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Abstract

Ensuring correctness is a pivotal aspect of soft-001
ware engineering. Among the various strategies002
available, software verification offers a defini-003
tive assurance of correctness. Nevertheless,004
writing verification proofs is resource-intensive005
and manpower-consuming, and there is a great006
need to automate this process. We introduce007
Selene in this paper, which is the first project-008
level automated proof benchmark constructed009
based on the real-world industrial-level oper-010
ating system microkernel, seL4. Selene pro-011
vides a comprehensive framework for end-to-012
end proof generation and a lightweight verifi-013
cation environment. Our experimental results014
with advanced large language models (LLMs),015
such as GPT-3.5-turbo and GPT-4, highlight016
the capabilities of LLMs in the domain of au-017
tomated proof generation. Additionally, our018
further proposed augmentations indicate that019
the challenges presented by Selene can be miti-020
gated in future research endeavors.021

“Program testing can be used to show the pres-022

ence of bugs, but never to show their absence.”023

– Dahl et al.’s (1972)024

1 Introduction025

Confirming the correctness of the software, i.e.,026

checking whether it adheres to the properties spec-027

ified in the requirements, is advantageous for028

software engineering (SE). In contrast to testing,029

which is incomplete, verification provides rigorous030

guarantee of software correctness or incorrectness031

(D’Silva et al., 2008). Specifically, during testing,032

an adequate number of test cases are created and033

tested against the subject program. If the program034

violates a testing oracle or encounters other errors035

(e.g., runtime error), a bug is found. However, the036

opposite conclusion cannot be guaranteed other-037

wise. Verification often involves the usage of a038

formal language and the corresponding prover. 1 039

This process requires formal proofs to rigorously 040

demonstrate that the program satisfies the required 041

properties, which can be verified by the prover. 042

In general, software verification involves two 043

stages. ❶ The prerequisite specification stage trans- 044

lates the required properties and the subject pro- 045

gram into the formal language, creating a to-be- 046

proved proposition stating that “the program meets 047

the properties”, a.k.a., the specification. ❷ The 048

proof stage is supposed to generate proofs that 049

prove the above specification and can be formally 050

checked by the prover. Both stages consume sig- 051

nificant resources and manpower, with the second 052

stage being particularly demanding. E.g., the seL4 053

operating system microkernel 2, which has been 054

formally verified against strong functionality and 055

security properties, requires 7 person-months ded- 056

icated to specification stage and 11 person-years 057

to proof stage for correctness verification, and the 058

amount of proof code in seL4 is even ten times 059

more than that of the microkernel implementation 060

itself (Klein et al., 2014). Therefore, in order to 061

promote provable software, automated software 062

verification, particularly automated proof, is highly 063

desirable. As an early exploratory effort, in this 064

paper, we explore to automate the major overhead. 065

Typically, automated proof in software verifica- 066

tion is a conditional generation task from the speci- 067

fication to the proof, involving reasoning capabil- 068

ities. Fortunately, large language models (LLMs) 069

offer an opportunity, as they have demonstrated 070

significant capacity in logic and reasoning at math- 071

ematical theorem proving (Jiang et al., 2022; First 072

et al., 2023; Jiang et al., 2023). Only limited re- 073

search explores how to leverage LLM for code ver- 074

ification (Sun et al., 2023; Yao et al., 2023). And 075

1Please note that there are other verification techniques
such as model checking. We refer to it as methods involving
interactive proof assistants in this paper.

2https://sel4.systems/
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Figure 1: A demonstration of the Selene pipeline for automated proof generation (best viewed in color). Selene facilitates both
the construction of proofs from scratch (indicated by the gray “generate” path) and the refinement of existing proofs augmented
by error messages (highlighted by the red “fixing” path). To validate the correctness of the generated proofs, they are subjected
to verification by the Isabelle prover within the authentic seL4 environment.

