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Abstract

Long-context large language models (LC
LLMs) combined with retrieval-augmented
generation (RAG) hold strong potential for
complex multi-hop and large-document tasks.
However, existing RAG systems often suffer
from imprecise retrieval, incomplete context
coverage under constrained windows, and frag-
mented information from suboptimal context
construction. We introduce Multi-scale Adap-
tive Context RAG (MacRAG), a hierarchi-
cal RAG framework that compresses and parti-
tions documents into coarse-to-fine granulari-
ties, then adaptively merges relevant contexts
through real-time chunk- and document-level
expansions. By initiating with finest-level re-
trieval and progressively incorporating broader,
higher-level context, MacRAG constructs ef-
fective query-specific long contexts, optimiz-
ing both precision and coverage. Evaluations
on challenging LongBench expansions of Hot-
potQA, 2WikiMultihopQA, and Musique con-
firm MacRAG consistently surpasses baseline
RAG pipelines in single- and multi-step gen-
eration using Llama-3.1-8B, Gemini-1.5-pro,
and GPT-40. Our results establish MacRAG
as an efficient, scalable solution for real-world
long-context, multi-hop reasoning.

1 Introduction

Large language models (LLMs) have significantly
advanced complex reasoning, but they still suffer
from factual gaps or hallucinations when relying
only on internal parameters (Zhao et al., 2024).
Retrieval-Augmented Generation (RAG) addresses
this by grounding LLMs in external evidence (Guu
et al., 2020; Lewis et al., 2020). Long-context
(LC) LLMs such as GPT-40 (OpenAl, 2024), Gem-
ini 1.5 (Team et al., 2024), and Llama 3 (Dubey
et al., 2024a) offer large input windows but re-
main limited. They often miss crucial mid-context
information (Liu et al., 2024; Xu et al., 2024b)
and their performance degrades at extreme context
lengths (Leng et al., 2024; Yu et al., 2024).

These issues in RAG systems give rise to three
key trade-offs: (1) Context Length vs. Focus,
where longer contexts improve recall but may ob-
scure important details, while shorter ones enhance
focus but risk omission of essential evidence; (2)
Chunking and Indexing, where fine-grained chunks
boost retrieval precision but harm coherence, while
coarse chunks preserve structure but introduce re-
dundancy; and (3) Coverage vs. Computation,
where broader context improves reasoning but in-
creases token cost and latency, especially in iter-
ative or agentic pipelines (Yue et al., 2024; Asai
et al., 2024).

To address these interconnected trade-offs sys-
tematically, we propose Multi-scale Adaptive Con-
text RAG (MacRAG). MacRAG integrates top-
down offline indexing with bottom-up query-time
adaptive retrieval. Offline, documents are parti-
tioned into overlapping chunks, their content com-
pressed via abstractive summarization, and these
summaries are further sliced for fine-grained in-
dexing. At query time, MacRAG retrieves precise
slices, then adaptively reconstructs the context by
merging these into parent chunks, incorporating
neighboring chunks, and performing document-
level expansions. This constructs effective, query-
specific, and length-bounded long contexts, opti-
mizing the balance between precision, coverage,
and efficiency.

MacRAG’s unified approach combines structure-
preserving indexing, adaptive multi-scale retrieval,
and bounded context assembly, offering a dis-
tinct, robust solution for complex multi-hop reason-
ing. Extensive experiments on challenging Long-
Bench (Bai et al., 2023) datasets show significant
gains over strong baselines using Llama-3.1-8B,
Gemini-1.5-pro, and GPT-40. This paper thus in-
troduces a novel multi-scale retrieval architecture,
empirically validates its significant benefits for de-
manding QA tasks, and presents an efficient, mod-
ular framework for advanced RAG applications.



Phase 1: Top-down Hierarchy Indexing Construction via Chunking, Compressing, and Slicing
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Figure 1: An overview of the MacRAG framework, consisting of two main phases: (1) top-down hierarchical
indexing (upper), and (2) bottom-up multi-scale adaptive retrieval on the constructed hierarchy of document-chunk-

summary-slice (lower).

2 Related Work

Strategies for RAG with Long Context (LC) LLMs
(OpenAl, 2024; Team et al., 2024; Dubey et al.,
2024a) largely follow two directions. Post-retrieval
context management aims to condense information
after initial retrieval by employing methods such
as abstractive summarization like RECOMP-Abst
(Xu et al., 2024a) or extractive techniques includ-
ing LLMLingua (Jiang et al., 2023) and RECOMP-
Extr (Xu et al., 2024a). While these manage con-
text size, they are bottlenecked by initial retrieval
quality, risk information loss, and can be computa-
tionally intensive. MacRAG, by contrast, distinctly
improves the retrieval phase itself, proactively con-
structing a high-quality, bounded context.

Orthogonally, hierarchical retrieval approaches
organize information during retrieval and ranking
for broader coverage. Systems like GraphRAG
(Edge et al., 2024) and HippoRAG (Gutiérrez et al.,
2024) use symbolic graphs or sentence-level index-
ing, which can improve recall but often increase
the overhead. RAPTOR (Sarthi et al., 2024) re-
cursively summarizes clustered text chunks, poten-
tially missing non-semantic relations, while SIR-
ERAG (Zhang et al., 2025) further integrates re-
lational connectivity at higher computational cost.
LongRAG (Zhao et al., 2024) utilizes entire par-
ent documents of top-ranked chunks alongside a
multi-step generation scheme, a strategy that can
be inefficient with very long document contexts.

Based on Zhang et al. (2025)’s comparative anal-
ysis (Table 4 therein), which shows that GraphRAG
underperforms on multi-hop QA while RAPTOR,
HippoRAG, and SIRERAG attain similar F1-

scores, we focus our evaluations on RAPTOR and
LongRAG. Although RAPTOR’s semantic cluster-
ing may fragment knowledge and LongRAG’s full-
document usage can be costly, both were selected
for their promising trade-offs between strong per-
formance and relatively lower overhead compared
to other competitive methods, such as the noted
underperformance of GraphRAG or the higher op-
erational costs of SIRERAG.

In contrast, MacRAG preserves original docu-
ment structure through its offline hierarchical in-
dexing and adaptively merges relevant and related
contexts via its multi-scale retrieval and ranking at
query time. This approach circumvents costly, re-
peated clustering and the need for explicit symbolic
graphs, offering flexible assembly of multi-hop con-
texts with minimal overhead, and is designed with
extendibility towards graph-based enhancements.

3 Multi-scale Adaptive Context RAG

We propose Multi-scale Adaptive Context RAG
(MacRAG), a hierarchical multi-scale adaptive re-
trieval system with three sequential components.
First, top-down hierarchical indexing compresses
documents, partitions them into chunks, and slices
them to build a hierarchical index from coarse-
grained documents to fine-grained slices with multi-
level indices. Second, bottom-up multi-scale
adaptive retrieval starts from the finest granularity
to ensure precision, and progressively expands to
broader contexts by merging relevant information
to construct query-specific long contexts dynami-
cally in real time. Third, the response generation
leverages these carefully assembled contexts to pro-
duce the answer.



Algorithm 1 MacRAG: Multi-scale Adaptive Con-

text RAG

Require: Query g, document corpus D, k; (for slice re-
trieval), ko (for final merged chunks), the # of hops h,

up-scaling factor o
Ensure: Top-k2 merged chunks Cgnal, generated answer

Phase 1: Top-down Hierarchical Indexing
For each document d € D:

(1.1) Split d into a set of overlapping chunks Cg.

(1.2) Compress each chunk c¢; into a shorter summary s;
via summarization.

