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Abstract

Ensuring correctness is a pivotal aspect of soft-
ware engineering. Among the various strategies
available, software verification offers a defini-
tive assurance of correctness. Nevertheless,
writing verification proofs is resource-intensive
and manpower-consuming, and there is a great
need to automate this process. We introduce
Selene in this paper, which is the first project-
level automated proof benchmark constructed
based on the real-world industrial-level oper-
ating system microkernel, seL4. Selene pro-
vides a comprehensive framework for end-to-
end proof generation and a lightweight verifi-
cation environment. Our experimental results
with advanced large language models (LLMs),
such as GPT-3.5-turbo and GPT-4, highlight
the capabilities of LLMs in the domain of au-
tomated proof generation. Additionally, our
further proposed augmentations indicate that
the challenges presented by Selene can be miti-
gated in future research endeavors.

“Program testing can be used to show the pres-
ence of bugs, but never to show their absence.”
— Dahl et al.’s (1972)

1 Introduction

Confirming the correctness of the software, i.e.,
checking whether it adheres to the properties spec-
ified in the requirements, is advantageous for
software engineering (SE). In contrast to testing,
which is incomplete, verification provides rigorous
guarantee of software correctness or incorrectness
(D’Silva et al., 2008). Specifically, during testing,
an adequate number of test cases are created and
tested against the subject program. If the program
violates a testing oracle or encounters other errors
(e.g., runtime error), a bug is found. However, the
opposite conclusion cannot be guaranteed other-
wise. Verification often involves the usage of a

formal language and the corresponding prover. !

This process requires formal proofs to rigorously
demonstrate that the program satisfies the required
properties, which can be verified by the prover.

In general, software verification involves two
stages. @ The prerequisite specification stage trans-
lates the required properties and the subject pro-
gram into the formal language, creating a to-be-
proved proposition stating that “the program meets
the properties”, a.k.a., the specification. @ The
proof stage is supposed to generate proofs that
prove the above specification and can be formally
checked by the prover. Both stages consume sig-
nificant resources and manpower, with the second
stage being particularly demanding. E.g., the seL4
operating system microkernel 2, which has been
formally verified against strong functionality and
security properties, requires 7 person-months ded-
icated to specification stage and 11 person-years
to proof stage for correctness verification, and the
amount of proof code in sel.4 is even ten times
more than that of the microkernel implementation
itself (Klein et al., 2014). Therefore, in order to
promote provable software, automated software
verification, particularly automated proof, is highly
desirable. As an early exploratory effort, in this
paper, we explore to automate the major overhead.

Typically, automated proof in software verifica-
tion is a conditional generation task from the speci-
fication to the proof, involving reasoning capabil-
ities. Fortunately, large language models (LLMs)
offer an opportunity, as they have demonstrated
significant capacity in logic and reasoning at math-
ematical theorem proving (Jiang et al., 2022; First
et al., 2023; Jiang et al., 2023). Only limited re-
search explores how to leverage LLM for code ver-
ification (Sun et al., 2023; Yao et al., 2023). And

'Please note that there are other verification techniques
such as model checking. We refer to it as methods involving
interactive proof assistants in this paper.

2https://sel4.systems/
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Figure 1: A demonstration of the Selene pipeline for automated proof generation (best viewed in color). Selene facilitates both
the construction of proofs from scratch (indicated by the gray “generate” path) and the refinement of existing proofs augmented
by error messages (highlighted by the red “fixing” path). To validate the correctness of the generated proofs, they are subjected
to verification by the Isabelle prover within the authentic sel.4 environment.

they only focus on function-level code verification,
rather than a complete industrial-level software.
A distinctive feature of industrial-level projects is
the complex dependencies among lemmas and files,
which makes automated proof even harder. In order
to promote software verification, we propose a real-
world industrial-level benchmark based on selL4 for
automated proof, namely Selene. Sel.4 is a high-
assurance operating system microkernel, and it is
comprehensively formally verified. The verifica-
tion of sel.4 is mainly based on the formal language
of Isabelle (Isabelle, 2023), containing over 100k
lines of code in Isabelle and thousands of lemmas
(specification + proof), among which we randomly
extract 360 for benchmarking. Selene provides the
complete dependency graph of lemmas, definitions
and functions, along with a lightweight verifica-
tion environment for each lemma to be evaluated.
Due to the dependencies of the lemmas, almost
the entire verification project needs to be rebuilt
in order to check the generated proof, which can
lead to a huge evaluation overhead (tens of minutes
per lemma). Thence, Selene creates an isolated
verification environment for each lemma to avoid
repeatedly building and verifying the dependent
lemmas, which enables efficient evaluation (it usu-
ally takes only a few minutes or even seconds to
verify a generation).

We evaluate GPT-3.5-turbo (OpenAl, 2023a)
and GPT-4 (OpenAl, 2023b) in the Selene pipeline
(Figure 1). The experimental results demonstrate
the feasibility of LLMs for automated proof in soft-
ware verification. Still, we have identified some
further challenges in Selene. @ The dependency
graph of seL4 is complicated, and extracting facts
to be applied from it can be hard for LLMs. @
The logic and reasoning process of a rather large
proof may be beyond the capability of the subject

LLMs. Even GPT-4 has difficulty in solving the
rather difficult categories in Selene. Therefore, to
address the challenges, we introduce three distinct
augmentations, i.e., similar lemma augmentation,
dependency augmentation and fixing augmentation.
These augmentations yield varying improvements
across the Selene’s different categories. Despite the
inherent difficulties, our experimental results with
these augmentations offer promising indications
that the challenges posed by Selene are surmount-
able.

The main contributions of this paper can be sum-
marized as below.

We introduce the Selene benchmark, tailored for
project-level automated proof in software verifi-
cation, grounded in the real-world industrial-level
project of the sel.4 operating system microkernel.
We introduce the technique of lemma isolation,
which facilitates a lightweight verification environ-
ment capable of handling the complexities inherent
in systems such as seL4.

Through our experiments with GPT-3.5-turbo and
GPT-4, we demonstrate the potential of LLMs in
automating the proof generation process in soft-
ware verification.

We incorporate augmentations into the framework,
which mitigate some of the challenges encountered
within Selene and suggest promising avenues for
future studies.

2 Related Work
2.1 Automated Theorem Proving by LLM

Automated theorem proving, especially mathemat-
ical theorem proving, has garnered significant at-
tention in the field of artificial intelligence. LLMs

3We will release our benchmark and all scripts for repro-
ducing and further studies.



have shown promising performance in proving for-
mal theorems using proof assistants, such as Is-
abelle (Isabelle, 2023), Coq (Coq, 2023), and Lean
(Lean, 2023). Thor (Jiang et al., 2022) integrates
LLMs and hammer-based (Blanchette et al., 2016)
provers in Isabelle. DSP (Jiang et al., 2023) lever-
ages LLMs to produce structured formal sketches
for auotomated proving. Besides, ProofNet (Azer-
bayev et al., 2023) and Baldur (First et al., 2023)
both train or finetune LLMs on formal language
corpora.