they only focus on function-level code verification,076

rather than a complete industrial-level software.077

A distinctive feature of industrial-level projects is078

the complex dependencies among lemmas and files,079

which makes automated proof even harder. In order080

to promote software verification, we propose a real-081

world industrial-level benchmark based on seL4 for082

automated proof, namely Selene. SeL4 is a high-083

assurance operating system microkernel, and it is084

comprehensively formally verified. The verifica-085

tion of seL4 is mainly based on the formal language086

of Isabelle (Isabelle, 2023), containing over 100k087

lines of code in Isabelle and thousands of lemmas088

(specification + proof), among which we randomly089

extract 360 for benchmarking. Selene provides the090

complete dependency graph of lemmas, definitions091

and functions, along with a lightweight verifica-092

tion environment for each lemma to be evaluated.093

Due to the dependencies of the lemmas, almost094

the entire verification project needs to be rebuilt095

in order to check the generated proof, which can096

lead to a huge evaluation overhead (tens of minutes097

per lemma). Thence, Selene creates an isolated098

verification environment for each lemma to avoid099

repeatedly building and verifying the dependent100

lemmas, which enables efficient evaluation (it usu-101

ally takes only a few minutes or even seconds to102

verify a generation).103

We evaluate GPT-3.5-turbo (OpenAI, 2023a)104

and GPT-4 (OpenAI, 2023b) in the Selene pipeline105

(Figure 1). The experimental results demonstrate106

the feasibility of LLMs for automated proof in soft-107

ware verification. Still, we have identified some108

further challenges in Selene. ❶ The dependency109

graph of seL4 is complicated, and extracting facts110

to be applied from it can be hard for LLMs. ❷111

The logic and reasoning process of a rather large112

proof may be beyond the capability of the subject113

LLMs. Even GPT-4 has difficulty in solving the 114

rather difficult categories in Selene. Therefore, to 115

address the challenges, we introduce three distinct 116

augmentations, i.e., similar lemma augmentation, 117

dependency augmentation and fixing augmentation. 118

These augmentations yield varying improvements 119

across the Selene’s different categories. Despite the 120

inherent difficulties, our experimental results with 121

these augmentations offer promising indications 122

that the challenges posed by Selene are surmount- 123

able. 124

The main contributions of this paper can be sum- 125

marized as below. 3 126

• We introduce the Selene benchmark, tailored for 127

project-level automated proof in software verifi- 128

cation, grounded in the real-world industrial-level 129

project of the seL4 operating system microkernel. 130

• We introduce the technique of lemma isolation, 131

which facilitates a lightweight verification environ- 132

ment capable of handling the complexities inherent 133

in systems such as seL4. 134

• Through our experiments with GPT-3.5-turbo and 135

GPT-4, we demonstrate the potential of LLMs in 136

automating the proof generation process in soft- 137

ware verification. 138

• We incorporate augmentations into the framework, 139

which mitigate some of the challenges encountered 140

within Selene and suggest promising avenues for 141

future studies. 142

2 Related Work 143

2.1 Automated Theorem Proving by LLM 144

Automated theorem proving, especially mathemat- 145

ical theorem proving, has garnered significant at- 146

tention in the field of artificial intelligence. LLMs 147

3We will release our benchmark and all scripts for repro-
ducing and further studies.
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have shown promising performance in proving for-148

mal theorems using proof assistants, such as Is-149

abelle (Isabelle, 2023), Coq (Coq, 2023), and Lean150

(Lean, 2023). Thor (Jiang et al., 2022) integrates151

LLMs and hammer-based (Blanchette et al., 2016)152

provers in Isabelle. DSP (Jiang et al., 2023) lever-153

ages LLMs to produce structured formal sketches154

for auotomated proving. Besides, ProofNet (Azer-155

bayev et al., 2023) and Baldur (First et al., 2023)156

both train or finetune LLMs on formal language157

corpora.158

In addition to the automatic approaches, there159

are existing benchmarks in the field of formal the-160

orem proving. MiniF2F (Zheng et al., 2022) con-161

sists of mathematical problems from Olympiads162

competitions covering multiple formal languages.163

PISA (Jiang et al., 2021) includes the Archive of164

Formal Proofs in Isabelle. ProofNet (Azerbayev165

et al., 2023) contains mathematical problems in166

Lean along with parallel natural language descrip-167

tions. LeanDojo (Yang et al., 2023) builds a large168

benchmark in Lean with complete dependencies169

and the running environment.170

2.2 Automated Software Verification171

Software verification involves checking whether172

the software meets the requirements. In this paper,173

we leave alone the dynamic techniques (such as174

testing) that need to run the software, and only175

discuss the static formal verification techniques.176

We briefly introduce four main techniques of au-177

tomated software verification. Please refer to the178

survey for more details (D’Silva et al., 2008). ❶179

Static analysis contains a collection of technolo-180

gies (e.g., pointer analysis, value range analysis)181

that analyze the behavior of the software with-182

out actual execution. By abstract interpretation183

(Cousot and Cousot, 1977), which approximately184

determines the undecidable software behaviors,185

one may check the correctness. ❷ Model check-186

ing traverses all plausible states of the software187

to determine whether a property holds (Emerson188

and Clarke, 1980; Queille and Sifakis, 1982). If189

the property is violated, the algorithm produces a190

reproducible trace, i.e., a counterexample. Due191

to the large state space, algorithms for model192

checking are often abstracted or depth-bounded193

(Biere et al., 1999). ❸ Verification-aware program-194

ming languages, such as Dafny (Dafny, 2023) and195

Verus (Verus, 2023), supports formal specification196

through preconditions, postconditions, and loop in-197

variants, etc., and employs first-order logic solvers198

(e.g., Z3 (de Moura and Bjørner, 2008)) to automat- 199

ically prove the specifications. They encourage the 200

programmers to write correct specifications while 201

writing the program, leaving the correctness verifi- 202

cation burden to automatic solvers. ❹ Interactive 203

verification relies on the interactive proof assistants. 204

Both specifications and proofs during formal verifi- 205

cation require substantial manual effort, and they 206

are challenging to be fully automated. Hammers 207

are still the major solutions to automating interac- 208

tive verification. In the era of LLMs, it is highly 209

feasible to explore automated proof in interactive 210

verification. 211

Currently, there is limited research specifically 212

addressing the problem of automated software 213

verification with language models. Clover (Sun 214

et al., 2023) introduces a benchmark for consis- 215

tency checking among code, specification, and doc- 216

string, building on the verification-aware language 217

of Dafny. Yao et al. (2023) proposes to use GPT- 218

4 to write invariants, assertions, and other proof 219

structures for Rust-based formal verification, in the 220

short function-level code snippets. 221

3 Selene 222

Given the impracticality of waiting for dozens of 223

minutes to verify a single proof generated by the 224

LLM, we construct Selene to align with the ob- 225

jective of lightweight evaluation. Drawing on the 226

session design in Isabelle and seL4 (Section 3.1), 227

we introduce lemma isolation (Section 3.2), which 228

enables rapid verification of the target lemma (usu- 229

ally a few seconds). Due to the complexity of seL4, 230

we further delve into some specific implementation 231

details of Selene in Section 3.3. 232

3.1 Preliminary of SeL4 233

SeL4 is a comprehensively formally verified operat- 234

ing system microkernel (Klein et al., 2014), provid- 235

ing an excellent example for software verification. 236

Most of the verification work on seL4’s functional 237

correctness is based upon Isabelle (Isabelle, 2023), 238

which is the basis of Selene. 239

Isabelle sessions. In the context of large verifi- 240

cation projects, Isabelle employs sessions to ef- 241

fectively and efficiently organize the environment 242

(Wenzel, 2023). The concept bears resemblance 243

to the "package-class-function" structure in pro- 244

gramming languages, with the design of "session- 245

theory-lemma" in Isabelle. A session serves as a 246

container for verification results typically centered 247
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Figure 2: An illustrative example of the seL4 verification
structure. The arrows pointing from A to B indicate that B
is dependent upon A, where A and B can be lemmas, theory
files, or sessions, etc.

