectively
addressing the aforementioned challenges. First,
based on expert experience, we extract the follow-
ing features from each user’s data to represent their
behavior patterns: 1) Percentage, for each POI, we
calculate the proportion of visits by the user rela-
tive to their total visits; 2) Time Distribution, for a
specific POI, we compute the proportion of visits
during different time periods relative to the total
visits to that POI. Using these key features, the
LLM distinguishes the user’s home and workplace
POlIs to assist with intent inference.

2.1.2 Learning from Experience

LLM can learn from historical experiences to better
guide task completion (Zhao et al., 2024). We en-
able the LLM to learn the schema of human reason-
ing intent from human-labeled data and represent
it through several insights. Through this approach,
we transfer humans’ efficient reasoning capabilities
to the LLM in the form of a schema, allowing the
LLM’s performance in intent inference tasks to ap-

proximate that of humans. This workflow consists

of the following iterative steps:

* Intent Annotation Attempt: We provide the LLM
with the current insights, a sequence of user visits
to POIs, and the user’s home and workplace (i.e.,
the POIs most frequently associated with "At
Home" and "Working" intents in the manually
labeled data). The LLM is tasked with labeling
the intent of each visit in the trajectory sequence.

* Correction Suggestion Generation: We provide
the LLM with the current insights and several
groups of the user’s POI visit sequence, the user’s
home and workplace, the intent results from the
LLM’s previous step, and the manual intent la-
bels. The LLM analyzes the differences between
its annotations and the human annotations to gen-
erate suggestions for correcting the insights.

* Insights Correction: The LLM extracts common-
alities from several correction suggestions and
uses these to update the insights accordingly.
Finally, we used in-context learning (ICL) to

synthesize the schemas into a cohesive intent infer-
ence process. For each stay within the user’s daily
trajectory, LLM infers the user’s intent by consid-
ering the identified home and workplace locations,
the sequence of POlIs, the time of day and the in-
sights. By using ICL, the model could apply its
understanding of typical behaviors to infer intents
in novel situations.

2.2 Data-Efficient Intent Instruction Tuning

For large datasets, using large-scale models such
as GPT-4o for intentions inference incurs exces-
sive costs and lower speed, making it inefficient
to annotate the entire dataset directly. However,
smaller models such as the original Llama3-8B
perform poorly on related tasks and do not meet
the expected performance. To address this issue,
we designed a data-efficient intent instruction tun-
ing method to distill the intent inference abilities
from large-scale LLMs. In this method, large-scale
LLMs act as teacher model and small-scale LLMs
act as student model. The teacher model annotates
intent on fine-tuning data and generates detailed
reasoning steps, which is then further processed
through a data selection module to improve the
data quality. The selected high-quality reasoning
data is used to fine-tune the student model, enabling
it to achieve or even surpass the intention inference
performance of the feacher model on specific tasks
through learned reasoning strategies, while main-
taining low inference costs.



2.2.1 Intent Data Synthesis and Selection

We utilized Schema Learning-based Agentic Work-
flow to annotate fine-tuning data using teacher
model. The results are saved as the potential rea-
soning data for following fine-tuning. Experiments
show that teacher model can also make errors dur-
ing the annotation process, which can affect the
distilling results. To address this, we added a data
selection module to screen the synthetic reasoning
data for intention inference, aiming to reduce the in-
terference of incorrect annotations in the synthetic
data. Given LLM’s excellent performance in simu-
lating human reasoning and judgment abilities, it
excels in many judgment tasks (Gu et al., 2025).
Therefore, we use teacher model for this data se-
lection process, utilizing the reflection of teacher
model to determine which data to use for further
fine-tuning. Specifically, we leverage LLM’s in-
context learning capability by feeding the context
information provided during the User Intentions
Inference phase back to the model along with the
model’s labeling results. After a chain of thought
(CoT) process, the model outputs "yes" or "no"
to judge whether the annotation is correct. We re-
move the data judged as "no" and collect the "yes"
data to include in the final fine-tuning dataset with
reasoning steps on various tasks.

2.2.2 Intent Instruction Tuning

In the Schema Learning-based Agentic Workflow,
we selected the in-context Schema Learning and
intentions inference tasks for fine-tuning and di-
rectly incorporated the experience generated in the
Schema Learning-based Agentic Workflow into the
fine-tuning prompts. To further reduce inference
costs, we omitted the CoT part from the original
workflow and used the final results directly for fine-
tuning. We use the Low-Rank Adaptation (LoRA)
method to fine-tune the student model. After LoORA
tuning, we ultimately obtained the student model
with both high inference performance and low in-
ference cost. And then we use the student model
for intent inference on the main data.

2.3 Intent-Aware Mobility Prediction Model

In this section, we designed a model that effectively
utilizes intent information to assist with mobility
prediction. Specifically, we developed a method
for generating user intent profiles. These user in-
tent profiles can infer a user’s potential intentions
at specific times during the day. By annotating in-
tent on the training data and generating these intent

profiles, we can use them directly during inference.
This approach eliminates the need for LLMs to an-
notate intents in post-training applications, further
reducing the computational cost of our method. To
better learn the user intent profiles, we designed
a user intent profile-location contrastive learning
module, enabling the model to better grasp the rela-
tionship between user intents and specific locations.
Finally, we developed an intent-aware mobility pre-
diction model, using a transformer architecture to
perform the mobility prediction task.

2.3.1 User Intent Profile Generation

For each user u, we define their user intent profile
function P, as P,(t) = p, where t is the time of
day, and p is a vector of length equal to the number
of intent categories, representing the probability of
each intent occurring at time .

We developed a method using expert knowledge
for this generating user intent profile, based on the
idea that people often follow the same daily behav-
ioral patterns. Specifically, for the intent sequence
of a user u corresponding to all of his movements in
the train dataset, (11, I2, I3, ... Iy), and their cor-
responding time sequence (t1,t2,t3,...tN), We
consider that an intent I; recorded over a pe-
riod provides a likelihood of this intent occur-
ring. The influence period is defined as tpegin,i =
max(ti,l, t; — T) and tend,i = min(ti+1, t; + T),
where 7' is a parameter representing the maximum
influence time range. For each intent type I;, we
construct the function fi, (t) as follows to represent
the effect of the intent:

effi:min<

t— tbegin,i tend,i t )
) )
t; — tbegin,i tend,i —t

fiy(8) = > max(0,ef ;).