In addition to the automatic approaches, there
are existing benchmarks in the field of formal the-
orem proving. MiniF2F (Zheng et al., 2022) con-
sists of mathematical problems from Olympiads
competitions covering multiple formal languages.
PISA (Jiang et al., 2021) includes the Archive of
Formal Proofs in Isabelle. ProofNet (Azerbayev
et al., 2023) contains mathematical problems in
Lean along with parallel natural language descrip-
tions. LeanDojo (Yang et al., 2023) builds a large
benchmark in Lean with complete dependencies
and the running environment.

2.2 Automated Software Verification

Software verification involves checking whether
the software meets the requirements. In this paper,
we leave alone the dynamic techniques (such as
testing) that need to run the software, and only
discuss the static formal verification techniques.
We briefly introduce four main techniques of au-
tomated software verification. Please refer to the
survey for more details (D’Silva et al., 2008). @
Static analysis contains a collection of technolo-
gies (e.g., pointer analysis, value range analysis)
that analyze the behavior of the software with-
out actual execution. By abstract interpretation
(Cousot and Cousot, 1977), which approximately
determines the undecidable software behaviors,
one may check the correctness. @ Model check-
ing traverses all plausible states of the software
to determine whether a property holds (Emerson
and Clarke, 1980; Queille and Sifakis, 1982). If
the property is violated, the algorithm produces a
reproducible trace, i.e., a counterexample. Due
to the large state space, algorithms for model
checking are often abstracted or depth-bounded
(Biere et al., 1999). ® Verification-aware program-
ming languages, such as Dafny (Dafny, 2023) and
Verus (Verus, 2023), supports formal specification
through preconditions, postconditions, and loop in-
variants, etc., and employs first-order logic solvers

(e.g., Z3 (de Moura and Bjgrner, 2008)) to automat-
ically prove the specifications. They encourage the
programmers to write correct specifications while
writing the program, leaving the correctness verifi-
cation burden to automatic solvers. @ Interactive
verification relies on the interactive proof assistants.
Both specifications and proofs during formal verifi-
cation require substantial manual effort, and they
are challenging to be fully automated. Hammers
are still the major solutions to automating interac-
tive verification. In the era of LLMs, it is highly
feasible to explore automated proof in interactive
verification.

Currently, there is limited research specifically
addressing the problem of automated software
verification with language models. Clover (Sun
et al., 2023) introduces a benchmark for consis-
tency checking among code, specification, and doc-
string, building on the verification-aware language
of Dafny. Yao et al. (2023) proposes to use GPT-
4 to write invariants, assertions, and other proof
structures for Rust-based formal verification, in the
short function-level code snippets.

3 Selene

Given the impracticality of waiting for dozens of
minutes to verify a single proof generated by the
LLM, we construct Selene to align with the ob-
jective of lightweight evaluation. Drawing on the
session design in Isabelle and sel.4 (Section 3.1),
we introduce lemma isolation (Section 3.2), which
enables rapid verification of the target lemma (usu-
ally a few seconds). Due to the complexity of sel.4,
we further delve into some specific implementation
details of Selene in Section 3.3.

3.1 Preliminary of Sel.4

SeL4 is a comprehensively formally verified operat-
ing system microkernel (Klein et al., 2014), provid-
ing an excellent example for software verification.
Most of the verification work on seL.4’s functional
correctness is based upon Isabelle (Isabelle, 2023),
which is the basis of Selene.

Isabelle sessions. In the context of large verifi-
cation projects, Isabelle employs sessions to ef-
fectively and efficiently organize the environment
(Wenzel, 2023). The concept bears resemblance
to the "package-class-function" structure in pro-
gramming languages, with the design of "session-
theory-lemma" in Isabelle. A session serves as a
container for verification results typically centered
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Figure 2: An illustrative example of the seL4 verification
structure. The arrows pointing from A to B indicate that B
is dependent upon A, where A and B can be lemmas, theory
files, or sessions, etc.

around a specific topic, and maintains them in a
persistent form. It enables easy accessibility with-
out the need for repeated rebuilding lemmas within
the session. Such design facilitates incremental
development during software verification, allowing
modifications to be made without necessitating a
complete rebuild, as results in the unchanged and
independent sessions remain persistent. Isabelle
organizes the sessions using a series of ROOT files,
which contain meta information such as the depen-
dencies and the entry theory files for the sessions.

SeL4 verification structure. The verification
of seL4 consists of multiple layers of refinement
(De Roever and Engelhardt, 1998), progressing
from high-level conceptual ideas to the concrete C
implementation of the operating system #. Thence,
there are many sessions involved in seL.4 as shown
in Figure 2, with some directly completing a re-
finement layer (e.g., Alnvs) while others providing
dependencies (e.g., ASpec and Lib) such as defini-
tions and property specifications.

In our early studies about the verification pro-
cess of selL4, we have identified some possible
challenges. @ The dependencies in seL4 are highly
complicated. A refinement session is typically de-
pendent on multiple other sessions, creating a huge
and complex dependency graph that makes it hard
to identify the prerequisite components for proving
a certain lemma in the refinement sessions. For
instance, the session Alnvs in Figure 2 is depen-
dent on four sessions (Word_Lib, ExecSpec, AS-
pec, and Lib), and theories in Alnvs depend not
only on theories within Alnvs (e.g., Untyped_AlI
directly depends on ArchDetype_Al, and both of
them are from Alnvs), but also on lots of theo-

*A refinement formally proves that a concrete system cor-
responds to the abstract model and that all properties of the
abstract model also hold for the concrete system.
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Figure 3: A working example of lemma isolation in Selene.
Based on the original seL4 structure in Figure 2, we construct
an isolated session (Alnvs_TGT) along with a dependency
session (Alnvs_DEP) to facilitate efficient verification of the
target lemma (strengthen_Not).

ries from the four dependency sessions (e.g., Un-
typed_Al is also dependent upon MonadicRewrite
from Lib). Such a large dependency graph usu-
ally contains hundreds or thousands of definitions,
functions, and lemmas. Identifying prerequisite
components from this dependency graph to prove
lemmas in Alnvs can be a great challenge. ® SelL4
is a systematic project that requires a lot of expert
knowledge of operating system, i.e., seL4 is sorely
domain-specific. LLMs may not be quite familiar
these fields, and therefore the quality of generated
proofs may not be satisfying. @ Proofs in sel.4
are often in the procedural style, i.e., they specify
a series of tactics to apply without describing the
intermediate results. In contrast, proofs for general
mathematical problems are often in the declarative
style (Zheng et al., 2022), i.e., they specify both the
proving goals and the proving operations explicitly
> (see Appendix A). Although previous work have
demonstrated that LLMs can deal with declarative
proofs (Jiang et al., 2022; First et al., 2023), the
procedural style in seL4 may become a challenge.

