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Abstract001

Human mobility behavior prediction is essen-002
tial for applications like urban planning and003
transportation management, yet it remains chal-004
lenging due to the complex, often implicit, in-005
tentions behind human behavior. Recent ad-006
vancements in large language models (LLMs)007
offer a promising alternative research angle for008
integrating commonsense reasoning into hu-009
man mobility behavior analysis. However, it010
is a non-trivial problem because LLMs are not011
natively built for mobility intention inference,012
and they also face scalability issues and inte-013
gration difficulties with spatiotemporal mod-014
els. To address these challenges, we propose015
a novel LMP (LLMs for Mobility Prediction)016
framework. Specifically, LMP integrates a017
schema learning-based agentic workflow for018
LLM-driven mobility intention inference, a019
data-efficient fine-tuning scheme for scalable020
knowledge distillation, and a transformer-based021
intent-aware model for final efficient mobil-022
ity prediction. Evaluated on three real-world023
datasets, LMP outperforms state-of-the-art024
baselines on 11 out of 12 metrics and ranks025
as the second-best method on the remaining026
one, demonstrating improved accuracy in next-027
location prediction and effective intention infer-028
ence. Data and codes are available via https:029
//anonymous.4open.science/r/LMP-1D4B.030

1 Introduction031

Predicting human mobility behavior is a crucial032

task with significant implications for various do-033

mains, including urban planning, transportation034

management, and public safety. However, the inher-035

ent complexity of human mobility poses substantial036

challenges, especially the implicit intentions that037

are often not directly observable. Previous studies038

have shown that human researchers can infer the039

intention of human movements with high accuracy040

by examining their spatiotemporal trajectory (Jiang041

et al., 2016; Liccardi et al., 2016). However, it is042

not scalable to ask human researchers to manually 043

label mobility data. Thus, most of existing mobil- 044

ity prediction models (Liu et al., 2016; Feng et al., 045

2018; Sun et al., 2020; Luo et al., 2021; Yang et al., 046

2022) focus on capturing spatiotemporal patterns 047

using advanced recurrent network and attention 048

models. While these methods have shown promise, 049

they fail to effectively model the underlying inten- 050

tions that drive each movement. This limitation 051

highlights the need for new methods that can incor- 052

porate a deeper understanding of human behavior. 053

Recent advancements in LLMs have demon- 054

strated emergent capabilities in commonsense rea- 055

soning (Wei et al., 2022a,b), offering a novel re- 056

search angle for intention-aware mobility predic- 057

tion. Despite this promise, several challenges re- 058

main in leveraging LLMs for mobility prediction. 059

First, LLMs are not inherently optimized for infer- 060

ring behavioral intentions from spatiotemporal data. 061

Second, the massive size and proprietary nature 062

of state-of-the-art LLMs, such as GPT-4 (Achiam 063

et al., 2023), present practical challenges, includ- 064

ing high API costs and the inability to deploy these 065

models locally. Third, the domain-specific nature 066

of spatiotemporal deep learning models and LLMs 067

creates a disconnect, making it unclear how to ef- 068

fectively integrate the two to enhance prediction 069

accuracy. 070

In response to these challenges, we propose 071

a novel framework, LMP (LLMs for Mobility 072

Prediction), designed to harness the commonsense 073

reasoning abilities of LLMs for intention-aware 074

mobility prediction. The framework comprises 075

three key components. First, we introduce an 076

Schema Learning-based Agentic Workflow that 077

guides LLMs through the process of mobility in- 078

tention inference in a principal manner, which emu- 079

lates the methodology of human expert annotators. 080

The workflow enables LLMs to reason through the 081

intentions behind movements step-by-step: ana- 082

lyzing notable features, in-context schema learn- 083
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Figure 1: The framework of LMP, including schema learning based agentic workflow for mobility intent annotation,
a data-efficient intent fine-tuning approach with data selection, and a transformer based intent-aware mobility
prediction model enhanced with contrastive learning.

ing, and inferring the most likely intention from084

experience. Second, we present a data-efficient085

fine-tuning scheme with data selection, effectively086

distilling the reasoning capabilities of large propri-087

etary LLMs, such as GPT-4o, into smaller, locally088

deployable models like Llama3-8B (Dubey et al.,089

2024). This approach ensures that our framework090

can scale to handle millions of mobility records091

at low cost and high speed. Finally, we design092

a transformer-based intent-aware mobility predic-093

tion model that seamlessly integrates inferred in-094

tentions from LLMs through contrastive learning.095

This approach enables efficient mobility prediction096

without need for real-time LLM inference, while097

maintaining minimal computational overhead. In098

summary, our contributions are fourfold,099

• We introduce a novel framework, LMP, that lever-100

ages the commonsense reasoning power of LLMs101

for enhanced mobility prediction, incorporating102

intention inference to improve both performance103

and interpretability.104

• We propose a schema-learning-based intent infer-105

ence workflow and in-context inference through106

experience-driven learning.107

• We develop a data-efficient fine-tuning strat-108

egy with data selection that obtaining high-109

performing, cost-effective models by distilling110

reasoning capabilities from large, proprietary111

LLMs to smaller, open-source alternatives.112

• We conduct extensive empirical evaluations on113

three real-world datasets, demonstrating LMP’s114

strong robustness and practical applicability.115

2 Methods116

We define the mobility prediction task as fol-117

lows: for a specific user u in the user list,118

given the historical POI sequence (l1, l2, . . . , ln),119

visit times (t1, t2, . . . , tn), POI category sequence120

(c1, c2, . . . , cn), and the next visit time tn+1, pre-121

dict the next POI ln+1 that the user will visit. Our122

approach aims to assign an intent I to each stay l 123

within the training data trajectories. Subsequently, 124

for each user u, we integrate the intent annotations 125

to obtain the user intent profile Pu(t), and use Pu(t) 126

as a new feature to assist in mobility prediction. 127

As Figure 1 shows, LMP contains three main 128

steps: Schema Learning based Intent Inference 129

Agentic Workflow, Data Efficient Intent Fine- 130

Tuning, and Intent-Aware Mobility Prediction 131

Model. We divide the training data into three parts: 132

human labeled data, a very small dataset manually 133

annotated with intent; fine-tuning data, a smaller 134

dataset used for fine-tuning; and main data, the 135

remaining majority of the data. The Schema Learn- 136

ing based Intent Inference Agentic Workflow intro- 137

duces an effective intent inference method using hu- 138

man labeled data to guide large-scale models such 139

as GPT-4o. In Data Efficient Intent Fine-Tuning, 140

we fine-tune small-scale models like Llama3-8B 141

by using the inference process of large-scale mod- 142

els on the fine-tuning data to achieve efficient in- 143

tent inference models. And then we use the fine- 144

tuned small-scale models for intent inference on 145

the main data. In the Intent-Aware Mobility Pre- 146

diction Model section, we generate the user intent 147

profile using all the training data and use it to assist 148

in mobility prediction. 149

2.1 Schema Learning-based Workflow 150

In the complex task of intent inference, LLMs 151

do not perform well in reasoning and transferring 152

across different datasets. Meanwhile, human ex- 153

perts have accumulated extensive experience in 154

handling trajectory data tasks (Zeng et al., 2017; 155

Chen and Poorthuis, 2021; Liccardi et al., 2016; 156

Jiang et al., 2016). This leads us to consider the 157

schema-based learning approach. Schema-based 158

learning is an important concept in human cogni- 159

tive psychology. For unfamiliar situations, schemas 160

allow individuals to interpret and reason based on 161
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their generalized knowledge (Lee and Seel, 2012).162