L=l

For a specific time £y within a day, the user intent
profile function of user « and intent I; is calculated

. 3 fiy(to + BAR)

o 2o Ji (o + kAE)

where At represents a time interval of a day. Then
P,(t) is calculated as:

Py(t) = [Py, (1), Py, (t)...].

2.3.2 User Intent Profile Contrastive Learning

Pu,]lj (tO)

We propose a user intent profile-location con-
trastive learning module. This module uses con-
trastive learning to initialize part of the network pa-
rameters of the mobility prediction model, thereby



enhancing the model’s attention to possible loca-
tions given a user’s intent profile.

Specifically, we generate an embedding vector
for each user and each intent. For a particular visit,
we calculate the probability estimate p = P(t) for
each intent at the time of the visit. To effectively
handle the predicted probability information, we
then use p to weight the embedding vectors of each
intent, this means that the higher the probability of
a certain intent, the closer the overall intent embed-
ding is to the individual embedding of that intent.
This makes it easier for the model to determine the
extent to which it should rely on the intent informa-
tion, resulting in a more effective combination of
intent information and trajectory information. This
can be expressed as e; = Z?:1 p; - er;, where ey,
represents the embedding vector for each intent,
ey is the resulting weighted vector, and p; is the
weight for each intent. The weighted intent embed-
ding and the user embedding are fed into a user
interest generator, composed of a single-layer fully
connected neural network, which outputs a visit
interest vector representing a user’s interest under
a specific intent probability distribution.

Simultaneously, we generate an embedding vec-
tor for each POL. The visit interest vector and the
POI embedding vector are fed into a comparator,
constructed with an multi-layer perceptron network,
forming our contrastive learning architecture. For
each visit in the training set, we form a positive
sample using the user, intent probability, and POI,
with the comparator output label as 1. We then
form a negative sample by keeping the user and in-
tent probability unchanged and randomly selecting
a POI from other visits made by the same user, with
the comparator output label as 0. Through learning
with this module, we obtain user, intent, and POI
embeddings, as well as the user interest generator
module, which carry user intent profile attention in-
formation to POIs. These module parameters will
be further utilized in the mobility prediction model.

2.3.3 Transformer-based Prediction Model

Past research has shown that the transformer
architecture is effective for mobility prediction
tasks (Yang et al., 2022). Inspired by this, we pro-
pose a transformer-based mobility model that effec-
tively utilizes user intent profile information while
incorporating data associations learned during the
contrastive learning phase. This integration allows
the model to achieve excellent predictive accuracy.

Our model’s input sequence unit is defined as

(u,l,c,t, P,(t)), where u is the user ID, [ is the cur-
rent POI of the user, c is the category of the POI, ¢
is the time of day of the next movement, and P, (t))
is the user intent profile function. To fully leverage
the data relationships learned during contrastive
learning, we incorporate the visit interest vector
generation model and the POI embedding model
from the contrastive learning phase as part of our
model, using the weights trained during this phase
as initialization. Additionally, we generate an em-
bedding for each c and use time2vector (Kazemi
et al., 2019) to embed ¢. These two embeddings
are then processed through a single-layer fully con-
nected neural network to learn their interaction.
Finally, we concatenate the visit interest vector, the
fused embedding of ¢ and ¢, and the POI embed-
ding, and input them into a transformer encoder
structure. We use a single-layer fully connected
neural network as the decoder layer, which includes
three output heads for POI, category, and time.

3 Experiments

3.1 Datasets

To evaluate our model, we conducted experiments
on three public datasets (Feng et al., 2018; Yabe
et al., 2024). For the first two representative
datasets (Feng et al., 2018): one comprising mobile
application location data from a popular social net-
work vendor, referred to as the Beijing dataset, and
the other consisting of call detail records (CDR)
data from a major cellular network operator, re-
ferred to as the Shanghai dataset. Additionally, we
also conducted tests on a widely used synthetic
dataset, Yjmob100K (Yabe et al., 2024). We se-
lected a portion of this dataset, using one month’s
worth of data from some users, for our experiments.
When we use this dataset, the POI name is replaced
by a number, and the category is left blank.The
number of users, locations, and check-ins for each
dataset are detailed in Table 1. We follow the li-
cense of original paper to use the data.

As mentioned earlier, we divided the data into
human labeled data, fine-tuning data, and main
data. Specifically, we manually labeled 670 daily
trajectories from 135 users in the Beijing training
set to form the human labeled data. We randomly
extracted 500 users from the training sets in Beijing,
using 5 daily trajectories for each user to construct
the fine-tuning data.

Following the common practice of mobility pre-
diction (Feng et al., 2018; Sun et al., 2020; Yang



et al., 2022), we segmented trajectories into fixed-
length sessions and applied a sliding window over
the dataset to make full use of the data when
training the Transformer-based Mobility Prediction
Model. Specifically, for a user with m check-ins,
and a fixed length n, the processed trajectories will
contain (m — n + 1)n check-ins, where each se-
quence of n check-ins forms a trajectory, and con-
secutive trajectories overlap by n — 1 point. This
strategy is also applied in all the baselines using
deep-learning to ensure the fair comparison.

Table 1: Basic statistics of three mobility datasets.

Duration Users POIs Records

Beijing 3 months 1566 5919 744813
Shanghai I month 841 6955 215379
Yjmob100K 1 month 997 17704 506022

3.2 Baselines

We consider the RNN (Graves and Graves, 2012),
DeepMove (Feng et al., 2018), STAN (Luo et al.,
2021), LSTPM (Sun et al., 2020), GETNext (Yang
et al., 2022), LLM-Mob (Wang et al., 2023a) and
LLM-Zero-Shot-NL (Beneduce et al., 2024) as
baselines to benchmark the performance of our
model. Detailed introduction to these baselines are
in appendix. Previous deep learning-based meth-
ods do not provide information about the next visit
during prediction. To ensure a fair comparison, we
modify the time in the input sequence from the
current visit time to the next visit time, which is
exactly the same as the setting of our method, to
provide information about the next visit time.

3.3 Main Results

In this section, we present the performance of our
method on three datasets and compare it with other
baselines. We have chosen four evaluation metrics:
Acc@1, Acc@5, Acc@10, and MRR @5. This al-
lows for a comprehensive evaluation of the model’s
performance. The experimental results on the three
datasets are shown in Table 2. Compared to the best
deep learning baseline, our method achieved rela-
tive improvements of 8.36%, 10.35% and 11.48%
in the Acc@1 metric for the three datasets. Com-
pared to the LLM-based baseline, our method was
only 1.70% relatively lower in the Acc@1 met-
ric on the Beijing dataset, but it outperformed
the LLM-based baseline across all other metrics.
On the Shanghai and Yjmob100K datasets, the
Acc@]1 relative improvements reached 14.15% and

11.83%, respectively, and our method significantly
reduced computational costs compared to using
LLM alone. Overall, our method consistently deliv-
ers high performance across all datasets. Although
it is slightly inferior to some other methods on one
certain individual metric, it still outperforms any
baseline when considering all metrics across the
three datasets. Compared to other LLLM baselines,
we not only achieved superior performance but also
significantly reduced inference costs.