3.2 Lemma Isolation in Selene

As outlined in Section 3.1, for large projects like
selL4, Isabelle constructs the overall verification
at the session granularity. However, it can lead
to significant overhead during our evaluation — af-
ter generating a proof for the given lemma, one
may have to wait for multiple minutes to build the
corresponding session from scratch. To address
this issue, we propose lemma isolation, wherein

SThe variation in problem domains may account for such
differences. Unlike pure and abstract mathematical problems,
which are well-suited for the declarative style, software verifi-
cation usually involves large, concrete, and complex systems,
which may benefit from the procedural style (Harrison, 1996).



P1 P2 P3 D

Extracted 1,995 2,496 928 45
Sampled 160 120 80 45
Correctly verified 144 109 64 43

Demonstration 5 5 5 5
Evaluation 139 104 59 38

Table 1: Statistics of Selene. P1, P2 and P3 denote the
three difficulty levels for lemmas in procedural style, while D
represents lemmas in declarative style.

the target lemma is isolated from its dependencies,
thereby avoiding repeated verification of the depen-
dencies and creating a lightweight environment for
Selene evaluation.

Following the working example presented in Fig-
ure 2, we isolate the target lemma strengthen_Not
from the original session Alnvs, depicted in Figure
3. The isolation process yields a minimal target
session Alnvs_TGT, which exclusively contains
only the target lemma strengthen_Not. To verify
Alnvs_TGT, a dependency session Alnvs_DEP is
required. Alnvs_DEP consists of theory files origi-
nally found in the dependency tree of Untyped_AlI
along with a new theory file (Untyped_AI_DEP)
containing the contents preceding strength_Not
in Untyped_AI. The theories in Alnvs_DEP re-
construct the dependencies of the target lemma
strength_Not in the original Alnvs session.

Alnvs_DEP, as well as other dependency ses-
sions (ASpec, Lib, etc.), are verified only once
and fixed during evaluation. Accessing the persis-
tent verification results in these sessions to verify
Alnvs_TGT takes little time. Lemma isolation can
reduce the verification time to about % of rebuilding
from scratch (Appendix B), creating a lightweight
verification environment for Selene evaluation.

3.3 Key Know-how about Selene

In addition to the isolation design, the implementa-
tion of Selene involves many details, which can be
attributed to the complexity of the sel.4 system.
Lemma extraction. We gather theory files from
the refinement sessions in seL.4, and extract lem-
mas through a rough parser (e.g., lemmas always
begin with the token “lemma” or “throrem” and
end with the token “qed”, “done” or a “by ...” state-
ment). Lemmas within contexts or locales © are
excluded from the process, because we find them
incompatible with our design of lemma isolation.
8Contexts and locales in Isabelle are designed to deal with

parametric theorems. Please refer to the documentation for
more details (Ballarin, 2023).

If the proof for a lemma exceeds 20 lines, we ex-
clude it from Selene, as it may be too long and too
challenging for LLMs. Finally, we collect 5,464
lemmas across 11 sessions from sel.4.
Dependency session construction. We construct
the dependency session by replacing only the tar-
get theory file in the directory. Taking Figure 2
and 3 for instance, we replace the theory file Un-
typed_Al in the session Alnvs with the new theory
Untyped_AI_DEP to build the dependency session
Alnvs_DEP. In the ROQOT file, we set the entry
to Untyped_AI_DEP and copy other meta infor-
mation of Alnvs to complete the construction of
Alnvs_DEP. Even if there are additional theories
in Untyped_AI_DEP, this setup will not include
them into the dependency graph, providing correct
dependencies to Alnvs_TGT.

Lemma category. As mentioned earlier, we ob-
served that the majority of proofs in selL.4 are in
procedural style (5,419 out of 5,464 lemmas col-
lected), while only a small number are in declara-
tive style (45). Procedural proofs typically applies
a sequence of tactics to achieve the proving goal,
and the length usually reflects the level of difficulty.
For procedural style, we categorize lemmas into
three difficulty levels according to the proof length:
P1 (one single line), P2 (two to six lines), and P3
(seven to twenty lines). Lemmas from each dif-
ficulty level are randomly sampled to create the
benchmark. As for lemmas in declarative style, all
of them are included in the benchmark.
Correctness checking. It is important to check the
correctness of the isolated sessions, as the imple-
mentation may not be guaranteed to be accurate.
There are three potential causes of incorrect isola-
tion: @ the extracted lemmas may be incomplete
due to the limitation of keyword matching; @ copy-
ing meta information may result in configuration
errors; ® the complex system setup of seL4 may
lead to errors during lemma isolation. In addition,
prior to evaluation, the dependency sessions should
also be verified once to produce the necessary per-
sistent results. We exclude those incorrect lemmas
from Selene, leaving the remaining lemmas ready
for evaluation. The statistics of Selene of each step
are listed in Table 1.

4 Evaluation

4.1 Evaluation Pipeline

Pipeline. The evaluation pipeline of Selene is pre-
sented in Figure 1. The subject LLM takes the



specification, extracted from the isolated target ses-
sion, as input, and generates a potential proof for it.
The isolated target session is updated by appending
the generated proof to the specification, and subse-
quently verified by the Isabelle prover. As designed
in Section 3.2, since the dependency sessions have
been already built once, the verification results are
persistently available to the target session, thus the
verification of the target session does not consume
significant amount of time.

Metrics. We employ accuracy at k trials as the
performance indicator, denoted as ACC#k. Specif-
ically, the subject LLM independently generates
k proofs using temperature sampling (Ficler and
Goldberg, 2017; Fan et al., 2018; Caccia et al.,
2020) and nucleus (top-p) sampling (Holtzman
et al., 2020). If at least one of the & trials is suc-
cessfully verified, ACC#k for the corresponding
lemma is 1; otherwise, it is O.

Prompt. The prompt includes an instruction,
which specifies the task of automated proof, along
with several demonstrations for in-context learning
(Brown et al., 2020). Each demonstration consists
of a specification and its corresponding groundtruth
proof (see Appendix C).

4.2 Evaluation Setup

We evaluate GPT-3.5-turbo (OpenAl, 2023a) and
GPT-4 (OpenAl, 2023b) upon Selene. Within each
set (P1, P2, P3, and D), we randomly select five
lemmas as demonstrations, which remain fixed dur-
ing our evaluation, and evaluate the remaining lem-
mas against the subject LLMs, as listed in Table
1. The subject LLMs take in the concatenation of
the instruction, five demonstrations, and the target
lemma specification, without additional augmenta-
tions, and generate proof trials.