(1.3) Split each compressed summary s; into overlapping
slices L;.

(1.4) Encode each slice and store its embedding & meta-
data (doc ID, chunk ID, offset, etc) in the database.

Phase 2: Bottom-up Multi-scale Adaptive Retrieval and
Ranking

(2.1) Retrieve the top-k; slices based on similarity to g.

(2.2) Map retrieved slices to their parent chunks to obtain
cl..

(2.3) Rerank chunks in Cj, to refine their scores rq ., .

(2.4) Scale-up by selecting the top (k2 x «) chunks and
ranking their source documents by aggregated scores to
choose k2 distinct documents.

(2.5) Merge the top-ranked chunks’ h-hop neighbors to
form the final top-k2 chunks, Ceinal.

Phase 3: Response Generation
Provide Cfinal as context to an LLM (or any downstream
model) to generate the final answer.

Our main contribution lies in the retrieval,
ranking, and adaptive input context construction
pipeline (phases 1 and 2), which serves as a mod-
ular foundation for integrating any response gen-
eration method in phase 3. Figure 1 provides an
overview of MacRAG, and Algorithm 1 outlines
the methods along with equations in subsequent
sections.

3.1 Document Hierarchical Indexing

Given a document corpus D = {di,...,dn},
MacRAG performs offline processing to construct a
hierarchy through chunking (§3.1.1), compression
(§3.1.2), and slicing (§3.1.3), while building a slice-
level vector DB at the finest granularity to empower
precise retrieval. This strategy aims to reduce re-
dundancy and sharpen semantic focus, thereby en-
hancing retrieval precision and minimizing noise
during the subsequent multi-scale expansion phase.

3.1.1 Chunking

Each document d € D is split into partially overlap-
ping chunks, Cy = {c1,¢2,...,cn}, where each
chunk ¢; spans approximately 200 to 500 tokens,
with a fixed overlap of 10-200 tokens between
consecutive chunks. This controlled overlap pre-
serves semantic continuity across chunk bound-
aries. Although the chunking is token-based by

default, it can alternatively be configured at the
character level. We applied the similar range of
chunk sizes used by LongRAG (Zhao et al., 2024),
more details in Appendix A.5.

3.1.2 Compression

Each chunk ¢; is transformed into a more com-
pressed summary s;, yielding a set of summaries
Si = {s1,.-.,8m}, where s; = Compress(c;).
The Compress(-) represents a summarization
model. It can be either extractive (selecting salient
sentences) or abstractive (using a generative model
to generate a summary). By default, we use an
LLM to generate the abstractive summarization.
This step effectively reduces redundancy while re-
taining core factual information.

3.1.3 Slicing

To facilitate finer-grained retrieval, each summary
s; is further split into overlapping slices: £; =
{ i1, lia, ... }, where each slice ¢; ; typ-
ically spans 50-200 tokens with partial overlap
as in the standard overlap chunking, and our
parameter details are in Appendix A.5. Each
slice is then embedded via e; ; = Embed(¢; ;),
where Embed(+) represents a text encoder (e.g.,
multilingual-e5-large). The slice-level em-
beddings with metadata (document ID, chunk ID,
offsets) are indexed in the vector DB. MacRAG can
optionally index chunk and summary embeddings
for multi-view retrieval.

,E@j,...

3.2 Multi-scale Adaptive Retrieval and
Ranking

Given an input query ¢, MacRAG implements a
multi-scale adaptive retrieval pipeline over the con-
structed hierarchy through five sequential steps,
ultimately selecting the top-ks merged chunks with
contextually relevant neighbor expansions for en-
hanced both precision and recall.

3.2.1 Initial Slice-level Retrieval

With slices serving as the finest granular units in
our hierarchical system and vector DB, we first
compute the query-slice relevance scores for each
slice ¢; ; in the vector DB: rg g, . = Rel(q, Em-),
where Rel(, -) can be implemented with relevance
model, e.g., cosine similarity and Lo distance in
dense retrieval, sparse retrieval, hybrid retrieval,
and so on. We then retrieve the top-k; most rele-
vant slices. This fine-grained retrieval ensures high
precision by identifying slices with strong semantic
alignment to the query q.



3.2.2 Parent Chunk Mapping

Each retrieved slice corresponds to a parent
chunk ¢;. To prevent redundancy when mul-
tiple retrieved slices originate from the same
chunk, we perform a unique mapping: C,;l =
unique(¢; | 4. € top-ki(rqs)), where we iden-
tify and consolidate the parent chunks of all re-
trieved slices and obtain a set of selected chunks
used for the next steps.

3.2.3 Chunk-level Re-Ranking

For each identified unique relevant chunk from
the mapping as ¢; € C,;l to the query, we com-
pute a chunk-level ranking score for the query:
Tq.c; = ReRank (q, cl-), utilizing a cross-encoder
(e.g., marco-minilLM) or advanced ranking model
that evaluates the complete chunk content, mitigat-
ing potential “information fragmentation" inherent
in slice-level retrieval. The chunks in C,;l are then
reordered according to their ranking scores to the

query q.

3.2.4 Scaling-Up & Document-level Ranking

This step aims to select optimal content segments
for constructing ko precise, bounded long contexts
for the final LLM generation, ensuring both rele-
vance and sufficient coverage. It incorporates top-
ranked chunks and their context neighbors in the
same document to mitigate information fragmenta-
tion and support multi-hop reasoning.

Scaled Top Chunk Selection. Recognizing
that initial re-ranking scores 7 ., may not be per-
fect, we consider a broader set of borderline candi-
dates rather than strictly picking the top-ko chunks.
MacRAG employs a scaling factor o > 1 (where
(k2 x a) < |C,;1 |) to select the top-(ka X a) chunks
from C,;l: C(l],kg
C;Jﬁ. a = 1 does not scale-up the number of
borderline candidates, but moderate higher « (e.g.,
3 or 4) can provide higher probabilities to include
borderline but crucial chunks to improve coverage
while maintaining a certain level of quality for can-
didates. To balance among precision, recall, and
context lengths, o € {2, 3,4} would be promising
where (k2 x a) < \C;ﬂ |, and we will also demon-
strate that selection « is not sensitive, but robust
with handling trade-off problems well in Section 4.
This approach can also potentially facilitate bridg-
ing multi-hop queries.

Document Selection. From the scaled set of
(k2 x a) chunks in C;} k,» We identify their unique
source documents. To select the top-k2 documents,

= TOpK(k;gxa)(Tq,ci) forc; €

we compute a document-level rank score r, 4 for
each candidate document d. This score r, 4 lever-
ages the chunk-level scores 74 ¢, of document’s all

constituent chunks c; that are also present in C; ko

rqd = ReRankpgc ({cl € dand¢; € C;JQ}).
Document ranking functions can include mean, max,
sum of chunk scores, or an LLM-based ranker (with
max(rq.,) being a suitable base if using cross-
encoder scores, which can be either positive or
negative). Based on ry 4, we form D, 1,, a set of
top-ko distinct documents. Ensuring document di-
versity, especially with appropriate « values (e.g.,
3 or 4 depending on the overlapped ratio of origi-
nal chunks), mitigates the risk of concentrating on
too few sources and is critical when evidence is
scattered across multiple documents.