3.4 Intent Inference Performance Analysis

We conducted experiments to compare the accu-
racy of different intent annotation methods on the
test set relative to manual annotations. The experi-
mental results are shown in Figure 2. To verify the
effectiveness of our LLM intent annotation work-
flow and fine-tuning, we used data of 55 users in
the human labeled data as test set and data of 80
users in the human labeled data as training set.

As show in Figure 2a, for models that have not
been fine-tuned, if they are directly tasked with in-
tent annotation without using our workflow, neither
GPT-40-mini nor the smaller Llama-3-8B-Instruct
achieves an annotation accuracy above 0.4, indi-
cating poor performance. However, after applying
our annotation workflow, the accuracy of intent
annotation significantly improved, with GPT-4o-
mini reaching an accuracy of 0.767 and Llama-3-
8B-Instruct reaching 0.596. This demonstrates the
effectiveness of our workflow. Nonetheless, it is
important to note that the performance of Llama-3-
8B-Instruct still lags behind that of GPT-40-mini,
which justifies the subsequent use of GPT-40-mini
to generate data to supervise the fine-tuning of
Llama-3-8B-Instruct.

For the fine-tuned models, we conducted four
ablation experiments to fine-tune the Llama-3-8B-
Instruct model:

* GroundTruth: This method involves directly
fine-tuning with the training set of manually an-
notated data.

* w/o Workflow: We randomly selected 500 users
from the Beijing dataset, with each user having
5 daily trajectories annotated using the GPT-40-
mini workflow. However, the fine-tuning process
did not incorporate the workflow, and the testing
uses direct trajectory annotation.

* Without Selection: Based on the w/o Work-
flow experiment, this method added workflow-
generated data during fine-tuning and utilized the
complete workflow for annotation during testing.



Table 2: Performance comparison in Acc@k and MRR @5 on three datasets.

Beijing Shanghai Yjmob100K

Acc@1 Acc@5 Acc@10MRR | Acc@1 Acc@5 Acc@10MRR | Acc@1 Acc@5 Acc@10MRR
RNN 0.2290 0.3667 0.3941 0.2846| 0.2530 0.3899 0.4232 0.3084| 0.0945 0.1425 0.1144 0.1532
DeepMove 0.3129 0.5202 0.5482 0.3999| 0.2713 0.3893 0.4123 0.3199| 0.1119 0.1833 0.1945 0.1413
STAN 0.3270 0.6532 0.7419 0.4548| 0.2566 0.5411 0.6544 0.3641| 0.1365 0.3263 0.4012 0.2070
LSTPM 0.4291 0.7910 0.8202 0.5826| 0.4489 0.7018 0.7422 0.5518] 0.2518 0.4842 0.5308 0.3455
GETNext 0.4547 0.8175 0.8596 0.6065| 0.4177 0.6782 0.7363 0.5265| 0.2352 0.5180 0.5873 0.3518
LLM-Mob 0.5012 0.8211 0.8592 0.6338 0.4340 0.7183 0.7558 0.5522| 0.2510 0.5022 0.5579 0.3518
LLM-zero-shot-NL | 0.4163 0.8228 0.8630 0.5853| 0.4068 0.7168 0.7604 0.5347| 0.2399 0.5045 0.5691 0.3442
Ours 0.4927 0.8352 0.8743 0.6350| 0.4954 0.7654 0.8240 0.6048| 0.2807 0.5518 0.6239 0.3939
vs. DL baseline 836% 217% 1.71% 4.70%| 10.35% 8.14% 7.92% 9.60%| 11.48% 6.53% 6.23% 11.97%
vs. LLM baseline -1.70% 1.72% 1.31% 0.19%| 14.15% 6.56% 8.36% 9.53%| 11.83% 9.37% 9.63% 11.97%

* Full Method: This is the complete fine-tuning
method, which incorporates the data selection
process based on the Without Selection approach.
As shown in Figure 2b, when using GPT-

generated data for fine-tuning, the inclusion of
the workflow without selection results in a signifi-
cantly higher accuracy of 0.776 compared to 0.553
without the workflow. This underscores the im-
portance of the workflow during the fine-tuning
phase. Additionally, the accuracy improves further
to 0.793 with data selection, compared to 0.776
without it, highlighting the effectiveness of data
selection in enhancing fine-tuning performance.
Fine-tuning solely with GroundTruth achieves an
accuracy of 0.726, which is inferior to our com-
prehensive model’s 0.793. This demonstrates that
our approach of using GPT-generated data for fine-
tuning is superior to directly utilizing ground truth
data for fine-tuning.
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Figure 2: (a) The performance of the un-finetuned
model with and without the workflow, and (b) The per-
formance of models finetuned with different data.

3.5 Mobility Prediction Performance Analysis

To demonstrate the effectiveness of the Intent-
Aware Mobility Model, we designed the following
experiments using the Beijing dataset which are
shown in Table 3:

* w/o pretrain: We removed the contrastive learn-
ing pretraining step and used random initializa-
tion for the visit interest vector generation model
and the POI embedding model.

* Train-Real: We use the intents labeled in the
training set trajectories as training data. In the
test set, since the real intent of the next visit can-
not be directly obtained, we use the most likely
intent provided by the User Intent Profile as the
corresponding intent for the test set visits.

* w/o intent: We removed the contrastive learning
pretraining part and replaced the intent input with
a uniform value to simulate the scenario without
any intent information.

Table 3: Ablation experiment on mobility prediction
performance using the Beijing dataset.

Experiments Acc@1 Acc@5 Acc@10 MRR@5
LMP 0.4927 0.8352 0.8743 0.6350
wlo pretrain  0.4854  0.8299  0.8712  0.6311
Train-Real 0.4971  0.7100  0.7781  0.5810
w/o intent 0.4607  0.8289  0.8689  0.6166

The experiments demonstrate that, across vari-
ous metrics, the Full Model outperforms the w/o
pretrain, which in turn surpasses the w/o intent.
Taking Acc@]1 as an example, the w/o intent exper-
iment, which does not include intent information,
achieves only 0.4607. Incorporating intent infor-
mation in the w/o pretrain experiment increases
this to 0.4854, and further adding the pretraining
process allows the full model to reach 0.4927. This
indicates that both intent information and the con-
trastive learning pretraining process are effective.