around a specific topic, and maintains them in a248

persistent form. It enables easy accessibility with-249

out the need for repeated rebuilding lemmas within250

the session. Such design facilitates incremental251

development during software verification, allowing252

modifications to be made without necessitating a253

complete rebuild, as results in the unchanged and254

independent sessions remain persistent. Isabelle255

organizes the sessions using a series of ROOT files,256

which contain meta information such as the depen-257

dencies and the entry theory files for the sessions.258

SeL4 verification structure. The verification259

of seL4 consists of multiple layers of refinement260

(De Roever and Engelhardt, 1998), progressing261

from high-level conceptual ideas to the concrete C262

implementation of the operating system 4. Thence,263

there are many sessions involved in seL4 as shown264

in Figure 2, with some directly completing a re-265

finement layer (e.g., AInvs) while others providing266

dependencies (e.g., ASpec and Lib) such as defini-267

tions and property specifications.268

In our early studies about the verification pro-269

cess of seL4, we have identified some possible270

challenges. ❶ The dependencies in seL4 are highly271

complicated. A refinement session is typically de-272

pendent on multiple other sessions, creating a huge273

and complex dependency graph that makes it hard274

to identify the prerequisite components for proving275

a certain lemma in the refinement sessions. For276

instance, the session AInvs in Figure 2 is depen-277

dent on four sessions (Word_Lib, ExecSpec, AS-278

pec, and Lib), and theories in AInvs depend not279

only on theories within AInvs (e.g., Untyped_AI280

directly depends on ArchDetype_AI, and both of281

them are from AInvs), but also on lots of theo-282

4A refinement formally proves that a concrete system cor-
responds to the abstract model and that all properties of the
abstract model also hold for the concrete system.

Figure 3: A working example of lemma isolation in Selene.
Based on the original seL4 structure in Figure 2, we construct
an isolated session (AInvs_TGT) along with a dependency
session (AInvs_DEP) to facilitate efficient verification of the
target lemma (strengthen_Not).

ries from the four dependency sessions (e.g., Un- 283

typed_AI is also dependent upon MonadicRewrite 284

from Lib). Such a large dependency graph usu- 285

ally contains hundreds or thousands of definitions, 286

functions, and lemmas. Identifying prerequisite 287

components from this dependency graph to prove 288

lemmas in AInvs can be a great challenge. ❷ SeL4 289

is a systematic project that requires a lot of expert 290

knowledge of operating system, i.e., seL4 is sorely 291

domain-specific. LLMs may not be quite familiar 292

these fields, and therefore the quality of generated 293

proofs may not be satisfying. ❸ Proofs in seL4 294

are often in the procedural style, i.e., they specify 295

a series of tactics to apply without describing the 296

intermediate results. In contrast, proofs for general 297

mathematical problems are often in the declarative 298

style (Zheng et al., 2022), i.e., they specify both the 299

proving goals and the proving operations explicitly 300
5 (see Appendix A). Although previous work have 301

demonstrated that LLMs can deal with declarative 302

proofs (Jiang et al., 2022; First et al., 2023), the 303

procedural style in seL4 may become a challenge. 304

3.2 Lemma Isolation in Selene 305

As outlined in Section 3.1, for large projects like 306

seL4, Isabelle constructs the overall verification 307

at the session granularity. However, it can lead 308

to significant overhead during our evaluation – af- 309

ter generating a proof for the given lemma, one 310

may have to wait for multiple minutes to build the 311

corresponding session from scratch. To address 312

this issue, we propose lemma isolation, wherein 313

5The variation in problem domains may account for such
differences. Unlike pure and abstract mathematical problems,
which are well-suited for the declarative style, software verifi-
cation usually involves large, concrete, and complex systems,
which may benefit from the procedural style (Harrison, 1996).
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P1 P2 P3 D

Extracted 1,995 2,496 928 45
Sampled 160 120 80 45

Correctly verified 144 109 64 43

Demonstration 5 5 5 5
Evaluation 139 104 59 38

Table 1: Statistics of Selene. P1, P2 and P3 denote the
three difficulty levels for lemmas in procedural style, while D
represents lemmas in declarative style.

the target lemma is isolated from its dependencies,314

thereby avoiding repeated verification of the depen-315

dencies and creating a lightweight environment for316

Selene evaluation.317

Following the working example presented in Fig-318

ure 2, we isolate the target lemma strengthen_Not319

from the original session AInvs, depicted in Figure320

3. The isolation process yields a minimal target321

session AInvs_TGT, which exclusively contains322

only the target lemma strengthen_Not. To verify323

AInvs_TGT, a dependency session AInvs_DEP is324

required. AInvs_DEP consists of theory files origi-325

nally found in the dependency tree of Untyped_AI326

along with a new theory file (Untyped_AI_DEP)327

containing the contents preceding strength_Not328

in Untyped_AI. The theories in AInvs_DEP re-329

construct the dependencies of the target lemma330

strength_Not in the original AInvs session.331

AInvs_DEP, as well as other dependency ses-332

sions (ASpec, Lib, etc.), are verified only once333

and fixed during evaluation. Accessing the persis-334

tent verification results in these sessions to verify335

AInvs_TGT takes little time. Lemma isolation can336

reduce the verification time to about 1
3 of rebuilding337

from scratch (Appendix B), creating a lightweight338

verification environment for Selene evaluation.339

3.3 Key Know-how about Selene340

In addition to the isolation design, the implementa-341

tion of Selene involves many details, which can be342

attributed to the complexity of the seL4 system.343

Lemma extraction. We gather theory files from344

the refinement sessions in seL4, and extract lem-345

mas through a rough parser (e.g., lemmas always346

begin with the token “lemma” or “throrem” and347

end with the token “qed”, “done” or a “by ...” state-348

ment). Lemmas within contexts or locales 6 are349

excluded from the process, because we find them350

incompatible with our design of lemma isolation.351

6Contexts and locales in Isabelle are designed to deal with
parametric theorems. Please refer to the documentation for
more details (Ballarin, 2023).