3.2.5 Neighbor Chunk Propagation & Merge
for Input Context Construction

Within each of the top-ky distinct documents,
we focus on chunks ¢; both in D, j, and C:L,Q,
as these represent the most relevant content seg-
ments. For such a chunk ¢;, we define Np(c;)
which consists of ¢;’s neighbors within h-hops
and ¢; itself, and process extension of ¢; to get
N (¢;) by using its associated indices, MV, (¢;) =
{¢i—hs--- Cis. .., iz }. We then merge N (c;)
within the same ranked document to form the fi-
nal merged chunk for adaptive long context to
the query ¢: ¢;'y""" = Merge(Ny(c;)), where
d € Dyp,, ¢; € d, and ¢; € 0;7,{2. From the
top-ko documents in D, ;,, we can select top-ko
merged chunks ¢;'7"" by considering their order
along with the top document order with 7, 4. Then,

finally, we have top-ko merged chunks as Cgpa) =
TopK kQ(anderge)' The final merged chunks Cpal

provide diverse views across the top-ko documents
while optimizing context length (Zhao et al., 2024),
combining the most relevant content with minimal
redundancy.

3.3 Single/Multi-step Post Retrieval
Generation

Our retrieval framework is modular, enabling in-
tegration with various post-retrieval generation
approaches. These include both vanilla single-
step generation directly using the retrieved top-ks
chunks in a single pass and iterative multi-step
generation as in LongRAG (Zhao et al., 2024),
which introduces a CoT-guided filter (which checks
chunk-level relevance) and an LLM-augmented ex-



tractor (which locates global context in original pas-
sages). Following the comprehensive exploration
of single and multi-step generation variants in Lon-
gRAG, we evaluate MacRAG’s performance when
combined with different post-retrieval generation
methods. Specifically, we investigate seven genera-
tion methods, as detailed in Table 4. Five of these
methods (R&B, R&L, Full_Ext, Fil, and Full_E&F)
are adopted directly from LongRAG. Among these,
R&L, Full_Ext, and Full_E&F process the entire
set of top-ko documents, which can introduce com-
putational overhead when handling very long texts.
To address this limitation while maintaining an opti-
mal balance between precision and recall, we intro-
duce two new variants: R&B_Ext and R&B_E&F, to
reduce this overhead while maintaining precision-
recall balance.

3.4 Implementation Complexity and System
Efficiency

MacRAG enhances simple overlapping-chunk in-
dexing by first chunking each document with par-
tial overlaps, then compressing each chunk through
summarization, and finally slicing it. These pro-
cesses are performed once during offline prepara-
tion, eliminating query-time overhead. Moreover,
this document-level independence simplifies up-
dates and streamlines database operations, avoiding
the complexity associated with hierarchical multi-
clustering (Sarthi et al., 2024; Zhang et al., 2025).
At inference time, MacRAG constructs a real-
time effective long context by mapping slices
back to their parent chunks and documents us-
ing lightweight index-based lookups rather than
costly tree traversals. This design leverages meta-
data dictionaries (document ID, chunk ID, token
offsets) to enable modular neighbor merging with
minimal overhead. A bounded context size is en-
forced through parameters (ko X «) and chunk
dimensions, ensuring scalability to enterprise-level
corpora without degrading performance. This con-
trolled scalability and real-time context assembly
underscore MacRAG’s value for massive long-
document collections, “almost infinite context" sce-
narios in advanced personalization, and as a robust
foundation for iterative RAG or agentic systems.

4 Experiments

4.1 Experimental Setup

We evaluate MacRAG on three challenging multi-
hop question answering benchmarks from Long-

Bench (Bai et al., 2023): HotpotQA, 2WikiMulti-
hopQA, and Musique. These datasets, with their
tangential passages and obscured connecting in-
formation, specifically test a system’s ability to
handle the "Lost in the Middle" phenomenon and
perform robust multi-hop reasoning—precisely the
challenges MacRAG addresses. Section A.2 in the
Appendix provides a detailed explanation about
these datasets.

Models and Evaluations. Our evaluations em-
ploy three prominent LC LLMs: GPT-4o0 (Ope-
nAl, 2024), Gemini-1.5-pro (Team et al., 2024),
and the open-source Llama-3.1-8B-instruct (Dubey
et al., 2024a). Performance is measured using
Exact Match (EM), F1-score, Precision, and Re-
call. We primarily compare MacRAG against
strong baselines RAPTOR (Sarthi et al., 2024)
and LongRAG (Zhao et al., 2024), selected for
their representative state-of-the-art performance
and efficiency balance in hierarchical RAG (as dis-
cussed in Section 2). To ensure rigorous compar-
ative analysis across all RAG methods (MacRAG,
LongRAG, and RAPTOR) use the same reranker
(marco-minilLM), and LongRAG’s reported opti-
mal hyperparameters (k; = 100 initial chunks,
ko = 7 final chunks, unless in ablation). We
also applied seven different generation methods de-
scribed in Appendix A.1, and Table 4 for detailed
comparisons.

MacRAG-specific parameters are scale-up factor
a € {1,4} and the neighbor hop count & € {0, 1},
except during ablation studies. The ablation study
and performance analysis in Section 4.2 demon-
strate both robustness and the soundness of the
architecture design of MacRAG, enhancing multi-
hop reasoning capability.

This controlled setup ensures that performance
differences result from MacRAG’s architectural
innovations, particularly its hierarchical representa-
tion and adaptive multi-scale retrieval, rather than
from variations in hyperparameters or retrieval
components. By isolating architectural factors, we
can clearly assess the impact of multi-scale retrieval
on multi-hop reasoning.

4.2 Main Results

Comparison with RAPTOR. While RAPTOR
(Sarthi et al., 2024), a summarization and hierarchi-
cal clustering-based approach, shows gains on stan-
dard datasets, it struggles with retrieval quality on
LongBench versions (Bai et al., 2023) as shown in



Model [ HotpotQA 2WikimultihopQA Musique | Average
Long Context (LC) LLM without RAG
Gemini-1.5-pro (Team et al., 2024) 36.79 38.31 20.09 31.73
GPT-40 (OpenAl, 2024) 46.76 40.62 30.76 39.38
Agentic RAG Method
CRAG (GPT-3.5-Turbo) (Yan et al., 2024) 52.04 41.13 25.34 39.50
Self-RAG (GPT-3.5-Turbo) (Asai et al., 2024) 50.51 46.75 24.62 40.63
RAG with Reranking (R&B, Base Version)
Llama3-8B-8k (Dubey et al., 2024b) 48.25 43.47 19.66 37.13
GPT-3.5-Turbo 52.31 43.44 25.22 40.32
Llama-3.1-8B-instruct (abbr. Llama-3.1-8B) 52.50 46.33 26.70 41.84
RAPTOR (Sarthi et al., 2024) (Llama-3.1-8B) | 52.30 (-0.20)) 43.61 (-2.72}) 23.79 (-2.914) 39.90 (-1.944, -4.64%.)
MacRAG (Ours) (Llama-3.1-8B) 57.39 (+4.8971) 44.87 (-1.46.) 30.38 (+3.681) 44.21 (+2.371, +5.66% 1)
LongRAG (Zhao et al., 2024) (Multi-step Generation, Full_E&F in Table 4)
LongRAG (GPT-3.5-Turbo) 56.17 51.37 32.83 46.79
LongRAG (Llama-3.1-8B) 58.49 55.90 32.73 49.04
MacRAG (Ours) (Llama-3.1-8B) 61.10 (+2.617) 57.74 (+1.841) 34.43 (+1.701) 51.09 (+2.057, +4.18%7)
LongRAG (Gemini-1.5-pro) 61.95 58.17 34.04 51.39
MacRAG (Ours) (Gemini-1.5-pro) 64.39 (+2.447) 64.75 (+6.581) 43.34 (+9.301) | 57.49 (+6.101, +11.87%1)
LongRAG (GPT-40) 66.20 65.89 43.83 58.64
MacRAG (Ours) (GPT-40) 68.52 (+2.321) 73.19 (+7.301) 50.09 (+6.261) 63.93 (+5.291, +9.02% 1)

Table 1: Experimental results (F1-score) comparing RAPTOR, LongRAG and MacRAG on HotpotQA, 2Wiki-
multihopQA, and MuSiQue datasets from LongBench (Bai et al., 2023). Gains are displayed in parentheses with

absolute number and its relative percentage.