Based on this, we designed a Schema Learning-163

based Agentic Workflow, which creatively incorpo-164

rates human expert knowledge into the reasoning165

process of LLMs by extracting schemas from hu-166

man experiences and human-generated expert data.167

This enhances the LLM’s ability for in-context168

learning and reasoning during intent inference.169

To facilitate the following discussion, we define170

the intent inference task as follows: We use l to171

represent a point of interest (POI) that a user has172

visited. The intent inference task is: given a user’s173

trajectory (l1, l2, l3, . . .), each trajectory point is an-174

notated with its behavioral intent, forming an intent175

sequence (I1, I2, I3, . . .) corresponding one-to-one176

with the trajectory sequence. Each intent is selected177

from several options, and in our approach, there are178

six intents: "At Home", "Working", "Running er-179

rands", "Eating out", "Leisure and Entertainment",180

and "Shopping".181

2.1.1 In-context Schema Learning182

For different users, the characteristics of their rou-183

tine place, such as home and workplace, may differ184

significantly, which poses challenges in inferring185

intents like "At Home" and "Working". In this sec-186

tion, we draw on the experience of human experts187

to design a schema that classifies POIs into three188

categories: home, workplace, and other. Through189

workflow design, this schema is integrated into the190

in-context learning process of LLMs, effectively191

addressing the aforementioned challenges. First,192

based on expert experience, we extract the follow-193

ing features from each user’s data to represent their194

behavior patterns: 1) Percentage, for each POI, we195

calculate the proportion of visits by the user rela-196

tive to their total visits; 2) Time Distribution, for a197

specific POI, we compute the proportion of visits198

during different time periods relative to the total199

visits to that POI. Using these key features, the200

LLM distinguishes the user’s home and workplace201

POIs to assist with intent inference.202

2.1.2 Learning from Experience203

LLM can learn from historical experiences to better204

guide task completion (Zhao et al., 2024). We en-205

able the LLM to learn the schema of human reason-206

ing intent from human-labeled data and represent207

it through several insights. Through this approach,208

we transfer humans’ efficient reasoning capabilities209

to the LLM in the form of a schema, allowing the210

LLM’s performance in intent inference tasks to ap-211

proximate that of humans. This workflow consists 212

of the following iterative steps: 213

• Intent Annotation Attempt: We provide the LLM 214

with the current insights, a sequence of user visits 215

to POIs, and the user’s home and workplace (i.e., 216

the POIs most frequently associated with "At 217

Home" and "Working" intents in the manually 218

labeled data). The LLM is tasked with labeling 219

the intent of each visit in the trajectory sequence. 220

• Correction Suggestion Generation: We provide 221

the LLM with the current insights and several 222

groups of the user’s POI visit sequence, the user’s 223

home and workplace, the intent results from the 224

LLM’s previous step, and the manual intent la- 225

bels. The LLM analyzes the differences between 226

its annotations and the human annotations to gen- 227

erate suggestions for correcting the insights. 228

• Insights Correction: The LLM extracts common- 229

alities from several correction suggestions and 230

uses these to update the insights accordingly. 231

Finally, we used in-context learning (ICL) to 232

synthesize the schemas into a cohesive intent infer- 233

ence process. For each stay within the user’s daily 234

trajectory, LLM infers the user’s intent by consid- 235

ering the identified home and workplace locations, 236

the sequence of POIs, the time of day and the in- 237

sights. By using ICL, the model could apply its 238

understanding of typical behaviors to infer intents 239

in novel situations. 240

2.2 Data-Efficient Intent Instruction Tuning 241

For large datasets, using large-scale models such 242

as GPT-4o for intentions inference incurs exces- 243

sive costs and lower speed, making it inefficient 244

to annotate the entire dataset directly. However, 245

smaller models such as the original Llama3-8B 246

perform poorly on related tasks and do not meet 247

the expected performance. To address this issue, 248

we designed a data-efficient intent instruction tun- 249

ing method to distill the intent inference abilities 250

from large-scale LLMs. In this method, large-scale 251

LLMs act as teacher model and small-scale LLMs 252

act as student model. The teacher model annotates 253

intent on fine-tuning data and generates detailed 254

reasoning steps, which is then further processed 255

through a data selection module to improve the 256

data quality. The selected high-quality reasoning 257

data is used to fine-tune the student model, enabling 258

it to achieve or even surpass the intention inference 259

performance of the teacher model on specific tasks 260

through learned reasoning strategies, while main- 261

taining low inference costs. 262

3



2.2.1 Intent Data Synthesis and Selection263

We utilized Schema Learning-based Agentic Work-264

flow to annotate fine-tuning data using teacher265

model. The results are saved as the potential rea-266

soning data for following fine-tuning. Experiments267

show that teacher model can also make errors dur-268

ing the annotation process, which can affect the269

distilling results. To address this, we added a data270

selection module to screen the synthetic reasoning271

data for intention inference, aiming to reduce the in-272

terference of incorrect annotations in the synthetic273

data. Given LLM’s excellent performance in simu-274

lating human reasoning and judgment abilities, it275

excels in many judgment tasks (Gu et al., 2025).276

Therefore, we use teacher model for this data se-277

lection process, utilizing the reflection of teacher278

model to determine which data to use for further279

fine-tuning. Specifically, we leverage LLM’s in-280

context learning capability by feeding the context281

information provided during the User Intentions282

Inference phase back to the model along with the283

model’s labeling results. After a chain of thought284

(CoT) process, the model outputs "yes" or "no"285

to judge whether the annotation is correct. We re-286

move the data judged as "no" and collect the "yes"287

data to include in the final fine-tuning dataset with288

reasoning steps on various tasks.289

2.2.2 Intent Instruction Tuning290

In the Schema Learning-based Agentic Workflow,291

we selected the in-context Schema Learning and292

intentions inference tasks for fine-tuning and di-293

rectly incorporated the experience generated in the294

Schema Learning-based Agentic Workflow into the295

fine-tuning prompts. To further reduce inference296

costs, we omitted the CoT part from the original297

workflow and used the final results directly for fine-298

tuning. We use the Low-Rank Adaptation (LoRA)299

method to fine-tune the student model. After LoRA300

tuning, we ultimately obtained the student model301

with both high inference performance and low in-302

ference cost. And then we use the student model303

for intent inference on the main data.304

2.3 Intent-Aware Mobility Prediction Model305

In this section, we designed a model that effectively306

utilizes intent information to assist with mobility307

prediction. Specifically, we developed a method308

for generating user intent profiles. These user in-309

tent profiles can infer a user’s potential intentions310

at specific times during the day. By annotating in-311

tent on the training data and generating these intent312

profiles, we can use them directly during inference. 313

This approach eliminates the need for LLMs to an- 314

notate intents in post-training applications, further 315

reducing the computational cost of our method. To 316

better learn the user intent profiles, we designed 317

a user intent profile-location contrastive learning 318

module, enabling the model to better grasp the rela- 319

tionship between user intents and specific locations. 320

Finally, we developed an intent-aware mobility pre- 321

diction model, using a transformer architecture to 322

perform the mobility prediction task. 323

2.3.1 User Intent Profile Generation 324

For each user u, we define their user intent profile 325

function Pu as Pu(t) = p, where t is the time of 326

day, and p is a vector of length equal to the number 327

of intent categories, representing the probability of 328

each intent occurring at time t. 329

We developed a method using expert knowledge 330

for this generating user intent profile, based on the 331

idea that people often follow the same daily behav- 332

ioral patterns. Specifically, for the intent sequence 333

of a user u corresponding to all of his movements in 334

the train dataset, (I1, I2, I3, . . . IN ), and their cor- 335

responding time sequence (t1, t2, t3, . . . tN ), we 336

consider that an intent Ii recorded over a pe- 337

riod provides a likelihood of this intent occur- 338

ring. The influence period is defined as tbegin,i = 339

max(ti−1, ti − T ) and tend,i = min(ti+1, ti + T ), 340

where T is a parameter representing the maximum 341

influence time range. For each intent type Ij , we 342

construct the function fIj (t) as follows to represent 343

the effect of the intent: 344

eff i = min

(
t− tbegin,i
ti − tbegin,i

,
tend,i − t

tend,i − ti

)
, 345

346
fIj (t) =

∑
Ii=Ij

max(0, eff i). 347

For a specific time t0 within a day, the user intent 348

profile function of user u and intent Ij is calculated 349

as: 350

Pu,Ij (t0) =

∑
k fIj (t0 + k∆t)∑
k,j fIj (t0 + k∆t)