If the proof for a lemma exceeds 20 lines, we ex- 352

clude it from Selene, as it may be too long and too 353

challenging for LLMs. Finally, we collect 5,464 354

lemmas across 11 sessions from seL4. 355

Dependency session construction. We construct 356

the dependency session by replacing only the tar- 357

get theory file in the directory. Taking Figure 2 358

and 3 for instance, we replace the theory file Un- 359

typed_AI in the session AInvs with the new theory 360

Untyped_AI_DEP to build the dependency session 361

AInvs_DEP. In the ROOT file, we set the entry 362

to Untyped_AI_DEP and copy other meta infor- 363

mation of AInvs to complete the construction of 364

AInvs_DEP. Even if there are additional theories 365

in Untyped_AI_DEP, this setup will not include 366

them into the dependency graph, providing correct 367

dependencies to AInvs_TGT. 368

Lemma category. As mentioned earlier, we ob- 369

served that the majority of proofs in seL4 are in 370

procedural style (5,419 out of 5,464 lemmas col- 371

lected), while only a small number are in declara- 372

tive style (45). Procedural proofs typically applies 373

a sequence of tactics to achieve the proving goal, 374

and the length usually reflects the level of difficulty. 375

For procedural style, we categorize lemmas into 376

three difficulty levels according to the proof length: 377

P1 (one single line), P2 (two to six lines), and P3 378

(seven to twenty lines). Lemmas from each dif- 379

ficulty level are randomly sampled to create the 380

benchmark. As for lemmas in declarative style, all 381

of them are included in the benchmark. 382

Correctness checking. It is important to check the 383

correctness of the isolated sessions, as the imple- 384

mentation may not be guaranteed to be accurate. 385

There are three potential causes of incorrect isola- 386

tion: ❶ the extracted lemmas may be incomplete 387

due to the limitation of keyword matching; ❷ copy- 388

ing meta information may result in configuration 389

errors; ❸ the complex system setup of seL4 may 390

lead to errors during lemma isolation. In addition, 391

prior to evaluation, the dependency sessions should 392

also be verified once to produce the necessary per- 393

sistent results. We exclude those incorrect lemmas 394

from Selene, leaving the remaining lemmas ready 395

for evaluation. The statistics of Selene of each step 396

are listed in Table 1. 397

4 Evaluation 398

4.1 Evaluation Pipeline 399

Pipeline. The evaluation pipeline of Selene is pre- 400

sented in Figure 1. The subject LLM takes the 401
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specification, extracted from the isolated target ses-402

sion, as input, and generates a potential proof for it.403

The isolated target session is updated by appending404

the generated proof to the specification, and subse-405

quently verified by the Isabelle prover. As designed406

in Section 3.2, since the dependency sessions have407

been already built once, the verification results are408

persistently available to the target session, thus the409

verification of the target session does not consume410

significant amount of time.411

Metrics. We employ accuracy at k trials as the412

performance indicator, denoted as ACC#k. Specif-413

ically, the subject LLM independently generates414

k proofs using temperature sampling (Ficler and415

Goldberg, 2017; Fan et al., 2018; Caccia et al.,416

2020) and nucleus (top-p) sampling (Holtzman417

et al., 2020). If at least one of the k trials is suc-418

cessfully verified, ACC#k for the corresponding419

lemma is 1; otherwise, it is 0.420

Prompt. The prompt includes an instruction,421

which specifies the task of automated proof, along422

with several demonstrations for in-context learning423

(Brown et al., 2020). Each demonstration consists424

of a specification and its corresponding groundtruth425

proof (see Appendix C).426

4.2 Evaluation Setup427

We evaluate GPT-3.5-turbo (OpenAI, 2023a) and428

GPT-4 (OpenAI, 2023b) upon Selene. Within each429

set (P1, P2, P3, and D), we randomly select five430

lemmas as demonstrations, which remain fixed dur-431

ing our evaluation, and evaluate the remaining lem-432

mas against the subject LLMs, as listed in Table433

1. The subject LLMs take in the concatenation of434

the instruction, five demonstrations, and the target435

lemma specification, without additional augmenta-436

tions, and generate proof trials.437

ACC#1 and ACC#5 are assessed in our evalu-438

ation. The probability threshold (top-p) is set to439

0.95, and the temperature is set to 0 for ACC#1440

and 0.5 for ACC#5. Generation trials that exceed441

the token length of 2,048, contain the token“sorry”442

or “oops” (which can bypass the verification pro-443

cess, leading to false positive results), or take more444

than 10 minutes during verification (timeout) are445

all considered as failures.446

4.3 Evaluation Result447

The results are listed in Table 2. The results sug-448

gests that LLMs have the capacity to automate449

proof generation in Selene, with GPT-4 notably450

achieving 51.8% ACC#5 upon P1. Nevertheless,451

ACC P1 P2 P3 D

GPT-3.5
-turbo

#1 28.1 2.9 0 0
#5 35.3 5.8 0 5.3

GPT-4 #1 41.7 7.7 0 10.5
#5 51.8 12.5 1.7 15.8

Table 2: Performance of GPT-3.5-turbo and GPT-4 against
Selene (values in percentage).