Dataset Avg. Performance on LongRAG MacRAG LongRAG MacRAG
Seven Gen. Settings (Gemini-1.5-pro) (Gemini-1.5-pro) (GPT-40) (GPT-40)
Exact Match 46.48 48.36 (+1.881, +4.04%1) 51.85 53.60 (+1.751, +3.37%1)
HotpotQA F1-score 61.45 63.97 (+2.521, +4.10%1) 66.17 67.51 (+1.341, +2.03%1)
Precision 65.93 67.98 (+2.051, +3.11%1) 68.66 70.10 (+1.447, +2.10% 1)
Recall 61.59 64.47 (+2.881, +4.68%1) 68.10 69.36 (+1.267, +1.85%1)
Exact Match 49.93 53.69 (+3.767, +7.53%1) 52.90 57.60 (+4.697, +8.87%1)
. . F1-score 57.73 61.97 (+4.241, +7.34%1) 62.69 6745 (+4.761, +7.59%1)
2WikimultihopQA Precision 57.97 61.69 (+3.721, +6.41%1) 62.22 66.48 (+4.261, +6.85%1)
Recall 60.17 65.10 (+4.937, +8.20%1) 66.47 72.00 (+5.531, +8.32%71)
Exact Match 26.05 33.75 (+7.707, +29.57%71) 31.30 36.48 (+5.187, +16.55%1)
Musique F1-score 33.92 42.84 (+8.931, +26.34% 1) 41.43 47.91 (+6.481, +15.64% 1)
Precision 34.69 43.29 (+8.607, +24.78%1) 40.80 47.07 (+6.271, +15.37%1)
Recall 35.69 45.16 (+9.461, +26.50% 1) 45.06 51.67 (+6.611, +14.67%7)

Table 2: Consolidated results for four metrics across three datasets, comparing LongRAG and MacRAG using the
Gemini-1.5-pro and GPT-40 models. The results are averaged over seven generation settings in Table 4.

Table 1. Specifically, RAPTOR with Llama-3.1-8B
shows performance decreases in 2WikimultihopQA
and Musique, potentially associated with retrieval
difficulty on Musique-Normal in (Yue et al., 2024).
These results highlight the importance of both pre-
cise retrieval and effective long-context construc-
tion for achieving consistent gains across various
multi-hop reasoning and long-context datasets.

Integration with Multi-step Generation Method.
Integrating MacRAG with the LongRAG (E&F) gen-
eration method across multiple LLMs (Llama-3.1-
8B, Gemini-1.5-pro, and GPT-40) yields substan-
tial performance improvements, as shown in Table
1. This underscores MacRAG’s versatility and ro-
bustness as a retrieval approach when paired with
the LongRAG generation method. By constructing
an effective long context, MacRAG demonstrates
advantages in multi-step generation with LongRAG
(E&F), producing consistent and meaningful gains

across three datasets and three LLMs. In contrast, it
is not straightforward to extend RAPTOR in combi-
nation with LongRAG (E&F). As further illustrated
in Table 1, the performance gains for Gemini-1.5-
pro and GPT-4o indicate that pairing MacRAG
with more powerful LLMs can achieve even greater
improvements, despite already high F1-scores ob-
tained by other frameworks under these settings.
We further observe that summarization during in-
dexing improves retrieval quality. Our preliminary
experiments show a 7.2% gain in precision when
using summaries instead of raw slices.

Robustness across Generation Methods. In ad-
dition to MacRAG’s robust gains in both vanilla
single-step (R&B) and multi-step generation (E&F),
MacRAG consistently shows strong advantages
across the four metrics listed in Table 2, cover-
ing all seven generation modes in Table 4. These
substantial improvements across various datasets,
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Figure 2: Performance comparison of GPT-40 using LongRAG and MacRAG across the seven settings in Table 4,
showing F1-scores for three datasets (HotpotQA, 2WikiMultihopQA, and MuSiQue). Complete results for all

metrics and LLMs

are provided in the Appendix.

(ko=1, marco-miniLM) [ R&B R&L Full_Ext Fil Full_E&F R&B_Ext R&B_E&F Average
HotpotQA

LongRAG 65.46 69.40 66.60 63.32 66.20 66.08 66.09 66.16

MacRAG 67.15 (+1.691)69.55 (+0.157)69.00 (+2.407) 65.44 (+2.121) 68.52 (+2.3271)66.36 (+0.2871)66.53 (+0.4471) 67.51 (+1.351, +2.04%1)

- Propagation&Merging|64.17 (-1.29]) 68.91 (-0.49]) 67.82 (+1.227) 68.06 (+4.741) 68.44 (+2.241) 63.77 (-2.31]) 65.57 (-0.52]) 66.68 (+0.527, +0.79%1)

- Scaling up 64.12 (-1.34) 67.57 (-1.83]) 67.33 (+0.737) 64.41 (+1.091) 67.26 (+1.067) 64.22 (-1.86.,) 63.84 (-2.44]) 65.54 (-0.62, -0.94% )

2WikimultihopQA

LongRAG 59.97 62.37 65.35 60.68 65.89 62.08 62.47 62.69

MacRAG 59.00 (-0.97]) 64.87 (+2.501)68.97 (+3.627) 68.20 (+7.521) 73.19 (+7.307)66.50 (+4.427)71.40 (+8.9371) 67.45 (+4.761, +7.59%1)

- Propagation&Merging|59.67 (-0.30]) 65.06 (+2.691)68.48 (+3.137) 67.57 (+6.891) 72.20 (+6.311)65.13 (+3.057)72.43 (+9.9671) 67.22 (+4.531, +7.23%1)

- Scaling up 59.00 (-0.97) 61.89 (-0.48]) 67.63 (+2.287) 60.41 (-0.27]) 67.03 (+1.141)66.37 (+4.297)65.77 (+3.301) 64.01 (+1.327, +2.11%1)

Musique

LongRAG 38.98 41.90 43.64 37.72 43.83 42.00 41.97 4143

MacRAG 44.76 (+5.781)45.74 (+3.841)47.42 (+3.781)47.80 (+10.081)50.09 (+6.261)48.57 (+6.571)51.00 (+9.031)47.91 (+6.481, +15.63%1)

- Propagation&Merging41.61 (+2.631)45.43 (+3.531)48.00 (+4.367) 47.48 (+9.761) 52.26 (+8.437) 40.09 (-1.91) 45.84 (+3.871)45.82 (+4.3971, +10.58% 1)

- Scaling up 41.65 (+2.671)45.87 (+3.971)46.80 (+3.1671) 41.83 (+4.111) 46.59 (+2.767) 39.40 (-2.60) 39.63 (-2.34]) 43.11 (+1.687, +4.04% 1)

Table 3: Ablation study of MacRAG with GPT-40 and F1-score, using the same k1, k2, and reranker.

metrics, and LLMs demonstrate the effectiveness

MacRAG’s key components: Propagation and

of MacRAG’s long-context retrieval in enhanc-
ing both precision and recall for RAG. Notably,
MacRAG achieves significant gains on the Musique
datasets, which (Yue et al., 2024) identifies as hav-
ing challenging retrieval conditions. Beyond the
average gains in these four metrics, Figure 2 further
confirms MacRAG’s robust benefits in all seven
single-/multi-step generation schemes in Table 4
in Appendix A.l. Finally, regardless of the choice
of ko or reranker, MacRAG maintains substantial
advantages in all test settings in Table 5.