, 351

where ∆t represents a time interval of a day. Then 352

Pu(t) is calculated as: 353

Pu(t) = [Pu,I1(t), Pu,I2(t)...]. 354

2.3.2 User Intent Profile Contrastive Learning 355

We propose a user intent profile-location con- 356

trastive learning module. This module uses con- 357

trastive learning to initialize part of the network pa- 358

rameters of the mobility prediction model, thereby 359

4



enhancing the model’s attention to possible loca-360

tions given a user’s intent profile.361

Specifically, we generate an embedding vector362

for each user and each intent. For a particular visit,363

we calculate the probability estimate p = P (t) for364

each intent at the time of the visit. To effectively365

handle the predicted probability information, we366

then use p to weight the embedding vectors of each367

intent, this means that the higher the probability of368

a certain intent, the closer the overall intent embed-369

ding is to the individual embedding of that intent.370

This makes it easier for the model to determine the371

extent to which it should rely on the intent informa-372

tion, resulting in a more effective combination of373

intent information and trajectory information. This374

can be expressed as eI =
∑n

i=1 pi · eIi , where eIi375

represents the embedding vector for each intent,376

eI is the resulting weighted vector, and pi is the377

weight for each intent. The weighted intent embed-378

ding and the user embedding are fed into a user379

interest generator, composed of a single-layer fully380

connected neural network, which outputs a visit381

interest vector representing a user’s interest under382

a specific intent probability distribution.383

Simultaneously, we generate an embedding vec-384

tor for each POI. The visit interest vector and the385

POI embedding vector are fed into a comparator,386

constructed with an multi-layer perceptron network,387

forming our contrastive learning architecture. For388

each visit in the training set, we form a positive389

sample using the user, intent probability, and POI,390

with the comparator output label as 1. We then391

form a negative sample by keeping the user and in-392

tent probability unchanged and randomly selecting393

a POI from other visits made by the same user, with394

the comparator output label as 0. Through learning395

with this module, we obtain user, intent, and POI396

embeddings, as well as the user interest generator397

module, which carry user intent profile attention in-398

formation to POIs. These module parameters will399

be further utilized in the mobility prediction model.400

2.3.3 Transformer-based Prediction Model401

Past research has shown that the transformer402

architecture is effective for mobility prediction403

tasks (Yang et al., 2022). Inspired by this, we pro-404

pose a transformer-based mobility model that effec-405

tively utilizes user intent profile information while406

incorporating data associations learned during the407

contrastive learning phase. This integration allows408

the model to achieve excellent predictive accuracy.409

Our model’s input sequence unit is defined as410

(u, l, c, t, Pu(t)), where u is the user ID, l is the cur- 411

rent POI of the user, c is the category of the POI, t 412

is the time of day of the next movement, and Pu(t)) 413

is the user intent profile function. To fully leverage 414

the data relationships learned during contrastive 415

learning, we incorporate the visit interest vector 416

generation model and the POI embedding model 417

from the contrastive learning phase as part of our 418

model, using the weights trained during this phase 419

as initialization. Additionally, we generate an em- 420

bedding for each c and use time2vector (Kazemi 421

et al., 2019) to embed t. These two embeddings 422

are then processed through a single-layer fully con- 423

nected neural network to learn their interaction. 424

Finally, we concatenate the visit interest vector, the 425

fused embedding of c and t, and the POI embed- 426

ding, and input them into a transformer encoder 427

structure. We use a single-layer fully connected 428

neural network as the decoder layer, which includes 429

three output heads for POI, category, and time. 430

3 Experiments 431

3.1 Datasets 432

To evaluate our model, we conducted experiments 433

on three public datasets (Feng et al., 2018; Yabe 434

et al., 2024). For the first two representative 435

datasets (Feng et al., 2018): one comprising mobile 436

application location data from a popular social net- 437

work vendor, referred to as the Beijing dataset, and 438

the other consisting of call detail records (CDR) 439

data from a major cellular network operator, re- 440

ferred to as the Shanghai dataset. Additionally, we 441

also conducted tests on a widely used synthetic 442

dataset, Yjmob100K (Yabe et al., 2024). We se- 443

lected a portion of this dataset, using one month’s 444

worth of data from some users, for our experiments. 445

When we use this dataset, the POI name is replaced 446

by a number, and the category is left blank.The 447

number of users, locations, and check-ins for each 448

dataset are detailed in Table 1. We follow the li- 449

cense of original paper to use the data. 450

As mentioned earlier, we divided the data into 451

human labeled data, fine-tuning data, and main 452

data. Specifically, we manually labeled 670 daily 453

trajectories from 135 users in the Beijing training 454

set to form the human labeled data. We randomly 455

extracted 500 users from the training sets in Beijing, 456

using 5 daily trajectories for each user to construct 457

the fine-tuning data. 458

Following the common practice of mobility pre- 459

diction (Feng et al., 2018; Sun et al., 2020; Yang 460
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et al., 2022), we segmented trajectories into fixed-461

length sessions and applied a sliding window over462

the dataset to make full use of the data when463

training the Transformer-based Mobility Prediction464

Model. Specifically, for a user with m check-ins,465

and a fixed length n, the processed trajectories will466

contain (m − n + 1)n check-ins, where each se-467

quence of n check-ins forms a trajectory, and con-468

secutive trajectories overlap by n− 1 point. This469

strategy is also applied in all the baselines using470

deep-learning to ensure the fair comparison.471

Table 1: Basic statistics of three mobility datasets.

Duration Users POIs Records

Beijing 3 months 1566 5919 744813
Shanghai 1 month 841 6955 215379
Yjmob100K 1 month 997 17704 506022

3.2 Baselines472

We consider the RNN (Graves and Graves, 2012),473

DeepMove (Feng et al., 2018), STAN (Luo et al.,474

2021), LSTPM (Sun et al., 2020), GETNext (Yang475

et al., 2022), LLM-Mob (Wang et al., 2023a) and476

LLM-Zero-Shot-NL (Beneduce et al., 2024) as477

baselines to benchmark the performance of our478

model. Detailed introduction to these baselines are479

in appendix. Previous deep learning-based meth-480

ods do not provide information about the next visit481

during prediction. To ensure a fair comparison, we482

modify the time in the input sequence from the483

current visit time to the next visit time, which is484

exactly the same as the setting of our method, to485

provide information about the next visit time.486

3.3 Main Results487

In this section, we present the performance of our488

method on three datasets and compare it with other489

baselines. We have chosen four evaluation metrics:490

Acc@1, Acc@5, Acc@10, and MRR@5. This al-491

lows for a comprehensive evaluation of the model’s492

performance. The experimental results on the three493

datasets are shown in Table 2. Compared to the best494

deep learning baseline, our method achieved rela-495

tive improvements of 8.36%, 10.35% and 11.48%496

in the Acc@1 metric for the three datasets. Com-497

pared to the LLM-based baseline, our method was498

only 1.70% relatively lower in the Acc@1 met-499

ric on the Beijing dataset, but it outperformed500

the LLM-based baseline across all other metrics.501

On the Shanghai and Yjmob100K datasets, the502

Acc@1 relative improvements reached 14.15% and503

11.83%, respectively, and our method significantly 504

reduced computational costs compared to using 505

LLM alone. Overall, our method consistently deliv- 506

ers high performance across all datasets. Although 507

it is slightly inferior to some other methods on one 508

certain individual metric, it still outperforms any 509

baseline when considering all metrics across the 510

three datasets. Compared to other LLM baselines, 511

we not only achieved superior performance but also 512

significantly reduced inference costs. 513

3.4 Intent Inference Performance Analysis 514

We conducted experiments to compare the accu- 515

racy of different intent annotation methods on the 516

test set relative to manual annotations. The experi- 517

mental results are shown in Figure 2. To verify the 518

effectiveness of our LLM intent annotation work- 519

flow and fine-tuning, we used data of 55 users in 520

the human labeled data as test set and data of 80 521

users in the human labeled data as training set. 522

As show in Figure 2a, for models that have not 523

been fine-tuned, if they are directly tasked with in- 524

tent annotation without using our workflow, neither 525

GPT-4o-mini nor the smaller Llama-3-8B-Instruct 526

achieves an annotation accuracy above 0.4, indi- 527

cating poor performance. However, after applying 528

our annotation workflow, the accuracy of intent 529

annotation significantly improved, with GPT-4o- 530

mini reaching an accuracy of 0.767 and Llama-3- 531

8B-Instruct reaching 0.596. This demonstrates the 532

effectiveness of our workflow. Nonetheless, it is 533

important to note that the performance of Llama-3- 534

8B-Instruct still lags behind that of GPT-4o-mini, 535

which justifies the subsequent use of GPT-4o-mini 536

to generate data to supervise the fine-tuning of 537

Llama-3-8B-Instruct. 538

For the fine-tuned models, we conducted four 539

ablation experiments to fine-tune the Llama-3-8B- 540

Instruct model: 541

• GroundTruth: This method involves directly 542

fine-tuning with the training set of manually an- 543

notated data. 544

• w/o Workflow: We randomly selected 500 users 545

from the Beijing dataset, with each user having 546

5 daily trajectories annotated using the GPT-4o- 547

mini workflow. However, the fine-tuning process 548

did not incorporate the workflow, and the testing 549

uses direct trajectory annotation. 550

• Without Selection: Based on the w/o Work- 551

flow experiment, this method added workflow- 552

generated data during fine-tuning and utilized the 553

complete workflow for annotation during testing. 554
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Table 2: Performance comparison in Acc@k and MRR@5 on three datasets.