ACC#1 and ACC#5 are assessed in our evalu-
ation. The probability threshold (top-p) is set to
0.95, and the temperature is set to 0 for ACC#1
and 0.5 for ACC#5. Generation trials that exceed
the token length of 2,048, contain the token‘“‘sorry’
or “oops” (which can bypass the verification pro-
cess, leading to false positive results), or take more
than 10 minutes during verification (timeout) are
all considered as failures.

bl

4.3 Evaluation Result

The results are listed in Table 2. The results sug-
gests that LLLMs have the capacity to automate
proof generation in Selene, with GPT-4 notably
achieving 51.8% ACC#5 upon P1. Nevertheless,

ACC P1 P2 P3 D

GPT-3.5 #1 28.1 29 0 0
-turbo #5 353 5.8 0 53

#1 417 1.7 0 10.5
#5 51.8 125 1.7 158

GPT-4

Table 2: Performance of GPT-3.5-turbo and GPT-4 against
Selene (values in percentage).

Error P1 P2 P3 D
Total 81 96 59 34
Undefine 38w@%) 3709% 2166%  1235%)
Logic 4151%  S5567%  3162%)  20(59%)
Other 202%) 4(4%) T(12%) 2(6%)

Table 3: The composition of different types of errors made
by GPT-4. The errors are collected in the ACC#1 setting
evaluation. Outside the brackets are the absolute number of
errors, inside the brackets are the percentages.

as the complexity of the proofs for procedural lem-
mas increases (P1—P3), the task becomes increas-
ingly challenging for both GPT-3.5-turbo and GPT-
4 models. In fact, both models struggle signifi-
cantly when attempting to prove lemmas within
the P3 category, which require comprehending an
extensive dependency graph and employing more
sophisticated reasoning capabilities. Interestingly,
both the subject models perform better when ad-
dressing declarative lemmas (D) within Selene, as
opposed to those categorized under P3, despite the
proofs for most D category lemmas being of compa-
rable length to those in P3, typically ranging from
7 to 20 lines. A plausible explanation could be that
the inclusion of intermediate goals within declar-
ative proofs mitigates the difficulty in logic and
reasoning. In addition, we find that in many cases,
GPT-4 adopts different proving strategies than the
groundtruth (see cases in Appendix D), suggesting
that the LLM is not simply memorizing.

Failure type. We analyze and categorize the errors
made by GPT-4 during the evaluation process to
better understand the challenges posed by Selene.
The errors are classified into three distinct cate-
gories based on the nature of the error encountered:
O "undefined errors", where tactics not defined in
selL4 are applied in the proofs, @ "logic errors",
where the proof cannot be finished (e.g., applica-
tion of inappropriate tactics, presence of incom-
plete proving goals), and ® "other errors", includ-
ing syntax errors, runtime errors, and other issues.
The error composition is presented in Table 3. The
majority of the errors (over a half) committed by
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Figure 4: Demonstrative examples of similar lemma augmen-
tation and dependency augmentation.

GPT-4 can be attributed to its inadequate reasoning
capability, which leads to unfinished proof goals
(logic errors). A smaller, yet still significant, pro-
portion of errors (undefined errors) stem from a
lack of comprehensive knowledge of the dependen-
cies within the entire seL.4 project. Additionally,
it is notable that GPT-4 barely makes syntax error,
as most cases in other errors are refusal to gen-
erate proof /, timeouts, and empty outputs (e.g.,
exceeding the generation length), efc.

S Augmentation

As previously discussed, LLMs exhibit signifi-
cant potential for automated proof when evaluated
against Selene, however, it is also evident that the
task presents substantial challenges. We propose
some augmentation techniques and evaluate them
in our evaluation pipeline, with the aspiration that
they may serve as a catalyst for further exploration
in future studies.

5.1 Augmentation to Evaluation Pipeline

Similar lemma augmentation. Sel.4 is an intri-
cate piece of software, and as a consequence, its
formal verification process is even more complex,
involving a multitude of lemmas that can be similar
(or even identical). The presence of these similar
lemmas naturally offers an opportunity to augment
the automated proof pipeline, and similar augmen-
tation has been proven beneficial in tasks such as
question-answering (Lewis et al., 2020) and code
completion (Lu et al., 2022). Specifically, we build
a retrieval library by segmenting theory files from
seL4 into discrete chunks. The segmentation is
guided by the blank lines in the text.Retrieval is
performed through the BM25 algorithm (Robertson

"For instance, GPT-4 may refuse our request by generating
texts like "I cannot assist with this request". This situation
does not happen much, but it is difficult to prevent it, even if
we order it in the prompt to always generate a response. In
addition, GPT-3.5-turbo produces much more refusal issues
than GPT-4.

and Zaragoza, 2009) (the upper part of Figure 4),
which involves querying the target specifications
against the retrieval library to identify analogous
text segments (i.e., similar lemmas). To ensure the
integrity of the experiment, the groundtruth proof
is deliberately omitted from the retrieval process
to prevent biases in the search results. During our
evaluation, we select the initial ten lines from the
chunk most closely resembling the target specifica-
tion as the augmentation.

Dependency augmentation. The complex depen-
dencies inherent in the sel.4 project pose signif-
icant obstacles to LLMs when evaluated against
Selene, as evidenced in Table 3. To mitigate this
challenge, we introduce the dependency augmenta-
tion. Particularly, we extract the applied facts from
the ground truth proof, and identify their origin
by searching in the chunk library (those chunks
not in the dependency sessions are omitted during
this process), as shown in the lower part in Figure
4. The pinpointed definitions, functions, and lem-
mas are clearly integral to the proof of the target
specification. And these elements are then pro-
vided to the subject LLM as augmentations, with
the intention of simplifying the task by providing
correct information for the model to apply. Ideally,
this augmentation should alleviate the obstacles
posed by dependencies, allowing the subject LLM
to focus on applying the accurate information pro-
vided. However, during our practice, the absence
of sophisticated tools means we cannot pinpoint
every fact and its origin with complete precision.
Consequently, the results of the dependency aug-
mentation should be viewed as a potential upper
limit of the subject LLM’s capability in this context.
We use the first five lines from the origin of each
identified fact as the augmentation.

Fixing augmentation. When a proof attempt does
not succeed, it is almost a standard procedure to
examine the error message in order to fix the flawed
proof (refer to Figure 1). The error message typi-
cally provides comprehensive feedback, such as the
error type and the state of the proof at the moment
of failure. There are existing studies that support
the capability of LLMs to fix previously incorrect
logic by incorporating error messages (First et al.,
2023; Chen et al., 2023), which make this augmen-
tation even feasible when dealing with Selene. The
evaluation is conducted as a two-round dialogue
— if the subject LLM does not succeed in the first
round, we feed the error message into the model
and ask it to try again; if the subject LLM succeeds



Augmentation P1 P2 P3 D

GPT-4 417 717 0 105
+Similar 475 144 1.7 105
+Dependency 525 144 1.7 -
+Fixing 532 9.6 0 184

Table 4: ACC#1 of GPT-4 with augmentations evaluated
against Selene (values in percentage). For the D category, we
skip the dependency augmentation, due to the complexity of
fact extraction in this category.

