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ABSTRACT

Supervised Fine-Tuning (SFT) is a critical step for adapting Large Language Mod-
els (LLMs) to specialized domains, often serving as a cold-start for subsequent
reinforcement learning (RL). However, SFT’s tendency to memorize a small set
of expert data for a downstream task can impair generalization and lead to catas-
trophic forgetting of prior knowledge, undermining the promise of effective RL.
In this paper, we demonstrate that this degradation primarily results from tokens
in the expert data to which the base model assigns low probability. Specifically,
we frame these as ‘off-policy’ tokens, as they represent a significant deviation
from the model’s current prior knowledge. Due to the nature of the log-likelihood
objective, these off-policy tokens produce larger gradient magnitudes, destabi-
lizing the training process. To investigate this phenomenon, we adopt a well-
established clipping strategy from reinforcement learning, which is widely used
to manage off-policy data in an on-policy manner. Applying this strategy to SFT
moderates the learning process by constraining gradient updates from off-policy
tokens, creating a more on-policy-like training dynamic. Through extensive ex-
periments on the agentic benchmarks ALFWorld and ScienceWorld, we discover
that this clipped approach, compared to standard SFT, reduces forgetting on out-
of-distribution tasks by 11.54% and boosts final RL performance by 6.70%. Fur-
thermore, latent-space analysis validates our initial claim, showing that applying
the off-policy token clipped strategy results in less model’s internal representa-
tional drift than standard SFT and is thus key to preserving prior knowledge.

1 INTRODUCTION

Large Language Models (LLMs) have found wide applications in complex reasoning and decision-
making tasks (OpenAI et al., 2024; Team et al., 2025). Although LLMs are routinely pre-trained on
billions of tokens, it is insufficient to produce models that are adept at specialized downstream tasks
or capable of robust, multi-step reasoning (DeepSeek-AI et al., 2025; Liu et al., 2021). Therefore,
post-training, which includes Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL), is
the critical stage for continually improving LLMs and enabling the acquisition of new abilities (Ku-
mar et al., 2025; Zhang et al., 2024). Within this paradigm, SFT adapts a model to a new domain by
training it on a curated set of expert data. This process directly instills task-specific behaviors and,
critically, provides an essential cold-start for the subsequent RL phase (Ouyang et al., 2022; Qwen
et al., 2025; Yu et al., 2025a; Wang et al., 2025).

Although this process is adept at cloning a specific behavioral policy (DeepSeek-AI et al., 2025;
Wei et al., 2025), the model’s tendency to memorize these static traces leads to impaired generaliza-
tion and the catastrophic forgetting of pre-existing knowledge (Chu et al., 2025; Wu et al., 2025b;
Shenfeld et al., 2025). This occurs as SFT inadvertently alters the model’s internal representations,
causing an erosion of the foundational knowledge acquired during pre-training. This degradation
is particularly detrimental for the subsequent RL phase. A flawed cold-start means initializing the
RL agent in a less generalizable and knowledgeable state, which limits the generation of useful
exploratory experiences and imposes a ceiling on its performance (Huan et al., 2025; Zhao et al.,
2025). Consequently, a fundamental question arises:

What are the specific mechanisms within SFT that induce catastrophic forgetting, and can we miti-
gate them to yield a more robust cold-start?

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In response to this question, we investigate the training dynamics of SFT on the agentic bench-
marks (Luo et al., 2025a; Shridhar et al., 2021), where an effective cold-start is essential (Shang
et al., 2025). We find that the majority of representational damage occurs during the initial stages of
fine-tuning. This period of high probability change on out-of-distribution tasks correlates directly
with a suddenly elevated gradient norm, which we attribute to the LLM encountering tokens within
the expert data that it assigns a very low probability to. This phenomenon directly results from
the log-likelihood objective, which assigns disproportionately large gradient magnitudes to low-
probability tokens, thereby biasing the learning process. We frame these low-probability tokens as
‘off-policy’ tokens, as they represent a significant deviation from the model’s prior knowledge. We
therefore identify the gradient brought by these off-policy tokens as the primary mechanism behind
the catastrophic forgetting of standard SFT. This insight suggests a possible strategy: to directly
constrain the destabilizing gradient updates that originate from these off-policy tokens.

To test this, we adopt the clipping strategy from trust region methods in reinforcement learn-
ing (Schulman et al., 2015; 2017), a method we term Off-Policy Token-Clipped SFT (OPC-SFT).
This method computes a token-level probability ratio to measure the policy deviation induced by
an update. To preserve the model’s prior knowledge, the ratio is clipped for off-policy tokens, thus
preventing the large gradient magnitudes they would otherwise cause. This mechanism directly tem-
pers the influence of high-magnitude gradients generated by low-probability targets, preventing the
destabilizing updates that cause knowledge degradation. We conduct extensive experiments to vali-
date our claim. On the agentic benchmarks ALFWorld and ScienceWorld, OPC-SFT demonstrates
substantial gains in generalization over conventional SFT, reducing out-of-distribution forgetting by
11.54% and boosting the final performance of a downstream RL agent by 6.70%. We support these
findings with a latent-space analysis, showing OPC-SFT induces significantly less representational
drift, and an analysis of probability dynamics, which demonstrates that it successfully clips drastic
updates. Furthermore, we find that OPC-SFT is most pronounced when the initial gradient norm is
large, which occurs when the expert data is substantially off-policy.

2 PRELIMINARIES

2.1 LLMS FINE-TUNING FRAMED AS AN RL PROBLEM

Let π(y|x) denote the conditional generative distribution modeled by an LLM with parameters θ.
In generative reasoning tasks, the LLM sequentially generates an output sequence y = (y1, . . . , yT )
by predicting one token at a time, given an input query prompt x0. For complex tasks, this sequence
y often includes a chain-of-thought (CoT), verbalizing a step-by-step reasoning trace, followed by
a final answer. From a reinforcement learning perspective, we can frame this sequential token-
wise generation as a decision-making process. We define a state space X and an action space Y .
At each timestep t, the LLM serves as a policy π : X → ∆(Y), where ∆(·) is the probability
simplex. A state xt ∈ X represents the prompt concatenated with all previously generated tokens,
and an action yt ∈ A corresponds to the next token to be generated. This token-wise generation
process can be optimized either through supervised methods, where the policy is trained to mimic
an expert sequence y∗, or by Reinforcement Learning with Verifiable Rewards (RLVR) methods,
which leverage a reward function R : X ×Y → {0, 1} to guide the LLM towards desired behaviors.

2.2 SUPERVISED FINE-TUNING AND COLD-START

Downstream tasks in mathematics, coding, and agentic settings require capabilities that pre-training
alone rarely provides. A brief cold-start phase therefore initializes the model with a small set of high-
quality supervised demonstrations, transferring core skills such as multi-step reasoning and problem-
solving format. This phase is implemented as supervised fine-tuning on a corpus D = {(x, y∗)},
which minimizes the following objective:

LSFT(θ) = E(x,y∗)∼D[− log πθ(y
∗ | x)] . (1)

SFT is an effective training paradigm that can rapidly improve performance; however, it is inherently
off-policy because D is drawn from an expert distribution rather than from rollouts of the current
LLM model. When trained on only a small set of new demonstrations with distributional shift,
the model can overfit, and this will limit generalization to scenarios not covered during training.
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Ultimately, this SFT phase yields an LLM model, π0, referred to as the cold-start, which serves as
the starting point for reinforcement learning.