Beijing Shanghai Yjmob100K
Acc@1 Acc@5 Acc@10MRR Acc@1 Acc@5 Acc@10MRR Acc@1 Acc@5 Acc@10MRR

RNN 0.2290 0.3667 0.3941 0.2846 0.2530 0.3899 0.4232 0.3084 0.0945 0.1425 0.1144 0.1532
DeepMove 0.3129 0.5202 0.5482 0.3999 0.2713 0.3893 0.4123 0.3199 0.1119 0.1833 0.1945 0.1413
STAN 0.3270 0.6532 0.7419 0.4548 0.2566 0.5411 0.6544 0.3641 0.1365 0.3263 0.4012 0.2070
LSTPM 0.4291 0.7910 0.8202 0.5826 0.4489 0.7018 0.7422 0.5518 0.2518 0.4842 0.5308 0.3455
GETNext 0.4547 0.8175 0.8596 0.6065 0.4177 0.6782 0.7363 0.5265 0.2352 0.5180 0.5873 0.3518
LLM-Mob 0.5012 0.8211 0.8592 0.6338 0.4340 0.7183 0.7558 0.5522 0.2510 0.5022 0.5579 0.3518
LLM-zero-shot-NL 0.4163 0.8228 0.8630 0.5853 0.4068 0.7168 0.7604 0.5347 0.2399 0.5045 0.5691 0.3442
Ours 0.4927 0.8352 0.8743 0.6350 0.4954 0.7654 0.8240 0.6048 0.2807 0.5518 0.6239 0.3939
vs. DL baseline 8.36% 2.17% 1.71% 4.70% 10.35% 8.14% 7.92% 9.60% 11.48% 6.53% 6.23% 11.97%
vs. LLM baseline -1.70% 1.72% 1.31% 0.19% 14.15% 6.56% 8.36% 9.53% 11.83% 9.37% 9.63% 11.97%

• Full Method: This is the complete fine-tuning555

method, which incorporates the data selection556

process based on the Without Selection approach.557

As shown in Figure 2b, when using GPT-558

generated data for fine-tuning, the inclusion of559

the workflow without selection results in a signifi-560

cantly higher accuracy of 0.776 compared to 0.553561

without the workflow. This underscores the im-562

portance of the workflow during the fine-tuning563

phase. Additionally, the accuracy improves further564

to 0.793 with data selection, compared to 0.776565

without it, highlighting the effectiveness of data566

selection in enhancing fine-tuning performance.567

Fine-tuning solely with GroundTruth achieves an568

accuracy of 0.726, which is inferior to our com-569

prehensive model’s 0.793. This demonstrates that570

our approach of using GPT-generated data for fine-571

tuning is superior to directly utilizing ground truth572

data for fine-tuning.573
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Figure 2: (a) The performance of the un-finetuned
model with and without the workflow, and (b) The per-
formance of models finetuned with different data.

3.5 Mobility Prediction Performance Analysis574

To demonstrate the effectiveness of the Intent-575

Aware Mobility Model, we designed the following576

experiments using the Beijing dataset which are577

shown in Table 3:578

• w/o pretrain: We removed the contrastive learn- 579

ing pretraining step and used random initializa- 580

tion for the visit interest vector generation model 581

and the POI embedding model. 582

• Train-Real: We use the intents labeled in the 583

training set trajectories as training data. In the 584

test set, since the real intent of the next visit can- 585

not be directly obtained, we use the most likely 586

intent provided by the User Intent Profile as the 587

corresponding intent for the test set visits. 588

• w/o intent: We removed the contrastive learning 589

pretraining part and replaced the intent input with 590

a uniform value to simulate the scenario without 591

any intent information. 592

Table 3: Ablation experiment on mobility prediction
performance using the Beijing dataset.

Experiments Acc@1 Acc@5 Acc@10 MRR@5

LMP 0.4927 0.8352 0.8743 0.6350
w/o pretrain 0.4854 0.8299 0.8712 0.6311
Train-Real 0.4971 0.7100 0.7781 0.5810
w/o intent 0.4607 0.8289 0.8689 0.6166

The experiments demonstrate that, across vari- 593

ous metrics, the Full Model outperforms the w/o 594

pretrain, which in turn surpasses the w/o intent. 595

Taking Acc@1 as an example, the w/o intent exper- 596

iment, which does not include intent information, 597

achieves only 0.4607. Incorporating intent infor- 598

mation in the w/o pretrain experiment increases 599

this to 0.4854, and further adding the pretraining 600

process allows the full model to reach 0.4927. This 601

indicates that both intent information and the con- 602

trastive learning pretraining process are effective. 603

The Train-Real experiment achieves the best 604

Acc@1 score but underperforms on other metrics, 605

indicating that using exact intent labels during train- 606

ing creates a train-test gap, as future intents in test 607

data cannot be accurately known. 608
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3.6 Efficiency Analysis609

We conduct a quantitative analysis of the inference610

efficiency improvements resulting from using the611

fine-tuned student model (Qwen-2.5-7B-Instruct)612

to replace teacher model (Llama-3.1-70B-Instruct).613

We deployed models using vllm and recorded the614

memory consumption of deploying both models.615

Additionally, we tested the throughput of these616

tasks using 32 concurrent requests: distinguish-617

ing home and workplace in In-context Schema618

Learning(Task1), and intent annotation(Task2). As619

shown in Table 4, due to its smaller parameter size,620

the student model has a significant advantage in621

memory consumption, with the teacher model con-622

suming approximately nine times more memory.623

Furthermore, due to simpler computations and out-624

put texts from the fine-tuned student model not con-625

taining complex reasoning, the output text length626

is significantly reduced. This results in a substan-627

tial increase in throughput for the student model628

compared to the teacher model, with ratios of 16.8629

times and 9.2 times for the two tasks, respectively.630

Table 4: Efficiency of teacher model and student model.

Model Memory Task1 Task2

Teacher Model 298496 MB 1.98/s 1.93/s
Student model 33198 MB 33.23/s 17.81/s

3.7 User Intent Profiles Analysis631

We analyzed the computed User Intent Profiles, and632

Figure3 shows two typical examples. In the left633

graph, the user’s "Working" curve reaches a very634

high value during the day, while the "At Home"635

curve peaks at night, with other intent curves show-636

ing slight fluctuations. This corresponds to the637

behavior pattern of a person with a stable job. In638

the right graph, the "At Home" curve consistently639

remains higher than the other intent curves, with640

only slight increases in other intents in the morning.641

This corresponds to the behavior pattern of people642

who are unemployed and tend to remain near their643

home address for extended periods. Overall, the644

phenomena exhibited by the User Intent Profiles645

align with our understanding.646

4 Related Work647

Mobility Prediction. In the past decades, vari-648

ous deep learning methods (Liu et al., 2016; Feng649

et al., 2018; Sun et al., 2020; Luo et al., 2021; Yang650

et al., 2022) have been proposed to predict the hu-651

man mobility. While these methods succeed in652
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Figure 3: Two typical user intent profiles, representing
people with stable jobs and people who stay at home for
extended periods.

modelling the sequential patterns in the trajectory, 653

they cannot capture the shared mobility patterns 654

between users effectively. To solve this problem, 655

graph neural networks (Lim et al., 2020; Yan et al., 656

2023; Xu et al., 2020; Wang et al., 2023b; Yin et al., 657

2023) are introduced into the mobility prediction 658

modelling. However, due to the absence of large 659

scale mobility intent dataset, these works ignore 660

the intent modelling behind the mobility. In this 661

work, we employ the agentic workflow to enable 662

the large-scale automatic annotation of mobility 663

intent and further propose an effective intent-aware 664

mobility prediction model. 665

LLMs and Agents. LLMs (Achiam et al., 2023; 666

Dubey et al., 2024) have achieved rapid develop- 667

ment in the past few years. Recently, LLM based 668

agent framework (Wang et al., 2024; Xi et al., 2023; 669

Shao et al., 2024) are proposed to complement the 670

deficiencies of LLMs on specific domain knowl- 671

edge and unleash the power of LLMs in real-world 672

tasks, e.g., ChatDev (Qian et al., 2023) for project 673

programming and WebAgent (Gur et al., 2023) for 674

autonomous web tasks. Researchers try to directly 675

apply LLMs in the mobility modelling (Wang et al., 676

2023a; Beneduce et al., 2024) and achieve promiss- 677

ing results. Different from these works, we use 678

LLMs as the mobility data annotator to augment 679

mobility data for training a stronger small domain- 680

specific model. 681

5 Conclusion 682

In this paper, we investigate the problem of intent 683

enhanced mobility prediction problem. We propose 684

LMP, an agentic workflow based framework to har- 685

ness the commonsense reasoning abilities of LLMs 686

for intention-aware mobility prediction. Extensive 687

experiments on three real-world datasets demon- 688

strate the effectiveness of proposed framework. In 689

the future, we plan to extend the framework to more 690

spatial-temporal applications. 691
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6 Limitations692