Error
Aug.
Total Undef. Logic  Other
GPT-4 81 38wi%)  41G1%) 202%)
+Similar 73 29@0%)  42(57%) 2(3%)
+Dependency 66 1624%)  45068%)  S58%)
+Fixing 65 3046%)  3249%) 3(5%)

Table 5: The composition of errors made by GPT-4 with
augmentations evaluated against Selene-P1.

in the first trial, we do not carry out the second
round of fixing.

We evaluate GPT-4 with the three augmentations,
with the performance indicator of ACC#1. All
other settings remain the same as in Section 4.2.

5.2 Augmentation Result

The results listed in Table 4 indicate the three aug-
mentations lead to improvements across different
categories. We also examine the error composition
of GPT-4 with augmentations evaluated against P1,
as listed in Table 5. In the below, we analyze the
effect of each augmentation strategy and carry out
some ablation studies.

Similar augmentation. The similar augmentation
is found to enhance performance upon procedural
categories (P1-P3), indicating the utility in the aug-
mented contexts; but it does not yield a significant
effect upon the D category, suggesting a potential
area for further investigation. According to Table
5, the similar augmentation marginally ameliorates
the incidence of undefined errors without showing
notable impact on logic errors. This improvement
could be attributed to the facts introduced from the
inclusion of similar lemmas.

Dependency augmentation. The dependency aug-
mentation significantly improves GPT-4 on P1
(41.5%—52.5% in Table 4). As for the errors in
Table 5, it is notable that the dependency augmenta-
tion results in a substantial diminution of undefined
errors, corroborating our intended purpose.
Fixing augmentation. In Table 5, as the com-
plexity of the proof increases (i.e., P2 and P3), the

Augmentation P1 P2 P3 D

496 1.7 0 10.5
619 202 1.7 79

+TryAgain
+Similar & Fixing

Table 6: Ablation of augmentations (ACC#1 of GPT-4).

fixing augmentation is less effective. This trend is
expected since simple proofs (as in P1) typically
contain straightforward errors that can be corrected
in a single fixing attempt, whereas longer and more
complex proofs may require multiple rounds of cor-
rections. Also, as demonstrated in Table 5, there
is a noticeable reduction in logical errors, which
can be attributed to the integration of error mes-
sages. We further ablate by not providing the error
message to GPT-4, only asking it to try again if
the first attempt fails. The results are listed in the
“TryAgain” row of Table 6. TryAgain brings lim-
ited improvement compared to fixing, suggesting
that error messages are important.

Similar + dependency. We carry another ablation
by combining similar and fixing augmentations to-
gether (“Similar&Fixing” in Table 6). Based on
Table 5, the similar and the fixing augmentations
improve the undefined fact and the logic error is-
sues, respectively. Results show that combining
both augmentations significantly improves GPT-
4’s performance upon P1 and P2. On D category,
these two augmentations may have opposite effects,
causing unexpected performance degradation (even
worse than raw GPT-4). This phenomenon may be
worthy of future exploration.

6 Conclusion

In this paper, we study the domain of automated
proof within the context of software verifica-
tion. We introduce Selene, which is a real-world
industrial-level automated proof benchmark de-
rived from the seL4 project. Selene provides a
lightweight verification environment facilitated by
lemma isolation with Isabelle sessions. The current
framework supports end-to-end proof generation
and evaluation, bolstered by supplementary augo-
mentation. By evaluating against advanced LLMs
such as GPT-3.5-turbo and GPT-4, we demonstrate
the potential of LLMs in automated proof genera-
tion for software verification. Nevertheless, Selene
poses formidable challenges that LLMs have yet
to overcome fully. It is our hope that Selene will
catalyze further research in this area, promoting
advancements in software verification.



7 Limitation

We present some discussions on the limitations of
Selene. As an early step of software verification,
we consider addressing these limitations and chal-
lenges as our future work. Hopefully, we could
offer insights that may serve as a catalyst for future
studies in this field.

Dependency extraction. Sel4 contains a huge
and complex dependency graph, posing a signif-
icant challenge in the accurate extraction of de-
pendencies, i.e., facts. Our analysis has revealed
that undefined errors (e.g., applying nonexistent
facts) account for nearly half of GPT-4’s failures in
Selene. The dependency augmentation experiment
has further proven the effectiveness and necessity
of dependency in addressing this issue. One promis-
ing research direction may be to transition from
providing LL.Ms with groundtruth facts as done in
this paper, to employing advanced techniques (such
as RAG (Lewis et al., 2020; Asai et al., 2023)) to
automatically extract candidate facts directly from
the codebase. We leave this as our future work.
Specification generation. There are two stages
in software verification — the prerequisite speci-
fication stage and the proof stage. In this paper,
we primarily concentrate on the automation of the
proof stage, which constitutes the main bulk of the
verification workload. However, it is important to
acknowledge that the specification stage, which in-
volves translation of properties and programs into
formal languages, is not without its own set of chal-
lenges. This stage is not only time-consuming and
resource-intensive but also necessitates substantial
advancements in automation to enhance efficiency.
Proof state. The current pipeline of Selene only
supports end-to-end proof generation, i.e., the sub-
ject LLM generates the entire proof. Our experi-
mental results indicate that LLMs possess the abil-
ity to prove lemmas within the less challenging P1
category. However, the effectiveness significantly
diminishes when addressing lemmas from the more
complex P3 category. This observation aligns with
the experiences of human practitioners, who typi-
cally cannot construct proofs for P3 lemmas in a
single attempt but instead progress incrementally,
selecting suitable operations at each step based on
the evolving proof state. To enhance the capability
of LLMs in addressing P3 lemmas, it may be neces-
sary to introduce the interactive proof state into the
Selene pipeline in the future, thereby mimicking
the human practitioners during proof construction.

References

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and
Hannaneh Hajishirzi. 2023. Self-rag: Learning to
retrieve, generate, and critique through self-reflection.
CoRR, abs/2310.11511.

Zhangir Azerbayev, Bartosz Piotrowski, Hailey
Schoelkopf, Edward W. Ayers, Dragomir Radev, and
Jeremy Avigad. 2023. Proofnet: Autoformalizing
and formally proving undergraduate-level mathemat-
ics. CoRR, abs/2302.12433.

Clemens Ballarin. 2023. Tutorial on locales and locale
interpretation.