2.3 ON-POLICY REINFORCEMENT LEARNING

Following the SFT cold-start, the initial LLM model π0, hereafter also referred to as the pol-
icy model, is further optimized through an on-policy reinforcement learning phase. In this stage,
the LLM generates its own rollouts to learn from. For a given query x from a distribution Dx,
a response y is sampled from the policy πθ(·|x). The reward function r(x, y) ∈ R then eval-
uates the quality of this response. The policy objective is to maximize the expected reward:
J(θ) = Ex∼Dx,y∼πθ(·|x)[r(x, y)]. The policy gradient for this objective, often estimated with the
REINFORCE algorithm, is given by:

∇θJ(θ) = Ex∼Dx,y∼πθ(·|x)[∇θ log πθ(y|x)r(x, y)]. (2)

However, the basic policy gradient estimator is known to have high variance, which can lead to
unstable training. To control the update size and correct for distributional shift, trust region methods
like Proximal Policy Optimization (PPO) (Schulman et al., 2017) is commonly employed. PPO
constrains the policy update by comparing the current policy πθ to a recent version πθold . This is
achieved using a probability ratio rt(θ) and an advantage estimate Ât at timestep t:

rt(θ) =
πθ(yt | st)
πθold(yt | st)

. (3)

This ratio is then used in a clipped objective function, which penalizes large deviations from the
previous policy:

LCLIP(θ) = Et

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
. (4)

This proximal objective provides a simple yet effective on-policy correction that stabilizes training
and improves generalization in agentic tasks.

3 OFF-POLICY TOKEN CLIPPED SUPERVISED FINE-TUNING

In this section, we provide an analysis of the SFT process on catastrophic forgetting. We begin by
presenting an analysis that reveals a strong correlation between off-policy tokens and catastrophic
forgetting, as measured by the model’s probability change on out-of-distribution tasks. Based on this
insight, we then adopt the clipping strategy on those off-policy tokens, a method termed OPC-SFT,
to test the hypothesis that selectively constraining updates from these off-policy tokens mitigates
forgetting. We ground our validation in the domain of agentic tasks, specifically using the agentic
benchmark (Shridhar et al., 2021). This environment is an ideal testbed because the textual-based
embodied task requires a cold-start for the LLM to learn the specific decision-making format, a
capability usually absent during pre-training.

3.1 SFT PITFALLS: CATASTROPHIC FORGETTING AND OFF-POLICY TOKENS

Our investigation starts from the observation that SFT tends to reallocate probability mass toward
task-specific patterns, often at the expense of general knowledge (Chu et al., 2025; Huan et al.,
2025). Empirically, we post-train a warmed-up Llama3.2-3B-Instruct model on ALFWorld (Shrid-
har et al., 2021) with SFT and RL respectively, until they achieve comparable performance on the
in-distribution test set. Then we evaluate its knowledge retention on a suite of out-of-distribution
benchmarks including coding and QA tasks: GPQA (Rein et al., 2023), HumanEval (Chen et al.,
2021), MBPP (Austin et al., 2021), and MMLU (Hendrycks et al., 2021a). We compare the prob-
ability change on these benchmarks for a model trained with SFT against one trained with RL. As
shown in Fig. 1(a), the results demonstrate that SFT induces a significantly more drastic change in
the model’s probabilities than RL, meaning that it often achieves new-task gains by erasing prior
knowledge. To determine when this knowledge degradation occurs, we analyze the progression of
the probability change throughout the SFT process. As shown in Fig. 1(b), we plot the incremental
probability change between consecutive training checkpoints. It reveals that the probability change

3
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(a)

GPQA HumanEval

MBPP MMLU

Forgetting Comparison between RL and SFT under 

Comparable In-Distribution Performance Gains
(b)

(c)

Figure 1: (a) Probability changes comparison between RL and SFT models after both achieving
comparable in-distribution validation performance. (b) Probability changes during training. (c)
Curves of gradient norm and target token probability for tokens in the bottom 1% quantile.

induced during the first episode is substantially larger than in any subsequent episode. Specifically,
the incremental probability change observed on GPQA is 60.7% smaller in the second epoch com-
pared to the first, while for MBPP, the reduction is 46.6%. This provides strong evidence that the
majority of catastrophic forgetting happens during this initial stage. We further examine the evolu-
tion of target token probabilities and gradient norms during training. Fig. 1(c) shows that the high
gradient norm drops abruptly during initial training, with target tokens simultaneously exhibiting
the probabilities in the bottom 1% quantile increase suddenly. These high-magnitude gradients are,
in turn, responsible for the large probability changes observed in Fig. 1(b). We identify this phe-
nomenon, where the model encounters off-policy data that deviates from its prior knowledge, as
a direct cause of catastrophic forgetting. In Sec. 3.2, we derive the relationship between gradient
norms and target token probability by analyzing the SFT objective’s gradient formulation.

3.2 THE PROBLEM OF LARGE GRADIENT NORM IN STANDARD SFT

The standard objective for SFT is to maximize the likelihood of an expert-provided response y∗

given the input query x. This is achieved by minimizing the negative log-likelihood loss for each
sample in a dataset D = {(x, y∗)}:

∇θLSFT(θ) = −E(x,y∗)∼D

[
∇θπθ(y

∗ | x)
πθ(y∗ | x)

]
. (5)

While this objective is intuitive, its training dynamics may exhibit sudden and excessively large
gradient magnitudes. This phenomenon critically stems from the π(y∗|x) term in the denominator.
During the early cold-start phase, the model frequently assigns very low probabilities to expert
targets, an event we empirically observed in Fig. 1(c). When this denominator approaches values as
low as 10−4, the gradient’s magnitude can become excessively large. These erratic, high-magnitude
parameter updates, often associated with what we define as off-policy tokens in Sec. 3.1, can lead to
catastrophic forgetting of prior knowledge.

3.3 OPC-SFT: ADAPTING PPO’S CLIPPING TO SFT

To further investigate this phenomenon, we turn to the well-established clipping strategy from Prox-
imal Policy Optimization (PPO) (Schulman et al., 2017), a trust region method in reinforcement
learning. This strategy is explicitly designed to manage off-policy data by preventing destructive
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policy updates. The parallel to our SFT problem becomes clear when we compare their gradient
structures. In SFT, large gradient norms stem from low-probability tokens causing the policy term,
πθ, in the denominator to be small. Similarly, in PPO, the reference policy, πθold , also appears in
the denominator because the PPO objective introduces the policy ratio Eq. (3) to quantify deviation
between the current and reference policies. To safeguard against destructive updates, PPO applies
a clipping function directly to this ratio. Thus, it is natural to manage the off-policy tokens during
SFT in the same manner. Concurrently, recent work has also explored this strategy to avoid potential
overfitting in SFT (Zhu et al., 2025). This is implemented via a policy ratio for a given expert target
y∗ and input x:

r(θ) =
πθ(y

∗ | x)
πθold(y

∗ | x)
. (6)

This ratio also quantifies how much the current policy has changed relative to its recent predecessor
for a specific action. To prevent erratic updates, we directly moderate the SFT loss by clipping this
ratio to a bounded interval [1 − ϵ, 1 + ϵ], where the hyperparameter ϵ defines the size of this trust
region. Specifically, we can reveal this mechanism through the loss of PPO:

∇θLPPO(θ) = −Et

[
∇θ

(
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

))]
. (7)