Despite the significant improvements achieved by693

the LMP framework in intention-aware mobility694

prediction, several limitations need to be acknowl-695

edged:696

6.1 Dynamic Nature of Intentions697

The current model presumes that human intentions698

follow a daily cycle, with similar intentions at the699

same time each day. However, this assumption is an700

oversimplification. Human intentions can be more701

complex due to factors such as holidays or ad-hoc702

schedule changes. Future work should consider703

more sophisticated models that account for these704

dynamic variations in human intentions.705

6.2 Labeling of Home and Work Locations706

Currently, home and work locations are identified707

through statistical analysis of time distribution and708

frequency, which is more applicable to individuals709

with stable and singular home and work locations.710

For those with multiple residences or workplaces,711

the effectiveness of the LMP method may dimin-712

ish. Enhancing the model to better accommodate713

such variability could improve its robustness and714

applicability.715

6.3 Intent Configuration716

The current six intents—"At Home," "Running Er-717

rands," "Working," "Eating Out," "Leisure and En-718

tertainment," and "Shopping"—exhibit imbalances719

in frequency distribution and predictive accuracy720

distribution, which somewhat affect the model’s721

performance. Identifying more balanced and easily722

predictable intents presents a worthwhile challenge723

for consideration.724

6.4 Dataset Bias725

The performance of the current model has been726

evaluated using real-world datasets from Beijing,727

Shanghai and Yjmob100K. These datasets may be728

subject to biases in recording frequency and distri-729

bution due to the data collection methods employed.730

As a result, there may be discrepancies between731

the experimental outcomes and actual user mobility732

behaviors. Addressing these biases in future stud-733

ies could lead to more accurate and generalizable734

results.735

7 Ethics Statement 736

The development and application of the LMP 737

framework adhere to the following ethical prin- 738

ciples: 739

7.1 Respect for Privacy 740

We prioritize the protection of individual privacy. 741

The data used in this study consists of aggregated 742

and anonymized mobility data, ensuring that no per- 743

sonal information can be traced back to individual 744

users. 745

7.2 Transparency 746

We strive to ensure transparency in the operation 747

of the LMP framework. Our methodologies, data 748

sources, and limitations are clearly documented 749

to facilitate peer review and reproducibility. This 750

openness not only supports academic scrutiny but 751

also builds trust with stakeholders and the wider 752

community. 753

7.3 Beneficence 754

The primary aim of the LMP framework is to en- 755

hance the accuracy of mobility predictions, thereby 756

aiding urban planning and management. Moreover, 757

it seeks to improve the interpretability of existing 758

machine learning-based prediction methods, en- 759

abling stakeholders to make informed decisions 760

based on the predictive insights. By promoting re- 761

sponsible and beneficial use of technology, we aim 762

to contribute positively to societal needs. 763

7.4 Ethical Use of LMP 764

We recognize the potential risk that the LMP frame- 765

work could be utilized to process personal trajec- 766

tory data, which might lead to privacy breaches. 767

However, our method does not explicitly include 768

personal information beyond user trajectories, sig- 769

nificantly minimizing the risk of privacy leaks. We 770

are firmly opposed to any misuse that jeopardizes 771

privacy security, and we will closely monitor the 772

ethical application of our research methods in sub- 773

sequent implementations. 774
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A Appendix 933

A.1 Parameter Analysis 934

A.1.1 Model Parameter Analysis 935

In the "Intent-Aware Mobility Model" section, we 936

focused on examining the impact of parameter 937

T during user intent profile generation, the im- 938

pact of the Intent Embedding Dimension, the rela- 939

tionship between Pretrain Epochs during the con- 940

trastive learning phase and predictive performance, 941

as well as the relationship between the trajectory 942

length used for training and predictive performance. 943

Specifically, Acc@1 on the Beijing dataset was 944

used to evaluate the predictive performance for the 945

Intent Embedding Dimension and Pretrain Epochs, 946

while Acc@1 on the Shanghai dataset was used 947

to evaluate the impact of parameter T and trajec- 948

tory length. The experimental results are shown in 949

Figure 4. 950

The model achieves optimal performance when 951

parameter T is set to 180 minutes. When T is 952

smaller, the model may overfit historical data, and 953

when T is too large, the temporal influence range 954

becomes excessive, leading to distortion in the 955

model’s representation. Acc@1 reaches its max- 956

imum when the Intent Embedding Dimension is 957

8, and performance declines as the Intent Embed- 958

ding Dimension continues to increase. This may 959

be due to overfitting of the intents caused by the 960

data. There is a noticeable positive correlation be- 961

tween Pretrain Epochs and Acc@1, indicating that 962

increasing the number of contrastive learning pre- 963

training epochs within the studied parameter range 964

helps capture more data relationships. Additionally, 965

the overall performance of the model improves as 966

the training trajectory length increases, suggesting 967

that the model’s training relies to some extent on 968

the length of historical trajectories. 969

Simultaneously, we also investigated the effects 970

of using different ranks during LoRA fine-tuning. 971

We employed GPT4O-mini as the teacher model 972

and Qwen2.5-7B-Instruct as the student model, us- 973

ing the annotation accuracy on the test set of human 974

labeled data as the evaluation metric. The experi- 975

mental results are shown in Table 5. The accuracy 976

of our method across different ranks consistently 977

falls between 0.79 and 0.8, indicating that our ap- 978

proach exhibits high robustness against different 979

fine-tuning parameter settings. 980
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Figure 4: Parameter analysis of parameter T, intent
embedding dimension, pretrain epochs, and trajectory
length.

Table 5: Relationship between LoRA rank and annota-
tion accuracy.

Rank Accuracy

4 0.792
8 0.797
16 0.794

A.1.2 Performance on different LLMs981

To investigate the generalization capability of our982

method across different LLMs, we tested the effec-983

tiveness of the intent annotation workflow using984

various LLMs. We evaluated the performance of985

three larger models, GPT-4o-mini, Qwen2.5-72B-986

Instruct, and Llama3.1-70B-Instruct, without fine-987

tuning. Additionally, we tested two smaller models,988

LLaMA-3-8B-Instruct and Qwen2.5-7B-Instruct,989

after fine-tuning with data generated by GPT-4o-990

mini. The data division for the experiments is the991

same as described in Section 3.4. The experimen-992

tal results are shown in Table 6. The three larger993

models exhibit some performance differences but994

all achieve relatively high performance, with ac-995

curacies of 0.767, 0.709, and 0.816, respectively.996

The two smaller models demonstrate relatively sta-997

ble accuracy, both ranging between 0.79 and 0.80.998

Overall, the experimental results indicate that our999

method is transferable across different LLMs.1000

Table 6: The intent annotation accuracy of different
teacher models and the intent annotation accuracy of
various finetuned student models when using GPT-4o-
mini as the teacher model.

Groups Model Accuracy

teacher model (Annotation
with agentic workflow)

GPT-4o-mini 0.767
Qwen2.5-72B-Instruct 0.709
Llama3.1-70B-Instruct 0.816

student model (Annotation
after finetuning)

Llama3-8B-Instruct 0.793
Qwen2.5-7B-Instruct 0.797

A.2 Baselines 1001

• RNN (Graves and Graves, 2012): A classical 1002

model for processing sequential data, capturing 1003

temporal dependencies through recurrent connec- 1004

tions. 1005

• DeepMove (Feng et al., 2018): A model that 1006

combines recurrent networks and attention layer 1007

to capture multi-scale temporal periodicity of 1008

human mobility. 1009

• STAN (Luo et al., 2021): A model that utilizes a 1010

dual-attention structure to enhance next-location 1011

recommendation by aggregating spatio-temporal 1012

correlations and incorporating personalized item 1013

frequency (PIF). 1014

• LSTPM (Sun et al., 2020): It integrates a non- 1015

local network for capturing long-term prefer- 1016

ences and a geo-dilated recurrent neural network 1017

for short-term preferences modelling. 1018

• GETNext (Yang et al., 2022): A state-of-the- 1019

art model that introduces a user-agnostic global 1020

trajectory flow map and a novel graph enhanced 1021

transformer to improve next POI recommenda- 1022

tion. 1023

• LLM-Mob (Wang et al., 2023a): It introduces 1024

a method using LLMs to predict human mobility 1025

by capturing dependencies in movement data and 1026

enhancing accuracy through context-inclusive 1027

prompts. 1028

• LLM-Zero-Shot-NL (Beneduce et al., 2024): It 1029

provides a method for mobility prediction using 1030

LLMs with a zero-shot approach 1031

A.3 Detailed Training Settings 1032

A.3.1 Hardware Platform for Main Results 1033

and Baselines 1034

• CPU: Intel Xeon Platinum 8358 1035

• GPU: NVIDIA GeForce RTX 4090 1036

A.3.2 Baselines 1037

• RNN and DeepMove: 1038
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– Embedding dimensions for location and1039

