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Abstract
Long-context large language models (LC001
LLMs) combined with retrieval-augmented002
generation (RAG) hold strong potential for003
complex multi-hop and large-document tasks.004
However, existing RAG systems often suffer005
from imprecise retrieval, incomplete context006
coverage under constrained windows, and frag-007
mented information from suboptimal context008
construction. We introduce Multi-scale Adap-009
tive Context RAG (MacRAG), a hierarchi-010
cal RAG framework that compresses and parti-011
tions documents into coarse-to-fine granulari-012
ties, then adaptively merges relevant contexts013
through real-time chunk- and document-level014
expansions. By initiating with finest-level re-015
trieval and progressively incorporating broader,016
higher-level context, MacRAG constructs ef-017
fective query-specific long contexts, optimiz-018
ing both precision and coverage. Evaluations019
on challenging LongBench expansions of Hot-020
potQA, 2WikiMultihopQA, and Musique con-021
firm MacRAG consistently surpasses baseline022
RAG pipelines in single- and multi-step gen-023
eration using Llama-3.1-8B, Gemini-1.5-pro,024
and GPT-4o. Our results establish MacRAG025
as an efficient, scalable solution for real-world026
long-context, multi-hop reasoning.027

1 Introduction028

Large language models (LLMs) have significantly029

advanced complex reasoning, but they still suffer030

from factual gaps or hallucinations when relying031

only on internal parameters (Zhao et al., 2024).032

Retrieval-Augmented Generation (RAG) addresses033

this by grounding LLMs in external evidence (Guu034

et al., 2020; Lewis et al., 2020). Long-context035

(LC) LLMs such as GPT-4o (OpenAI, 2024), Gem-036

ini 1.5 (Team et al., 2024), and Llama 3 (Dubey037

et al., 2024a) offer large input windows but re-038

main limited. They often miss crucial mid-context039

information (Liu et al., 2024; Xu et al., 2024b)040

and their performance degrades at extreme context041

lengths (Leng et al., 2024; Yu et al., 2024).042

These issues in RAG systems give rise to three 043

key trade-offs: (1) Context Length vs. Focus, 044

where longer contexts improve recall but may ob- 045

scure important details, while shorter ones enhance 046

focus but risk omission of essential evidence; (2) 047

Chunking and Indexing, where fine-grained chunks 048

boost retrieval precision but harm coherence, while 049

coarse chunks preserve structure but introduce re- 050

dundancy; and (3) Coverage vs. Computation, 051

where broader context improves reasoning but in- 052

creases token cost and latency, especially in iter- 053

ative or agentic pipelines (Yue et al., 2024; Asai 054

et al., 2024). 055

To address these interconnected trade-offs sys- 056

tematically, we propose Multi-scale Adaptive Con- 057

text RAG (MacRAG). MacRAG integrates top- 058

down offline indexing with bottom-up query-time 059

adaptive retrieval. Offline, documents are parti- 060

tioned into overlapping chunks, their content com- 061

pressed via abstractive summarization, and these 062

summaries are further sliced for fine-grained in- 063

dexing. At query time, MacRAG retrieves precise 064

slices, then adaptively reconstructs the context by 065

merging these into parent chunks, incorporating 066

neighboring chunks, and performing document- 067

level expansions. This constructs effective, query- 068

specific, and length-bounded long contexts, opti- 069

mizing the balance between precision, coverage, 070

and efficiency. 071

MacRAG’s unified approach combines structure- 072

preserving indexing, adaptive multi-scale retrieval, 073

and bounded context assembly, offering a dis- 074

tinct, robust solution for complex multi-hop reason- 075

ing. Extensive experiments on challenging Long- 076

Bench (Bai et al., 2023) datasets show significant 077

gains over strong baselines using Llama-3.1-8B, 078

Gemini-1.5-pro, and GPT-4o. This paper thus in- 079

troduces a novel multi-scale retrieval architecture, 080

empirically validates its significant benefits for de- 081

manding QA tasks, and presents an efficient, mod- 082

ular framework for advanced RAG applications. 083
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Figure 1: An overview of the MacRAG framework, consisting of two main phases: (1) top-down hierarchical
indexing (upper), and (2) bottom-up multi-scale adaptive retrieval on the constructed hierarchy of document-chunk-
summary-slice (lower).

2 Related Work084

Strategies for RAG with Long Context (LC) LLMs085

(OpenAI, 2024; Team et al., 2024; Dubey et al.,086

2024a) largely follow two directions. Post-retrieval087

context management aims to condense information088

after initial retrieval by employing methods such089

as abstractive summarization like RECOMP-Abst090

(Xu et al., 2024a) or extractive techniques includ-091

ing LLMLingua (Jiang et al., 2023) and RECOMP-092

Extr (Xu et al., 2024a). While these manage con-093

text size, they are bottlenecked by initial retrieval094

quality, risk information loss, and can be computa-095

tionally intensive. MacRAG, by contrast, distinctly096

improves the retrieval phase itself, proactively con-097

structing a high-quality, bounded context.098

Orthogonally, hierarchical retrieval approaches099

organize information during retrieval and ranking100

for broader coverage. Systems like GraphRAG101

(Edge et al., 2024) and HippoRAG (Gutiérrez et al.,102

2024) use symbolic graphs or sentence-level index-103

ing, which can improve recall but often increase104

the overhead. RAPTOR (Sarthi et al., 2024) re-105

cursively summarizes clustered text chunks, poten-106

tially missing non-semantic relations, while SIR-107

ERAG (Zhang et al., 2025) further integrates re-108

lational connectivity at higher computational cost.109

LongRAG (Zhao et al., 2024) utilizes entire par-110

ent documents of top-ranked chunks alongside a111

multi-step generation scheme, a strategy that can112

be inefficient with very long document contexts.113

Based on Zhang et al. (2025)’s comparative anal-114

ysis (Table 4 therein), which shows that GraphRAG115

underperforms on multi-hop QA while RAPTOR,116

HippoRAG, and SIRERAG attain similar F1-117

scores, we focus our evaluations on RAPTOR and 118

LongRAG. Although RAPTOR’s semantic cluster- 119

ing may fragment knowledge and LongRAG’s full- 120

document usage can be costly, both were selected 121

for their promising trade-offs between strong per- 122

formance and relatively lower overhead compared 123

to other competitive methods, such as the noted 124

underperformance of GraphRAG or the higher op- 125

erational costs of SIRERAG. 126

In contrast, MacRAG preserves original docu- 127

ment structure through its offline hierarchical in- 128

dexing and adaptively merges relevant and related 129

contexts via its multi-scale retrieval and ranking at 130

query time. This approach circumvents costly, re- 131

peated clustering and the need for explicit symbolic 132

graphs, offering flexible assembly of multi-hop con- 133

texts with minimal overhead, and is designed with 134

extendibility towards graph-based enhancements. 135

3 Multi-scale Adaptive Context RAG 136

We propose Multi-scale Adaptive Context RAG 137

(MacRAG), a hierarchical multi-scale adaptive re- 138

trieval system with three sequential components. 139

First, top-down hierarchical indexing compresses 140

documents, partitions them into chunks, and slices 141

them to build a hierarchical index from coarse- 142

grained documents to fine-grained slices with multi- 143

level indices. Second, bottom-up multi-scale 144

adaptive retrieval starts from the finest granularity 145

to ensure precision, and progressively expands to 146

broader contexts by merging relevant information 147

to construct query-specific long contexts dynami- 148

cally in real time. Third, the response generation 149

leverages these carefully assembled contexts to pro- 150

duce the answer. 151
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Algorithm 1 MacRAG: Multi-scale Adaptive Con-
text RAG
Require: Query q, document corpus D, k1 (for slice re-

trieval), k2 (for final merged chunks), the # of hops h,
up-scaling factor α

Ensure: Top-k2 merged chunks Cfinal, generated answer
Phase 1: Top-down Hierarchical Indexing
For each document d ∈ D:

(1.1) Split d into a set of overlapping chunks Cd.
(1.2) Compress each chunk ci into a shorter summary si

via summarization.
(1.3) Split each compressed summary si into overlapping

slices Li.
(1.4) Encode each slice and store its embedding & meta-

data (doc ID, chunk ID, offset, etc) in the database.
Phase 2: Bottom-up Multi-scale Adaptive Retrieval and
Ranking

(2.1) Retrieve the top-k1 slices based on similarity to q.
(2.2) Map retrieved slices to their parent chunks to obtain

C′
k1

.
(2.3) Rerank chunks in C′

k1
to refine their scores r′q,ci .