Enhanced Gains with Stronger Models. When
applied to the more powerful Gemini-1.5-pro and
GPT-40 models, MacRAG showcases its capacity
to further improve performance by optimizing the
retrieval process and building more relevant, infor-
mative contexts. Its use of hierarchical chunking
and slicing, coupled with adaptive propagation and
merging, maintains high precision while expanding
coverage. This leads to more efficient handling of
long documents, reduced computational overhead,
and higher-quality generated answers overall.

Ablation Study. Table 3 presents an abla-
tion study demonstrating the effectiveness of

Merging, Scaling-up, and Hierarchical Slicing Re-
trieval. Each component contributes to cumulative
performance gains. The combination of propaga-
tion and merging with the scaling-up mechanism in-
creases the coverage of relevant contexts for multi-
hop reasoning tasks. Figure 3 further illustrates the
benefits of scaling up promising candidates with
a = [2,3,4], showing how this approach effec-
tively balances context lengths while incorporating
additional relevant candidates. We observe that
performance gains remain consistent across differ-
ent ko values and rerankers, indicating robustness.
Although the parameters (kq1, k2, o, h) are fixed,
MacRAG adaptively merges nearby slices depend-
ing on partial relevance signals. Removing this
adaptivity leads to a 5% F1 drop, as shown in our
ablations.

4.3 Generation Schemes and Input Lengths

While multi-step generation methods (e.g., Lon-
gRAG’s Full_E&F) improve answer quality, they
often increase cumulative input length. Figure 4
compares cumulative input lengths for single and
multi-step generation methods in Table 4, given
single retrieval with specific settings, highlighting
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Figure 4: Cumulative LLM’s input context lengths for
single/multi-step generation methods in Table 4.

that R&L, Full_Ext, and Full_E&F accumulate the
most overhead by relying on entire documents. In
contrast, MacRAG’s final k2 chunks, though po-
tentially larger than basic R&B chunks, preserve
bounded context well below full-document with
long lengths.

As Figure 2 and Table 3 illustrate, MacRAG
consistently outperforms baselines under both
R&B_Ext and R&B_E&F settings. Due to MacRAG’s
advantage in effective and stable long context con-
struction, even our intermediate R&B_E&F variant
demonstrates significant improvements as shown
in Table 3. For example, on 2WikiMultihopQA
(GPT-40), MacRAG (R&B_E&F) achieves an F1
of 72.43 versus LongRAG (Full_E&F) at 65.89
(+9.93% relative gain), while using 8.19% less
context. On Musique, the intermediate variant of
MacRAG (R&B_E&F) reaches 45.84 compared to
LongRAG (Full_E&F)’s 43.83 (+4.58% relative)
with a 45.87% reduction in context length. This
highlights MacRAG’s efficiency in evidence gath-
ering and context construction.

4.4 Efficiency and Latency Analysis

MacRAG maintains sub-second efficiency despite
constructing richer multi-scale contexts. On av-
erage, retrieval and reranking take 0.23 seconds

per query, which is 38% faster than RAPTOR’s
0.37 seconds. With Llama 3.1 8B, total inference
latency is 0.99 seconds (0.23s retrieval and 0.76s
generation), compared to 0.80 seconds for RAP-
TOR (0.37s and 0.43s, respectively). This slight
increase in generation time is offset by improved
retrieval precision and higher answer quality on
R&B queries.

This efficiency is enabled by MacRAG’s
lightweight, index-based context construction and
shared reranking modules, which preserve the same
level of computational complexity as baseline re-
trieval pipelines. MacRAG introduces a one-time
offline summarization step during indexing, sim-
ilar to RAPTOR and SIRERAG. This step runs
in parallel with standard RAG indexing, adding
no runtime latency and supporting efficient index
maintenance. As shown in Table 3, Figure 4, and
Subsection 4.3, MacRAG achieves a better trade-
off than LongRAG between input context length,
answer quality, and overall computational cost.

5 Conclusion

In this work, we introduced Multi-scale Adaptive
Context RAG (MacRAG), a novel framework de-
signed to address key trade-offs in RAG involv-
ing precision, coverage, and computational effi-
ciency for long-context question answering and
multi-hop reasoning. By dynamically construct-
ing query-adaptive long contexts through real-time,
multi-scale retrieval, MacRAG demonstrably im-
proves both precision and recall while maintaining
operational efficiency. Our extensive experiments
validated MacRAG’s advantages across diverse
datasets and both single- and multi-step generation
paradigms, showcasing consistent and notable per-
formance gains. These findings establish MacRAG
as a potent and efficient core module for advancing
next-generation iterative and agentic RAG systems,
with significant potential for robust enterprise-level
applications.



Limitations

While MacRAG achieves strong performance with
a modular and efficient design, there remain op-
portunities for further extension. Its current offline
summarization and indexing strategy, though ef-
fective and amortized, may benefit from adaptive
or online variants in evolving corpora. The use
of fixed hyperparameters like chunk size and ex-
pansion scale has shown robustness across settings,
but dynamic adjustment based on query complexity
is a promising direction. In addition, integrating
MacRAG more tightly with agentic or multi-round
retrieval workflows could enhance its utility in in-
teractive and real-time RAG applications.
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A Appendix

A.1 Generation Modes

Table 4 summarizes different generation modes. In
addition to MacRAG’s robust gains in both vanilla
single-step (R&B) and multi-step generation (E&F),
MacRAG consistently shows strong advantages
across the four metrics listed in Table 2, cover-
ing all seven generation modes in Table 4. These
substantial improvements across various datasets,
metrics, and LLMs demonstrate the effectiveness
of MacRAG’s long-context retrieval in enhanc-
ing both precision and recall for RAG. Notably,
MacRAG achieves significant gains on the Musique
datasets, which (Yue et al., 2024) identifies as hav-
ing challenging retrieval conditions. Beyond the
average gains in these four metrics, Figure 2 further
confirms MacRAG’s robust benefits in all seven
single-/multi-step generation schemes in Table 4
in Appendix A.1. Finally, regardless of the choice
of ko or reranker, MacRAG maintains substantial
advantages in all test settings in Table 5.

A.2 Benchmark Datasets and Challenges

The LongBench variants of HotpotQA, 2Wikimul-
tihopQA, and Musique datasets have become the
standard evaluation suite for hierarchical retrieval
research, including recent systems such as SIR-
ERAG (Zhang et al., 2025), RAPTOR (Sarthi et al.,
2024), and LongRAG (Zhao et al., 2024). They
specifically intensify the “Lost in the Middle" phe-
nomenon by introducing near-duplicate and tan-
gential passages, creating challenging retrieval en-
vironments where critical connecting information
becomes obscured by surrounding context. Each
dataset introduces distinct multi-hop reasoning
challenges that systematically test different aspects
of retrieval capability: HotpotQA features bridging
and comparison queries requiring evidence synthe-
sis across multiple paragraphs. 2WikiMultihopQA
expands partial excerpts to complete articles, signif-
icantly increasing the risk that essential connecting
information becomes buried within expansive con-
text. Musique embeds nested sub-questions within
tangential sections, challenging systems to identify
and connect scattered bridging facts across docu-
ment boundaries. These characteristics directly test
a retrieval system’s ability to handle fragmented
evidence, reconcile overlapping information, and
identify critical bridging facts despite contextual
noise (Yue et al., 2024; Leng et al., 2024), precisely
the challenges that MacRAG’s multi-scale architec-
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ture addresses through hierarchical indexing and
adaptive retrieval.