It suggests that when the new policy is too aggressive or too conservative, the gradient will be clipped
to zero. While the PPO objective uses a learned advantage estimate Â, SFT lacks an explicit reward
signal. We bridge this gap by recognizing that the SFT objective implicitly treats every expert token
as an optimal action. Therefore, we set the advantage to a uniform positive constant, Â = 1, to
uniformly encourage the adoption of all target behaviors. We get the gradient of this loss inherits
PPO’s stabilizing behavior:

∇θLOPC-SFT(θ) = −E(x,y∗)∼D [∇θ (min (r(θ), clip(r(θ), 1− ϵ, 1 + ϵ)))] . (8)

Thus, the Off-Policy token Clipped SFT (OPC-SFT) loss is:

LOPC-SFT(θ) = −E(x,y∗)∼D [min (r(θ), clip(r(θ), 1− ϵ, 1 + ϵ))] . (9)

This loss ensures bounded policy updates. By adapting PPO’s proven clipping strategy, it can con-
strain the SFT update’s deviation from a periodically updated reference policy, thereby stabilizing
the training process. Specifically, if r(θ) > 1 + ϵ, indicating that the current policy overemphasizes
y∗ in the expert dataset, clipping prevents an overly aggressive update which may lead to forgetting.
Furthermore, periodically refreshing the reference parameters θold allows this trust region to adapt
as the model learns, balancing the acquisition of new, specialized knowledge with the retention of
general capabilities. Consequently, OPC-SFT mitigates the destructive updates and preserves the
model’s prior knowledge, leading to more robust generalization.

4 EXPERIMENTS

We conduct a suite of experiments to demonstrate that OPC-SFT produces a robust cold-start pol-
icy that improves subsequent reinforcement learning performance compared to standard SFT and
other strong baselines. Our evaluation primarily focuses on LLM agentic environments. First, in
Sec. 4.1.1, we assess in-distribution generalization by testing the policy’s ability to adapt to both
seen and unseen task variations within the target domain. Second, to validate the anti-forgetting
properties of OPC-SFT, we measure its out-of-distribution (OOD) performance on a set of gen-
eral reasoning tasks, including code generation, mathematical problem-solving, and common-sense
question-answering Sec. 4.1.2. Strong performance on these OOD tasks suggests the clipping mech-
anism effectively preserves the model’s prior knowledge, a property that we believe contributes to its
superior performance after RL, as shown in Sec. 4.1.3. Third, to understand the mechanisms driv-
ing these performance gains, we conduct diagnostic analyses in Sec. 4.2 by visualizing the model’s
internal representations via PCA and tracking token probability progression. In Sec. 4.3, we investi-
gate why OPC-SFT shows less pronounced gains on mathematical reasoning tasks. And we find the
gradient norms of math data are smaller than those from the agentic tasks. Finally, in Sec. 4.4, we
perform an ablation study on the clipping ratio ϵ to assess the robustness of OPC-SFT.

Experimental Setup Besides standard SFT, we also evaluate OPC-SFT against two baselines
designed to improve SFT robustness. The first is a concurrent work DFT (Wu et al., 2025b) that
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Table 1: Performance on ScienceWorld and ALFWorld after cold-start. Metric is success
rate(%). Best numbers are bolded.

Backbone Method ScienceWorld ALFWorld AverageSeen Unseen Seen Unseen

Qwen2.5-7B-
Instruct

● SFT 55.15 48.34 78.57 74.63 64.17
● DFT 57.73 51.18 75.71 79.85 66.12
● NEFT 58.76 50.24 73.57 74.63 64.30
● OPC-SFT 58.25 54.98 82.86 78.36 68.61

Qwen2.5-1.5B-
Instruct

● SFT 54.12 53.08 70.71 70.90 62.20
● DFT 64.43 56.40 61.43 70.90 63.29
● NEFT 60.82 58.77 62.14 69.40 62.78
● OPC-SFT 65.98 58.29 72.86 72.39 67.38

Llama3.2-3B-
Instruct

● SFT 56.70 53.55 75.00 70.90 64.04
● DFT 65.98 55.92 72.14 73.88 66.98
● NEFT 62.37 54.03 77.14 68.66 63.94
● OPC-SFT 65.98 64.93 76.43 77.61 71.24

rescales the SFT objective with the token probability. The second is NEFTune (Jain et al., 2023),
a recent technique that improves model performance by adding noise to embedding vectors dur-
ing training. Our primary evaluation is conducted on the embodied agent environments of ALF-
World (Shridhar et al., 2021) and ScienceWorld (Wang et al., 2022). All models are trained and eval-
uated on a compute infrastructure equipped with accelerators capable of approximately 312 TFLOPS
of BFloat16 (BF16) performance. And we select three models for evaluation, including Qwen2.5-
7B-Instruct, Qwen2.5-1.5B-Instruct (Qwen et al., 2025) and Llama3.2-3B-Instruct (Grattafiori et al.,
2024).

4.1 AGENTIC COLD START

Agentic tasks provide an ideal testbed for OPC-SFT. Succeeding in these environments requires the
LLM to adopt a strict action format (Yao et al., 2024), which is often highly off-policy for a general-
purpose model. Deviations from this format, such as generating semantically vague instructions
like ‘move somewhere’ or syntactically invalid commands, can cause execution errors, terminate
the environmental interaction, and lead to unpredictable agent behavior. Therefore, a robust SFT
cold-start is essential for successfully initializing the LLM policy, teaching it the required format in
a way that generalizes beyond the off-policy expert data.

4.1.1 IN-DISTRIBUTION VALIDATION BEFORE RL

We evaluate OPC-SFT on two agentic benchmarks: ALFWorld (Shridhar et al., 2021) and Science-
World (Wang et al., 2022). A key advantage of these tasks is their setup for evaluating generalization
within the target domain. They provide test sets with unseen instances that require the model to ap-
ply its learned knowledge to new scenarios that are variants of tasks during training. Specifically,
the ALFWorld benchmark is composed of 140 seen and 134 unseen test samples, while Science-
World contains 194 seen and 211 unseen samples. To ensure a fair and reproducible comparison, we
adhere to standard evaluation protocols, using the framework from EMBod-Bench (Fei et al., 2025)
for ALFWorld and ScienceWorld. As the result shown in Tab. 1, OPC-SFT achieves comparable
performance against all the compelling methods.

4.1.2 OUT-OF-DISTRIBUTION VALIDATION BEFORE RL

To evaluate knowledge retention and OOD generalization, we test the fine-tuned models on a suite
of standard benchmarks. These include coding tasks, like MBPP (Austin et al., 2021) and Hu-
manEval (Chen et al., 2021), general knowledge assessments, like MMLU (Hendrycks et al., 2021a)
and GPQA (Rein et al., 2023), and mathematical reasoning MATH-500 (Hendrycks et al., 2021b).
For GPQA, we use the GPQA Diamond subset. The results in Tab. 2 and Tab. 7 (the latter found
in Appx. B.2) highlight the ‘alignment tax’ of standard SFT, which exhibits significant performance
degradation. OPC-SFT, however, successfully preserves prior knowledge, cutting the performance
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Table 2: OOD performance under the ALFWorld setting. Methods: Base, SFT, DFT, NEFT, and
OPC-SFT. Metrics are accuracy (%) and pass@1.