The Train-Real experiment achieves the best
Acc@1 score but underperforms on other metrics,
indicating that using exact intent labels during train-
ing creates a train-test gap, as future intents in test
data cannot be accurately known.



3.6 Efficiency Analysis

We conduct a quantitative analysis of the inference
efficiency improvements resulting from using the
fine-tuned student model (Qwen-2.5-7B-Instruct)
to replace teacher model (Llama-3.1-70B-Instruct).
We deployed models using vllm and recorded the
memory consumption of deploying both models.
Additionally, we tested the throughput of these
tasks using 32 concurrent requests: distinguish-
ing home and workplace in In-context Schema
Learning(Task1), and intent annotation(Task2). As
shown in Table 4, due to its smaller parameter size,
the student model has a significant advantage in
memory consumption, with the teacher model con-
suming approximately nine times more memory.
Furthermore, due to simpler computations and out-
put texts from the fine-tuned student model not con-
taining complex reasoning, the output text length
is significantly reduced. This results in a substan-
tial increase in throughput for the student model
compared to the teacher model, with ratios of 16.8
times and 9.2 times for the two tasks, respectively.

Table 4: Efficiency of teacher model and student model.

Model Memory Task1 Task2
Teacher Model 298496 MB 1.98/s 1.93/s
Student model 33198 MB 33.23/s  17.81/s

3.7 User Intent Profiles Analysis

We analyzed the computed User Intent Profiles, and
Figure3 shows two typical examples. In the left
graph, the user’s "Working" curve reaches a very
high value during the day, while the "At Home"
curve peaks at night, with other intent curves show-
ing slight fluctuations. This corresponds to the
behavior pattern of a person with a stable job. In
the right graph, the "At Home" curve consistently
remains higher than the other intent curves, with
only slight increases in other intents in the morning.
This corresponds to the behavior pattern of people
who are unemployed and tend to remain near their
home address for extended periods. Overall, the
phenomena exhibited by the User Intent Profiles
align with our understanding.

4 Related Work

Mobility Prediction. In the past decades, vari-
ous deep learning methods (Liu et al., 2016; Feng
etal., 2018; Sun et al., 2020; Luo et al., 2021; Yang
et al., 2022) have been proposed to predict the hu-
man mobility. While these methods succeed in
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Figure 3: Two typical user intent profiles, representing
people with stable jobs and people who stay at home for
extended periods.

modelling the sequential patterns in the trajectory,
they cannot capture the shared mobility patterns
between users effectively. To solve this problem,
graph neural networks (Lim et al., 2020; Yan et al.,
2023; Xu et al., 2020; Wang et al., 2023b; Yin et al.,
2023) are introduced into the mobility prediction
modelling. However, due to the absence of large
scale mobility intent dataset, these works ignore
the intent modelling behind the mobility. In this
work, we employ the agentic workflow to enable
the large-scale automatic annotation of mobility
intent and further propose an effective intent-aware
mobility prediction model.

LLMs and Agents. LLMs (Achiam et al., 2023;
Dubey et al., 2024) have achieved rapid develop-
ment in the past few years. Recently, LLM based
agent framework (Wang et al., 2024; Xi et al., 2023;
Shao et al., 2024) are proposed to complement the
deficiencies of LLMs on specific domain knowl-
edge and unleash the power of LLMs in real-world
tasks, e.g., ChatDev (Qian et al., 2023) for project
programming and WebAgent (Gur et al., 2023) for
autonomous web tasks. Researchers try to directly
apply LLMs in the mobility modelling (Wang et al.,
2023a; Beneduce et al., 2024) and achieve promiss-
ing results. Different from these works, we use
LLMs as the mobility data annotator to augment
mobility data for training a stronger small domain-
specific model.

5 Conclusion

In this paper, we investigate the problem of intent
enhanced mobility prediction problem. We propose
LMP, an agentic workflow based framework to har-
ness the commonsense reasoning abilities of LLMs
for intention-aware mobility prediction. Extensive
experiments on three real-world datasets demon-
strate the effectiveness of proposed framework. In
the future, we plan to extend the framework to more
spatial-temporal applications.



6 Limitations

Despite the significant improvements achieved by
the LMP framework in intention-aware mobility
prediction, several limitations need to be acknowl-
edged:

6.1 Dynamic Nature of Intentions

The current model presumes that human intentions
follow a daily cycle, with similar intentions at the
same time each day. However, this assumption is an
oversimplification. Human intentions can be more
complex due to factors such as holidays or ad-hoc
schedule changes. Future work should consider
more sophisticated models that account for these
dynamic variations in human intentions.

6.2 Labeling of Home and Work Locations

Currently, home and work locations are identified
through statistical analysis of time distribution and
frequency, which is more applicable to individuals
with stable and singular home and work locations.
For those with multiple residences or workplaces,
the effectiveness of the LMP method may dimin-
ish. Enhancing the model to better accommodate
such variability could improve its robustness and
applicability.

6.3 Intent Configuration

The current six intents—"At Home," "Running Er-
rands," "Working," "Eating Out," "Leisure and En-
tertainment," and "Shopping"—exhibit imbalances
in frequency distribution and predictive accuracy
distribution, which somewhat affect the model’s
performance. Identifying more balanced and easily
predictable intents presents a worthwhile challenge
for consideration.

6.4 Dataset Bias

The performance of the current model has been
evaluated using real-world datasets from Beijing,
Shanghai and Yjmob100K. These datasets may be
subject to biases in recording frequency and distri-
bution due to the data collection methods employed.
As a result, there may be discrepancies between
the experimental outcomes and actual user mobility
behaviors. Addressing these biases in future stud-
ies could lead to more accurate and generalizable
results.

7 Ethics Statement

The development and application of the LMP
framework adhere to the following ethical prin-
ciples:

7.1 Respect for Privacy

We prioritize the protection of individual privacy.
The data used in this study consists of aggregated
and anonymized mobility data, ensuring that no per-
sonal information can be traced back to individual
users.

7.2 Transparency

We strive to ensure transparency in the operation
of the LMP framework. Our methodologies, data
sources, and limitations are clearly documented
to facilitate peer review and reproducibility. This
openness not only supports academic scrutiny but
also builds trust with stakeholders and the wider
community.