(2.4) Scale-up by selecting the top (k2 × α) chunks and
ranking their source documents by aggregated scores to
choose k2 distinct documents.

(2.5) Merge the top-ranked chunks’ h-hop neighbors to
form the final top-k2 chunks, Cfinal.
Phase 3: Response Generation
Provide Cfinal as context to an LLM (or any downstream
model) to generate the final answer.

Our main contribution lies in the retrieval,152

ranking, and adaptive input context construction153

pipeline (phases 1 and 2), which serves as a mod-154

ular foundation for integrating any response gen-155

eration method in phase 3. Figure 1 provides an156

overview of MacRAG, and Algorithm 1 outlines157

the methods along with equations in subsequent158

sections.159

3.1 Document Hierarchical Indexing160

Given a document corpus D = {d1, . . . , dN},161

MacRAG performs offline processing to construct a162

hierarchy through chunking (§3.1.1), compression163

(§3.1.2), and slicing (§3.1.3), while building a slice-164

level vector DB at the finest granularity to empower165

precise retrieval. This strategy aims to reduce re-166

dundancy and sharpen semantic focus, thereby en-167

hancing retrieval precision and minimizing noise168

during the subsequent multi-scale expansion phase.169

3.1.1 Chunking170

Each document d ∈ D is split into partially overlap-171

ping chunks, Cd = {c1, c2, . . . , cm}, where each172

chunk ci spans approximately 200 to 500 tokens,173

with a fixed overlap of 10–200 tokens between174

consecutive chunks. This controlled overlap pre-175

serves semantic continuity across chunk bound-176

aries. Although the chunking is token-based by177

default, it can alternatively be configured at the 178

character level. We applied the similar range of 179

chunk sizes used by LongRAG (Zhao et al., 2024), 180

more details in Appendix A.5. 181

3.1.2 Compression 182

Each chunk ci is transformed into a more com- 183

pressed summary si, yielding a set of summaries 184

Sd = {s1, . . . , sm}, where si = Compress(ci). 185

The Compress(·) represents a summarization 186

model. It can be either extractive (selecting salient 187

sentences) or abstractive (using a generative model 188

to generate a summary). By default, we use an 189

LLM to generate the abstractive summarization. 190

This step effectively reduces redundancy while re- 191

taining core factual information. 192

3.1.3 Slicing 193

To facilitate finer-grained retrieval, each summary 194

si is further split into overlapping slices: Li = 195{
ℓi,1, ℓi,2, . . . , ℓi,j , . . .

}
, where each slice ℓi,j typ- 196

ically spans 50-200 tokens with partial overlap 197

as in the standard overlap chunking, and our 198

parameter details are in Appendix A.5. Each 199

slice is then embedded via ei,j = Embed(ℓi,j), 200

where Embed(·) represents a text encoder (e.g., 201

multilingual-e5-large). The slice-level em- 202

beddings with metadata (document ID, chunk ID, 203

offsets) are indexed in the vector DB. MacRAG can 204

optionally index chunk and summary embeddings 205

for multi-view retrieval. 206

3.2 Multi-scale Adaptive Retrieval and 207

Ranking 208

Given an input query q, MacRAG implements a 209

multi-scale adaptive retrieval pipeline over the con- 210

structed hierarchy through five sequential steps, 211

ultimately selecting the top-k2 merged chunks with 212

contextually relevant neighbor expansions for en- 213

hanced both precision and recall. 214

3.2.1 Initial Slice-level Retrieval 215

With slices serving as the finest granular units in 216

our hierarchical system and vector DB, we first 217

compute the query-slice relevance scores for each 218

slice ℓi,j in the vector DB: rq,ℓi,j = Rel
(
q, ℓi,j

)
, 219

where Rel(·, ·) can be implemented with relevance 220

model, e.g., cosine similarity and L2 distance in 221

dense retrieval, sparse retrieval, hybrid retrieval, 222

and so on. We then retrieve the top-k1 most rele- 223

vant slices. This fine-grained retrieval ensures high 224

precision by identifying slices with strong semantic 225

alignment to the query q. 226
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3.2.2 Parent Chunk Mapping227

Each retrieved slice corresponds to a parent228

chunk ci. To prevent redundancy when mul-229

tiple retrieved slices originate from the same230

chunk, we perform a unique mapping: C′k1 =231

unique
(
ci | ℓi,· ∈ top-k1(rq,ℓ)

)
, where we iden-232

tify and consolidate the parent chunks of all re-233

trieved slices and obtain a set of selected chunks234

used for the next steps.235

3.2.3 Chunk-level Re-Ranking236

For each identified unique relevant chunk from237

the mapping as ci ∈ C
′
k1

to the query, we com-238

pute a chunk-level ranking score for the query:239

rq,ci = ReRank
(
q, ci

)
, utilizing a cross-encoder240

(e.g., marco-miniLM) or advanced ranking model241

that evaluates the complete chunk content, mitigat-242

ing potential “information fragmentation" inherent243

in slice-level retrieval. The chunks in C′k1 are then244

reordered according to their ranking scores to the245

query q.246

3.2.4 Scaling-Up & Document-level Ranking247

This step aims to select optimal content segments248

for constructing k2 precise, bounded long contexts249

for the final LLM generation, ensuring both rele-250

vance and sufficient coverage. It incorporates top-251

ranked chunks and their context neighbors in the252

same document to mitigate information fragmenta-253

tion and support multi-hop reasoning.254

Scaled Top Chunk Selection. Recognizing255

that initial re-ranking scores rq,ci may not be per-256

fect, we consider a broader set of borderline candi-257

dates rather than strictly picking the top-k2 chunks.258

MacRAG employs a scaling factor α ≥ 1 (where259

(k2×α) ≤ |C′k1 |) to select the top-(k2×α) chunks260

from C′k1 : C′q,k2 = TopK(k2×α)

(
rq,ci

)
for ci ∈261

C′q,k1 . α = 1 does not scale-up the number of262

borderline candidates, but moderate higher α (e.g.,263

3 or 4) can provide higher probabilities to include264

borderline but crucial chunks to improve coverage265

while maintaining a certain level of quality for can-266

didates. To balance among precision, recall, and267

context lengths, α ∈ {2, 3, 4} would be promising268

where (k2 × α) ≤ |C′k1 |, and we will also demon-269

strate that selection α is not sensitive, but robust270

with handling trade-off problems well in Section 4.271

This approach can also potentially facilitate bridg-272

ing multi-hop queries.273

Document Selection. From the scaled set of274

(k2 × α) chunks in C′q,k2 , we identify their unique275

source documents. To select the top-k2 documents,276

we compute a document-level rank score rq,d for 277

each candidate document d. This score rq,d lever- 278

ages the chunk-level scores rq,ci of document’s all 279

constituent chunks ci that are also present in C′q,k2 : 280

rq,d = ReRankDoc

(
{ci ∈ d and ci ∈ C

′
q,k2
}
)

. 281

Document ranking functions can include mean, max, 282

sum of chunk scores, or an LLM-based ranker (with 283

max(rq,ci) being a suitable base if using cross- 284

encoder scores, which can be either positive or 285

negative). Based on rq,d, we form Dq,k2 , a set of 286

top-k2 distinct documents. Ensuring document di- 287

versity, especially with appropriate α values (e.g., 288

3 or 4 depending on the overlapped ratio of origi- 289

nal chunks), mitigates the risk of concentrating on 290

too few sources and is critical when evidence is 291

scattered across multiple documents. 292

3.2.5 Neighbor Chunk Propagation & Merge 293

for Input Context Construction 294

Within each of the top-k2 distinct documents, 295

we focus on chunks ci both in Dq,k2 and C′q,k2 , 296

as these represent the most relevant content seg- 297

ments. For such a chunk ci, we define Nh(ci) 298

which consists of ci’s neighbors within h-hops 299

and ci itself, and process extension of ci to get 300

N (ci) by using its associated indices, Nh(ci) = 301{
ci−h, . . . , ci, . . . , ci+h