A.3 Target Baseline Methods

Based on SIRERAG’s comparative analysis (Table
4 in Zhang et al. (2025)), we focus our evaluation
on RAPTOR (Sarthi et al., 2024) and LongRAG
(Zhao et al., 2024) as representative state-of-the-art
hierarchical RAG systems. SIRERAG’s analysis
establishes that GraphRAG underperforms on these
specific multi-hop tasks, while RAPTOR, Hip-
poRAG, and SIRERAG achieve comparable perfor-
mance in terms of F1-score on multiple multi-hop
question answering datasets (Zhang et al., 2025).
Among these top-performing systems, we selected
RAPTOR and LongRAG because they balance per-
formance and computational efficiency better, of-
fering lower computational costs and easier main-
tenance than SIRERAG’s higher overhead.

A.4 Adaptive Retrieval Mechanism Analysis

A key strength of MacRAG lies in its adaptive re-
trieval mechanism, which dynamically constructs
query-specific contexts despite using fixed com-
mon hyperparameters (k1, ko) and MacRAG’s «,
and h. This adaptivity operates through several
complementary mechanisms:

Query-dependent Adaptive Context Expansion:
For complex multi-hop queries, MacRAG natu-
rally extends its context boundaries to encompass
connecting information. For simpler queries, ex-
pansion remains more focused, selectively around
the most promising content regions, but avoiding
unnecessary content. Our ablation studies quantify
the impact of this adaptivity. When the adaptivity
of query-adaptive expansion of neighborhoods is re-
moved by eliminating the propagation and merging
steps (Table 3), performance drops by up to around
5% F1-score on datasets. This degradation is most
pronounced on Musique, where connecting multi-
ple scattered pieces of evidence is crucial. Table
3 additionally reveals another important aspect of
query-adaptive expansion of borderline candidates
"Scaling-up"”, and if we eliminate its corresponding
"Scaling-up" component, then performance drops
up to around 6% F1-score on datasets. This aligns
with our expectation that adaptive expansion be-
comes increasingly valuable as query complexity
Srows.



Mode Description

R&B
R&L
inefficient for long documents.
Full_Ext
answer using both chunks and extracted content.
Fil
Full_E&F
precision, but is expensive for long documents.
R&B_Ext
R&B_E&F
trade-oft w/o processing the full document.

Single-step generation using retrieved top-k2 chunks, which is the vanilla basic version.
Single-step generation using complete documents from top-k2 chunks. Prone to the “Lost in the Middle” effect and

Multi-step generation: (1) LLM extracts query-relevant content from full documents of top-k2 chunks, (2) generates

Filtering re-ranked top-k2 chunks, e.g., via LLM. Improves precision but may lose borderline info.
Multi-step generation combining Full_Ext’s extracted content and Fil’s filtered chunks. Balances coverage and

Multi-step generation with content extraction limited to top-k2 chunks, reducing computational overhead.
Multi-step generation combining R&B_Ext’s extracted content and Fil’s filtered chunks. Optimizes precision-recall

Table 4: Seven different generation methods with single-step and multi-step generation schemes using retrieved

top-ko chunks.

A.5 Preprocessing Efficiency of MacRAG

Chunk Size and Token Budget: MacRAG uses
original chunk sizes of approximately 400 tokens
(around 1500 characters), which fall within the 200-
500 token range used in prior work such as Lon-
gRAG even for re-ranking on retrieved chunks. The
average sizes of summarized chunks are around
800-1000 characters. We applied slices into sum-
marized chunks for initial retrieval to improve pre-
cision further with two slice sizes around 450 char-
acters with 300 character overlaps or 600 charac-
ters with 450 character overlaps. These sizes al-
low MacRAG to maintain sub-second retrieval and
reranking times while keeping the context structure
manageable for downstream language models.

Offline Summarization Cost: MacRAG in-
cludes a one-time summarization step during in-
dexing, which does not affect query-time latency.
This step is comparable in cost to offline embed-
ding computations in standard RAG pipelines. All
runtime efficiency measurements reported here ex-
clude this indexing cost, as it is amortized over the
use of the document collection.

A.6 Latency Comparison between MacRAG
and RAPTOR

Retrieval and Reranking Latency: MacRAG
maintains sub-second latency for retrieval and
reranking across all evaluated datasets. Using
dense retrieval with k; = 100 followed by cross-
encoder reranking with k; = 7, the measured
latency is 0.23 seconds on HotpotQA, 0.22 sec-
onds on 2WikimultihopQA, and 0.24 seconds on
Musique. In contrast, RAPTOR reports 0.43s,
0.24s, and 0.44s on the same datasets, averaging
0.37s. This represents a 38% speedup on average,
even though both methods operate on the same top-

12

100 retrieved chunks and use the same reranker
(marco-miniLM). MacRAG achieves this by lever-
aging index-based merging after reranking, which
reuses precomputed relevance scores and adds only
a few milliseconds per query.

Generation Time and Trade-offs: While re-
trieval and reranking are efficient, generation time
varies depending on the context length produced
by each method. MacRAG’s adaptive multi-scale
expansion typically results in longer but more rel-
evant contexts. With Llama 3.1 8B, the average
generation time with R&B is 0.76 seconds, com-
pared to 0.43 seconds for RAPTOR with R&B. This
increase reflects MacRAG’s strategy of incorporat-
ing broader evidence to improve answer accuracy.
Users seeking faster inference can reduce the ex-
pansion parameter « to trade off coverage for speed,
though at the cost of some performance.

Total Latency Comparison: Combining re-
trieval, reranking, and generation with R&B, the
total end-to-end latency of MacRAG is 0.99 sec-
onds (0.23s + 0.76s), compared to RAPTOR’s
0.80 seconds (0.37s + 0.43s). While MacRAG in-
curs a small additional cost, it consistently yields
higher accuracy across multiple datasets and mod-
els, as shown in Table 1.

A.7 Efficiency Comparison between MacRAG
and LongRAG

MacRAG and LongRAG both rely on index-based
hierarchical retrieval and reranking over the same
number of k; chunks. As a result, their retrieval
and reranking steps show similar efficiency and la-
tency. However, for the generation step, according
to Table 3, Figure 4, and Subsection 4.3, MacRAG
achieves improved efficiency compared to Lon-
gRAG in terms of the trade-off between final an-



swer quality, input context length, and overall com-
putational cost.

A.8 Discussion on Effectiveness of MacRAG’s
Retrieval and Constructed Long Context

Enhanced Precision and Coverage: MacRAG
employs a hierarchical multi-scale strategy that be-
gins with fine-grained slice retrieval and chunk-
level re-ranking for precise identification of rel-
evant content, then systematically incorporates
broader document-level context through h-hop
neighbor expansions. To preserve coherence with-
out overwhelming the LLM, it strategically up-
scales via the (v x ko) factor, capturing borderline
yet crucial segments. Rather than relying on com-
pressed text or entire documents, MacRAG focuses
on real-time construction of effective long contexts
from promising original chunks while enforcing
an upper bound on context length. By removing
irrelevant portions from documents and maintain-
ing a continuous, coherent subset of text, MacRAG
avoids excessive token consumption, mitigates the
“lost in the middle" phenomenon, and minimizes
hallucinations, ultimately ensuring high recall for
complex multi-hop queries.