user: 1281040

– Optimizer: Adam1041

– Learning rate: 1e-31042

– Maximum training epochs: 201043

• LSTPM:1044

– Embedding dimensions for location and1045

user: 501046

– Optimizer: Adam1047

– Learning rate: 1e-41048

– Maximum training epochs: 201049

• STAN:1050

– Embedding dimensions for location and1051

user: 501052

– Optimizer: Adam1053

– Learning rate: 3e-31054

– Maximum training epochs: 201055

• GETNext:1056

– Embedding dimensions for location and1057

user: 1281058

– Optimizer: Adam1059

– Learning rate: 1e-31060

– Maximum training epochs: 2001061

• Trajectory length standardized to 12.1062

A.3.3 Learning from Experience Process1063

• Iterations: 51064

• Each iteration:1065

– Number of proposals: 31066

– Annotation attempts per proposal: 51067

A.3.4 Fine-Tuning Settings in Main Results1068

• Teacher Model: GPT-4o-mini1069

• Student Model: Llama3-8B-Instruct1070

• Fine-tuning Framework: LLaMA-1071

Factory (Zheng et al., 2024)1072

• Fine-tuning Method:1073

– LoRA adapters1074

– Rank: 81075

• Training Details:1076

– Epochs: 31077

– Batch size: 21078

– Learning rate: 5e-51079

A.3.5 Intent-Aware Mobility Prediction 1080

Model in Main Results 1081

• Embedding Dimensions 1082

– POI and user: 128 1083

– Time, POI category, intent: 32 1084

• Constructive Learning: 1085

– Epochs: 20 1086

– Batch size: 2048 1087

– Learning rate: 0.001 1088

• Mobility Prediction Model: 1089

– Trajectory: 12 1090

– Number of layers: 2 1091

– Feed-forward network dimension: 1024 1092

– Attention heads: 2 1093

– Dropout: Probability of 0.3 1094

– Optimizer Type: Adam 1095

– Learning rate: 1e-3 1096

– Weight decay rate: 5e-4 1097

– Maximum training epochs: 200 1098

A.4 Prompt example 1099

Prompt and answer example of In-context Schema 1100

Learning: 1101

1102
Prompt: Your task is to identify the 1103

user 's home and work place based on 1104
the trajectory data.\n The 1105
home place is usually have a very 1106
high frequency of visits , And it 1107
may have peak visit times in the 1108
evening , at night , or on early 1109
mornings .\n The work place 1110
is usually have a relatively high 1111
frequency of visits , And it may 1112
have peak visit times in the 1113
daytime .\n The trajectory 1114
data under analysis is as follows: 1115
[{'Name ': 'POI1 ', 'Percent ': 1116
'48.4%', 'Time Distribution ': 1117
[('0:00', '46.7%'), ('9:00', 1118
'6.7%'), ('18:00', '20.0%'), 1119
('19:00', '20.0%'), ('22:00', 1120
'6.7%')]}, {'Name ': 'POI2 ', 1121
'Percent ': '29.0%', 'Time 1122
Distribution ': [('7:00', '22.2%'), 1123
('8:00', '33.3%'), ('10:00', 1124
'22.2%'), ('15:00', '11.1%'), 1125
('16:00', '11.1%')]}, {'Name ': 1126
'POI3 ', 'Percent ': '12.9%', 'Time 1127
Distribution ': [('9:00', '50.0%'), 1128
('14:00', '25.0%'), ('15:00', 1129
'25.0%')]}, {'Name ': 'POI4 ', 1130
'Percent ': '3.2%', 'Time 1131
Distribution ': [('18:00', 1132
'100.0% ')]}, {'Name ': 'POI5 ', 1133
'Percent ': '3.2%', 'Time 1134
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Distribution ': [('17:00',1135
'100.0% ') ]}].\n Each record1136
represents a POI that the user has1137
visited .\n The meanings of1138
each feature are as follows :\n1139

- Name: POI name\n -1140
Percent: The percentage of times1141
the behavior pattern occurred\n1142

- Time Distribution: The1143
time distribution of visits to the1144
POI , in the format of (hour ,1145
percentage).\n Respond using1146
the following JSON format :\n1147
{\" home \": \"home place \",\" work \":1148
\"work place \",\" reason \": \" reason1149
for prediction \"}\n1150

1151
Answer: ```json\n{\n \"home \":1152

\"POI1\",\n \"work \": \"POI2\",\n1153
\" reason \": \"POI1 has the highest1154
visit frequency at 48.4%, with1155
significant evening and night1156
visits , indicating it is likely the1157
home. POI2 has a visit pattern1158
concentrated during daytime hours ,1159
suggesting it is the1160
workplace .\"\n}\n```11611162

Prompt and answer example of Intent Annotation1163

Attempt and intent annotation:1164

1165
\n Your task is to give intent1166

prediction using trajectory data.1167
Let 's think step by step.\n1168
The user 's home and work place are1169
as follows: home place is POI1 and1170
work place is POI2.\n\n The1171
trajectory data under analysis is1172
as follows: (POI1 ,Residential1173
community ,2019 -10 -131174
00:00:00) ,(POI1 ,Residential1175
community ,2019 -10 -131176
09:00:00) ,(POI1 ,Residential1177
community ,2019 -10 -13 19:16:47) ,.\n1178

Each stay in trajectory data1179
is represented as (poi , category ,1180
start time).\n Here 's what1181
each element means:\n - poi:1182
the POI the user visited .\n1183
- category: the category of the1184
POI.\n - start time: the1185
time the user visit the POI.\n1186

\n Here are some1187
rules you should follow:['When the1188
user is at Home , the intent is At1189
Home.', 'When the user is at1190
Workplace , the intent is Working.',1191
'When the user is at a restaurant1192
during meal hours , the intent is1193
Eating Out.', 'When the user is at1194
a location during shopping hours ,1195
the intent is Shopping.', 'When the1196
user is at a location during1197
leisure hours , the intent is1198
Leisure and entertainment.', 'When1199
the user is at a location that is1200
not Home or Workplace and does not1201
fit any other criteria , the intent1202
is Running errands .']\n The1203

rules are nessary and sufficient 1204
conditions , which means if a rule 1205
is satisfied , the intent in the 1206
rule should be annotated and when 1207
the rule is not satisfied , the 1208
intent should not be annotated .\n 1209

The order of the rules 1210
represents the priority of the 1211
proposals. The top rules have 1212
higher priority .\n Intent 1213
you can choose:['At Home ', 1214
'Working ', 'Running errands ', 1215
'Eating Out ', 'Leisure and 1216
entertainment ', 'Shopping ']. You 1217
should not annotate the intent that 1218
is not in this list.\n \n 1219

There are 3 stays in the 1220
trajectory data. So, the output 1221
should have 3 predicted intents .\n 1222

Consider step by step , 1223
finally respond using the following 1224
JSON format (Make sure to have one 1225
predicted intent for each stay in 1226
the trajectory data , And you have 1227
to assign one of the intents to 1228
each stay in the trajectory 1229
data):{\" predicted_intent \": 1230
[\" predicted intents \"]} 1231

1232
Answer: To predict the intent based on 1233

the given trajectory data and the 1234
associated rules , let 's analyze 1235
each stay one by one.\n\n1. **First 1236
Stay: (POI1 , Residential community , 1237
2019 -10 -13 00:00:00) **\n - POI: 1238
POI1 (Home)\n - Category: 1239
Residential community (not 1240
specified in the rules , but it is 1241
the home)\n - Time: 00:00:00 \n 1242
- According to the rule: \"When the 1243
user is at Home , the intent is At 1244
Home .\"\n - ** Predicted Intent: 1245
At Home **\n\n2. ** Second Stay: 1246
(POI1 , Residential community , 1247
2019 -10 -13 09:00:00) **\n - POI: 1248
POI1 (Home)\n - Category: 1249
Residential community\n - Time: 1250
09:00:00 \n - Again at home. 1251
According to the same rule as 1252
above: \"When the user is at Home , 1253
the intent is At Home .\"\n - 1254
** Predicted Intent: At Home **\n\n3. 1255
**Third Stay: (POI1 , Residential 1256
community , 2019 -10 -13 19:16:47) **\n 1257

- POI: POI1 (Home)\n - 1258
Category: Residential community\n 1259
- Time: 19:16:47 \n - Still at 1260
home. According to the same rule: 1261
\"When the user is at Home , the 1262
intent is At Home .\"\n - 1263
** Predicted Intent: At 1264
Home **\n\nFinally , compiling the 1265
predicted intents for each stay in 1266
the specified JSON 1267
format :\n\n```json\n{\" predicted_intent \": 1268
[\"At Home\", \"At Home\", \"At 1269
Home \"]}\n``` 12701271

Prompt and answer example of Correction Sugges- 1272
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tion Generation:1273

1274
Prompt: Your task is to give your1275

proposals for the rules for intent1276
prediction using trajectory data.1277
Let 's think step by step.\n1278
There are 6 intents to choose from:1279
['At Home ', 'Working ', 'Running1280
errands ', 'Eating Out ', 'Leisure1281
and entertainment ', 'Shopping '].\n1282

The rules used for intent1283
prediction now are as follows:1284
['When the user is at Home , the1285
intent is At Home.', 'When the user1286
is at Workplace , the intent is1287
Working.', 'When the user is at a1288
location during meal hours , the1289
intent is Eating Out.', 'When the1290
user is at a location during1291
shopping hours , the intent is1292
Shopping.', 'When the user is at a1293
location during leisure hours , the1294
intent is Leisure and1295
entertainment.', 'When the user is1296
at a location that is not Home or1297
Workplace , the intent is Running1298
errands .'].\n There are several1299
results of intent prediction for1300
trajectory data under the rules.1301
Here are what each element means:\n1302