}
. We then merge Nh(ci) 302

within the same ranked document to form the fi- 303

nal merged chunk for adaptive long context to 304

the query q: cmerge
q,d = Merge

(
Nh(ci)

)
, where 305

d ∈ Dq,k2 , ci ∈ d, and ci ∈ C
′
q,k2

. From the 306

top-k2 documents in Dq,k2 , we can select top-k2 307

merged chunks cmerge
q,d by considering their order 308

along with the top document order with rq,d. Then, 309

finally, we have top-k2 merged chunks as Cfinal = 310

TopKk2

(
cmerge
q,d

)
. The final merged chunks Cfinal 311

provide diverse views across the top-k2 documents 312

while optimizing context length (Zhao et al., 2024), 313

combining the most relevant content with minimal 314

redundancy. 315

3.3 Single/Multi-step Post Retrieval 316

Generation 317

Our retrieval framework is modular, enabling in- 318

tegration with various post-retrieval generation 319

approaches. These include both vanilla single- 320

step generation directly using the retrieved top-k2 321

chunks in a single pass and iterative multi-step 322

generation as in LongRAG (Zhao et al., 2024), 323

which introduces a CoT-guided filter (which checks 324

chunk-level relevance) and an LLM-augmented ex- 325
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tractor (which locates global context in original pas-326

sages). Following the comprehensive exploration327

of single and multi-step generation variants in Lon-328

gRAG, we evaluate MacRAG’s performance when329

combined with different post-retrieval generation330

methods. Specifically, we investigate seven genera-331

tion methods, as detailed in Table 4. Five of these332

methods (R&B, R&L, Full_Ext, Fil, and Full_E&F)333

are adopted directly from LongRAG. Among these,334

R&L, Full_Ext, and Full_E&F process the entire335

set of top-k2 documents, which can introduce com-336

putational overhead when handling very long texts.337

To address this limitation while maintaining an opti-338

mal balance between precision and recall, we intro-339

duce two new variants: R&B_Ext and R&B_E&F, to340

reduce this overhead while maintaining precision-341

recall balance.342

3.4 Implementation Complexity and System343

Efficiency344

MacRAG enhances simple overlapping-chunk in-345

dexing by first chunking each document with par-346

tial overlaps, then compressing each chunk through347

summarization, and finally slicing it. These pro-348

cesses are performed once during offline prepara-349

tion, eliminating query-time overhead. Moreover,350

this document-level independence simplifies up-351

dates and streamlines database operations, avoiding352

the complexity associated with hierarchical multi-353

clustering (Sarthi et al., 2024; Zhang et al., 2025).354

At inference time, MacRAG constructs a real-355

time effective long context by mapping slices356

back to their parent chunks and documents us-357

ing lightweight index-based lookups rather than358

costly tree traversals. This design leverages meta-359

data dictionaries (document ID, chunk ID, token360

offsets) to enable modular neighbor merging with361

minimal overhead. A bounded context size is en-362

forced through parameters (k2 × α) and chunk363

dimensions, ensuring scalability to enterprise-level364

corpora without degrading performance. This con-365

trolled scalability and real-time context assembly366

underscore MacRAG’s value for massive long-367

document collections, “almost infinite context" sce-368

narios in advanced personalization, and as a robust369

foundation for iterative RAG or agentic systems.370

4 Experiments371

4.1 Experimental Setup372

We evaluate MacRAG on three challenging multi-373

hop question answering benchmarks from Long-374

Bench (Bai et al., 2023): HotpotQA, 2WikiMulti- 375

hopQA, and Musique. These datasets, with their 376

tangential passages and obscured connecting in- 377

formation, specifically test a system’s ability to 378

handle the "Lost in the Middle" phenomenon and 379

perform robust multi-hop reasoning—precisely the 380

challenges MacRAG addresses. Section A.2 in the 381

Appendix provides a detailed explanation about 382

these datasets. 383

Models and Evaluations. Our evaluations em- 384

ploy three prominent LC LLMs: GPT-4o (Ope- 385

nAI, 2024), Gemini-1.5-pro (Team et al., 2024), 386

and the open-source Llama-3.1-8B-instruct (Dubey 387

et al., 2024a). Performance is measured using 388

Exact Match (EM), F1-score, Precision, and Re- 389

call. We primarily compare MacRAG against 390

strong baselines RAPTOR (Sarthi et al., 2024) 391

and LongRAG (Zhao et al., 2024), selected for 392

their representative state-of-the-art performance 393

and efficiency balance in hierarchical RAG (as dis- 394

cussed in Section 2). To ensure rigorous compar- 395

ative analysis across all RAG methods (MacRAG, 396

LongRAG, and RAPTOR) use the same reranker 397

(marco-miniLM), and LongRAG’s reported opti- 398

mal hyperparameters (k1 = 100 initial chunks, 399

k2 = 7 final chunks, unless in ablation). We 400

also applied seven different generation methods de- 401

scribed in Appendix A.1, and Table 4 for detailed 402

comparisons. 403

MacRAG-specific parameters are scale-up factor 404

α ∈ {1, 4} and the neighbor hop count h ∈ {0, 1}, 405

except during ablation studies. The ablation study 406

and performance analysis in Section 4.2 demon- 407

strate both robustness and the soundness of the 408

architecture design of MacRAG, enhancing multi- 409

hop reasoning capability. 410

This controlled setup ensures that performance 411

differences result from MacRAG’s architectural 412

innovations, particularly its hierarchical representa- 413

tion and adaptive multi-scale retrieval, rather than 414

from variations in hyperparameters or retrieval 415

components. By isolating architectural factors, we 416

can clearly assess the impact of multi-scale retrieval 417

on multi-hop reasoning. 418

4.2 Main Results 419

Comparison with RAPTOR. While RAPTOR 420

(Sarthi et al., 2024), a summarization and hierarchi- 421

cal clustering-based approach, shows gains on stan- 422

dard datasets, it struggles with retrieval quality on 423

LongBench versions (Bai et al., 2023) as shown in 424
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Model HotpotQA 2WikimultihopQA Musique Average
Long Context (LC) LLM without RAG

Gemini-1.5-pro (Team et al., 2024) 36.79 38.31 20.09 31.73
GPT-4o (OpenAI, 2024) 46.76 40.62 30.76 39.38

Agentic RAG Method
CRAG (GPT-3.5-Turbo) (Yan et al., 2024) 52.04 41.13 25.34 39.50
Self-RAG (GPT-3.5-Turbo) (Asai et al., 2024) 50.51 46.75 24.62 40.63

RAG with Reranking (R&B, Base Version)
Llama3-8B-8k (Dubey et al., 2024b) 48.25 43.47 19.66 37.13
GPT-3.5-Turbo 52.31 43.44 25.22 40.32
Llama-3.1-8B-instruct (abbr. Llama-3.1-8B) 52.50 46.33 26.70 41.84
RAPTOR (Sarthi et al., 2024) (Llama-3.1-8B) 52.30 (-0.20↓) 43.61 (-2.72↓) 23.79 (-2.91↓) 39.90 (-1.94↓, -4.64%↓)
MacRAG (Ours) (Llama-3.1-8B) 57.39 (+4.89↑) 44.87 (-1.46↓) 30.38 (+3.68↑) 44.21 (+2.37↑, +5.66%↑)

LongRAG (Zhao et al., 2024) (Multi-step Generation, Full_E&F in Table 4)
LongRAG (GPT-3.5-Turbo) 56.17 51.37 32.83 46.79
LongRAG (Llama-3.1-8B) 58.49 55.90 32.73 49.04
MacRAG (Ours) (Llama-3.1-8B) 61.10 (+2.61↑) 57.74 (+1.84↑) 34.43 (+1.70↑) 51.09 (+2.05↑, +4.18%↑)
LongRAG (Gemini-1.5-pro) 61.95 58.17 34.04 51.39
MacRAG (Ours) (Gemini-1.5-pro) 64.39 (+2.44↑) 64.75 (+6.58↑) 43.34 (+9.30↑) 57.49 (+6.10↑, +11.87%↑)
LongRAG (GPT-4o) 66.20 65.89 43.83 58.64
MacRAG (Ours) (GPT-4o) 68.52 (+2.32↑) 73.19 (+7.30↑) 50.09 (+6.26↑) 63.93 (+5.29↑, +9.02%↑)

Table 1: Experimental results (F1-score) comparing RAPTOR, LongRAG and MacRAG on HotpotQA, 2Wiki-
multihopQA, and MuSiQue datasets from LongBench (Bai et al., 2023). Gains are displayed in parentheses with
absolute number and its relative percentage.