Armin Biere, Alessandro Cimatti, Edmund M. Clarke,
and Yunshan Zhu. 1999. Symbolic model check-
ing without bdds. In Tools and Algorithms for Con-
struction and Analysis of Systems, 5th International
Conference, TACAS 99, Held as Part of the Euro-
pean Joint Conferences on the Theory and Practice of
Software, ETAPS’99, Amsterdam, The Netherlands,
March 22-28, 1999, Proceedings, volume 1579 of
Lecture Notes in Computer Science, pages 193-207.
Springer.

Jasmin Christian Blanchette, Cezary Kaliszyk,
Lawrence C. Paulson, and Josef Urban. 2016.
Hammering towards QED. J. Formaliz. Reason.,
9(1):101-148.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurlPS 2020, December 6-12,
2020, virtual.

Massimo Caccia, Lucas Caccia, William Fedus, Hugo
Larochelle, Joelle Pineau, and Laurent Charlin. 2020.
Language gans falling short. In 8th International
Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

Xinyun Chen, Maxwell Lin, Nathanael Schirli, and
Denny Zhou. 2023. Teaching large language models
to self-debug. CoRR, abs/2304.05128.

Coq. 2023. The coq proof assistant. https://coq.inria.fr/.

Patrick Cousot and Radhia Cousot. 1977. Abstract in-
terpretation: A unified lattice model for static anal-
ysis of programs by construction or approximation
of fixpoints. In Conference Record of the Fourth


https://doi.org/10.48550/ARXIV.2310.11511
https://doi.org/10.48550/ARXIV.2310.11511
https://doi.org/10.48550/ARXIV.2310.11511
https://doi.org/10.48550/ARXIV.2302.12433
https://doi.org/10.48550/ARXIV.2302.12433
https://doi.org/10.48550/ARXIV.2302.12433
https://doi.org/10.48550/ARXIV.2302.12433
https://doi.org/10.48550/ARXIV.2302.12433
https://isabelle.in.tum.de/dist/Isabelle2023/doc/locales.pdf
https://isabelle.in.tum.de/dist/Isabelle2023/doc/locales.pdf
https://isabelle.in.tum.de/dist/Isabelle2023/doc/locales.pdf
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.6092/ISSN.1972-5787/4593
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://openreview.net/forum?id=BJgza6VtPB
https://doi.org/10.48550/ARXIV.2304.05128
https://doi.org/10.48550/ARXIV.2304.05128
https://doi.org/10.48550/ARXIV.2304.05128
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973

ACM Symposium on Principles of Programming Lan-
guages, Los Angeles, California, USA, January 1977,
pages 238-252. ACM.

Dafny. 2023. The dafny programming and verification
language. https://dafny.org/.

Ole-Johan Dahl, Edsger W. Dijkstra, and Charles
Antony Richard Hoare. 1972. Structured program-
ming, volume 8 of A.P.I.C. Studies in data processing.
Academic Press.

Leonardo Mendonga de Moura and Nikolaj S. Bjgrner.
2008. Z3: an efficient SMT solver. In Tools and
Algorithms for the Construction and Analysis of Sys-
tems, 14th International Conference, TACAS 2008,
Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2008, Bu-
dapest, Hungary, March 29-April 6, 2008. Proceed-
ings, volume 4963 of Lecture Notes in Computer
Science, pages 337-340. Springer.

W-P De Roever and Kai Engelhardt. 1998. Data re-
finement: model-oriented proof methods and their
comparison. 47. Cambridge University Press.

Vijay Victor D’Silva, Daniel Kroening, and Georg Weis-
senbacher. 2008. A survey of automated techniques
for formal software verification. IEEE Trans. Com-
put. Aided Des. Integr. Circuits Syst., 27(7):1165-
1178.

. Allen Emerson and Edmund M. Clarke. 1980. Char-
acterizing correctness properties of parallel programs
using fixpoints. In Automata, Languages and Pro-
gramming, 7th Colloquium, Noordweijkerhout, The
Netherlands, July 14-18, 1980, Proceedings, vol-
ume 85 of Lecture Notes in Computer Science, pages
169-181. Springer.

Angela Fan, Mike Lewis, and Yann N. Dauphin. 2018.
Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics, ACL 2018, Melbourne,
Australia, July 15-20, 2018, Volume 1: Long Papers,
pages 889—-898. Association for Computational Lin-
guistics.

Jessica Ficler and Yoav Goldberg. 2017. Controlling
linguistic style aspects in neural language generation.
CoRR, abs/1707.02633.

Emily First, Markus N. Rabe, Talia Ringer, and Yuriy
Brun. 2023. Baldur: Whole-proof generation and
repair with large language models. In Proceedings of
the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2023, San Fran-
cisco, CA, USA, December 3-9, 2023, pages 1229—
1241. ACM.

John Harrison. 1996. Proof style. In Types for Proofs
and Programs, International Workshop TYPES’ 96,
Aussois, France, December 15-19, 1996, Selected
Papers, volume 1512 of Lecture Notes in Computer
Science, pages 154—172. Springer.

10

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text
degeneration. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Isabelle. 2023. The isabelle proof assistant.
https://isabelle.in.tum.de/.

Albert Qiaochu Jiang, Wenda Li, Jesse Michael Han,
and Yuhuai Wu. 2021. Lisa: Language models of
isabelle proofs. In 6th Conference on Artificial Intel-
ligence and Theorem Proving, pages 378-392.

Albert Qiaochu Jiang, Wenda Li, Szymon Tworkowski,
Konrad Czechowski, Tomasz Odrzygézdz, Piotr
Mit 0§, Yuhuai Wu, and Mateja Jamnik. 2022. Thor:
Wielding hammers to integrate language models and
automated theorem provers. In Advances in Neural
Information Processing Systems, volume 35, pages
8360-8373. Curran Associates, Inc.

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou,
Timothée Lacroix, Jiacheng Liu, Wenda Li, Mateja
Jamnik, Guillaume Lample, and Yuhuai Wu. 2023.
Draft, sketch, and prove: Guiding formal theorem
provers with informal proofs. In The Eleventh In-
ternational Conference on Learning Representations,
ICLR 2023, Kigali, Rwanda, May 1-5, 2023. Open-
Review.net.

Gerwin Klein, June Andronick, Kevin Elphinstone,
Toby C. Murray, Thomas Sewell, Rafal Kolanski,
and Gernot Heiser. 2014. Comprehensive formal ver-
ification of an OS microkernel. ACM Trans. Comput.
Syst., 32(1):2:1-2:70.

Lean. 2023. The lean project. https://lean-lang.org/.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Kiittler, Mike Lewis, Wen-tau Yih,
Tim Rocktischel, Sebastian Riedel, and Douwe
Kiela. 2020. Retrieval-augmented generation for
knowledge-intensive NLP tasks. In Advances in Neu-
ral Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual.

Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung-
won Hwang, and Alexey Svyatkovskiy. 2022. Reacc:
A retrieval-augmented code completion framework.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), ACL 2022, Dublin, Ireland, May
22-27, 2022, pages 6227-6240. Association for Com-
putational Linguistics.