Error P1 P2 P3 D

Total 81 96 59 34

Undefine 38(47%) 37(39%) 21(36%) 12(35%)

Logic 41(51%) 55(57%) 31(52%) 20(59%)

Other 2(2%) 4(4%) 7(12%) 2(6%)

Table 3: The composition of different types of errors made
by GPT-4. The errors are collected in the ACC#1 setting
evaluation. Outside the brackets are the absolute number of
errors, inside the brackets are the percentages.

as the complexity of the proofs for procedural lem- 452

mas increases (P1→P3), the task becomes increas- 453

ingly challenging for both GPT-3.5-turbo and GPT- 454

4 models. In fact, both models struggle signifi- 455

cantly when attempting to prove lemmas within 456

the P3 category, which require comprehending an 457

extensive dependency graph and employing more 458

sophisticated reasoning capabilities. Interestingly, 459

both the subject models perform better when ad- 460

dressing declarative lemmas (D) within Selene, as 461

opposed to those categorized under P3, despite the 462

proofs for most D category lemmas being of compa- 463

rable length to those in P3, typically ranging from 464

7 to 20 lines. A plausible explanation could be that 465

the inclusion of intermediate goals within declar- 466

ative proofs mitigates the difficulty in logic and 467

reasoning. In addition, we find that in many cases, 468

GPT-4 adopts different proving strategies than the 469

groundtruth (see cases in Appendix D), suggesting 470

that the LLM is not simply memorizing. 471

Failure type. We analyze and categorize the errors 472

made by GPT-4 during the evaluation process to 473

better understand the challenges posed by Selene. 474

The errors are classified into three distinct cate- 475

gories based on the nature of the error encountered: 476

❶ "undefined errors", where tactics not defined in 477

seL4 are applied in the proofs, ❷ "logic errors", 478

where the proof cannot be finished (e.g., applica- 479

tion of inappropriate tactics, presence of incom- 480

plete proving goals), and ❸ "other errors", includ- 481

ing syntax errors, runtime errors, and other issues. 482

The error composition is presented in Table 3. The 483

majority of the errors (over a half) committed by 484
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Figure 4: Demonstrative examples of similar lemma augmen-
tation and dependency augmentation.

GPT-4 can be attributed to its inadequate reasoning485

capability, which leads to unfinished proof goals486

(logic errors). A smaller, yet still significant, pro-487

portion of errors (undefined errors) stem from a488

lack of comprehensive knowledge of the dependen-489

cies within the entire seL4 project. Additionally,490

it is notable that GPT-4 barely makes syntax error,491

as most cases in other errors are refusal to gen-492

erate proof 7, timeouts, and empty outputs (e.g.,493

exceeding the generation length), etc.494

5 Augmentation495

As previously discussed, LLMs exhibit signifi-496

cant potential for automated proof when evaluated497

against Selene, however, it is also evident that the498

task presents substantial challenges. We propose499

some augmentation techniques and evaluate them500

in our evaluation pipeline, with the aspiration that501

they may serve as a catalyst for further exploration502

in future studies.503

5.1 Augmentation to Evaluation Pipeline504

Similar lemma augmentation. SeL4 is an intri-505

cate piece of software, and as a consequence, its506

formal verification process is even more complex,507

involving a multitude of lemmas that can be similar508

(or even identical). The presence of these similar509

lemmas naturally offers an opportunity to augment510

the automated proof pipeline, and similar augmen-511

tation has been proven beneficial in tasks such as512

question-answering (Lewis et al., 2020) and code513

completion (Lu et al., 2022). Specifically, we build514

a retrieval library by segmenting theory files from515

seL4 into discrete chunks. The segmentation is516

guided by the blank lines in the text.Retrieval is517

performed through the BM25 algorithm (Robertson518

7For instance, GPT-4 may refuse our request by generating
texts like "I cannot assist with this request". This situation
does not happen much, but it is difficult to prevent it, even if
we order it in the prompt to always generate a response. In
addition, GPT-3.5-turbo produces much more refusal issues
than GPT-4.

and Zaragoza, 2009) (the upper part of Figure 4), 519

which involves querying the target specifications 520

against the retrieval library to identify analogous 521

text segments (i.e., similar lemmas). To ensure the 522

integrity of the experiment, the groundtruth proof 523

is deliberately omitted from the retrieval process 524

to prevent biases in the search results. During our 525

evaluation, we select the initial ten lines from the 526

chunk most closely resembling the target specifica- 527

tion as the augmentation. 528

Dependency augmentation. The complex depen- 529

dencies inherent in the seL4 project pose signif- 530

icant obstacles to LLMs when evaluated against 531

Selene, as evidenced in Table 3. To mitigate this 532

challenge, we introduce the dependency augmenta- 533

tion. Particularly, we extract the applied facts from 534

the ground truth proof, and identify their origin 535

by searching in the chunk library (those chunks 536

not in the dependency sessions are omitted during 537

this process), as shown in the lower part in Figure 538

4. The pinpointed definitions, functions, and lem- 539

mas are clearly integral to the proof of the target 540

specification. And these elements are then pro- 541

vided to the subject LLM as augmentations, with 542

the intention of simplifying the task by providing 543

correct information for the model to apply. Ideally, 544

this augmentation should alleviate the obstacles 545

posed by dependencies, allowing the subject LLM 546

to focus on applying the accurate information pro- 547

vided. However, during our practice, the absence 548

of sophisticated tools means we cannot pinpoint 549

every fact and its origin with complete precision. 550

Consequently, the results of the dependency aug- 551

mentation should be viewed as a potential upper 552

limit of the subject LLM’s capability in this context. 553

We use the first five lines from the origin of each 554

identified fact as the augmentation. 555

Fixing augmentation. When a proof attempt does 556

not succeed, it is almost a standard procedure to 557

examine the error message in order to fix the flawed 558

proof (refer to Figure 1). The error message typi- 559

cally provides comprehensive feedback, such as the 560

error type and the state of the proof at the moment 561

of failure. There are existing studies that support 562

the capability of LLMs to fix previously incorrect 563

logic by incorporating error messages (First et al., 564

2023; Chen et al., 2023), which make this augmen- 565

tation even feasible when dealing with Selene. The 566

evaluation is conducted as a two-round dialogue 567

– if the subject LLM does not succeed in the first 568

round, we feed the error message into the model 569

and ask it to try again; if the subject LLM succeeds 570

7



Augmentation P1 P2 P3 D

GPT-4 41.7 7.7 0 10.5
+Similar 47.5 14.4 1.7 10.5
+Dependency 52.5 14.4 1.7 –
+Fixing 53.2 9.6 0 18.4

Table 4: ACC#1 of GPT-4 with augmentations evaluated
against Selene (values in percentage). For the D category, we
skip the dependency augmentation, due to the complexity of
fact extraction in this category.