Dataset Avg. Performance on LongRAG MacRAG LongRAG MacRAG
Seven Gen. Settings (Gemini-1.5-pro) (Gemini-1.5-pro) (GPT-4o) (GPT-4o)

HotpotQA

Exact Match 46.48 48.36 (+1.88↑, +4.04%↑) 51.85 53.60 (+1.75↑, +3.37%↑)
F1-score 61.45 63.97 (+2.52↑, +4.10%↑) 66.17 67.51 (+1.34↑, +2.03%↑)
Precision 65.93 67.98 (+2.05↑, +3.11%↑) 68.66 70.10 (+1.44↑, +2.10%↑)

Recall 61.59 64.47 (+2.88↑, +4.68%↑) 68.10 69.36 (+1.26↑, +1.85%↑)

2WikimultihopQA

Exact Match 49.93 53.69 (+3.76↑, +7.53%↑) 52.90 57.60 (+4.69↑, +8.87%↑)
F1-score 57.73 61.97 (+4.24↑, +7.34%↑) 62.69 67.45 (+4.76↑, +7.59%↑)
Precision 57.97 61.69 (+3.72↑, +6.41%↑) 62.22 66.48 (+4.26↑, +6.85%↑)

Recall 60.17 65.10 (+4.93↑, +8.20%↑) 66.47 72.00 (+5.53↑, +8.32%↑)

Musique

Exact Match 26.05 33.75 (+7.70↑, +29.57%↑) 31.30 36.48 (+5.18↑, +16.55%↑)
F1-score 33.92 42.84 (+8.93↑, +26.34%↑) 41.43 47.91 (+6.48↑, +15.64%↑)
Precision 34.69 43.29 (+8.60↑, +24.78%↑) 40.80 47.07 (+6.27↑, +15.37%↑)

Recall 35.69 45.16 (+9.46↑, +26.50%↑) 45.06 51.67 (+6.61↑, +14.67%↑)

Table 2: Consolidated results for four metrics across three datasets, comparing LongRAG and MacRAG using the
Gemini-1.5-pro and GPT-4o models. The results are averaged over seven generation settings in Table 4.

Table 1. Specifically, RAPTOR with Llama-3.1-8B425

shows performance decreases in 2WikimultihopQA426

and Musique, potentially associated with retrieval427

difficulty on Musique-Normal in (Yue et al., 2024).428

These results highlight the importance of both pre-429

cise retrieval and effective long-context construc-430

tion for achieving consistent gains across various431

multi-hop reasoning and long-context datasets.432

Integration with Multi-step Generation Method.433

Integrating MacRAG with the LongRAG (E&F) gen-434

eration method across multiple LLMs (Llama-3.1-435

8B, Gemini-1.5-pro, and GPT-4o) yields substan-436

tial performance improvements, as shown in Table437

1. This underscores MacRAG’s versatility and ro-438

bustness as a retrieval approach when paired with439

the LongRAG generation method. By constructing440

an effective long context, MacRAG demonstrates441

advantages in multi-step generation with LongRAG442

(E&F), producing consistent and meaningful gains443

across three datasets and three LLMs. In contrast, it 444

is not straightforward to extend RAPTOR in combi- 445

nation with LongRAG (E&F). As further illustrated 446

in Table 1, the performance gains for Gemini-1.5- 447

pro and GPT-4o indicate that pairing MacRAG 448

with more powerful LLMs can achieve even greater 449

improvements, despite already high F1-scores ob- 450

tained by other frameworks under these settings. 451

We further observe that summarization during in- 452

dexing improves retrieval quality. Our preliminary 453

experiments show a 7.2% gain in precision when 454

using summaries instead of raw slices. 455

Robustness across Generation Methods. In ad- 456

dition to MacRAG’s robust gains in both vanilla 457

single-step (R&B) and multi-step generation (E&F), 458

MacRAG consistently shows strong advantages 459

across the four metrics listed in Table 2, cover- 460

ing all seven generation modes in Table 4. These 461

substantial improvements across various datasets, 462
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Figure 2: Performance comparison of GPT-4o using LongRAG and MacRAG across the seven settings in Table 4,
showing F1-scores for three datasets (HotpotQA, 2WikiMultihopQA, and MuSiQue). Complete results for all
metrics and LLMs are provided in the Appendix.

(k2=7, marco-miniLM) R&B R&L Full_Ext Fil Full_E&F R&B_Ext R&B_E&F Average
HotpotQA

LongRAG 65.46 69.40 66.60 63.32 66.20 66.08 66.09 66.16
MacRAG 67.15 (+1.69↑)69.55 (+0.15↑)69.00 (+2.40↑) 65.44 (+2.12↑) 68.52 (+2.32↑)66.36 (+0.28↑)66.53 (+0.44↑) 67.51 (+1.35↑, +2.04%↑)
- Propagation&Merging 64.17 (-1.29↓) 68.91 (-0.49↓) 67.82 (+1.22↑) 68.06 (+4.74↑) 68.44 (+2.24↑) 63.77 (-2.31↓) 65.57 (-0.52↓) 66.68 (+0.52↑, +0.79%↑)
- Scaling up 64.12 (-1.34↓) 67.57 (-1.83↓) 67.33 (+0.73↑) 64.41 (+1.09↑) 67.26 (+1.06↑) 64.22 (-1.86↓) 63.84 (-2.44↓) 65.54 (-0.62↓, -0.94%↓)

2WikimultihopQA
LongRAG 59.97 62.37 65.35 60.68 65.89 62.08 62.47 62.69
MacRAG 59.00 (-0.97↓) 64.87 (+2.50↑)68.97 (+3.62↑) 68.20 (+7.52↑) 73.19 (+7.30↑)66.50 (+4.42↑)71.40 (+8.93↑) 67.45 (+4.76↑, +7.59%↑)
- Propagation&Merging 59.67 (-0.30↓) 65.06 (+2.69↑)68.48 (+3.13↑) 67.57 (+6.89↑) 72.20 (+6.31↑)65.13 (+3.05↑)72.43 (+9.96↑) 67.22 (+4.53↑, +7.23%↑)
- Scaling up 59.00 (-0.97↓) 61.89 (-0.48↓) 67.63 (+2.28↑) 60.41 (-0.27↓) 67.03 (+1.14↑)66.37 (+4.29↑)65.77 (+3.30↑) 64.01 (+1.32↑, +2.11%↑)

Musique
LongRAG 38.98 41.90 43.64 37.72 43.83 42.00 41.97 41.43
MacRAG 44.76 (+5.78↑)45.74 (+3.84↑)47.42 (+3.78↑)47.80 (+10.08↑)50.09 (+6.26↑)48.57 (+6.57↑)51.00 (+9.03↑)47.91 (+6.48↑, +15.63%↑)
- Propagation&Merging41.61 (+2.63↑)45.43 (+3.53↑)48.00 (+4.36↑) 47.48 (+9.76↑) 52.26 (+8.43↑) 40.09 (-1.91↓) 45.84 (+3.87↑)45.82 (+4.39↑, +10.58%↑)
- Scaling up 41.65 (+2.67↑)45.87 (+3.97↑)46.80 (+3.16↑) 41.83 (+4.11↑) 46.59 (+2.76↑) 39.40 (-2.60↓) 39.63 (-2.34↓) 43.11 (+1.68↑, +4.04%↑)