- Home: Place where the user1303
lives , which is related to the1304
intent 'At Home '.\n - Workplace:1305
Place where the user works , which1306
is related to the intent1307
'Working '.\n - Trajectory: The1308
user 's trajectory data under1309
analysis. Each stay in trajectory1310
data is represented as (poi ,1311
category , start time).\n -1312
Predicted intent list: Based on the1313
home , workplace and trajectory1314
data , the intent list annotated by1315
the rules for each stay in the1316
trajectory data. Each intent is1317
corresponding to a stay in the1318
trajectory data.\n - True intent1319
list: The true intent list for each1320
stay in the trajectory data.\n1321
\n user0: Home is POI1 ,1322
Workplace is POI2 , trajectory is1323
(POI1 , Educational Facilities ,1324
2019 -11 -04 00:00:00)(POI2 ,1325
Residential Community , 2019 -11 -041326
08:00:00)(POI1 , Educational1327
Facilities , 2019 -11 -04 19:00:00) ,1328
the predicted intent list under the1329
rules is ['At Home ', 'Working ', 'At1330
Home ']. The true intent list is1331
['At Home ', 'Working ', 'At1332
Home '].\n \n user1: Home is1333
POI3 , Workplace is None , trajectory1334
is (POI3 , Residential Community ,1335
2019 -12 -16 00:00:00)(POI4 ,1336
Companies and Enterprises ,1337
2019 -12 -16 08:00:00)(POI3 ,1338
Residential Community , 2019 -12 -161339
16:15:00) , the predicted intent1340
list under the rules is ['At Home ',1341
'Running errands ', 'At Home ']. The1342

true intent list is ['At Home ', 1343
'Running errands ', 'At Home '].\n 1344
\n user2: Home is POI5 , 1345
Workplace is POI6 , trajectory is 1346
(POI6 , Companies and Enterprises , 1347
2019 -11 -30 00:00:00)(POI7 , Other 1348
Banking and Finance , 2019 -11 -30 1349
14:45:00)(POI8 , Residential 1350
Community , 2019 -11 -30 1351
17:45:00)(POI6 , Companies and 1352
Enterprises , 2019 -11 -30 21:45:00) , 1353
the predicted intent list under the 1354
rules is ['Working ', 'Running 1355
errands ', 'Running errands ', 1356
'Working ']. The true intent list is 1357
['Working ', 'Running errands ', 1358
'Running errands ', 'Working '].\n 1359
\n user3: Home is POI9 , 1360
Workplace is None , trajectory is 1361
(POI9 , Other Food , 2019 -12 -05 1362
00:00:00) , the predicted intent 1363
list under the rules is ['At 1364
Home ']. The true intent list is 1365
['At Home '].\n \n user4: Home 1366
is POI10 , Workplace is POI11 , 1367
trajectory is (POI10 , Real Estate 1368
Community Facilities , 2019 -12 -24 1369
00:00:00)(POI11 , Residential 1370
Community , 2019 -12 -24 1371
09:00:00)(POI10 , Real Estate 1372
Community Facilities , 2019 -12 -24 1373
14:00:00)(POI11 , Residential 1374
Community , 2019 -12 -24 1375
14:45:00)(POI10 , Real Estate 1376
Community Facilities , 2019 -12 -24 1377
18:15:00) , the predicted intent 1378
list under the rules is ['At Home ', 1379
'Working ', 'At Home ', 'Working ', 1380
'At Home ']. The true intent list is 1381
['At Home ', 'Working ', 'At Home ', 1382
'Working ', 'At Home '].\n \n 1383
Please give your proposals based on 1384
the difference between predicted 1385
intent list and true intent list.\n 1386

You should consider the 1387
relationship between the user 's 1388
home , workplace , trajectory and 1389
intent .\n The rules should be as 1390
simple and loose as possible. Don 't 1391
add unnecessary restrictions .\n 1392
Each intent should have only one 1393
rule using simple statement 1394
sentences , such as \"When the user 1395
is at Workplace , the intent is 1396
Working .\"\n The rules should be 1397
nessary and sufficient conditions , 1398
which means if a rule is satisfied , 1399
the intent in the rule should be 1400
annotated and when the rule is not 1401
satisfied , the intent should not be 1402
annotated .\n There should not 1403
contain specific user POI name or 1404
category name in the proposals .\n 1405

The order of the rules 1406
represents the priority of the 1407
proposals. The top rules have 1408
higher priority .\n Only modify 1409
the rules when it is necessary. If 1410
not necessary , you can give the 1411
proposals to keep the original 1412
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rules.\n Let 's think step by1413
step. Finally answer in the json1414
format , example: {{\" proposals \":1415
[\"Add a rule that when the user is1416
at mall , the intent is1417
Shopping .\",\" Modify the rule when1418
the user is at restaurant , the1419
intent is Eating Out to when the1420
user is at restaurant and the time1421
is 12:00 -13:00 , the intent is1422
Eating Out .\"]}}\n1423

1424
Answer: After analyzing the provided1425

user data and the predicted versus1426
true intent lists , I propose the1427
following rules for intent1428
prediction using trajectory data.1429
The current rules are generally1430
effective , but some adjustments can1431
help improve accuracy while keeping1432
the rules simple and1433
loose.\n\n** Proposed Rules :**\n1.1434
When the user is at Home , the1435
intent is At Home.\n2. When the1436
user is at Workplace , the intent is1437
Working .\n3. When the user is at a1438
location during meal hours , the1439
intent is Eating Out.\n4. When the1440
user is at a location during1441
shopping hours , the intent is1442
Shopping .\n5. When the user is at a1443
location during leisure hours , the1444
intent is Leisure and1445
entertainment .\n6. When the user is1446
at a location that is not Home or1447
Workplace , the intent is Running1448
errands .\n\n** Suggestions for1449
modification :**\n- ** Modify Rule1450
3**: To ensure clarity on meal1451
hours , I propose to specifically1452
define meal hours. For instance ,1453
the rule can state: \"When the user1454
is at a restaurant during1455
established meal hours (e.g.,1456
7:00 -9:00 , 12:00 -14:00 ,1457
18:00 -20:00) , the intent is Eating1458
Out.\" This clarity can help in1459
correctly capturing the intent1460
related to meal times.\n \n-1461
** Modify Rule 4**: Similar to the1462
Eating Out rule , we may specify1463
shopping hours. For example , \"When1464
the user is at a shopping location1465
during established shopping hours1466
(e.g., 10:00 -21:00) , the intent is1467
Shopping .\" This will help clarify1468
the intention behind being in a1469
shopping -related1470
location .\n\nOverall , I suggest1471
maintaining most of the original1472
rules while adding specificity to1473
the time -related rules.1474
\n\ n H e r e s the response in JSON1475
format :\n\n```json\n{\n1476
\" proposals \": [\n \" Modify the1477
rule when the user is at a1478
restaurant to specify that the1479
intent is Eating Out during1480
established meal hours (e.g.,1481
7:00 -9:00 , 12:00 -14:00 ,1482

18:00 -20:00) .\",\n \" Modify the 1483
rule when the user is at a shopping 1484
location to specify that the intent 1485
is Shopping during established 1486
shopping hours (e.g., 1487
10:00 -21:00) .\"\n ]\n}\n``` 14881489

Prompt and answer example of Insights Correction: 1490

: 1491

1492
Prompt: Your task is to update the 1493

rules for intent prediction using 1494
trajectory data.\n In the 1495
prediction task , the user 's home , 1496
work place and trajectory data( in 1497
form of (poi , category , start 1498
time)) are given. The task is to 1499
annotate the user 's intent of each 1500
stay in the trajectory data.\n 1501
There are 6 intents to choose from: 1502
['At Home ', 'Working ', 'Running 1503
errands ', 'Eating Out ', 'Leisure 1504
and entertainment ', 'Shopping '].\n 1505