Aug. Error

Total Undef. Logic Other

GPT-4 81 38(47%) 41(51%) 2(2%)

+Similar 73 29(40%) 42(57%) 2(3%)

+Dependency 66 16(24%) 45(68%) 5(8%)

+Fixing 65 30(46%) 32(49%) 3(5%)

Table 5: The composition of errors made by GPT-4 with
augmentations evaluated against Selene-P1.

in the first trial, we do not carry out the second571

round of fixing.572

We evaluate GPT-4 with the three augmentations,573

with the performance indicator of ACC#1. All574

other settings remain the same as in Section 4.2.575

5.2 Augmentation Result576

The results listed in Table 4 indicate the three aug-577

mentations lead to improvements across different578

categories. We also examine the error composition579

of GPT-4 with augmentations evaluated against P1,580

as listed in Table 5. In the below, we analyze the581

effect of each augmentation strategy and carry out582

some ablation studies.583

Similar augmentation. The similar augmentation584

is found to enhance performance upon procedural585

categories (P1-P3), indicating the utility in the aug-586

mented contexts; but it does not yield a significant587

effect upon the D category, suggesting a potential588

area for further investigation. According to Table589

5, the similar augmentation marginally ameliorates590

the incidence of undefined errors without showing591

notable impact on logic errors. This improvement592

could be attributed to the facts introduced from the593

inclusion of similar lemmas.594

Dependency augmentation. The dependency aug-595

mentation significantly improves GPT-4 on P1596

(41.5%→52.5% in Table 4). As for the errors in597

Table 5, it is notable that the dependency augmenta-598

tion results in a substantial diminution of undefined599

errors, corroborating our intended purpose.600

Fixing augmentation. In Table 5, as the com-601

plexity of the proof increases (i.e., P2 and P3), the602

Augmentation P1 P2 P3 D

+TryAgain 49.6 7.7 0 10.5
+Similar & Fixing 61.9 20.2 1.7 7.9

Table 6: Ablation of augmentations (ACC#1 of GPT-4).

fixing augmentation is less effective. This trend is 603

expected since simple proofs (as in P1) typically 604

contain straightforward errors that can be corrected 605

in a single fixing attempt, whereas longer and more 606

complex proofs may require multiple rounds of cor- 607

rections. Also, as demonstrated in Table 5, there 608

is a noticeable reduction in logical errors, which 609

can be attributed to the integration of error mes- 610

sages. We further ablate by not providing the error 611

message to GPT-4, only asking it to try again if 612

the first attempt fails. The results are listed in the 613

“TryAgain” row of Table 6. TryAgain brings lim- 614

ited improvement compared to fixing, suggesting 615

that error messages are important. 616

Similar + dependency. We carry another ablation 617

by combining similar and fixing augmentations to- 618

gether (“Similar&Fixing” in Table 6). Based on 619

Table 5, the similar and the fixing augmentations 620

improve the undefined fact and the logic error is- 621

sues, respectively. Results show that combining 622

both augmentations significantly improves GPT- 623

4’s performance upon P1 and P2. On D category, 624

these two augmentations may have opposite effects, 625

causing unexpected performance degradation (even 626

worse than raw GPT-4). This phenomenon may be 627

worthy of future exploration. 628

6 Conclusion 629

In this paper, we study the domain of automated 630

proof within the context of software verifica- 631

tion. We introduce Selene, which is a real-world 632

industrial-level automated proof benchmark de- 633

rived from the seL4 project. Selene provides a 634

lightweight verification environment facilitated by 635

lemma isolation with Isabelle sessions. The current 636

framework supports end-to-end proof generation 637

and evaluation, bolstered by supplementary augo- 638

mentation. By evaluating against advanced LLMs 639

such as GPT-3.5-turbo and GPT-4, we demonstrate 640

the potential of LLMs in automated proof genera- 641

tion for software verification. Nevertheless, Selene 642

poses formidable challenges that LLMs have yet 643

to overcome fully. It is our hope that Selene will 644

catalyze further research in this area, promoting 645

advancements in software verification. 646
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7 Limitation647