Table 3: Ablation study of MacRAG with GPT-4o and F1-score, using the same k1, k2, and reranker.

metrics, and LLMs demonstrate the effectiveness463

of MacRAG’s long-context retrieval in enhanc-464

ing both precision and recall for RAG. Notably,465

MacRAG achieves significant gains on the Musique466

datasets, which (Yue et al., 2024) identifies as hav-467

ing challenging retrieval conditions. Beyond the468

average gains in these four metrics, Figure 2 further469

confirms MacRAG’s robust benefits in all seven470

single-/multi-step generation schemes in Table 4471

in Appendix A.1. Finally, regardless of the choice472

of k2 or reranker, MacRAG maintains substantial473

advantages in all test settings in Table 5.474

Enhanced Gains with Stronger Models. When475

applied to the more powerful Gemini-1.5-pro and476

GPT-4o models, MacRAG showcases its capacity477

to further improve performance by optimizing the478

retrieval process and building more relevant, infor-479

mative contexts. Its use of hierarchical chunking480

and slicing, coupled with adaptive propagation and481

merging, maintains high precision while expanding482

coverage. This leads to more efficient handling of483

long documents, reduced computational overhead,484

and higher-quality generated answers overall.485

Ablation Study. Table 3 presents an abla-486

tion study demonstrating the effectiveness of487

MacRAG’s key components: Propagation and 488

Merging, Scaling-up, and Hierarchical Slicing Re- 489

trieval. Each component contributes to cumulative 490

performance gains. The combination of propaga- 491

tion and merging with the scaling-up mechanism in- 492

creases the coverage of relevant contexts for multi- 493

hop reasoning tasks. Figure 3 further illustrates the 494

benefits of scaling up promising candidates with 495

α = [2, 3, 4], showing how this approach effec- 496

tively balances context lengths while incorporating 497

additional relevant candidates. We observe that 498

performance gains remain consistent across differ- 499

ent k2 values and rerankers, indicating robustness. 500

Although the parameters (k1, k2, α, h) are fixed, 501

MacRAG adaptively merges nearby slices depend- 502

ing on partial relevance signals. Removing this 503

adaptivity leads to a 5% F1 drop, as shown in our 504

ablations. 505

4.3 Generation Schemes and Input Lengths 506

While multi-step generation methods (e.g., Lon- 507

gRAG’s Full_E&F) improve answer quality, they 508

often increase cumulative input length. Figure 4 509

compares cumulative input lengths for single and 510

multi-step generation methods in Table 4, given 511

single retrieval with specific settings, highlighting 512
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Figure 3: Performance trends across datasets for scale factors (α).
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Figure 4: Cumulative LLM’s input context lengths for
single/multi-step generation methods in Table 4.

that R&L, Full_Ext, and Full_E&F accumulate the513

most overhead by relying on entire documents. In514

contrast, MacRAG’s final k2 chunks, though po-515

tentially larger than basic R&B chunks, preserve516

bounded context well below full-document with517

long lengths.518

As Figure 2 and Table 3 illustrate, MacRAG519

consistently outperforms baselines under both520

R&B_Ext and R&B_E&F settings. Due to MacRAG’s521

advantage in effective and stable long context con-522

struction, even our intermediate R&B_E&F variant523

demonstrates significant improvements as shown524

in Table 3. For example, on 2WikiMultihopQA525

(GPT-4o), MacRAG (R&B_E&F) achieves an F1526

of 72.43 versus LongRAG (Full_E&F) at 65.89527

(+9.93% relative gain), while using 8.19% less528

context. On Musique, the intermediate variant of529

MacRAG (R&B_E&F) reaches 45.84 compared to530

LongRAG (Full_E&F)’s 43.83 (+4.58% relative)531

with a 45.87% reduction in context length. This532

highlights MacRAG’s efficiency in evidence gath-533

ering and context construction.534

4.4 Efficiency and Latency Analysis535

MacRAG maintains sub-second efficiency despite536

constructing richer multi-scale contexts. On av-537

erage, retrieval and reranking take 0.23 seconds538

per query, which is 38% faster than RAPTOR’s 539

0.37 seconds. With Llama 3.1 8B, total inference 540

latency is 0.99 seconds (0.23s retrieval and 0.76s 541

generation), compared to 0.80 seconds for RAP- 542

TOR (0.37s and 0.43s, respectively). This slight 543

increase in generation time is offset by improved 544

retrieval precision and higher answer quality on 545

R&B queries. 546

This efficiency is enabled by MacRAG’s 547

lightweight, index-based context construction and 548

shared reranking modules, which preserve the same 549

level of computational complexity as baseline re- 550

trieval pipelines. MacRAG introduces a one-time 551

offline summarization step during indexing, sim- 552

ilar to RAPTOR and SIRERAG. This step runs 553

in parallel with standard RAG indexing, adding 554

no runtime latency and supporting efficient index 555

maintenance. As shown in Table 3, Figure 4, and 556

Subsection 4.3, MacRAG achieves a better trade- 557

off than LongRAG between input context length, 558

answer quality, and overall computational cost. 559

5 Conclusion 560

In this work, we introduced Multi-scale Adaptive 561

Context RAG (MacRAG), a novel framework de- 562

signed to address key trade-offs in RAG involv- 563

ing precision, coverage, and computational effi- 564

ciency for long-context question answering and 565

multi-hop reasoning. By dynamically construct- 566

ing query-adaptive long contexts through real-time, 567

multi-scale retrieval, MacRAG demonstrably im- 568

proves both precision and recall while maintaining 569

operational efficiency. Our extensive experiments 570

validated MacRAG’s advantages across diverse 571

datasets and both single- and multi-step generation 572

paradigms, showcasing consistent and notable per- 573

formance gains. These findings establish MacRAG 574

as a potent and efficient core module for advancing 575

next-generation iterative and agentic RAG systems, 576

with significant potential for robust enterprise-level 577

applications. 578
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Limitations579

While MacRAG achieves strong performance with580

a modular and efficient design, there remain op-581

portunities for further extension. Its current offline582

summarization and indexing strategy, though ef-583

fective and amortized, may benefit from adaptive584

or online variants in evolving corpora. The use585

of fixed hyperparameters like chunk size and ex-586

pansion scale has shown robustness across settings,587

but dynamic adjustment based on query complexity588

is a promising direction. In addition, integrating589

MacRAG more tightly with agentic or multi-round590

retrieval workflows could enhance its utility in in-591

teractive and real-time RAG applications.592
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A Appendix740