7.3 Beneficence

The primary aim of the LMP framework is to en-
hance the accuracy of mobility predictions, thereby
aiding urban planning and management. Moreover,
it seeks to improve the interpretability of existing
machine learning-based prediction methods, en-
abling stakeholders to make informed decisions
based on the predictive insights. By promoting re-
sponsible and beneficial use of technology, we aim
to contribute positively to societal needs.

7.4 Ethical Use of LMP

We recognize the potential risk that the LMP frame-
work could be utilized to process personal trajec-
tory data, which might lead to privacy breaches.
However, our method does not explicitly include
personal information beyond user trajectories, sig-
nificantly minimizing the risk of privacy leaks. We
are firmly opposed to any misuse that jeopardizes
privacy security, and we will closely monitor the
ethical application of our research methods in sub-
sequent implementations.
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A Appendix

A.1 Parameter Analysis

A.1.1 Model Parameter Analysis

In the "Intent-Aware Mobility Model" section, we
focused on examining the impact of parameter
T during user intent profile generation, the im-
pact of the Intent Embedding Dimension, the rela-
tionship between Pretrain Epochs during the con-
trastive learning phase and predictive performance,
as well as the relationship between the trajectory
length used for training and predictive performance.
Specifically, Acc@1 on the Beijing dataset was
used to evaluate the predictive performance for the
Intent Embedding Dimension and Pretrain Epochs,
while Acc@1 on the Shanghai dataset was used
to evaluate the impact of parameter T and trajec-
tory length. The experimental results are shown in
Figure 4.

The model achieves optimal performance when
parameter T is set to 180 minutes. When T is
smaller, the model may overfit historical data, and
when T is too large, the temporal influence range
becomes excessive, leading to distortion in the
model’s representation. Acc@1 reaches its max-
imum when the Intent Embedding Dimension is
8, and performance declines as the Intent Embed-
ding Dimension continues to increase. This may
be due to overfitting of the intents caused by the
data. There is a noticeable positive correlation be-
tween Pretrain Epochs and Acc@1, indicating that
increasing the number of contrastive learning pre-
training epochs within the studied parameter range
helps capture more data relationships. Additionally,
the overall performance of the model improves as
the training trajectory length increases, suggesting
that the model’s training relies to some extent on
the length of historical trajectories.

Simultaneously, we also investigated the effects
of using different ranks during LoRA fine-tuning.
We employed GPT40O-mini as the teacher model
and Qwen2.5-7B-Instruct as the student model, us-
ing the annotation accuracy on the test set of human
labeled data as the evaluation metric. The experi-
mental results are shown in Table 5. The accuracy
of our method across different ranks consistently
falls between 0.79 and 0.8, indicating that our ap-
proach exhibits high robustness against different
fine-tuning parameter settings.
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Figure 4: Parameter analysis of parameter T, intent
embedding dimension, pretrain epochs, and trajectory
length.

Table 5: Relationship between LoRA rank and annota-
tion accuracy.

Rank Accuracy
4 0.792
8 0.797
16 0.794

A.1.2 Performance on different LLMs

To investigate the generalization capability of our
method across different LLMs, we tested the effec-
tiveness of the intent annotation workflow using
various LLMs. We evaluated the performance of
three larger models, GPT-40-mini, Qwen2.5-72B-
Instruct, and Llama3.1-70B-Instruct, without fine-
tuning. Additionally, we tested two smaller models,
LLaMA-3-8B-Instruct and Qwen?2.5-7B-Instruct,
after fine-tuning with data generated by GPT-4o-
mini. The data division for the experiments is the
same as described in Section 3.4. The experimen-
tal results are shown in Table 6. The three larger
models exhibit some performance differences but
all achieve relatively high performance, with ac-
curacies of 0.767, 0.709, and 0.816, respectively.
The two smaller models demonstrate relatively sta-
ble accuracy, both ranging between 0.79 and 0.80.
Overall, the experimental results indicate that our
method is transferable across different LLMs.

Table 6: The intent annotation accuracy of different
teacher models and the intent annotation accuracy of
various finetuned student models when using GPT-4o-
mini as the teacher model.

Groups Model Accuracy
" del (A . GPT-40-mini 0.767
teacher mode nnotation
with agentic workflow) Qwen2.5-72B-Instruct 0.709
Llama3.1-70B-Instruct 0.816
student model (Annotation Llama3-8B-Instruct 0.793
after finetuning) Qwen2.5-7B-Instruct 0.797

A.2 Baselines

¢ RNN (Graves and Graves, 2012): A classical
model for processing sequential data, capturing
temporal dependencies through recurrent connec-
tions.

¢ DeepMove (Feng et al., 2018): A model that
combines recurrent networks and attention layer
to capture multi-scale temporal periodicity of
human mobility.

¢ STAN (Luo et al., 2021): A model that utilizes a
dual-attention structure to enhance next-location
recommendation by aggregating spatio-temporal
correlations and incorporating personalized item
frequency (PIF).

e LSTPM (Sun et al., 2020): It integrates a non-
local network for capturing long-term prefer-
ences and a geo-dilated recurrent neural network
for short-term preferences modelling.

¢ GETNext (Yang et al., 2022): A state-of-the-
art model that introduces a user-agnostic global
trajectory flow map and a novel graph enhanced
transformer to improve next POI recommenda-
tion.

* LLM-Mob (Wang et al., 2023a): It introduces
a method using LLMs to predict human mobility
by capturing dependencies in movement data and
enhancing accuracy through context-inclusive
prompts.