We present some discussions on the limitations of648

Selene. As an early step of software verification,649

we consider addressing these limitations and chal-650

lenges as our future work. Hopefully, we could651

offer insights that may serve as a catalyst for future652

studies in this field.653

Dependency extraction. SeL4 contains a huge654

and complex dependency graph, posing a signif-655

icant challenge in the accurate extraction of de-656

pendencies, i.e., facts. Our analysis has revealed657

that undefined errors (e.g., applying nonexistent658

facts) account for nearly half of GPT-4’s failures in659

Selene. The dependency augmentation experiment660

has further proven the effectiveness and necessity661

of dependency in addressing this issue. One promis-662

ing research direction may be to transition from663

providing LLMs with groundtruth facts as done in664

this paper, to employing advanced techniques (such665

as RAG (Lewis et al., 2020; Asai et al., 2023)) to666

automatically extract candidate facts directly from667

the codebase. We leave this as our future work.668

Specification generation. There are two stages669

in software verification – the prerequisite speci-670

fication stage and the proof stage. In this paper,671

we primarily concentrate on the automation of the672

proof stage, which constitutes the main bulk of the673

verification workload. However, it is important to674

acknowledge that the specification stage, which in-675

volves translation of properties and programs into676

formal languages, is not without its own set of chal-677

lenges. This stage is not only time-consuming and678

resource-intensive but also necessitates substantial679

advancements in automation to enhance efficiency.680

Proof state. The current pipeline of Selene only681

supports end-to-end proof generation, i.e., the sub-682

ject LLM generates the entire proof. Our experi-683

mental results indicate that LLMs possess the abil-684

ity to prove lemmas within the less challenging P1685

category. However, the effectiveness significantly686

diminishes when addressing lemmas from the more687

complex P3 category. This observation aligns with688

the experiences of human practitioners, who typi-689

cally cannot construct proofs for P3 lemmas in a690

single attempt but instead progress incrementally,691

selecting suitable operations at each step based on692

the evolving proof state. To enhance the capability693

of LLMs in addressing P3 lemmas, it may be neces-694

sary to introduce the interactive proof state into the695

Selene pipeline in the future, thereby mimicking696

the human practitioners during proof construction.697
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A Procedural Vs. Declarative Style893

The procedural style proofs specify a series of tac-894

tics to apply, without describing the intermediate re-895

sults. A demonstrative lemma from seL4 is shown896

below.897

1 lemma unbind_notification_valid_sched[wp]:898
2 "{ valid_sched} unbind_notification ntfnptr899
3 {λrv. valid_sched }"900
4 apply (simp add: unbind_notification_def)901
5 apply (rule hoare_seq_ext[OF _ gbn_sp ])902
6 apply (case_tac ntfnptra , simp , wp, simp)903
7 apply (clarsimp)904
8 apply (rule hoare_seq_ext[OF _ get_simple_ko_sp ])905
9 apply (wp set_bound_notification_valid_sched , clarsimp)906

10 done907

In the example, line 4-10 apply a sequence of908

tactics to achieve the proving goal. Declarative909

style proofs, on the other hand, explicitly write910

both the intermediate proving goals and the proving911

operations. A typical example from seL4 is shown912

below.913

1 lemma thread_set_as_user:914
2 "thread_set (λtcb. tcb ( tcb_arch := arch_tcb_context_set915
3 (f $ arch_tcb_context_get (tcb_arch tcb)) (tcb_arch tcb) )) t916
4 = as_user t (modify f)"917
5 proof -918
6 have P: "∧f. det (modify f)"919
7 by (simp add: modify_def)920
8 thus ?thesis921

P1 P2 P3 D

Checking 148.9 145.8 217.3 178.7

GPT-3.5-turbo 40.2 43.7 42.5 50.6
GPT-4 35.6 43.5 43.9 43.3

Table 7: Average elapsed time of verification of correct-
ness checking before evaluation, and ACC#1 evaluation of
GPT-3.5-turbo and GPT-4 without augmentations (values in
seconds).

9 apply (simp add: as_user_def P thread_set_def) 922
10 apply (clarsimp simp add: select_f_def simpler_modify_def 923
11 bind_def image_def) 924
12 done 925
13 qed 926

Line 6 in this lemma specifies the intermediate 927

proving goal, and the following lines performs a 928

series of tactics. 929

In general, mathematical problems are usually 930

pure and abstract, and therefore they are well-suited 931

for the declarative style; while software verification 932

usually deals with large, concrete and complex sys- 933

tems like seL4, and it benefit from the procedural 934

style (Harrison, 1996). In Selene, we notice that 935

most proofs in seL4 are in procedural style. 936

B Verification Time 937

The time cost of the verification process is listed in 938

Table 7. Correctness checking bears resemblance 939

of building from scratch, and it takes on average 940

about three times longer than verifying only the iso- 941

lated target session. Note that we even include the 942

ten minutes of timeout during evaluation in Table 7. 943

Since we only perform correctness checking once 944

before evaluation, lemma isolation can greatly im- 945

prove the verification efficiency during evaluation 946

of Selene. 947

C Prompt 948

Instruction. The basic instruction is shown below. 949

You are an experienced formal language programmer.
You not only know the Isabelle formal language very
well, but also are very familiar with the seL4 project.
As a reminder, seL4 is an almost fully formally verified
operating system microkernel. Your mission is to write
formal proofs in Isabelle for the given specifications,
which formally describe properties of seL4 in Isabelle.
You are not supposed to write anything other than formal
proofs in Isabelle. E.g., You should not write comments
or explanations in natural language. In addition, the
formal proofs you write will be automatically checked,
therefore, you need to do your best to make it correct.

950

For each augmentation, there is an augmented 951

instruction listed below. we concatenate the ba- 952
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sic instruction and the corresponding augmented953

instruction, forming the final instruction.954

Similar: Some chunks of seL4 with similar specifica-
tions are provided before the target specification. Each
chunk is provided between the tags of "<sim>" and
"</sim>". You can use these chunks to assist the proof
of the target specification.
Dependency: Some previous chunks of seL4 are pro-
vided before the target specification as plausible depen-
dencies. Each chunk is provided between the tags of
"<dep>" and "</dep>". You can use these chunks to
assist the proof of the target specification.
Fixing: If the previous proof is not correct, the error
message may be provided inside curly brackets {just like
this}. If the error message is provided, you are supposed
to make the previous proof correct at your best.