A.9 Discussion on Single, Multi-Step,
Iterative, and Agentic Generation with
MacRAG

MacRAG’s modular design seamlessly supports
single and multi-step generation, iterative retrieval,
and agentic pipelines. By combining its core multi-
scale retrieval with standard generation methods,
MacRAG dynamically adapts context formation
and refinement across multiple rounds without over-
whelming the LLM. In single and multi-step modes
(e.g., LongRAG (Zhao et al., 2024) and standard
multi-step QA in Section 3.3), MacRAG selects
and assembles relevant text from large corpora
while minimizing noise and retaining crucial con-
nections, thereby improving both recall and pre-
cision for multi-hop reasoning. For iterative sce-
narios, such as IterDRAG (Yue et al., 2024) or
chain-of-RAG (Wang et al., 2025), MacRAG can
support efficient updates on the evidence set via
C: < Merge (Ct_l, Retrieval(qt)) to unify old
and newly retrieved content, promoting consis-
tent coverage of bridging facts while discarding
irrelevant material. In agentic RAG settings (Asai
et al., 2024; Jeong et al., 2024; Chen et al., 2025),
MacRAG likewise prevents context explosion by
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focusing specifically on segments required for each
action, thereby improving precision and recall over
multiple steps. Our experiments (Section 4) con-
firm that integrating MacRAG with single and
multi-step generation methods, potential core mod-
ules for multi-round advanced systems, consis-
tently enhances complex multi-hop reasoning tasks
and reduces error rates in long-context RAG.

A.10 Discussion on Graph-Enhanced
MacRAG

A promising direction is extending MacRAG with
a two-stage reranking strategy incorporating graph-
based knowledge structures. After initial chunk-
level reranking, MacRAG could perform a sec-
ond reranking phase by expanding top candidates
through both local index-based extensions and pre-
constructed graph neighbors, enabling efficient cov-
erage of both local and global relationships. This
approach would leverage MacRAG’s bounded con-
text guarantees at each phase while allowing con-
trolled exploration of knowledge-guided connec-
tions, managing computational efficiency through
bounded candidate sets during reranking. By ap-
plying MacRAG’s document-oriented indexing or
relationship-based thresholding to merge expanded
candidates, this strategy would enhance retrieval
quality for complex queries requiring both precise
local context and broad knowledge integration.



Model ko Reranker R&B R&L Full_Ext Fil Full_E&F R&B_Ext R&B_E&F Average
HotpotQA

LongRAG 7 bge-m3 67.67 67.99 68.96 64.30 68.49 66.73 66.10 67.18

MacRAG 7 bge-m3 67.59 (-0.08]) 68.63 (+0.641)70.53 (+1.5771) 65.56 (+1.261) 70.29 (+1.801) 66.59 (-0.14])67.32 (+1.221)68.07 (+0.891, +1.32%1)

LongRAG 12 bge-m3 68.57 67.65 70.31 64.74 70.14 67.63 67.49 68.08

MacRAG 12 bge-m3 67.88 (-0.69)) 69.87 (+2.221)70.72 (+0.4171) 65.98 (+1.241) 70.66 (+0.521)69.05 (+1.421)67.84 (+0.357)68.86 (+0.781, +1.15%1)

2WikimultihopQA

LongRAG 7 bge-m3 59.36 65.56 68.27 55.31 67.36 64.42 63.88 64.45

MacRAG 7 bge-m3 62.32 (+2.961)66.34 (+0.781)71.63 (+3.361)69.72 (+14.411)73.98 (+6.621)66.61 (+2.191)72.63 (+8.751)69.03 (+4.581, +7.11%71)

LongRAG 12 bge-m3 60.08 66.77 69.28 58.50 69.39 64.90 65.28 64.89

MacRAG 12 bge-m3 64.29 (+4.211)67.20 (+0.431)70.95 (+1.671)69.46 (+10.961)73.90 (+4.511)67.49 (+2.591)71.80 (+6.521)69.30 (+4.4171, +6.80% 1)
Musique

LongRAG 7 bge-m3 42.34 48.08 47.88 42.17 47.92 43.70 44.06 45.16

MacRAG 7 bge-m3 45.54 (+3.201)46.68 (-1.40])49.58 (+1.701) 46.76 (+4.591) 49.53 (+1.611)47.94 (+4.241)49.14 (+5.081)47.88 (+2.7271, +6.02%1)

LongRAG 12 bge-m3 4153 46.96 49.58 41.60 49.57 46.76 46.33 46.05

MacRAG 12

bge-m3 46.44 (+4.911)45.81 (-1.15])51.02 (+1.447) 46.70 (+5.107) 51.54 (+1.971)50.25 (+3.491)49.50 (+3.171)48.75 (+2.701, +5.86%1)

Table 5: Robust test of MacRAG with various k5 an alternative re-ranker on three multi-hop QA datasets, using GPT-
40 and F1-score. The experiments were conducted with the same hyperparameters as reported in LongRAG (Zhao

et al., 2024).
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Figure 5: Performances of LongRAG and MacRAG regarding the fours metrics (Exact Match, F1-score, Precision,
Recall) for three datasets (HotpotQA, 2WikimultihopQA, and Musique) and two LLMs (Gemini-1.5-pro and
GPT-40). Each row corresponds to a combination of dataset and LLM, and each column represents one of the

metrics.
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HotpotQA
Method (k2 = 7) R&B R&L Full_Ext Fil Full_E&F R&B_Ext R&B_Ext_Fil Average
LongRAG 63.59 63.93 61.93 63.38 61.95 57.86 57.53 61.45
MacRAG 63.02 (-0.57])[66.76 (+2.831)[64.90 (+2.971)| 65.96 (+2.587) [64.40 (+2.457)| 60.59 (+2.7371) | 62.14 (+4.617) | 63.97 (+2.527, +4.10% 1)
2WikimultihopQA
Method (ko = 7) R&B R&L Full_Ext Fil Full E&F R&B_Ext | R&B_Ext Fil Average
LongRAG 60.13 62.99 57.82 58.31 58.17 53.12 53.54 57.73
MacRAG 58.38 (-1.75])[63.48 (+0.491)[60.90 (+3.081)| 66.74 (+8.4371) |64.75 (+6.581)| 55.32 (+2.2071) |64.19 (+10.657)| 61.85 (+4.127, +7.14% 1)
Musique
Method (ko = 7) R&B R&L Full_Ext Fil Full_ E&F R&B_Ext | R&B_Ext_Fil Average
LongRAG 34.90 40.97 33.73 35.01 34.04 29.82 28.96 33.92
MacRAG 43.31 (+8.411)[43.41 (+2.441)[40.68 (+6.9671)[45.81 (+10.8071)[43.34 (+9.301)(40.61 (+10.791)[42.76 (+13.801)(42.84 (+8.9271), +26.30% 1)

Table 6: Experimental results of Gemini-1.5-pro with F1-score for comparing LongRAG vs MacRAG across
HotpotQA, 2WikimultihopQA, and Musique datasets. The experiments conducted with the same hyper-parameter
(k1=100 , k2=7) which is the reported best parameter of LongRAG (Zhao et al., 2024). The columns represent
various evaluation settings: R&B (Retrieval and Base), R&L (Retrieval and Long), Full_Ext (Extraction from Full
Document), Fil (Filtering), Full_E&F (Extraction and Filtering combined), R&B_Ext (Extraction from Top-ko
Chunks), and R&B_Ext_Fil (Extraction and Filtering from Top-k2 Chunks). The absolute gains and relative
percentage improvements from applying MacRAG to LongRAG are displayed in parentheses.