¢ LLM-Zero-Shot-NL (Beneduce et al., 2024): It
provides a method for mobility prediction using
LLMs with a zero-shot approach

A.3 Detailed Training Settings

A.3.1 Hardware Platform for Main Results
and Baselines

¢ CPU: Intel Xeon Platinum 8358
e GPU: NVIDIA GeForce RTX 4090

A.3.2 Baselines
* RNN and DeepMove:
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Distribution': [('17:00"',
'100.0%"')13}1.\n Each record
represents a POI that the user has
visited.\n The meanings of
each feature are as follows:\n

- Name: POI name\n -
Percent: The percentage of times
the behavior pattern occurred\n

- Time Distribution: The
time distribution of visits to the
POI, in the format of (hour,
percentage) .\n Respond using
the following JSON format:\n

{\"home\": \"home place\”,\"work\":
\"work place\”,\"reason\": \"reason
for prediction\"3}\n

Answer: ~~"json\n{\n \"home\":
\"POIT\",\n \"work\"”: \"POI2\",6\n
\"reason\": \"POI1 has the highest
visit frequency at 48.4%, with

Prompt and answer example of Intent Annotation

significant evening and night
visits, indicating it is likely the
home. POI2 has a visit pattern
concentrated during daytime hours,
suggesting it is the
workplace . \"\n}\n~ "

Attempt and intent annotation:

\n

Your task is to give intent
prediction using trajectory data.
Let's think step by step.\n
The user's home and work place are
as follows: home place is POI1 and
work place is P0OI2.\n\n The
trajectory data under analysis is
as follows: (POI1,Residential
community ,2019-10-13
00:00:00) ,(POI1,Residential
community ,2019-10-13
09:00:00) ,(POI1,Residential
community ,2019-10-13 19:16:47),.\n

Each stay in trajectory data

is represented as (poi, category,
start time).\n Here's what
each element means:\n - poi:

the POI the user visited.\n

- category: the category of the
POI.\n - start time: the
time the user visit the POI.\n

\n Here are some

rules you should follow:['When the
user is at Home, the intent is At
Home.', 'When the user is at
Workplace, the intent is Working.',
'When the user is at a restaurant
during meal hours, the intent is
Eating Out.', 'When the user is at
a location during shopping hours,
the intent is Shopping.', 'When the
user is at a location during
leisure hours, the intent is
Leisure and entertainment.', 'When
the user is at a location that is
not Home or Workplace and does not
fit any other criteria, the intent
is Running errands.']\n The
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Answer :

rules are nessary and sufficient
conditions, which means if a rule
is satisfied, the intent in the
rule should be annotated and when
the rule is not satisfied, the
intent should not be annotated.\n
The order of the rules
represents the priority of the
proposals. The top rules have
higher priority.\n Intent
you can choose:['At Home',
'Working ', 'Running errands',
'"Eating Out', 'Leisure and
entertainment ', 'Shopping']. You
should not annotate the intent that
is not in this list.\n \n
There are 3 stays in the
trajectory data. So, the output
should have 3 predicted intents.\n
Consider step by step,
finally respond using the following
JSON format (Make sure to have one
predicted intent for each stay in
the trajectory data, And you have
to assign one of the intents to
each stay in the trajectory
data) :{\"predicted_intent\":
[\"predicted intents\"]}

To predict the intent based on
the given trajectory data and the
associated rules, let's analyze
each stay one by one.\n\nl. *xFirst

Stay: (POI1, Residential community,
2019-10-13 00:00:00) **\n - POI:
POI1 (Home)\n - Category:

Residential community (not
specified in the rules, but it is
the home)\n - Time: 00:00:00 \n
- According to the rule: \"When the
user is at Home, the intent is At
Home .\"\n - *xPredicted Intent:
At Homex*\n\n2. **xSecond Stay:
(POI1, Residential community,
2019-10-13 09:00:00) **\n - POI:
POI1 (Home)\n - Category:
Residential community\n - Time:
09:00:00 \n - Again at home.
According to the same rule as
above: \"When the user is at Home,
the intent is At Home.\"\n -
*xPredicted Intent: At Homex*\n\n3.
*xThird Stay: (POI1, Residential
community, 2019-10-13 19:16:47) **\n
- POI: POI1 (Home)\n -
Category: Residential community\n
- Time: 19:16:47 \n - Still at
home. According to the same rule:
\"When the user is at Home, the
intent is At Home.\"\n =
**Predicted Intent: At
Home**\n\nFinally, compiling the
predicted intents for each stay in
the specified JSON
format:\n\n~ "~
[\"At Home\"”,
Home\"1}\n~ "~

\"At Home\”, \"At

Prompt and answer example of Correction Sugges-

json\n{\"predicted_intent\":



tion Generation:

Prompt: Your task is to give your

proposals for the rules for intent
prediction using trajectory data.
Let's think step by step.\n
There are 6 intents to choose from:
['"At Home', 'Working', 'Running
errands', 'Eating Out', 'Leisure
and entertainment', 'Shopping']l.\n
The rules used for intent
prediction now are as follows:
['When the user is at Home, the
intent is At Home.', 'When the user
is at Workplace, the intent is
Working.', 'When the user is at a
location during meal hours, the
intent is Eating Out.', 'When the
user is at a location during
shopping hours, the intent is
Shopping.', 'When the user is at a
location during leisure hours, the
intent is Leisure and
entertainment.', 'When the user is
at a location that is not Home or
Workplace, the intent is Running
errands. 'J.\n There are several
results of intent prediction for
trajectory data under the rules.
Here are what each element means:\n
- Home: Place where the user
lives, which is related to the
intent 'At Home'.\n - Workplace:
Place where the user works, which
is related to the intent
'"Working '.\n - Trajectory: The
user's trajectory data under
analysis. Each stay in trajectory
data is represented as (poi,
category, start time).\n =
Predicted intent list: Based on the
home, workplace and trajectory
data, the intent list annotated by
the rules for each stay in the
trajectory data. Each intent is
corresponding to a stay in the
trajectory data.\n - True intent
list: The true intent list for each
stay in the trajectory data.\n
\n user@: Home is POIT,
Workplace is POI2, trajectory is
(POI1, Educational Facilities,
2019-11-04 00:00:00) (POI2,
Residential Community, 2019-11-04
08:00:00) (POI1, Educational
Facilities, 2019-11-04 19:00:00),
the predicted intent list under the

rules is ['At Home', 'Working', 'At
Home ']. The true intent list is
['At Home', 'Working', 'At

Home ']1.\n \n user1: Home is
POI3, Workplace is None, trajectory
is (POI3, Residential Community,
2019-12-16 00:00:00) (POI4,
Companies and Enterprises,
2019-12-16 08:00:00) (POI3,
Residential Community, 2019-12-16
16:15:00), the predicted intent
list under the rules is ['At Home',
'Running errands', 'At Home']. The
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true intent list is ['At Home',
'Running errands', 'At Home'].\n

\n user2: Home is POI5,
Workplace is POI6, trajectory is
(POI6, Companies and Enterprises,
2019-11-30 00:00:00) (POI7, Other
Banking and Finance, 2019-11-30
14:45:00) (POI8, Residential
Community, 2019-11-30

17:45:00) (POI6, Companies and
Enterprises, 2019-11-30 21:45:00),
the predicted intent list under the
rules is ['Working', 'Running
errands', 'Running errands',
'"Working ']. The true intent list is