Backbone Method MBPP MMLU HumanEval GPQA LiveCodeBench MATH500

Qwen2.5-7B-
Instruct

Base 79.68 71.00 73.03 33.84 61.54 76.80
SFT 71.69 66.30 70.35 31.31 58.91 68.40
DFT 75.13 70.20 74.88 34.85 60.02 69.00
NEFT 72.22 70.10 43.90 28.79 63.01 69.60
OPC-SFT 78.84 70.60 75.07 34.34 67.69 72.40

Qwen2.5-1.5B-
Instruct

Base 58.73 60.08 69.63 21.72 14.50 52.60
SFT 42.60 58.68 43.60 28.79 21.70 24.00
DFT 45.50 58.63 44.40 9.60 24.52 19.20
NEFT 46.31 59.17 45.01 28.52 27.04 18.80
OPC-SFT 46.56 58.85 44.96 33.84 32.81 24.20

Llama3.2-3B-
Instruct

Base 57.94 62.29 38.61 27.40 33.85 35.20
SFT 56.61 58.47 44.39 10.61 34.50 21.20
DFT 58.26 58.69 45.84 16.67 36.22 34.20
NEFT 52.18 55.95 46.03 16.67 39.73 29.80
OPC-SFT 58.71 59.97 48.13 18.18 42.60 37.60

Table 3: Final performance on ScienceWorld and ALFWorld after RL. Metric is success rate(%).
Best numbers are bolded.

Backbone Method ScienceWorld ALFWorld AverageSeen Unseen Seen Unseen

Qwen2.5-7B-
Instruct

Base + GRPO 41.75 47.87 62.86 58.96 52.86
SFT + GRPO 60.82 60.19 85.00 76.87 69.97
DFT + GRPO 61.34 59.24 90.71 80.06 72.84
NEFT + GRPO 62.89 60.66 72.14 59.70 63.85
OPC-SFT + GRPO 66.49 61.14 92.14 91.04 77.70

Qwen2.5-1.5B-
Instruct

Base + GRPO 40.72 31.75 29.29 38.06 34.96
SFT + GRPO 65.98 65.40 82.86 82.84 74.27
DFT + GRPO 67.53 63.98 85.07 80.71 74.32
NEFT + GRPO 67.53 63.51 82.86 67.16 70.27
OPC-SFT + GRPO 65.46 68.72 90.00 94.03 79.55

Llama3.2-3B-
Instruct

Base + GRPO 44.85 44.08 0.00 0.00 22.23
SFT + GRPO 70.62 63.03 92.86 89.55 79.02
DFT + GRPO 67.53 64.45 81.43 76.87 72.57
NEFT + GRPO 61.86 61.86 67.86 45.52 59.28
OPC-SFT + GRPO 73.71 65.40 94.29 92.54 81.49

degradation by an average of 11.54% relative to the SFT baseline. Notably, the Qwen2.5-7B-Instruct
model trained with OPC-SFT consistently outperforms all other baselines, exhibiting the strongest
anti-forgetting capabilities. This preservation of general knowledge is crucial for downstream agen-
tic performance. Capabilities retained from pre-training, such as common-sense and logical reason-
ing, are beneficial for effective exploration and generalization within the agent’s environment (Zhao
et al., 2025). A high alignment tax actively limits the agent’s potential to adapt to new situations,
which is shown in Sec. 4.1.3. By reducing this tax, OPC-SFT provides a more capable and well-
rounded foundation for the subsequent reinforcement learning phase.

4.1.3 PERFORMANCE COMPARISON AFTER RL

While a robust cold start is crucial, the ultimate measure of success is the performance of the
RL-optimized model (DeepSeek-AI et al., 2025). We therefore take the policies initialized by
each method and further train them using the established Group Relative Policy Optimization
(GRPO) algorithm (Shao et al., 2024). The final LLM-based agent performance, detailed in Tab. 3,
demonstrates the significant downstream benefits of OPC-SFT. The LLM initialized with OPC-
SFT achieves a substantial performance advantage over all baselines, particularly on the ALFWorld
benchmark. The base model struggles when fine-tuned directly with GRPO, demonstrating that
cold-start is necessary in agentic tasks.
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Figure 2: PCA shift of Llama3.2-3B-Instruct with the SFT and OPC-SFT methods.
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Figure 3: Token probability in the bottom 1% quantile over training steps for SFT and OPC-SFT.

4.2 LATENT SPACE SHIFT ANALYSIS AND TARGET TOKEN PROBABILITY CHANGE OVER
TRAINING STEPS

We conduct internal representation and gradient analysis to account for the advantages of OPC-SFT.
Recent studies (Xu et al., 2025; Huan et al., 2025) have shown that PCA shift analysis serves as
a sensitive and interpretable metric for representational changes associated with task performance.
We decompose the latent space of the LLM on the target domain using PCA (n=2) projection. We
can clearly observe from Fig. 2 that OPC-SFT exhibits a smaller divergence from the base model
compared to SFT.

Specifically, when evaluated by Euclidean distance d(∗) = ∥z(∗) − z(orig)∥2, where z denotes the
mean PCA coordinates of hidden states across layers in the low-dimensional space. SFT yields di-
vergences of 0.28, 0.33, 0.45, and 0.43 on the MATH500, LiveCodeBench, HumanEval, and MMLU
benchmarks, respectively. In contrast, OPC-SFT significantly reduces these divergences, yielding
0.03, 0.15, 0.24, and 0.08 on the same respective benchmarks. The projection details are deferred
to Appx. D.1. Furthermore, analysis of the target token probability progression, as seen in Fig. 3,
reveals that OPC-SFT increases target token probabilities more steadily.

4.3 OTHER TASKS LIKE MATH

Table 4: Final mathematical reasoning performance after the RL phase. LLMs initialized with
different cold-start methods are trained with GRPO. Metrics are accuracy (%) and avg@8.

Backbone Method Minerva Olympiad
Bench

GSM8K AIME24 MATH500 Average

Qwen2.5-7B-
Instruct

SFT + GRPO 39.71 47.45 94.31 21.67 84.00 57.43
OPC-SFT + GRPO 39.34 48.33 95.68 23.33 84.35 58.21

Qwen2.5-1.5B-
Instruct

SFT + GRPO 30.52 38.56 84.95 17.50 77.30 49.77
OPC-SFT + GRPO 29.81 40.74 85.97 15.41 77.20 49.83

Llama3.2-3B-
Instruct

SFT + GRPO 19.71 22.08 79.88 9.58 56.60 37.57
OPC-SFT + GRPO 20.59 22.51 80.54 9.55 57.10 37.86

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 2 4 6 8 10
Gradient Norm (0-10)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pr
ob

ab
ilit

y

20 40 60 80 100
Gradient Norm (10-120)

DeepScaleR
ALFWorld

Gradient Norm Distribution

Figure 4: Gradient Norm Comparison between math
task DeepScaleR and agentic task ALFWorld.

To investigate mathematical reasoning
performance, we fine-tune the LLM on
data collected from the DeepScaleR (Luo
et al., 2025b) problem suite and report
the final performance in Tab. 4. While
OPC-SFT still outperforms the baseline,
the performance gains are more modest
than those in the agentic tasks. This find-
ing, which is consistent with concurrent
work (Zhu et al., 2025), prompts us to in-
vestigate the conditions under which OPC-
SFT is most effective. We hypothesize
that the performance discrepancy is due to
the nature of the fine-tuning data. Unlike
the novel action formats in agentic tasks,
mathematical reasoning is already well-
represented in the LLMs’ pre-training cor-
pora. Consequently, SFT for math in-
volves a smaller distributional shift, resulting in less of the off-policy instability that OPC-SFT
is designed for. To test this hypothesis, we analyze the gradient norm distributions at the beginning
of the SFT phase for both task types. The results show that the gradient norms for the agentic task
data are substantially larger than those for the math reasoning data. This evidence demonstrates that
the benefits of OPC-SFT are most pronounced when the fine-tuning data is highly off-policy.