955

Demonstration. In general, a demonstration for956

the subject LLM (e.g., GPT-4) is an input-output957

pair. In the most simple evaluation setting of Selene958

(without any augmentation), the input in the demon-959

stration is the specification of the demonstrative960

lemma and the output is the corresponding proof.961

When augmented by similar chunks, the demon-962

stration output remains the same, while the input is963

a concatenation of the similar chunk and the spec-964

ification. The similar chunk is tagged by “<sim>”965

and “</sim>”. The dependency augmentation is966

quite similar, with different tags of “<dep>” and967

“</dep>”.968

As for fixing augmentation, we need to collect969

erroneous proofs and corresponding error messages970

upon the demonstrative lemmas. For each lemmas971

within the five demonstrations, we invoke the sub-972

ject LLM in the same manner as in Section 4, using973

the other four lemmas as demonstrations. In this974

way, we may collect some errors produced by the975

subject LLM. The demonstrations for fixing aug-976

mentation are much more complicated. We carry977

out this augmentation in a two-round dialogue way.978

I.e., each demonstration may contain two input-979

output pairs (if the subject LLM fails). The first980

pair is the specification and the erroneous proof981

generated by the subject LLM; the second pair is982

the error message and the groundtruth proof. Note983

that the error message is inside curly brackets (e.g.,984

{Undefined fact: “st_def” At command “by”}). If985

the subject LLM successfully generates a proof for986

the demonstrative lemma, i.e., it does not make any987

error, the demonstration only contains one pair, i.e.,988

the specification along with the groundtruth proof.989

D Generated Cases 990

Some cases generated by GPT-3.5-turbo and GPT- 991

4 upon the P1 category of Selene are presented in 992

Table 8. These cases are randomly selected from 993

the union of correct generation from GPT-3.5-turbo 994

and GPT-4 under the setting of ACC#1, without 995

cherry-picking. In the table, we can observe that 996

GPT-4 almost do not generate a proof identical 997

to the groundtruth (except for tbc_context_merge). 998

This shows that to a certain extent, GPT-4 can un- 999

derstand and generate proofs for seL4. 1000
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Lemma Generated Proof

(Specification + Groundtruth Proof) GPT-3.5-turbo GPT-4

lemma (in strengthen_implementation)
strengthen_Not[strg]:

"[| st (¬ F) (−→) P P' |]
−→ st F (=⇒) (¬ P) (¬ P')"
(* PROOF STARTS RIGHT HERE *)

by (cases F, auto)

by (erule
strengthen_precondition)

[×] Undefined fact

by (clarsimp simp: st_def)
[√]

lemma gen_invocation_typeI:
"invocation_type l = GenInvocationLabel x

=⇒ gen_invocation_type l = x"
(* PROOF STARTS RIGHT HERE *)

by (simp add: gen_invocation_type_def)

by (simp add:
gen_invocation_type_def)

[√]

by (simp add:
gen_invocation_type_def
split: invocation_label.splits)

[√]

lemma ts_Restart_case_helper:
"(case ts of Structures_A.Restart ⇒ A

| _ ⇒ B)
= (if ts = Structures_A.Restart

then A else B)"
(* PROOF STARTS RIGHT HERE *)

by (case_tac ts, simp_all)

by (case_tac ts, simp_all)
[√]

by (cases ts; simp)
[√]

lemma irq_state_back:
"P (irq_state_of_state (internal_state_if

((a,b),c)))
(irq_masks_of_state (internal_state_if

((a,b),c)))
=⇒ P (irq_state_of_state b)

(irq_masks_of_state b)"
(* PROOF STARTS RIGHT HERE *)

by simp

by simp
[√]

by (clarsimp simp:
internal_state_if_def)

[×] Undefined fact

lemma cte_wp_at_conj:
"cte_wp_at (λc. P c ∧ Q c) p s

= (cte_wp_at P p s ∧ cte_wp_at Q p s)"
(* PROOF STARTS RIGHT HERE *)

by (fastforce simp: cte_wp_at_def)

by (auto simp:
cte_wp_at_caps_of_state)

[√]

by (auto simp:
cte_wp_at_caps_of_state)

[√]

lemma smrs_cte_at[wp]:
"{ cte_at p} set_mrs thread buf msgs

{λ_. cte_at p}"
(* PROOF STARTS RIGHT HERE *)

by (wp valid_cte_at_typ)

Sorry , I cannot assist
with this request.

[×] Outer syntax error

by (wp | simp add: set_mrs_def )+
[√]

lemma master_eqE:
"[| capMasterCap cap = capMasterCap cap ';

∧cap. F (capMasterCap cap) = F cap |]
=⇒ F cap = F cap '"
(* PROOF STARTS RIGHT HERE *)

by (rule master_eqI , assumption , simp)

by (metis)
[√]

by (drule meta_mp) auto
[×] Failed to apply proof method

lemma tcb_context_merge[simp]:
"arch_tcb_context_get (tcb_arch

(tcb_registers_caps_merge tcb tcb '))
= arch_tcb_context_get (tcb_arch tcb)"
(* PROOF STARTS RIGHT HERE *)

by (simp add: tcb_registers_caps_merge_def)

by (simp add:
tcb_registers_caps_merge_def)

[√]

by (simp add:
tcb_registers_caps_merge_def)

[√]

lemma cte_map_tcb_2:
"cte_map (t, tcb_cnode_index 2)

= t + 2*2^ cte_level_bits"
(* PROOF STARTS RIGHT HERE *)

by (simp add: cte_map_def
tcb_cnode_index_def to_bl_1)

by (simp add: cte_map_def
tcb_cnode_index_def)

[√]

by (simp add: cte_map_def
tcb_cnode_index_def
cte_level_bits_def)

[√]

lemma object_type_asid_reset [simp]:
"object_type (asid_reset obj)

= object_type obj"
(* PROOF STARTS RIGHT HERE *)

by (clarsimp simp: asid_reset_def)

by (cases obj , auto)
[×] Failed to finish proof

by (cases obj; simp
add: asid_reset_def)

[√]

Table 8: Cases generated by the subject LLMs upon P1 of Selene. These cases are collected under the ACC#1 setting. The
verification results are marked under the generated proofs. Please note that we have added some line breaks into the original
lemmas and the generated proofs for the convenience of display in the table.
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