['"Working', 'Running errands',
'"Running errands', 'Working'l.\n
\n user3: Home is POI9,

Workplace is None, trajectory is
(POI9, Other Food, 2019-12-05
00:00:00), the predicted intent
list under the rules is ['At

Home ']. The true intent list is
["At Home'l.\n \n user4: Home
is P0OI1@, Workplace is POI11,
trajectory is (POI1@, Real Estate
Community Facilities, 2019-12-24
00:00:00) (POI1T1, Residential
Community, 2019-12-24

09:00:00) (POI10, Real Estate
Community Facilities, 2019-12-24
14:00:00) (POIT1, Residential
Community, 2019-12-24

14:45:00) (POI10, Real Estate
Community Facilities, 2019-12-24
18:15:00), the predicted intent
list under the rules is ['At Home',

'Working', 'At Home', 'Working',
"At Home']. The true intent list is
['"At Home', 'Working', 'At Home',
'"Working ', 'At Home'J].\n \n

Please give your proposals based on
the difference between predicted
intent list and true intent list.\n
You should consider the
relationship between the user's
home, workplace, trajectory and
intent.\n The rules should be as
simple and loose as possible. Don't
add unnecessary restrictions.\n
Each intent should have only one
rule using simple statement
sentences, such as \"When the user
is at Workplace, the intent is
Working.\"\n The rules should be
nessary and sufficient conditions,
which means if a rule is satisfied,
the intent in the rule should be
annotated and when the rule is not
satisfied, the intent should not be
annotated.\n There should not
contain specific user POI name or
category name in the proposals.\n
The order of the rules
represents the priority of the
proposals. The top rules have
higher priority.\n Only modify
the rules when it is necessary. If
not necessary, you can give the
proposals to keep the original



rules.\n Let's think step by
step. Finally answer in the json
format, example: {{\"proposals\":
[\"Add a rule that when the user is
at mall, the intent is
Shopping.\",\"Modify the rule when
the user is at restaurant, the
intent is Eating Out to when the
user is at restaurant and the time
is 12:00-13:00, the intent is
Eating Out.\"J}}\n

18:00-20:00) .\" ,\n \"Modify the
rule when the user is at a shopping
location to specify that the intent
is Shopping during established
shopping hours (e.g.,

10:00-21:00) .\"\n 1\n}\n~ "~

Prompt and answer example of Insights Correction:

Prompt: Your task is to update the

Answer: After analyzing the provided rules for intent prediction using

user data and the predicted versus
true intent lists, I propose the
following rules for intent
prediction using trajectory data.
The current rules are generally
effective, but some adjustments can
help improve accuracy while keeping
the rules simple and
loose.\n\n**Proposed Rules:*x\nl.
When the user is at Home, the
intent is At Home.\n2. When the
user is at Workplace, the intent is
Working.\n3. When the user is at a
location during meal hours, the
intent is Eating Out.\n4. When the
user is at a location during
shopping hours, the intent is
Shopping.\n5. When the user is at a
location during leisure hours, the
intent is Leisure and
entertainment.\n6. When the user is
at a location that is not Home or
Workplace, the intent is Running
errands.\n\nx*Suggestions for
modification:*x\n- x*Modify Rule
3*%x: To ensure clarity on meal
hours, I propose to specifically
define meal hours. For instance,
the rule can state: \"When the user
is at a restaurant during
established meal hours (e.g.,
7:00-9:00, 12:00-14:00,
18:00-20:00), the intent is Eating
Out.\" This clarity can help in
correctly capturing the intent
related to meal times.\n \n-
*xModify Rule 4*x: Similar to the
Eating Out rule, we may specify
shopping hours. For example, \"When
the user is at a shopping location
during established shopping hours
(e.g., 10:00-21:00), the intent is
Shopping.\" This will help clarify
the intention behind being in a
shopping-related
location.\n\nOverall, I suggest
maintaining most of the original
rules while adding specificity to
the time-related rules.

\n\nHeres the response in JSON
format:\n\n~ "~ json\n{\n
\"proposals\": [\n \"Modify the
rule when the user is at a
restaurant to specify that the
intent is Eating Out during
established meal hours (e.g.,
7:00-9:00, 12:00-14:00,
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trajectory data.\n In the
prediction task, the user's home,
work place and trajectory data( in
form of (poi, category, start
time)) are given. The task is to
annotate the user's intent of each
stay in the trajectory data.\n
There are 6 intents to choose from:
['"At Home', 'Working', 'Running
errands', 'Eating Out', 'Leisure
and entertainment', 'Shopping'].\n
The proposals are generated
based on the difference between
predicted intent list and true
intent list. \n The rules used
for intent prediction now are as
follows: ['When the user is at
Home, the intent is At Home.',
'"When the user is at Workplace, the
intent is Working.', 'When the user
is at a location during meal hours,
the intent is Eating Out.', 'When
the user is at a location during
shopping hours, the intent is
Shopping.', 'When the user is at a
location during leisure hours, the
intent is Leisure and
entertainment.', 'When the user is
at a location that is not Home or
Workplace, the intent is Running
errands. '].\n There are several
groups of proposals for the rules:
{\"propolsal group @\": [\"Modify
the rule when the user is at a
location during meal hours, the
intent is Eating Out to include a
specific time range for Eating Out,
e.g., when the time is 11:00-14:00
or 17:00-20:00.\", \"Add a fallback
rule that when the user is at a
location that is not Home or
Workplace and does not fit any
other criteria, the intent is
Running errands.\"], \"propolsal
group 1\": [\"Modify the rule when
the user is at a restaurant to
specify that the intent is Eating
Out during established meal hours
(e.g., 7:00-9:00, 12:00-14:00,
18:00-20:00) .\", \"Modify the rule
when the user is at a shopping
location to specify that the intent
is Shopping during established
shopping hours (e.g.,
10:00-21:00) .\"], \"propolsal group
2\": [\"Keep the existing rule:
When the user is at Home, the



intent is At Home.\", \"Keep the
existing rule: When the user is at
Workplace, the intent is
Working.\", \"Modify the rule for
Eating Out to: When the user is at
a location during meal hours, the
intent is Eating Out, or at a
restaurant if the time is within
typical meal times.\", \"Modify the
rule for Leisure and entertainment
to: When the user is at a location
during leisure hours, the intent is
Leisure and entertainment, or at
locations that typically host
leisure activities.\"”, \"Add a
rule: When the user is at a
location that is neither Home nor
Workplace, the intent is Running
errands.\"]}.\n Please update
the rules based on the proposals.
Please summarize the common points
of the proposal groups to update
the rules.\n There should not
contain specific user POI name or
category name in the rules.\n