4.4 ABLATION STUDY ON DIFFERENT CLIP RATIO
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Figure 5: Effect of the clipping ratio on Llama3.2-3B-Instruct’s performance on ALFWorld.
We conduct an ablation study to understand the influence of the clipping ratio ϵ on final task perfor-
mance. Using the Llama3.2-3B-Instruct models, we vary ϵ and measure the impact on performance.
As shown in Fig. 5, this method mainly outperforms standard SFT within the range of [0.4, 0.6],
although a slight decrease in performance is observed at the boundaries of this range. This demon-
strates the robustness of OPC-SFT, as even a suboptimal choice of the clip ratio within this effective
range yields gains over the baseline and does not lead to performance degradation.

5 CONCLUSIONS

SFT cold-start yields an initial policy for reinforcement learning in LLMs. For efficient subsequent
RL, the initial model requires a delicate balance: learning new, specialized skills alongside the robust
retention of vast prior knowledge. In this work, we addressed a key challenge during SFT cold-start:
the degradation of generalization and pre-trained knowledge. We find this problem to be particularly
acute when fine-tuning on specialized, off-policy datasets that are totally novel compared with the
model’s pre-training corpus. Additionally, we identify the cause of this forgetting mainly as the large
gradient norm in the initial stage brought by off-policy tokens. Hence, we propose OPC-SFT for
a robust cold-start, which clips the update of off-policy tokens. We have demonstrated OPC-SFT’s
strong generalization and anti-forgetting ability, which prepares LLMs for RL. While OPC-SFT
demonstrates clear benefits, we acknowledge its limitation. If the clipping is set too strictly, it could
over-constrain updates from off-policy tokens, potentially leading to overly aggressive updates on
medium-probability tokens. This, in turn, might lead to a collapse in model entropy.
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REPRODUCIBILITY STATEMENT

In this study, to ensure the reproducibility of this paper, we provide key information from our sub-
mission as follows.

1. Training Algorithm. We provide our approach in Sec. 3.3.

2. Source Code and Data. We have submitted the source code of OPC-
SFT in the supplementary materials. ALFWorld training data is available at
https://huggingface.co/LEVI-Project/sft-data. For ScienceWorld, we use the data in
https://huggingface.co/datasets/AgentGym/AgentTraj-L/tree/main.

3. Experimental Details. We list the detailed experiment settings, computational resources.
And hyperparameters in Appx. B.5.

4. Derivation Details. We provide the missing proofs in Appx. A.
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THE USE OF LLMS

In the preparation of this manuscript, we employed large language models (LLMs) as a general-
purpose writing aid. Specifically, their use was confined to minor language polishing, including
grammar correction and improvement of sentence structure, to enhance the overall readability of
the text. The LLMs did not contribute to any of the core research aspects of this work, such as the
formulation of ideas, the design of algorithms, theoretical derivations, or the execution and analysis
of experiments. The intellectual content and all claims made within this paper are solely the work
of the human authors, who bear full responsibility for the final manuscript.

A DERIVATION DETAILS

We present a comparative analysis of the clipping mechanisms in PPO and the OPC-SFT. To ground
this analysis, we first define their respective optimization contexts. PPO optimizes its objective
using a finite batch of samples collected by a policy πθold over timesteps t = 0, 1, . . . , T . In par-
allel, OPC-SFT performs its optimization on a supervised learning dataset D = {(x, y∗)}. PPO
addresses instability in RL by using a clipped surrogate loss to achieve monotonic policy improve-
ments (Schulman et al., 2017):

LPPO(θ) = Et

[
min

(
r(θ)Â, clip(r(θ), 1− ϵ, 1 + ϵ)Â

)]
,

where r(θ) = πθ(a|s)
πθold (a|s)

is the ratio of new policy to old policy probabilities, Â is the advantage
function (measuring action quality), and ϵ controls allowable policy deviation. The gradient of
PPO’s loss reveals its stabilizing mechanism:

∇θLPPO(θ) = Et

[
∇θ

(
min

(
r(θ)Â, clip(r(θ), 1− ϵ, 1 + ϵ)Â

))]
.

This gradient behaves in three distinct cases: when r(θ) > 1 + ϵ and At ≥ 0, which indicates that
the new policy is too aggressive, the clip function caps r(θ) at 1 + ϵ, so the min selects (1 + ϵ)Â.
Since 1 + ϵ is a constant, which is independent of θ. The gradient would be:

∇θ

(
(1 + ϵ)Â

)
= 0.

When r(θ) < 1−ϵ and At ≤ 0, which indicates that new policy is too conservative, the clip function
caps r(θ) at 1− ϵ, so the min selects (1− ϵ)Â. Again, 1− ϵ is a constant, so the gradient is:

∇θ

(
(1− ϵ)Â

)
= 0.

For the other cases, the min selects r(θ)Â. So the gradient is non-zero:

∇θ

(
r(θ)Â

)
= Â · ∇θr(θ) = Â · r(θ) · ∇θ log πθ(a | s).

PPO thus suppresses gradients for samples where the policy deviates too far from its old state,
preventing extreme updates. The gradient of OPC-SFT loss inherits PPO’s stabilizing behavior:

∇θLOPC-SFT(θ) = −E(x,y∗)∼D [∇θ (min (r(θ), clip(r(θ), 1− ϵ, 1 + ϵ)))] .

When r(θ) ≤ 1 + ϵ, the gradient uses r(θ), enabling meaningful learning:

∇θr(θ) = r(θ) · ∇θ log πθ(at | st),

When r(θ) > 1 + ϵ, the clipped term dominates the min, so the gradient is zero:

∇θ (clip(r(θ), 1− ϵ, 1 + ϵ)) = 0.
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B ADDITIONAL EXPERIMENTS

B.1 OPC-SFT ON MATH REASONING TASKS

We show the performance of OPC-SFT and SFT on mathematical reasoning benchmarks, as shown
in Tab. B.1 and their generalization to common-sense question-answering MMLU (Hendrycks et al.,
2021a), GPQA (Rein et al., 2023), and coding tasks HumanEval (Chen et al., 2021) and Live-
CodeBench (Jain et al., 2025), as shown in Tab. B.1. This shows that the benefits of OPC-SFT
are most pronounced when the expert data is highly off-policy, which could result in large gradient
norms at the initial stage of cold-start.

Table 5: Mathematical reasoning performance of the cold-start policies (before RL). OPC-
SFT is compared against the standard SFT baseline. Metrics are accuracy (%) and avg@8.

Backbone Method Minerva Olympiad
Bench

GSM8K AIME24 MATH500 Average

Qwen2.5-7B-
Instruct

Base 38.24 36.37 91.89 13.75 76.80 51.41
SFT 39.04 42.37 94.24 18.33 81.80 55.16
OPC-SFT 41.48 43.56 93.78 15.83 81.40 55.21

Qwen2.5-1.5B-
Instruct

Base 13.76 18.07 70.58 1.67 52.60 31.34
SFT 24.26 36.89 82.11 10.86 74.40 45.70
OPC-SFT 26.16 38.11 84.91 10.00 76.60 47.16

Llama3.2-3B-
Instruct

Base 10.56 9.63 67.25 0.83 35.20 24.69
SFT 14.31 18.07 76.63 1.67 52.20 32.58
OPC-SFT 16.54 18.34 77.15 3.34 51.80 33.43

Table 6: OOD performance of models for different cold-start. OPC-SFT + GRPO is
compared against SFT + GRPO baseline. Metrics are accuracy (%) and pass@1.