OpenAl. 2023a. Gpt-3.5 turbo fine-tuning and api
updates. https://openai.com/blog/gpt-3-5-turbo-fine-
tuning-and-api-updates.

OpenAl. 2023b.
abs/2303.08774.

GPT-4 technical report. CoRR,


https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/TCAD.2008.923410
https://doi.org/10.1109/TCAD.2008.923410
https://doi.org/10.1109/TCAD.2008.923410
https://doi.org/10.1007/3-540-10003-2_69
https://doi.org/10.1007/3-540-10003-2_69
https://doi.org/10.1007/3-540-10003-2_69
https://doi.org/10.1007/3-540-10003-2_69
https://doi.org/10.1007/3-540-10003-2_69
https://doi.org/10.18653/V1/P18-1082
http://arxiv.org/abs/1707.02633
http://arxiv.org/abs/1707.02633
http://arxiv.org/abs/1707.02633
https://doi.org/10.1145/3611643.3616243
https://doi.org/10.1145/3611643.3616243
https://doi.org/10.1145/3611643.3616243
https://doi.org/10.1007/BFB0097791
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
http://aitp-conference.org/2021/abstract/paper_17.pdf
http://aitp-conference.org/2021/abstract/paper_17.pdf
http://aitp-conference.org/2021/abstract/paper_17.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/377c25312668e48f2e531e2f2c422483-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/377c25312668e48f2e531e2f2c422483-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/377c25312668e48f2e531e2f2c422483-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/377c25312668e48f2e531e2f2c422483-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/377c25312668e48f2e531e2f2c422483-Paper-Conference.pdf
https://openreview.net/pdf?id=SMa9EAovKMC
https://openreview.net/pdf?id=SMa9EAovKMC
https://openreview.net/pdf?id=SMa9EAovKMC
https://doi.org/10.1145/2560537
https://doi.org/10.1145/2560537
https://doi.org/10.1145/2560537
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://doi.org/10.18653/V1/2022.ACL-LONG.431
https://doi.org/10.18653/V1/2022.ACL-LONG.431
https://doi.org/10.18653/V1/2022.ACL-LONG.431
https://doi.org/10.48550/ARXIV.2303.08774

SO®ANUL AW —

[ Y N

Jean-Pierre Queille and Joseph Sifakis. 1982. Spec-
ification and verification of concurrent systems in
CESAR. In International Symposium on Program-
ming, 5th Colloquium, Torino, Italy, April 6-8, 1982,
Proceedings, volume 137 of Lecture Notes in Com-
puter Science, pages 337-351. Springer.

Stephen E. Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: BM25 and be-
yond. Found. Trends Inf. Retr., 3(4):333-389.

Chuyue Sun, Ying Sheng, Oded Padon, and Clark W.
Barrett. 2023. Clover: Closed-loop verifiable code
generation. CoRR, abs/2310.17807. 10

11

Verus. 2023. The  verus  proj ect.is

https://github.com/verus-lang/verus.
Makarius Wenzel. 2023. The isabelle system manual.

Kaiyu Yang, Aidan M. Swope, Alex Gu, Rahul Chala-
mala, Peiyang Song, Shixing Yu, Saad Godil, Ryan
Prenger, and Anima Anandkumar. 2023. Leandojo:
Theorem proving with retrieval-augmented language
models. CoRR, abs/2306.15626.

Jianan Yao, Zigiao Zhou, Weiteng Chen, and Weidong
Cui. 2023. Leveraging large language models for
automated proof synthesis in rust. arXiv preprint
arXiv:2311.03739.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu.
2022. minif2f: a cross-system benchmark for for-
mal olympiad-level mathematics. In The Tenth In-
ternational Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022. Open-
Review.net.

A Procedural Vs. Declarative Style

The procedural style proofs specify a series of tac-
tics to apply, without describing the intermediate re-
sults. A demonstrative lemma from seL.4 is shown
below.

lemma unbind_notification_valid_sched[wp]
"{valid_sched} unbind_notification ntfnptr
{Arv. valid_sched}"
apply (simp add: unbind_notification_def)
apply (rule hoare_seq_ext[OF _ gbn_spl)
apply (case_tac ntfnptra, simp, wp, simp)
apply (clarsimp)
apply (rule hoare_seq_ext[OF _ get_simple_ko_sp])
apply (wp set_bound_notification_valid_sched, clarsimp)
done

In the example, line 4-10 apply a sequence of
tactics to achieve the proving goal. Declarative
style proofs, on the other hand, explicitly write
both the intermediate proving goals and the proving
operations. A typical example from sel.4 is shown
below.

lemma thread_set_as_user:

"thread_set (Atcb. tcb ( tcb_arch := arch_tcb_context_set
(f $ arch_tcb_context_get (tcb_arch tcb)) (tcb_arch tcb) )) t
= as_user t (modify f)"

proof -
have P: "Af.
by (simp add:
thus ?thesis

det (modify f)”"
modify_def)

11

P1 P2 P3 D

Checking 1489 1458 2173 178.7
GPT-3.5-turbo  40.2 43.7 42.5 50.6
GPT-4 35.6 43.5 43.9 433

Table 7: Average elapsed time of verification of correct-
ness checking before evaluation, and ACC#1 evaluation of
GPT-3.5-turbo and GPT-4 without augmentations (values in
seconds).

as_user_def P thread_set_def)
select_f_def simpler_modify_def

apply (simp add:
apply (clarsimp simp add:
bind_def image_def)
done
qed

Line 6 in this lemma specifies the intermediate
proving goal, and the following lines performs a
series of tactics.

In general, mathematical problems are usually
pure and abstract, and therefore they are well-suited
for the declarative style; while software verification
usually deals with large, concrete and complex sys-
tems like selL4, and it benefit from the procedural
style (Harrison, 1996). In Selene, we notice that
most proofs in seL4 are in procedural style.

B Verification Time

The time cost of the verification process is listed in
Table 7. Correctness checking bears resemblance
of building from scratch, and it takes on average
about three times longer than verifying only the iso-
lated target session. Note that we even include the
ten minutes of timeout during evaluation in Table 7.
Since we only perform correctness checking once
before evaluation, lemma isolation can greatly im-
prove the verification efficiency during evaluation
of Selene.

C Prompt

Instruction. The basic instruction is shown below.

~

You are an experienced formal language programmer.
You not only know the Isabelle formal language very
well, but also are very familiar with the seL.4 project.
As a reminder, seL4 is an almost fully formally verified
operating system microkernel. Your mission is to write
formal proofs in Isabelle for the given specifications,
which formally describe properties of seL.4 in Isabelle.
You are not supposed to write anything other than formal
proofs in Isabelle. E.g., You should not write comments
or explanations in natural language. In addition, the
formal proofs you write will be automatically checked,
therefore, you need to do your best to make it correct.