A.1 Generation Modes741

Table 4 summarizes different generation modes. In742

addition to MacRAG’s robust gains in both vanilla743

single-step (R&B) and multi-step generation (E&F),744

MacRAG consistently shows strong advantages745

across the four metrics listed in Table 2, cover-746

ing all seven generation modes in Table 4. These747

substantial improvements across various datasets,748

metrics, and LLMs demonstrate the effectiveness749

of MacRAG’s long-context retrieval in enhanc-750

ing both precision and recall for RAG. Notably,751

MacRAG achieves significant gains on the Musique752

datasets, which (Yue et al., 2024) identifies as hav-753

ing challenging retrieval conditions. Beyond the754

average gains in these four metrics, Figure 2 further755

confirms MacRAG’s robust benefits in all seven756

single-/multi-step generation schemes in Table 4757

in Appendix A.1. Finally, regardless of the choice758

of k2 or reranker, MacRAG maintains substantial759

advantages in all test settings in Table 5.760

A.2 Benchmark Datasets and Challenges761

The LongBench variants of HotpotQA, 2Wikimul-762

tihopQA, and Musique datasets have become the763

standard evaluation suite for hierarchical retrieval764

research, including recent systems such as SIR-765

ERAG (Zhang et al., 2025), RAPTOR (Sarthi et al.,766

2024), and LongRAG (Zhao et al., 2024). They767

specifically intensify the “Lost in the Middle" phe-768

nomenon by introducing near-duplicate and tan-769

gential passages, creating challenging retrieval en-770

vironments where critical connecting information771

becomes obscured by surrounding context. Each772

dataset introduces distinct multi-hop reasoning773

challenges that systematically test different aspects774

of retrieval capability: HotpotQA features bridging775

and comparison queries requiring evidence synthe-776

sis across multiple paragraphs. 2WikiMultihopQA777

expands partial excerpts to complete articles, signif-778

icantly increasing the risk that essential connecting779

information becomes buried within expansive con-780

text. Musique embeds nested sub-questions within781

tangential sections, challenging systems to identify782

and connect scattered bridging facts across docu-783

ment boundaries. These characteristics directly test784

a retrieval system’s ability to handle fragmented785

evidence, reconcile overlapping information, and786

identify critical bridging facts despite contextual787

noise (Yue et al., 2024; Leng et al., 2024), precisely788

the challenges that MacRAG’s multi-scale architec-789

ture addresses through hierarchical indexing and 790

adaptive retrieval. 791

A.3 Target Baseline Methods 792

Based on SIRERAG’s comparative analysis (Table 793

4 in Zhang et al. (2025)), we focus our evaluation 794

on RAPTOR (Sarthi et al., 2024) and LongRAG 795

(Zhao et al., 2024) as representative state-of-the-art 796

hierarchical RAG systems. SIRERAG’s analysis 797

establishes that GraphRAG underperforms on these 798

specific multi-hop tasks, while RAPTOR, Hip- 799

poRAG, and SIRERAG achieve comparable perfor- 800

mance in terms of F1-score on multiple multi-hop 801

question answering datasets (Zhang et al., 2025). 802

Among these top-performing systems, we selected 803

RAPTOR and LongRAG because they balance per- 804

formance and computational efficiency better, of- 805

fering lower computational costs and easier main- 806

tenance than SIRERAG’s higher overhead. 807

A.4 Adaptive Retrieval Mechanism Analysis 808

A key strength of MacRAG lies in its adaptive re- 809

trieval mechanism, which dynamically constructs 810

query-specific contexts despite using fixed com- 811

mon hyperparameters (k1, k2) and MacRAG’s α, 812

and h. This adaptivity operates through several 813

complementary mechanisms: 814

Query-dependent Adaptive Context Expansion: 815

For complex multi-hop queries, MacRAG natu- 816

rally extends its context boundaries to encompass 817

connecting information. For simpler queries, ex- 818

pansion remains more focused, selectively around 819

the most promising content regions, but avoiding 820

unnecessary content. Our ablation studies quantify 821

the impact of this adaptivity. When the adaptivity 822

of query-adaptive expansion of neighborhoods is re- 823

moved by eliminating the propagation and merging 824

steps (Table 3), performance drops by up to around 825

5% F1-score on datasets. This degradation is most 826

pronounced on Musique, where connecting multi- 827

ple scattered pieces of evidence is crucial. Table 828

3 additionally reveals another important aspect of 829

query-adaptive expansion of borderline candidates 830

"Scaling-up", and if we eliminate its corresponding 831

"Scaling-up" component, then performance drops 832

up to around 6% F1-score on datasets. This aligns 833

with our expectation that adaptive expansion be- 834

comes increasingly valuable as query complexity 835

grows. 836
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Mode Description

R&B Single-step generation using retrieved top-k2 chunks, which is the vanilla basic version.
R&L Single-step generation using complete documents from top-k2 chunks. Prone to the “Lost in the Middle” effect and

inefficient for long documents.
Full_Ext Multi-step generation: (1) LLM extracts query-relevant content from full documents of top-k2 chunks, (2) generates

answer using both chunks and extracted content.
Fil Filtering re-ranked top-k2 chunks, e.g., via LLM. Improves precision but may lose borderline info.
Full_E&F Multi-step generation combining Full_Ext’s extracted content and Fil’s filtered chunks. Balances coverage and

precision, but is expensive for long documents.
R&B_Ext Multi-step generation with content extraction limited to top-k2 chunks, reducing computational overhead.
R&B_E&F Multi-step generation combining R&B_Ext’s extracted content and Fil’s filtered chunks. Optimizes precision-recall

trade-off w/o processing the full document.

Table 4: Seven different generation methods with single-step and multi-step generation schemes using retrieved
top-k2 chunks.

A.5 Preprocessing Efficiency of MacRAG837

Chunk Size and Token Budget: MacRAG uses838

original chunk sizes of approximately 400 tokens839

(around 1500 characters), which fall within the 200–840

500 token range used in prior work such as Lon-841

gRAG even for re-ranking on retrieved chunks. The842

average sizes of summarized chunks are around843

800-1000 characters. We applied slices into sum-844

marized chunks for initial retrieval to improve pre-845

cision further with two slice sizes around 450 char-846

acters with 300 character overlaps or 600 charac-847

ters with 450 character overlaps. These sizes al-848

low MacRAG to maintain sub-second retrieval and849

reranking times while keeping the context structure850

manageable for downstream language models.851

Offline Summarization Cost: MacRAG in-852

cludes a one-time summarization step during in-853

dexing, which does not affect query-time latency.854

This step is comparable in cost to offline embed-855

ding computations in standard RAG pipelines. All856

runtime efficiency measurements reported here ex-857

clude this indexing cost, as it is amortized over the858

use of the document collection.859

A.6 Latency Comparison between MacRAG860

and RAPTOR861

Retrieval and Reranking Latency: MacRAG862

maintains sub-second latency for retrieval and863

reranking across all evaluated datasets. Using864

dense retrieval with k1 = 100 followed by cross-865

encoder reranking with k2 = 7, the measured866

latency is 0.23 seconds on HotpotQA, 0.22 sec-867

onds on 2WikimultihopQA, and 0.24 seconds on868

Musique. In contrast, RAPTOR reports 0.43s,869

0.24s, and 0.44s on the same datasets, averaging870

0.37s. This represents a 38% speedup on average,871

even though both methods operate on the same top-872

100 retrieved chunks and use the same reranker 873

(marco-miniLM). MacRAG achieves this by lever- 874

aging index-based merging after reranking, which 875

reuses precomputed relevance scores and adds only 876

a few milliseconds per query. 877

Generation Time and Trade-offs: While re- 878

trieval and reranking are efficient, generation time 879

varies depending on the context length produced 880

by each method. MacRAG’s adaptive multi-scale 881

expansion typically results in longer but more rel- 882

evant contexts. With Llama 3.1 8B, the average 883

generation time with R&B is 0.76 seconds, com- 884

pared to 0.43 seconds for RAPTOR with R&B. This 885

increase reflects MacRAG’s strategy of incorporat- 886

ing broader evidence to improve answer accuracy. 887

Users seeking faster inference can reduce the ex- 888

pansion parameter α to trade off coverage for speed, 889

though at the cost of some performance. 890

Total Latency Comparison: Combining re- 891

trieval, reranking, and generation with R&B, the 892

total end-to-end latency of MacRAG is 0.99 sec- 893

onds (0.23s + 0.76s), compared to RAPTOR’s 894

0.80 seconds (0.37s + 0.43s). While MacRAG in- 895

curs a small additional cost, it consistently yields 896

higher accuracy across multiple datasets and mod- 897

els, as shown in Table 1. 898

A.7 Efficiency Comparison between MacRAG 899

and LongRAG 900

MacRAG and LongRAG both rely on index-based 901

hierarchical retrieval and reranking over the same 902

number of k1 chunks. As a result, their retrieval 903

and reranking steps show similar efficiency and la- 904

tency. However, for the generation step, according 905

to Table 3, Figure 4, and Subsection 4.3, MacRAG 906

achieves improved efficiency compared to Lon- 907

gRAG in terms of the trade-off between final an- 908
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swer quality, input context length, and overall com-909