HotpotQA
ko = 7, marco-miniLM R&B R&L Full_Ext Fil Full_E&F R&B_Ext |R&B_Ext_Fil Average
LongRAG 65.46 69.40 66.60 63.32 66.20 66.08 66.09 66.16
MacRAG 67.15 (+1.691)|69.55 (+0.157) | 69.00 (+2.407) | 65.44 (+2.1271) |68.52 (+2.327) [66.36 (+0.281)|66.53 (+0.447)| 67.22 (+1.061)
ko = 12, marco-miniLM R&B R&L Full_Ext Fil Full E&F R&B_Ext |R&B_Ext_Fil Average
LongRAG 67.97 69.80 67.91 63.56 67.82 66.91 66.44 67.20
MacRAG 68.41 (+0.447)| 69.64 (-0.16.,) | 69.95 (+2.041)| 65.42 (+1.867) |69.09 (+1.2771) [67.57 (+0.6671)|66.95 (+0.511) | 68.00 (+0.801)
ko = 7, bge-m3 R&B R&L Full_Ext Fil Full E&F R&B_Ext |R&B_Ext_Fil Average
LongRAG 67.67 67.99 68.96 64.30 68.49 66.73 66.10 67.18
MacRAG 67.59 (-0.08) | 68.63 (+0.6471)|70.53 (+1.571)| 65.56 (+1.267) |70.29 (+1.8071) | 66.59 (-0.14]) |67.32 (+1.221)| 68.07 (+0.891)
ko = 12, bge-m3 R&B R&L Full_Ext Fil Full_E&F R&B_Ext |R&B_Ext Fil Average
LongRAG 68.57 67.65 70.31 64.74 70.14 67.63 67.49 68.08
MacRAG 67.88 (-0.69]) |69.87 (+2.22])|70.72 (+0.411) | 65.98 (+1.2471) |70.66 (+0.527)[69.05 (+1.421)|67.84 (+0.351) | 68.86 (+0.7871)
2WikimultihopQA
ko = 7, marco-miniLM R&B R&L Full_Ext Fil Full_E&F R&B_Ext |R&B_Ext Fil Average
LongRAG 59.97 62.37 65.35 60.68 65.89 62.08 62.47 62.69
MacRAG 59.00 (-0.97) | 64.87 (+2.5071)|68.97 (+3.621) | 68.20 (+7.521) |73.19 (+7.3071) [66.50 (+4.421)|71.40 (+8.931)| 67.45 (+4.761)
ko = 12, marco-miniLM R&B R&L Full_Ext Fil Full_E&F R&B_Ext |R&B_Ext Fil Average
LongRAG 62.64 65.43 70.67 62.06 70.66 67.56 66.60 66.52
MacRAG 63.47 (+0.831)|67.06 (+1.637)| 70.61 (-0.06].) | 67.84 (+5.787) |72.24 (+1.587) [67.83 (+0.271)[72.23 (+5.637) | 68.75 (+2.231)
ko = 7, bge-m3 R&B R&L Full_Ext Fil Full_E&F R&B_Ext | R&B_Ext_Fil Average
LongRAG 59.36 65.56 68.27 55.31 67.36 64.42 63.88 64.45
MacRAG 62.32 (+2.967)|66.34 (+0.7871) | 71.63 (+3.361)[69.72 (+14.411)|73.98 (+6.6271) [66.61 (+2.191)[72.63 (+8.757)| 69.03 (+5.581)
ko = 12, bge-m3 R&B R&L Full_Ext Fil Full_E&F R&B_Ext |R&B_Ext_Fil Average
LongRAG 60.08 66.77 69.28 58.50 69.39 64.90 65.28 64.89
MacRAG 64.29 (+4.211)|67.20 (+0.4371)|70.95 (+1.671) [ 69.46 (+10.967)|73.90 (+4.5171) [67.49 (+2.591)|71.80 (+6.527) | 69.30 (+4.4171)
Musique
ko = 7, marco-miniLM R&B R&L Full_Ext Fil Full_E&F R&B_Ext |R&B_Ext_Fil Average
LongRAG 38.98 41.90 43.64 37.72 43.83 42.00 41.97 41.43
MacRAG 44.76 (+5.7871) |45.74 (+3.841)[47.42 (+3.781)|47.80 (+10.0871) [ 50.09 (+6.261)|48.57 (+6.571)|51.00 (+9.0371) | 47.77 (+6.341)
ko = 12, marco-miniLM R&B R&L Full_Ext Fil Full_E&F R&B_Ext | R&B_Ext_Fil Average
LongRAG 41.20 43.85 48.19 40.48 47.22 44.66 44.51 44.30
MacRAG 45.85 (+4.6571) |47.66 (+3.811)[48.27 (+0.087)| 49.01 (+8.531) (48.99 (+1.771)|49.35 (+4.691)|50.57 (+6.0671) | 48.53 (+4.231)
ko = 7, bge-m3 R&B R&L Full_Ext Fil Full_E&F R&B_Ext |R&B_Ext_Fil Average
LongRAG 42.34 48.08 47.88 42.17 47.92 43.70 44.06 45.16
MacRAG 45.54 (+3.2071) | 46.68 (-1.40]) [49.58 (+1.701)| 46.76 (+4.591) (49.53 (+1.611)|47.94 (+4.247)|49.14 (+5.0871) | 47.88 (+2.721)
ko = 12, bge-m3 R&B R&L Ful_Ext Fil Full_E&F R&B_Ext | R&B_Ext_Fil Average
LongRAG 4153 46.96 49.58 41.60 49.57 46.76 46.33 46.05
MacRAG 46.44 (+4.9171) | 45.81 (-1.15]) [51.02 (+1.447)| 46.70 (+5.107) |51.54 (+1.971)(50.25 (+3.491)|49.50 (+3.1771) [48.75 (+2.70 1)

Table 7: Extensive experimental results for comparing LongRAG vs. MacRAG+LongRAG across HotpotQA,
2WikimultihopQA, and Musique datasets with two rerankers “marco-miniLM" and “bge-m3” via GPT-40 and
F1-score. The experiments conducted with the same hyper-parameter (k1 = 100, ko = 7) and (k1 = 100, ko = 12)
which is the reported best parameter of LongRAG (Zhao et al., 2024). The columns represent various evaluation
settings: R&B (Retrieval and Base), R&L (Retrieval and Long), Full_Ext (Extraction from Full Document), Fil
(Filtering), Full_E&F (Extraction and Filtering combined), and R&B_Ext (Extraction from Top-ks Chunks). Gains
from applying MacRAG to LongRAG (E&F) are displayed in parentheses with absolute gains on F1-scores and
relative percentages of the improvements.

15



	Introduction
	Related Work
	Multi-scale Adaptive Context RAG
	Document Hierarchical Indexing
	Chunking
	Compression
	Slicing

	Multi-scale Adaptive Retrieval and Ranking
	Initial Slice-level Retrieval
	Parent Chunk Mapping
	Chunk-level Re-Ranking
	Scaling-Up & Document-level Ranking
	Neighbor Chunk Propagation & Merge for Input Context Construction

	Single/Multi-step Post Retrieval Generation
	Implementation Complexity and System Efficiency

	Experiments
	Experimental Setup
	Main Results
	Generation Schemes and Input Lengths
	Efficiency and Latency Analysis

	Conclusion
	Appendix
	Generation Modes
	Benchmark Datasets and Challenges
	Target Baseline Methods
	Adaptive Retrieval Mechanism Analysis
	Preprocessing Efficiency of MacRAG
	Latency Comparison between MacRAG and RAPTOR
	Efficiency Comparison between MacRAG and LongRAG
	Discussion on Effectiveness of MacRAG's Retrieval and Constructed Long Context
	Discussion on Single, Multi-Step, Iterative, and Agentic Generation with MacRAG
	Discussion on Graph-Enhanced MacRAG