For each augmentation, there is an augmented
instruction listed below. we concatenate the ba-
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sic instruction and the corresponding augmented
instruction, forming the final instruction.

Similar: Some chunks of sel.4 with similar specifica-
tions are provided before the target specification. Each
chunk is provided between the tags of "<sim>" and
"</sim>". You can use these chunks to assist the proof
of the target specification.

Dependency: Some previous chunks of seL.4 are pro-
vided before the target specification as plausible depen-
dencies. Each chunk is provided between the tags of
"<dep>" and "</dep>". You can use these chunks to
assist the proof of the target specification.

Fixing: If the previous proof is not correct, the error
message may be provided inside curly brackets {just like
this}. If the error message is provided, you are supposed
to make the previous proof correct at your best.

Demonstration. In general, a demonstration for
the subject LLM (e.g., GPT-4) is an input-output
pair. In the most simple evaluation setting of Selene
(without any augmentation), the input in the demon-
stration is the specification of the demonstrative
lemma and the output is the corresponding proof.
When augmented by similar chunks, the demon-
stration output remains the same, while the input is
a concatenation of the similar chunk and the spec-
ification. The similar chunk is tagged by “<sim>"
and “</sim>”. The dependency augmentation is
quite similar, with different tags of “<dep>" and
“</dep>".

As for fixing augmentation, we need to collect
erroneous proofs and corresponding error messages
upon the demonstrative lemmas. For each lemmas
within the five demonstrations, we invoke the sub-
ject LLM in the same manner as in Section 4, using
the other four lemmas as demonstrations. In this
way, we may collect some errors produced by the
subject LLM. The demonstrations for fixing aug-
mentation are much more complicated. We carry
out this augmentation in a two-round dialogue way.
Le., each demonstration may contain two input-
output pairs (if the subject LLM fails). The first
pair is the specification and the erroneous proof
generated by the subject LLM; the second pair is
the error message and the groundtruth proof. Note
that the error message is inside curly brackets (e.g.,
{Undefined fact: “st_def” At command “by”}). If
the subject LLM successfully generates a proof for
the demonstrative lemma, i.e., it does not make any
error, the demonstration only contains one pair, i.e.,
the specification along with the groundtruth proof.

12

D Generated Cases

Some cases generated by GPT-3.5-turbo and GPT-
4 upon the P1 category of Selene are presented in
Table 8. These cases are randomly selected from
the union of correct generation from GPT-3.5-turbo
and GPT-4 under the setting of ACC#1, without
cherry-picking. In the table, we can observe that
GPT-4 almost do not generate a proof identical
to the groundtruth (except for tbc_context_merge).
This shows that to a certain extent, GPT-4 can un-
derstand and generate proofs for sel.4.



Lemma

(Specification + Groundtruth Proof)

Generated Proof

GPT-3.5-turbo

GPT-4

lemma (in strengthen_implementation)
strengthen_Not[strg]:

"[] st (= F) (—) P P" |]
— st F (=) (=~ P) (= P")"
(* PROOF STARTS RIGHT HERE *)

by (cases F, auto)

by (erule
strengthen_precondition)
[x1] Undefined fact

by (clarsimp simp: st_def)
L

V4

lemma gen_invocation_typel:
"invocation_type 1 = GenInvocationLabel x
— gen_invocation_type 1 = x"
(* PROOF STARTS RIGHT HERE =)
by (simp add: gen_invocation_type_def)

by (simp add:
gen_invocation_type_def)
L

V4

by (simp add:
gen_invocation_type_def
split: invocation_label.splits)

Ly

lemma ts_Restart_case_helper:
"(case ts of Structures_A.Restart = A
| - = B)
= (if ts = Structures_A.Restart
then A else B)"
(* PROOF STARTS RIGHT HERE =)
by (case_tac ts, simp_all)

by (case_tac ts, simp_all)
L

V4

by (cases ts; simp)
L

V4

lemma irq_state_back:
"P (irq_state_of_state (internal_state_if
((a,b),c)))
(irqg_masks_of_state (internal_state_if
((a,b),c)))
—> P (irq_state_of_state b)
(irq_masks_of_state b)"
(* PROOF STARTS RIGHT HERE =)
by simp

by simp

V4

by (clarsimp simp:
internal_state_if_def)
[x1] Undefined fact

lemma cte_wp_at_conj:

"cte_wp_at (Ac. P c A Qc)p s
= (cte_wp_at P p s A cte_wp_at Q p s)”
(* PROOF STARTS RIGHT HERE %)

by (fastforce simp: cte_wp_at_def)

by (auto simp:
cte_wp_at_caps_of_state)

Ly

by (auto simp:
cte_wp_at_caps_of_state)
LA

v

lemma smrs_cte_at[wp]

"{cte_at p} set_mrs thread buf msgs
{A_. cte_at p}"
(* PROOF STARTS RIGHT HERE *)

by (wp valid_cte_at_typ)

Sorry, I cannot assist
with this request.
[x ] Outer syntax error

by (wp | simp add: set_mrs_def)+
oA

V

lemma master_eqE:

"[| capMasterCap cap = capMasterCap cap';
Acap. F (capMasterCap cap) = F cap |]
—> F cap = F cap'”

(* PROOF STARTS RIGHT HERE =)
by (rule master_eql, assumption, simp)

by (metis)
L

V4

by (drule meta_mp) auto
[x] Failed to apply proof method

lemma tcb_context_mergelsimp]:
"arch_tcb_context_get (tcb_arch
(tcb_registers_caps_merge tcb tcb'))
= arch_tcb_context_get (tcb_arch tcb)"”
(* PROOF STARTS RIGHT HERE =)

by (simp add: tcb_registers_caps_merge_def)

by (simp add:
tcb_registers_caps_merge_def)

Y

by (simp add:
tcb_registers_caps_merge_def)

Ly

lemma cte_map_tcb_2:

"cte_map (t, tcb_cnode_index 2)
=t + 2x2"cte_level_bits”
(* PROOF STARTS RIGHT HERE =)

by (simp add: cte_map_def
tcb_cnode_index_def to_bl_1)

by (simp add: cte_map_def
tcb_cnode_index_def)
L

V4

by (simp add: cte_map_def
tcb_cnode_index_def
cte_level_bits_def)

[ A

V

lemma object_type_asid_reset [simp]
"object_type (asid_reset obj)

= object_type obj"

(* PROOF STARTS RIGHT HERE %)
by (clarsimp simp: asid_reset_def)

by (cases obj, auto)
[x] Failed to finish proof

by (cases obj; simp
add: asid_reset_def)

Ly

Table 8: Cases generated by the subject LLMs upon P1 of Selene. These cases are collected under the ACC#1 setting. The
verification results are marked under the generated proofs. Please note that we have added some line breaks into the original
lemmas and the generated proofs for the convenience of display in the table.
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