putational cost.910

A.8 Discussion on Effectiveness of MacRAG’s911

Retrieval and Constructed Long Context912

Enhanced Precision and Coverage: MacRAG913

employs a hierarchical multi-scale strategy that be-914

gins with fine-grained slice retrieval and chunk-915

level re-ranking for precise identification of rel-916

evant content, then systematically incorporates917

broader document-level context through h-hop918

neighbor expansions. To preserve coherence with-919

out overwhelming the LLM, it strategically up-920

scales via the (α× k2) factor, capturing borderline921

yet crucial segments. Rather than relying on com-922

pressed text or entire documents, MacRAG focuses923

on real-time construction of effective long contexts924

from promising original chunks while enforcing925

an upper bound on context length. By removing926

irrelevant portions from documents and maintain-927

ing a continuous, coherent subset of text, MacRAG928

avoids excessive token consumption, mitigates the929

“lost in the middle" phenomenon, and minimizes930

hallucinations, ultimately ensuring high recall for931

complex multi-hop queries.932

A.9 Discussion on Single, Multi-Step,933

Iterative, and Agentic Generation with934

MacRAG935

MacRAG’s modular design seamlessly supports936

single and multi-step generation, iterative retrieval,937

and agentic pipelines. By combining its core multi-938

scale retrieval with standard generation methods,939

MacRAG dynamically adapts context formation940

and refinement across multiple rounds without over-941

whelming the LLM. In single and multi-step modes942

(e.g., LongRAG (Zhao et al., 2024) and standard943

multi-step QA in Section 3.3), MacRAG selects944

and assembles relevant text from large corpora945

while minimizing noise and retaining crucial con-946

nections, thereby improving both recall and pre-947

cision for multi-hop reasoning. For iterative sce-948

narios, such as IterDRAG (Yue et al., 2024) or949

chain-of-RAG (Wang et al., 2025), MacRAG can950

support efficient updates on the evidence set via951

Ct ← Merge
(
Ct−1, Retrieval(qt)

)
to unify old952

and newly retrieved content, promoting consis-953

tent coverage of bridging facts while discarding954

irrelevant material. In agentic RAG settings (Asai955

et al., 2024; Jeong et al., 2024; Chen et al., 2025),956

MacRAG likewise prevents context explosion by957

focusing specifically on segments required for each 958

action, thereby improving precision and recall over 959

multiple steps. Our experiments (Section 4) con- 960

firm that integrating MacRAG with single and 961

multi-step generation methods, potential core mod- 962

ules for multi-round advanced systems, consis- 963

tently enhances complex multi-hop reasoning tasks 964

and reduces error rates in long-context RAG. 965

A.10 Discussion on Graph-Enhanced 966

MacRAG 967

A promising direction is extending MacRAG with 968

a two-stage reranking strategy incorporating graph- 969

based knowledge structures. After initial chunk- 970

level reranking, MacRAG could perform a sec- 971

ond reranking phase by expanding top candidates 972

through both local index-based extensions and pre- 973

constructed graph neighbors, enabling efficient cov- 974

erage of both local and global relationships. This 975

approach would leverage MacRAG’s bounded con- 976

text guarantees at each phase while allowing con- 977

trolled exploration of knowledge-guided connec- 978

tions, managing computational efficiency through 979

bounded candidate sets during reranking. By ap- 980

plying MacRAG’s document-oriented indexing or 981

relationship-based thresholding to merge expanded 982

candidates, this strategy would enhance retrieval 983

quality for complex queries requiring both precise 984

local context and broad knowledge integration. 985
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Model k2Reranker R&B R&L Full_Ext Fil Full_E&F R&B_Ext R&B_E&F Average
HotpotQA

LongRAG 7 bge-m3 67.67 67.99 68.96 64.30 68.49 66.73 66.10 67.18
MacRAG 7 bge-m3 67.59 (-0.08↓) 68.63 (+0.64↑)70.53 (+1.57↑) 65.56 (+1.26↑) 70.29 (+1.80↑) 66.59 (-0.14↓) 67.32 (+1.22↑)68.07 (+0.89↑, +1.32%↑)
LongRAG 12 bge-m3 68.57 67.65 70.31 64.74 70.14 67.63 67.49 68.08
MacRAG 12 bge-m3 67.88 (-0.69↓) 69.87 (+2.22↑)70.72 (+0.41↑) 65.98 (+1.24↑) 70.66 (+0.52↑)69.05 (+1.42↑)67.84 (+0.35↑)68.86 (+0.78↑, +1.15%↑)

2WikimultihopQA
LongRAG 7 bge-m3 59.36 65.56 68.27 55.31 67.36 64.42 63.88 64.45
MacRAG 7 bge-m3 62.32 (+2.96↑)66.34 (+0.78↑)71.63 (+3.36↑)69.72 (+14.41↑)73.98 (+6.62↑)66.61 (+2.19↑)72.63 (+8.75↑)69.03 (+4.58↑, +7.11%↑)
LongRAG 12 bge-m3 60.08 66.77 69.28 58.50 69.39 64.90 65.28 64.89
MacRAG 12 bge-m3 64.29 (+4.21↑)67.20 (+0.43↑)70.95 (+1.67↑)69.46 (+10.96↑)73.90 (+4.51↑)67.49 (+2.59↑)71.80 (+6.52↑)69.30 (+4.41↑, +6.80%↑)

Musique
LongRAG 7 bge-m3 42.34 48.08 47.88 42.17 47.92 43.70 44.06 45.16
MacRAG 7 bge-m3 45.54 (+3.20↑) 46.68 (-1.40↓) 49.58 (+1.70↑) 46.76 (+4.59↑) 49.53 (+1.61↑)47.94 (+4.24↑)49.14 (+5.08↑)47.88 (+2.72↑, +6.02%↑)
LongRAG 12 bge-m3 41.53 46.96 49.58 41.60 49.57 46.76 46.33 46.05
MacRAG 12 bge-m3 46.44 (+4.91↑) 45.81 (-1.15↓) 51.02 (+1.44↑) 46.70 (+5.10↑) 51.54 (+1.97↑)50.25 (+3.49↑)49.50 (+3.17↑)48.75 (+2.70↑, +5.86%↑)

Table 5: Robust test of MacRAG with various k2 an alternative re-ranker on three multi-hop QA datasets, using GPT-
4o and F1-score. The experiments were conducted with the same hyperparameters as reported in LongRAG (Zhao
et al., 2024).

Figure 5: Performances of LongRAG and MacRAG regarding the fours metrics (Exact Match, F1-score, Precision,
Recall) for three datasets (HotpotQA, 2WikimultihopQA, and Musique) and two LLMs (Gemini-1.5-pro and
GPT-4o). Each row corresponds to a combination of dataset and LLM, and each column represents one of the
metrics.
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HotpotQA
Method (k2 = 7) R&B R&L Full_Ext Fil Full_E&F R&B_Ext R&B_Ext_Fil Average

LongRAG 63.59 63.93 61.93 63.38 61.95 57.86 57.53 61.45
MacRAG 63.02 (-0.57↓) 66.76 (+2.83↑) 64.90 (+2.97↑) 65.96 (+2.58↑) 64.40 (+2.45↑) 60.59 (+2.73↑) 62.14 (+4.61↑) 63.97 (+2.52↑, +4.10%↑)

2WikimultihopQA
Method (k2 = 7) R&B R&L Full_Ext Fil Full_E&F R&B_Ext R&B_Ext_Fil Average

LongRAG 60.13 62.99 57.82 58.31 58.17 53.12 53.54 57.73
MacRAG 58.38 (-1.75↓) 63.48 (+0.49↑) 60.90 (+3.08↑) 66.74 (+8.43↑) 64.75 (+6.58↑) 55.32 (+2.20↑) 64.19 (+10.65↑) 61.85 (+4.12↑, +7.14%↑)

Musique
Method (k2 = 7) R&B R&L Full_Ext Fil Full_E&F R&B_Ext R&B_Ext_Fil Average

LongRAG 34.90 40.97 33.73 35.01 34.04 29.82 28.96 33.92
MacRAG 43.31 (+8.41↑) 43.41 (+2.44↑) 40.68 (+6.96↑) 45.81 (+10.80↑) 43.34 (+9.30↑) 40.61 (+10.79↑) 42.76 (+13.80↑) 42.84 (+8.92↑), +26.30%↑)

Table 6: Experimental results of Gemini-1.5-pro with F1-score for comparing LongRAG vs MacRAG across
HotpotQA, 2WikimultihopQA, and Musique datasets. The experiments conducted with the same hyper-parameter
(k1=100 , k2=7) which is the reported best parameter of LongRAG (Zhao et al., 2024). The columns represent
various evaluation settings: R&B (Retrieval and Base), R&L (Retrieval and Long), Full_Ext (Extraction from Full
Document), Fil (Filtering), Full_E&F (Extraction and Filtering combined), R&B_Ext (Extraction from Top-k2
Chunks), and R&B_Ext_Fil (Extraction and Filtering from Top-k2 Chunks). The absolute gains and relative
percentage improvements from applying MacRAG to LongRAG are displayed in parentheses.