Backbone Method MMLU HumanEval GPQA LiveCodeBench Average

Qwen2.5-7B-
Instruct

Base 71.00 73.03 33.84 61.54 59.85
SFT 64.43 1.07 35.35 0.20 25.26
OPC-SFT 66.64 2.74 35.35 0.31 26.26

Qwen2.5-1.5B-
Instruct

Base 60.08 69.63 21.72 14.50 41.48
SFT 58.31 0.00 27.40 0.00 21.43
OPC-SFT 58.62 0.00 26.77 0.00 21.35

Llama3.2-3B-
Instruct

Base 62.29 38.61 27.78 33.85 40.63
SFT 54.90 16.84 30.30 0.00 25.51
OPC-SFT 55.45 17.37 31.31 0.00 26.03

B.2 MISSING OOD EVALUATION

Due to the strict page limit, we present the OOD performance for models trained on ScienceWorld
in Tab. B.2. Across the majority of these tasks, OPC-SFT either outperforms all other baselines or
achieves the second-best result. These findings, together with the results from ALFWorld, as shown
in Tab. 2, demonstrate that OPC-SFT effectively retains the model’s generalizable prior knowledge.

B.3 AGENTIC TASK WITH AGENTBOARD VALIDATION DATASET

Besides EMBod-Bench (Fei et al., 2025) used in Sec. 4.1.1, we also adopt the AgentBoard (Ma
et al., 2024) framework to conduct a two-stage experiment: first performing SFT (Supervised Fine-
Tuning), followed by RL (Reinforcement Learning), aiming to investigate the cold-start performance
of different SFT approaches. AgentBoard is a benchmark for evaluating multi-turn LLM agents. It
spans nine task categories and over a thousand environments, encompassing widely used bench-
marks such as ALFWorld and ScienceWorld, which capture multi-round and partially observable
settings. Its accompanying open-source toolkit further enables detailed analysis through visualiza-
tion of trajectories, skill-specific performance, and difficulty breakdowns, providing a comprehen-
sive diagnostic framework for agent research.

We conduct experiments on the ALFWorld and ScienceWorld benchmarks. Compared to EMBod-
Bench (Fei et al., 2025), the test sets of these two benchmarks in the AgentBoard framework differ

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: OOD performance under the ScienceWorld setting. Methods: Base, SFT, DFT,
NEFT, and OPC-SFT. Metrics are accuracy (%) and pass@1.

Backbone Method MBPP MMLU HumanEval GPQA LiveCodeBench MATH500

Qwen2.5-7B-
Instruct

Base 79.68 71.00 73.03 33.84 61.54 76.80
SFT 67.20 64.43 64.63 46.46 49.55 56.40
DFT 69.33 54.35 62.71 41.92 52.71 55.20
NEFT 69.58 67.03 63.53 37.88 50.09 46.80
OPC-SFT 71.96 66.64 69.13 63.64 55.59 57.40

Qwen2.5-1.5B-
Instruct

Base 58.73 60.08 69.63 21.72 14.50 52.60
SFT 49.74 58.31 41.28 30.81 7.73 42.80
DFT 46.03 57.47 46.32 51.52 9.66 35.20
NEFT 45.02 57.68 44.44 46.46 9.52 39.80
OPC-SFT 48.15 58.62 47.82 50.51 11.83 43.40

Llama3.2-3B-
Instruct

Base 57.94 62.29 38.61 27.78 33.85 35.20
SFT 54.50 54.90 37.19 40.40 23.07 29.00
DFT 58.11 55.95 39.12 50.00 24.59 32.80
NEFT 55.03 57.19 32.31 45.96 25.15 31.20
OPC-SFT 56.35 55.45 38.49 51.01 27.39 34.20

Table 8: SFT and SFT+RL Performance on ScienceWorld and ALFWorld. Metrics are success
rate (%). Best numbers are bolded.

Backbone Method ScienceWorld ALFWorld
Before RL After RL Before RL After RL

Qwen2.5-7B-
Instruct

SFT 34.44 43.33 76.87 84.33
DFT 37.78 44.44 75.37 80.60
NEFT 41.11 48.89 77.61 64.92
OPC-SFT 50.00 58.89 79.10 90.29

Qwen2.5-1.5B-
Instruct

SFT 32.22 45.56 73.88 82.08
DFT 30.00 50.00 67.91 82.83
NEFT 37.78 53.33 73.13 82.83
OPC-SFT 40.00 55.56 76.12 87.31

Llama3.2-3B-
Instruct

SFT 37.78 41.11 72.39 83.58
DFT 41.11 46.67 72.39 55.00
NEFT 43.33 44.44 70.90 56.71
OPC-SFT 53.33 61.10 76.87 91.79

as follows: ALFWorld contains 134 unseen test instances that overlap with those in EMBod-Bench,
whereas ScienceWorld includes 90 unseen test instances that are distinct from those in EMBod-
Bench. In addition, the inference settings of AgentBoard and EMBod-Bench are not identical.The
results are shown in Tab. 8.

ALFWorld (Shridhar et al., 2021) consists of planning tasks situated in household settings, ranging
from basic object manipulation (e.g., pick-and-place) to scenarios that demand multi-step interac-
tions. For instance, in the “discard a card” task, the agent must first identify the target card, pick it
up, locate a trash bin, and correctly dispose of the card to complete the task.

ScienceWorld (Wang et al., 2022) is a challenging benchmark that requires models to carry out
scientific experiments in a interactive environment. The environment is supported by a physics
engine that incorporates thermodynamic and electrical systems, thus demanding strong planning
and causal reasoning skills. For example, one task may ask: turn on the red light bulb by powering
it using a renewable power source.

B.4 TARGET TOKEN DISTRIBUTION DURING OPC-SFT

Supervised Fine-Tuning is widely used to enhance the performance of Large Language Models
on task-specific objectives. In SFT, the model is trained on a dataset of high-quality input-output
pairs, which are typically derived from expert demonstrations or synthetic trajectories generated by
teacher models. Through this process, the LLM learns structured reasoning patterns, task-specific
knowledge, and preferred action strategies.
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OPC-SFT Initial Step OPC-SFT Final Step

Figure 6: Target token probability distribution at the beginning and end of OPC-SFT. The x-axis
shows probability intervals, and the y-axis shows the proportion of tokens in each interval.

To illustrate the effect of OPC-SFT, we analyze the distribution of token-level probabilities at the
beginning and at the end of training. We divide the probability, which range from 0 to 1, into
discrete intervals and plot the proportion of target tokens falling into each interval. In the initial
stage of training, a noticeable fraction of target tokens have low probability, indicating uncertain
predictions. By the end of training, the distribution shifts significantly: nearly all target tokens attain
higher probability, reflecting increased confidence and better alignment with the expert trajectories
as shown in Fig. 6. This visualization quantitatively demonstrates how SFT improves the model’s
certainty and task-specific performance.