All the rules should be directly
about the relationship between
home, workplace, trajectory and
intent.\n The rules should be as
simple and loose as possible. Don't
add unnecessary restrictions.\n
Each intent should have only one
rule using simple statement
sentences, such as \"When the user
is at Workplace, the intent is
Working .\"\n The rules should be
nessary and sufficient conditions,
which means if a rule is satisfied,
the intent in the rule should be
annotated and when the rule is not
satisfied, the intent should not be
annotated.\n The order of the
rules represents the priority of
the proposals. The top rules have
higher priority.\n Let's think
step by step. Finally answer in the
json format,
example:{\"updated_rules\"”: [\"When
the user is at Workplace, the
intent is Working.\"” ,\"When the
user is at restaurant, the intent
is Eating Out.\"]}\

Answer: To update the rules for intent

prediction using trajectory data,
we need to consider the common
elements from the proposal groups
while ensuring that our rules
remain simple, clear, and maintain
the necessary and sufficient
conditions. \n\nHeres how we can
summarize the proposals:\n\nl.
**Meal Hoursx*: There is a
consensus on specifying that the
intent 'Eating Out' should apply
during specific meal hours. This
applies to general meal times and
also extends to when the user is at
a restaurant.\n\n2. **Shopping
Hoursx*: The proposals suggest

defining the intent 'Shopping' to
apply specifically during
established shopping hours.\n\n3.
**xRunning Errands**: Theres
agreement on using 'Running
errands' when the user is at a
location that is neither Home nor
Workplace and doesnt meet other
criteria.\n\n4. *xLeisure and
Entertainment**: The proposals
suggest that leisure activities can
encompass both time frames and
specific types of
locations.\n\nConsidering these
points, we can reformulate the
rules as follows:\n\nl. xx'At

Home 'x* - When the user is at Home,
the intent is At Home.\n2.
**%'Working '** - When the user is at
Workplace, the intent is
Working.\n3. #**'Eating Out'x* -
When the user is at a location
during meal hours, or at a
restaurant if within typical meal
times, the intent is Eating
Out.\n4. **'Shopping '** - When the
user is at a location during
shopping hours, the intent is
Shopping.\n5. *x'Leisure and
Entertainment 'x* - When the user is
at a location during leisure hours,
or at locations that typically host
leisure activities, the intent is
Leisure and entertainment.\né6.
*%'Running Errands 'xx - When the
user is at a location that is not
Home or Workplace and does not fit
any other criteria, the intent is
Running errands.\n\nNow,
consolidating these into JSON
format, we have:\n\n>~"json\n{\n
\"updated_rules\": [\n \"When
the user is at Home, the intent is
At Home.\",6\n \"When the user is
at Workplace, the intent is
Working.\" 6 \n \"When the user is
at a location during meal hours, or
at a restaurant if within typical
meal times, the intent is Eating
Out.\",\n \"When the user is at
a location during shopping hours,
the intent is Shopping.\",\n

\"When the user is at a location
during leisure hours, or at
locations that typically host
leisure activities, the intent is
Leisure and entertainment.\",\n
\"When the user is at a location
that is not Home or Workplace and
does not fit any other criteria,
the intent is Running errands.\"\n
IJ\n}\n" "~

Prompt and answer example of data selection:

Prompt: Your task is to determine

whether the results of the
trajectory intent annotation match
the rules.\n The trajectory



is: (POI1, Residential Community,
2019-10-04 15:15:00)\n Each
trajectory has several stays, and
each stay is represented by a tuple
of (POI name, POI category, visit
time).\n The user's home
place is defined as P0I2.\n
The user's work place is defined as
POI1.\n The predicted intent
is: ['Running errands'J]\n
Each intent is corresponding to a
stay in the trajectory.\n
The rules are: ['When the user is
at Home, the intent is At Home.',
'When the user is at Workplace, the
intent is Working.', 'When the user
is at a restaurant during meal
hours, the intent is Eating Out.',
'When the user is at a location
during shopping hours, the intent
is Shopping.', 'When the user is at
a location during leisure hours,
the intent is Leisure and
entertainment.', 'When the user is
at a location that is not Home or
Workplace and does not fit any
other criteria, the intent is
Running errands.']\n The
rules are nessary and sufficient
conditions, which means if a rule
is satisfied, the intent in the
rule should be annotated and when
the rule is not satisfied, the
intent should not be annotated.\n
The order of the rules
represents the priority of the
proposals. The top rules have
higher priority.\n Analyze
it step by step in the order of the
rules, Finally answer whether the
intent is annotated correctly in
the format of <yes> or <no>.\n

Answer: "To analyze whether the

predicted intent of 'Running
errands' is annotated correctly, we
need to evaluate the provided
trajectory against the specified
rules step-by-step.\n\nl. #**Rule 1:
When the user is at Home, the
intent is At Home.**\n - The
user's home place is defined
asPOI1. The trajectory indicates
the user is at P0OI2, which is not
their home. Therefore, this rule
does not apply.\n\n2. **Rule 2:
When the user is at Workplace, the
intent is Working.*x\n - The
user's workplace is defined as
POI2. The trajectory indicates the
user is at this location.
Therefore, according to this rule,
the intent should be annotated as
'Working ', but the predicted intent
is 'Running errands'. This
indicates a mismatch.\n\n3. **Rule
3: When the user is at a restaurant
during meal hours, the intent is
Eating Out.x*\n - The location
(POI2) does not indicate that it is
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a restaurant, so this rule does not
apply.\n\n4. *xRule 4: When the
user is at a location during
shopping hours, the intent is
Shopping.*x\n - The location
(POI2) also does not indicate a
shopping scenario, so this rule
does not apply.\n\n5. #**Rule 5:
When the user is at a location
during leisure hours, the intent is
Leisure and entertainment.*x\n =
The location does not specifically
indicate a leisure context; hence,
this rule does not apply.\n\né6.
**xRule 6: When the user is at a
location that is not Home or
Workplace and does not fit any
other criteria, the intent is
Running errands.*x\n - Since the
user is at their workplace (P0I2),
this rule does not apply.\n\nAfter
analyzing all the rules, we find
that the user is at their
workplace, and according to Rule 2,
the intent should be 'Working'.
However, the predicted intent is
'"Running errands', which does not
align with the prioritized
rules.\n\nTherefore, the intent is
*xnot annotated correctlyx*x.
\n\nThe final answer is: <no>"
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