HotpotQA
k2 = 7, marco-miniLM R&B R&L Full_Ext Fil Full_E&F R&B_Ext R&B_Ext_Fil Average

LongRAG 65.46 69.40 66.60 63.32 66.20 66.08 66.09 66.16
MacRAG 67.15 (+1.69↑) 69.55 (+0.15↑) 69.00 (+2.40↑) 65.44 (+2.12↑) 68.52 (+2.32↑) 66.36 (+0.28↑) 66.53 (+0.44↑) 67.22 (+1.06↑)

k2 = 12, marco-miniLM R&B R&L Full_Ext Fil Full_E&F R&B_Ext R&B_Ext_Fil Average
LongRAG 67.97 69.80 67.91 63.56 67.82 66.91 66.44 67.20
MacRAG 68.41 (+0.44↑) 69.64 (-0.16↓) 69.95 (+2.04↑) 65.42 (+1.86↑) 69.09 (+1.27↑) 67.57 (+0.66↑) 66.95 (+0.51↑) 68.00 (+0.80↑)

k2 = 7, bge-m3 R&B R&L Full_Ext Fil Full_E&F R&B_Ext R&B_Ext_Fil Average
LongRAG 67.67 67.99 68.96 64.30 68.49 66.73 66.10 67.18
MacRAG 67.59 (-0.08↓) 68.63 (+0.64↑) 70.53 (+1.57↑) 65.56 (+1.26↑) 70.29 (+1.80↑) 66.59 (-0.14↓) 67.32 (+1.22↑) 68.07 (+0.89↑)

k2 = 12, bge-m3 R&B R&L Full_Ext Fil Full_E&F R&B_Ext R&B_Ext_Fil Average
LongRAG 68.57 67.65 70.31 64.74 70.14 67.63 67.49 68.08
MacRAG 67.88 (-0.69↓) 69.87 (+2.22↓) 70.72 (+0.41↑) 65.98 (+1.24↑) 70.66 (+0.52↑) 69.05 (+1.42↑) 67.84 (+0.35↑) 68.86 (+0.78↑)

2WikimultihopQA
k2 = 7, marco-miniLM R&B R&L Full_Ext Fil Full_E&F R&B_Ext R&B_Ext_Fil Average

LongRAG 59.97 62.37 65.35 60.68 65.89 62.08 62.47 62.69
MacRAG 59.00 (-0.97↓) 64.87 (+2.50↑) 68.97 (+3.62↑) 68.20 (+7.52↑) 73.19 (+7.30↑) 66.50 (+4.42↑) 71.40 (+8.93↑) 67.45 (+4.76↑)

k2 = 12, marco-miniLM R&B R&L Full_Ext Fil Full_E&F R&B_Ext R&B_Ext_Fil Average
LongRAG 62.64 65.43 70.67 62.06 70.66 67.56 66.60 66.52
MacRAG 63.47 (+0.83↑) 67.06 (+1.63↑) 70.61 (-0.06↓) 67.84 (+5.78↑) 72.24 (+1.58↑) 67.83 (+0.27↑) 72.23 (+5.63↑) 68.75 (+2.23↑)

k2 = 7, bge-m3 R&B R&L Full_Ext Fil Full_E&F R&B_Ext R&B_Ext_Fil Average
LongRAG 59.36 65.56 68.27 55.31 67.36 64.42 63.88 64.45
MacRAG 62.32 (+2.96↑) 66.34 (+0.78↑) 71.63 (+3.36↑) 69.72 (+14.41↑) 73.98 (+6.62↑) 66.61 (+2.19↑) 72.63 (+8.75↑) 69.03 (+5.58↑)

k2 = 12, bge-m3 R&B R&L Full_Ext Fil Full_E&F R&B_Ext R&B_Ext_Fil Average
LongRAG 60.08 66.77 69.28 58.50 69.39 64.90 65.28 64.89
MacRAG 64.29 (+4.21↑) 67.20 (+0.43↑) 70.95 (+1.67↑) 69.46 (+10.96↑) 73.90 (+4.51↑) 67.49 (+2.59↑) 71.80 (+6.52↑) 69.30 (+4.41↑)

Musique
k2 = 7, marco-miniLM R&B R&L Full_Ext Fil Full_E&F R&B_Ext R&B_Ext_Fil Average

LongRAG 38.98 41.90 43.64 37.72 43.83 42.00 41.97 41.43
MacRAG 44.76 (+5.78↑) 45.74 (+3.84↑) 47.42 (+3.78↑) 47.80 (+10.08↑) 50.09 (+6.26↑) 48.57 (+6.57↑) 51.00 (+9.03↑) 47.77 (+6.34↑)

k2 = 12, marco-miniLM R&B R&L Full_Ext Fil Full_E&F R&B_Ext R&B_Ext_Fil Average
LongRAG 41.20 43.85 48.19 40.48 47.22 44.66 44.51 44.30
MacRAG 45.85 (+4.65↑) 47.66 (+3.81↑) 48.27 (+0.08↑) 49.01 (+8.53↑) 48.99 (+1.77↑) 49.35 (+4.69↑) 50.57 (+6.06↑) 48.53 (+4.23↑)

k2 = 7, bge-m3 R&B R&L Full_Ext Fil Full_E&F R&B_Ext R&B_Ext_Fil Average
LongRAG 42.34 48.08 47.88 42.17 47.92 43.70 44.06 45.16
MacRAG 45.54 (+3.20↑) 46.68 (-1.40↓) 49.58 (+1.70↑) 46.76 (+4.59↑) 49.53 (+1.61↑) 47.94 (+4.24↑) 49.14 (+5.08↑) 47.88 (+2.72↑)

k2 = 12, bge-m3 R&B R&L Ful_Ext Fil Full_E&F R&B_Ext R&B_Ext_Fil Average
LongRAG 41.53 46.96 49.58 41.60 49.57 46.76 46.33 46.05
MacRAG 46.44 (+4.91↑) 45.81 (-1.15↓) 51.02 (+1.44↑) 46.70 (+5.10↑) 51.54 (+1.97↑) 50.25 (+3.49↑) 49.50 (+3.17↑) 48.75 (+2.70 ↑)

Table 7: Extensive experimental results for comparing LongRAG vs. MacRAG+LongRAG across HotpotQA,
2WikimultihopQA, and Musique datasets with two rerankers “marco-miniLM" and “bge-m3” via GPT-4o and
F1-score. The experiments conducted with the same hyper-parameter (k1 = 100, k2 = 7) and (k1 = 100, k2 = 12)
which is the reported best parameter of LongRAG (Zhao et al., 2024). The columns represent various evaluation
settings: R&B (Retrieval and Base), R&L (Retrieval and Long), Full_Ext (Extraction from Full Document), Fil
(Filtering), Full_E&F (Extraction and Filtering combined), and R&B_Ext (Extraction from Top-k2 Chunks). Gains
from applying MacRAG to LongRAG (E&F) are displayed in parentheses with absolute gains on F1-scores and
relative percentages of the improvements.
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