B.5 TRAINING REWARD CURVE IN REINFORCEMENT LEARNING

Large Language Models first acquire general reasoning and task-specific patterns through SFT, pro-
viding a strong and high-performing initialization for subsequent RL. In this study, after SFT, we
further train LLMs in two benchmark environments: ALFWorld and ScienceWorld, to adapt the pre-
trained models to interactive, sequential decision-making tasks. This two-stage training paradigm
allows the models to start from a higher baseline, which facilitates more effective exploration and
accelerates policy refinement through trial-and-error interactions in the environment. Each LLM is
trained using one of four strategies: SFT, DFT, NEFT, and OPC-SFT, where OPC-SFT incorporates
on-policy correction during RL to improve stability and sample efficiency.

Fig. 7 shows the normalized training rewards over the first 100 steps. The top row corresponds to
ALFWorld, and the bottom row corresponds to ScienceWorld. Each subplot contains four curves
representing the different training strategies: SFT, DFT, NEFT, and OPC-SFT. Here, the reward
indicates the success of a trajectory: 1 for success and 0 for failure. Solid lines represent smoothed
rewards, while semi-transparent lines show raw values.

From Fig. 7, it is clear that OPC-SFT consistently achieves higher rewards across both environments.
Starting from a strong SFT initialization gives OPC-SFT a higher starting point, which not only ac-
celerates early performance but also encourages more effective exploration, enabling the model to
discover successful trajectories faster. These results highlight the importance of combining super-
vised pre-training with on-policy RL correction: the LLMs first acquire structured reasoning and
task knowledge via SFT, and then efficiently adapt their policies to maximize task success through
RL. Overall, this two-stage approach enables LLMs to leverage prior knowledge while learning
interactive behaviors, achieving both sample-efficient learning and robust task performance.

C LLM FINE-TUNING RELATED WORK

LLMs have demonstrated a strong capacity for multi-step reasoning, a crucial component for solving
complex problems (Zhao et al., 2023). This capability is rooted in their pre-training on extensive
and diverse corpora (Qwen et al., 2025; Touvron et al., 2023). While high-quality pre-training data
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Figure 7: Training reward comparison across models and environments. The top row shows results
in the ALFWorld environment for three models, and the bottom row shows results in the Science-
World environment. Each subplot contains four curves corresponding to SFT, DFT, NEFT, and
OPC-SFT. Solid lines represent smoothed reward values calculated as a running average, and semi-
transparent lines show the raw rewards recorded during training. The x-axis denotes training steps,
and the y-axis denotes the normalized reward.

is critical for shaping these foundational abilities, it is often insufficient for specialized, challenging
domains. Agentic tasks, for example, demand complex reasoning that is deeply integrated with
planning and executing actions in an interactive environment (Wu et al., 2025a). Therefore, post-
training is essential to adapt LLMs to these specific domains, significantly enhancing their ability to
perform such intricate tasks (Wang et al., 2025; Team et al., 2025).

C.1 SUPERVISED FINE-TUNING

SFT is a foundational post-training stage that significantly enhances LLMs by aligning them with
human instructions. By training on high-quality prompt-response pairs, SFT refines the model’s
ability to generate coherent and contextually appropriate outputs. However, this process introduces
a critical trade-off: while extensive SFT improves instruction-following, it can also reduce the di-
versity of the model’s generations (Li et al., 2025; Wang et al., 2024). Over-optimization on a fixed
set of responses may lead to mode collapse, where the model consistently produces similar outputs,
thereby limiting its exploratory capabilities. This loss of diversity is particularly detrimental for
downstream reinforcement learning, where a broad search space is essential for discovering opti-
mal policies (Zeng et al., 2025). Striking a balance between alignment and diversity is thus a key
challenge, as excessive fine-tuning risks narrowing the model’s generative flexibility. Indeed, recent
studies suggest that SFT can substantially alter the LLM’s latent space, limiting transferability (Huan
et al., 2025). Consequently, some approaches bypass SFT entirely, using direct reinforcement learn-
ing to enhance exploration and improve reasoning (DeepSeek-AI et al., 2025; Zeng et al., 2025).
There are also concurrent works seeking methods to enhance generalization for SFT (Zhu et al.,
2025; Wu et al., 2025b).
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C.2 REINFORCEMENT LEARNING

Building on the framework of Reinforcement Learning from Human Feedback (RLHF), recent stud-
ies have extended RL to enhance the reasoning capabilities of LLMs (Trung et al., 2024; Kazem-
nejad et al., 2024; Gehring et al., 2024). Beyond its application in mathematical reasoning, RL
provides a general mechanism for optimizing non-differentiable objectives, aligning models with
human preferences, and encouraging effective exploration of solution spaces. By directly shaping
model behavior through reward signals, RL complements supervised training and enables LLMs to
achieve improved generalization and robustness. Nevertheless, applying standard algorithms such
as PPO is resource-intensive, as it requires an additional critic network, substantially increasing
computational cost and GPU memory usage. To alleviate this, ReMax (Li et al., 2024) employs the
REINFORCE algorithm with greedy sampling as a reward baseline. Group Relative Policy Opti-
mization (GRPO) (Shao et al., 2024) introduces a more memory-efficient variant of PPO that en-
hances reasoning performance. Reinforce++ (Hu, 2025) integrates techniques such as PPO clipping
and reward normalization to improve stability and training efficiency. Furthermore, since policy
entropy tends to diminish rapidly during training, reducing exploration, DAPO (Yu et al., 2025b)
proposes the Clip-Higher strategy to counteract this effect.

D EXPERIMENTAL DETAILS

D.1 PCA DETAILS

Given a batch of queries x, we extract hidden states H
(∗)
i (x) at each layer i for both model states

(∗) ∈ {orig, upd}. Principal Component Analysis (PCA) with n = 2 is then applied to H
(∗)
i , and

the mean projections onto the first and second principal directions (PC1 and PC2) are denoted by
m

(∗)
i,1 and m

(∗)
i,2 , respectively. The shift along PC1 is defined as

∆m
(∗)
i,1 = m

(∗)
i,1 −m

(orig)
i,1 ,

while m
(∗)
i,2 is reported for PC2 as an auxiliary indicator of distributional variation, with smaller

values reflecting more stable representations. For each model state (∗), we define a representation
center as the mean of PCA coordinates across all layers:

z(∗) =
1

L

L∑
i=1

z
(∗)
i , z

(∗)
i =

(
∆m

(∗)
i,1 , m

(∗)
i,2

)
,

where L denotes the total number of layers. Finally, the latent shift between state (∗) and the original
(base) model is quantified by the Euclidean distance

d(∗) = ∥z(∗) − z(orig)∥2.

D.2 ALFWORLD DEMONSTRATION

To concretely illustrate the reasoning capabilities of LLMs, we present an example interaction within
the ALFWorld environment. In this demonstration, each prompt is constructed in a multi-turn man-
ner, combining the previous response with the current observation to inform the LLM’s subsequent
reasoning and actions. The dialogue below highlights the step-by-step interaction process, showing
how the LLM produces structured outputs such as thoughts and actions, and reflecting its iterative
reasoning dynamics in an embodied setting.

System

Your are an expert in the ALFRED Embodied Environment.
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User

Interact with a household to solve a task. Imagine you are an intelligent agent in a household
environment and your target is to perform actions to complete the task goal. At the beginning
of your interactions, you will be given the detailed description of the current environment
and your goal to accomplish.
For each of your turn, you will be given the observation of the last turn. You should
first think about the current condition and plan for your future actions, and then output
your action in this turn. Your output must strictly follow this format:"Thought: your
thoughts.\nAction: your next action".