The proposals are generated 1506
based on the difference between 1507
predicted intent list and true 1508
intent list. \n The rules used 1509
for intent prediction now are as 1510
follows: ['When the user is at 1511
Home , the intent is At Home.', 1512
'When the user is at Workplace , the 1513
intent is Working.', 'When the user 1514
is at a location during meal hours , 1515
the intent is Eating Out.', 'When 1516
the user is at a location during 1517
shopping hours , the intent is 1518
Shopping.', 'When the user is at a 1519
location during leisure hours , the 1520
intent is Leisure and 1521
entertainment.', 'When the user is 1522
at a location that is not Home or 1523
Workplace , the intent is Running 1524
errands .'].\n There are several 1525
groups of proposals for the rules: 1526
{\" propolsal group 0\": [\" Modify 1527
the rule when the user is at a 1528
location during meal hours , the 1529
intent is Eating Out to include a 1530
specific time range for Eating Out , 1531
e.g., when the time is 11:00 -14:00 1532
or 17:00 -20:00.\" , \"Add a fallback 1533
rule that when the user is at a 1534
location that is not Home or 1535
Workplace and does not fit any 1536
other criteria , the intent is 1537
Running errands .\"], \" propolsal 1538
group 1\": [\" Modify the rule when 1539
the user is at a restaurant to 1540
specify that the intent is Eating 1541
Out during established meal hours 1542
(e.g., 7:00 -9:00 , 12:00 -14:00 , 1543
18:00 -20:00) .\", \" Modify the rule 1544
when the user is at a shopping 1545
location to specify that the intent 1546
is Shopping during established 1547
shopping hours (e.g., 1548
10:00 -21:00) .\"], \" propolsal group 1549
2\": [\" Keep the existing rule: 1550
When the user is at Home , the 1551
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intent is At Home.\", \"Keep the1552
existing rule: When the user is at1553
Workplace , the intent is1554
Working .\", \" Modify the rule for1555
Eating Out to: When the user is at1556
a location during meal hours , the1557
intent is Eating Out , or at a1558
restaurant if the time is within1559
typical meal times.\", \" Modify the1560
rule for Leisure and entertainment1561
to: When the user is at a location1562
during leisure hours , the intent is1563
Leisure and entertainment , or at1564
locations that typically host1565
leisure activities .\", \"Add a1566
rule: When the user is at a1567
location that is neither Home nor1568
Workplace , the intent is Running1569
errands .\"]}.\n Please update1570
the rules based on the proposals.1571
Please summarize the common points1572
of the proposal groups to update1573
the rules.\n There should not1574
contain specific user POI name or1575
category name in the rules.\n1576
All the rules should be directly1577
about the relationship between1578
home , workplace , trajectory and1579
intent .\n The rules should be as1580
simple and loose as possible. Don 't1581
add unnecessary restrictions .\n1582
Each intent should have only one1583
rule using simple statement1584
sentences , such as \"When the user1585
is at Workplace , the intent is1586
Working .\"\n The rules should be1587
nessary and sufficient conditions ,1588
which means if a rule is satisfied ,1589
the intent in the rule should be1590
annotated and when the rule is not1591
satisfied , the intent should not be1592
annotated .\n The order of the1593
rules represents the priority of1594
the proposals. The top rules have1595
higher priority .\n Let 's think1596
step by step. Finally answer in the1597
json format ,1598
example :{\" updated_rules \": [\" When1599
the user is at Workplace , the1600
intent is Working .\",\" When the1601
user is at restaurant , the intent1602
is Eating Out .\"]}\1603

1604
Answer: To update the rules for intent1605

prediction using trajectory data ,1606
we need to consider the common1607
elements from the proposal groups1608
while ensuring that our rules1609
remain simple , clear , and maintain1610
the necessary and sufficient1611
conditions. \n\ n H e r e s how we can1612
summarize the proposals :\n\n1.1613
**Meal Hours **: There is a1614
consensus on specifying that the1615
intent 'Eating Out ' should apply1616
during specific meal hours. This1617
applies to general meal times and1618
also extends to when the user is at1619
a restaurant .\n\n2. ** Shopping1620
Hours **: The proposals suggest1621

defining the intent 'Shopping ' to 1622
apply specifically during 1623
established shopping hours.\n\n3. 1624
** Running Errands **: T h e r e s 1625
agreement on using 'Running 1626
errands ' when the user is at a 1627
location that is neither Home nor 1628
Workplace and d o e s n t meet other 1629
criteria .\n\n4. ** Leisure and 1630
Entertainment **: The proposals 1631
suggest that leisure activities can 1632
encompass both time frames and 1633
specific types of 1634
locations .\n\nConsidering these 1635
points , we can reformulate the 1636
rules as follows :\n\n1. **'At 1637
Home '** - When the user is at Home , 1638
the intent is At Home.\n2. 1639
**'Working '** - When the user is at 1640
Workplace , the intent is 1641
Working .\n3. **'Eating Out '** - 1642
When the user is at a location 1643
during meal hours , or at a 1644
restaurant if within typical meal 1645
times , the intent is Eating 1646
Out.\n4. **'Shopping '** - When the 1647
user is at a location during 1648
shopping hours , the intent is 1649
Shopping .\n5. **'Leisure and 1650
Entertainment '** - When the user is 1651
at a location during leisure hours , 1652
or at locations that typically host 1653
leisure activities , the intent is 1654
Leisure and entertainment .\n6. 1655
**'Running Errands '** - When the 1656
user is at a location that is not 1657
Home or Workplace and does not fit 1658
any other criteria , the intent is 1659
Running errands .\n\nNow , 1660
consolidating these into JSON 1661
format , we have:\n\n```json\n{\n 1662
\" updated_rules \": [\n \"When 1663
the user is at Home , the intent is 1664
At Home .\",\n \"When the user is 1665
at Workplace , the intent is 1666
Working .\",\n \"When the user is 1667
at a location during meal hours , or 1668
at a restaurant if within typical 1669
meal times , the intent is Eating 1670
Out.\",\n \"When the user is at 1671
a location during shopping hours , 1672
the intent is Shopping .\",\n 1673
\"When the user is at a location 1674
during leisure hours , or at 1675
locations that typically host 1676
leisure activities , the intent is 1677
Leisure and entertainment .\",\n 1678
\"When the user is at a location 1679
that is not Home or Workplace and 1680
does not fit any other criteria , 1681
the intent is Running errands .\"\n 1682
]\n}\n``` 16831684

Prompt and answer example of data selection: 1685

1686
Prompt: Your task is to determine 1687

whether the results of the 1688
trajectory intent annotation match 1689
the rules.\n The trajectory 1690
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is: (POI1 , Residential Community ,1691
2019 -10 -04 15:15:00)\n Each1692
trajectory has several stays , and1693
each stay is represented by a tuple1694
of (POI name , POI category , visit1695
time).\n The user 's home1696
place is defined as POI2.\n1697
The user 's work place is defined as1698
POI1.\n The predicted intent1699
is: ['Running errands ']\n1700
Each intent is corresponding to a1701
stay in the trajectory .\n1702
The rules are: ['When the user is1703
at Home , the intent is At Home.',1704
'When the user is at Workplace , the1705
intent is Working.', 'When the user1706
is at a restaurant during meal1707
hours , the intent is Eating Out.',1708
'When the user is at a location1709
during shopping hours , the intent1710
is Shopping.', 'When the user is at1711
a location during leisure hours ,1712
the intent is Leisure and1713
entertainment.', 'When the user is1714
at a location that is not Home or1715
Workplace and does not fit any1716
other criteria , the intent is1717
Running errands .']\n The1718
rules are nessary and sufficient1719
conditions , which means if a rule1720
is satisfied , the intent in the1721
rule should be annotated and when1722
the rule is not satisfied , the1723
intent should not be annotated .\n1724

The order of the rules1725
represents the priority of the1726
proposals. The top rules have1727
higher priority .\n Analyze1728
it step by step in the order of the1729
rules , Finally answer whether the1730
intent is annotated correctly in1731
the format of <yes > or <no >.\n1732

1733
Answer: "To analyze whether the1734

predicted intent of 'Running1735
errands ' is annotated correctly , we1736
need to evaluate the provided1737
trajectory against the specified1738
rules step -by-step.\n\n1. **Rule 1:1739
When the user is at Home , the1740
intent is At Home .**\n - The1741
user 's home place is defined1742
asPOI1. The trajectory indicates1743
the user is at POI2 , which is not1744
their home. Therefore , this rule1745
does not apply.\n\n2. **Rule 2:1746
When the user is at Workplace , the1747
intent is Working .**\n - The1748
user 's workplace is defined as1749
POI2. The trajectory indicates the1750
user is at this location.1751
Therefore , according to this rule ,1752
the intent should be annotated as1753
'Working ', but the predicted intent1754
is 'Running errands '. This1755
indicates a mismatch .\n\n3. **Rule1756
3: When the user is at a restaurant1757
during meal hours , the intent is1758
Eating Out .**\n - The location1759
(POI2) does not indicate that it is1760

a restaurant , so this rule does not 1761
apply.\n\n4. **Rule 4: When the 1762
user is at a location during 1763
shopping hours , the intent is 1764
Shopping .**\n - The location 1765
(POI2) also does not indicate a 1766
shopping scenario , so this rule 1767
does not apply.\n\n5. **Rule 5: 1768
When the user is at a location 1769
during leisure hours , the intent is 1770
Leisure and entertainment .**\n - 1771
The location does not specifically 1772
indicate a leisure context; hence , 1773
this rule does not apply.\n\n6. 1774
**Rule 6: When the user is at a 1775
location that is not Home or 1776
Workplace and does not fit any 1777
other criteria , the intent is 1778
Running errands .**\n - Since the 1779
user is at their workplace (POI2), 1780
this rule does not apply.\n\nAfter 1781
analyzing all the rules , we find 1782
that the user is at their 1783
workplace , and according to Rule 2, 1784
the intent should be 'Working '. 1785
However , the predicted intent is 1786
'Running errands ', which does not 1787
align with the prioritized 1788
rules.\n\nTherefore , the intent is 1789
**not annotated correctly **. 1790
\n\nThe final answer is: <no >" 17911792
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