The available actions are:
1. go to {recep}
2. task {obj} from {recep}
3. put {obj} in/on {recep}
4. open {recep}
5. close {recep}
6. toggle {obj} {recep}
7. clean {obj} with {recep}
8. heat {obj} with {recep}
9. cool {obj} with {recep}
where {obj} and {recep} correspond to objects and receptacles.
After your each turn, the environment will give you immediate feedback based on which
you plan your next few steps. if the envrionment output "Nothing happened", that means
the previous action is invalid and you should try more options.

Your response should use the following format:

Thought: <your thoughts>
Action: <your next action>

Assistant

OK

User

You are in the middle of a room. Looking quickly around you, you see a bathtubbasin 1, a
cabinet 2, a cabinet 1, a countertop 1, a garbagecan 1, a handtowelholder 1, a sinkbasin 1,
a toilet 1, a toiletpaperhanger 1, and a towelholder 1. Your task is to: put a toiletpaper in
toiletpaperhanger.

Assistant

Thought: I need to place a toilet paper roll on the toilet paper hanger. First, I should check if
there’s already a roll on the hanger or if it’s empty.
Action: go to toiletpaperhanger 1

User

Observation: On the toiletpaperhanger 1, you see nothing.
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Assistant

Thought: The toilet paper hanger is empty, so I need to find a new roll of toilet paper to put
on it.
Action: go to toilet 1

User

Observation: On the toilet 1, you see a soapbottle 1, and a toiletpaper 1.

Assistant

Thought: I’ve found a toilet paper roll on the toilet. I should pick it up so I can place it on
the hanger.
Action: take toiletpaper 1 from toilet 1

User

Observation: You pick up the toiletpaper 1 from the toilet 1.

Assistant

Thought: Now that I have the toilet paper roll, I need to return to the toilet paper hanger to
install it.
Action: go to toiletpaperhanger 1

User

Observation: On the toiletpaperhanger 1, you see nothing.

Assistant

Thought: I’m back at the toilet paper hanger with the roll in hand. It’s time to put the toilet
paper on the hanger.
Action: put toiletpaper 1 in/on toiletpaperhanger 1

D.3 SCIENCEWORLD DEMONSTRATION

To further illustrate the reasoning capabilities of LLMs across environments, we provide the initial
prompt for a task in the ScienceWorld environment. For brevity, only the starting prompt is shown
here; the subsequent interaction process is analogous to the ALFWorld demonstration, which is
described in Sec. D.3, and is omitted.

System

You are a helpful agent that interacts with the virtual science school environment to solve the
given task.
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User

You are an agent for ScienceWorld. Every round I will give you an observation, and you
have to respond with an action based on the observation to finish the given task. Here
are the actions you may take:["action": "open/close OBJ", "description": "open/close
a container", "action": "de/activate OBJ", "description": "activate/deactivate a device",
"action": "connect OBJ to OBJ", "description": "connect electrical components", "action":
"disconnect OBJ", "description": "disconnect electrical components", "action": "use OBJ
[on OBJ]", "description": "use a device/item", "action": "look around", "description":
"describe the current room", "action": "look at OBJ", "description": "describe an ob-
ject in detail", "action": "look in OBJ", "description": "describe a container’s contents",
"action": "read OBJ", "description": "read a note or book", "action": "move OBJ to OBJ",
"description": "move an object to a container", "action": "pick up OBJ", "description":
"move an object to the inventory", "action": "put down OBJ", "description": "drop an
inventory item", "action": "pour OBJ into OBJ", "description": "pour a liquid into a
container", "action": "dunk OBJ into OBJ", "description": "dunk a container into a liq-
uid", "action": "mix OBJ", "description": "chemically mix a container", "action": "go
to LOC", "description": "move to a new location", "action": "eat OBJ", "description":
"eat a food", "action": "flush OBJ", "description": "flush a toilet", "action": "focus on
OBJ", "description": "signal intent on a task object", "action": "wait", "description":
"take no action for 10 iterations", "action": "wait1", "description": "take no action for 1
iteration", "action": "task", "description": "describe current task", "action": "inventory",
"description": "list your inventory"]
Your response should use the following format:
Thought:
your thoughts.

Action:
your next action

Assistant

OK. I’ll follow your instructions and try my best to solve the task.

User

Your task is to boil water. For compounds without a boiling point, combusting the substance
is also acceptable. First, focus on the substance. Then, take actions that will cause it to
change its state of matter.
This room is called the hallway. In it, you see:
a picture
a substance called air
the agent
You also see:
A door to the green house (that is open)
A door to the living room (that is open)
A door to the art studio (that is open)
A door to the kitchen (that is open)
A door to the bedroom (that is open)
A door to the workshop (that is open)

D.4 HYPERPARAMETERS

Below we list the key hyperparameters required for both OPC-SFT and reinforcement learning.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 9: OPC-SFT hyperparameters for ALFWorld and ScienceWorld.

Hyperparameter ALFWorld ScienceWorld

Clipping ratio ϵ 0.5 0.5
Learning rate 1e-5 2e-6
Rollout batch size 256 256
Train batch size 32 32
Maximum epochs 3 3
Number of episodes 3 3
Prompt maximum length 4000 4000

Table 10: Reinforcement learning hyperparameters for ALFWorld and ScienceWorld.

Hyperparameter ALFWorld ScienceWorld

Learning rate 1e-6 1e-6
KL loss coefficient 0.01 0.01
KL coefficient 0.001 0.01
KL loss type Low Var KL Low Var KL
Rollout temperature 0.7 0.7
Validation temperature 0.7 0.7
Maximum prompt length 8192 8192
Maximum response length 256 128
Clipping ratio low 0.2 0.2
Clipping ratio high 0.2 0.2
Rollout N 8 8
Max environment steps 40 30
PPO mini batch size 16 32
Max number of sequences 512 1024
Critic warm-up 0 0

D.5 OUT-OF-DISTRIBUTION DATASETS

To provide a comprehensive evaluation of knowledge retention and generalization, we include sev-
eral widely used benchmarks from different domains. Below we briefly describe each dataset:

MBPP (Austin et al., 2021). The Mostly Basic Python Problems (MBPP) dataset consists of 378
hand-written Python programming problems designed to evaluate models’ ability to generate cor-
rect and efficient code. Each problem includes a description and a reference implementation, and
performance is measured using functional correctness tests.

HumanEval (Chen et al., 2021). The HumanEval dataset provides 164 Python programming
tasks accompanied by unit tests. It is commonly used to assess the code generation ability of large
language models.

MMLU (Hendrycks et al., 2021a). The Massive Multitask Language Understanding (MMLU)
benchmark evaluates broad general knowledge across 57 tasks covering mathematics, history, law,
medicine, and other domains. It is designed to test both world knowledge and problem-solving
ability.

GPQA (Rein et al., 2023). The Graduate-Level Google-Proof Q&A benchmark contains 198 chal-
lenging questions curated by subject matter experts, with a focus on requiring reasoning beyond
simple retrieval.

LiveCodeBench (Jain et al., 2025) The LiveCodeBench benchmark evaluates live code gener-
ation and execution ability under dynamic environments. It provides 442 diverse programming
challenges with runtime validation, extending beyond static unit-test benchmarks.
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