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Abstract

Value estimates at multiple timescales can help create advanced discounting functions
and allow agents to form more effective predictive models of their environment.
While exponential discounting has been widely used because of its time-consistent
preferences and ease of use, hyperbolic discounting has been shown to capture human
and animal preferences more accurately. Both the exponential and hyperbolic reward
discounting functions are single-parameter models. However, more sophisticated, two-
parameter hyperbolic discounting functions have been proposed that provide the best
fit to observed human behavior. In this work, we propose a generalized hyperbolic
discounting framework, incorporating both a discount factor and a sensitivity-to-
delay parameter through which agents have different valuations of the same time
delay it takes to receive a reward. We conduct extensive evaluations across a variety
of learning tasks (high dimensional input, generalization), analyze the suitability of
different discounting functions to these tasks, and present new insights on how the
functional form of discounting affects an agent’s performance.

1 Introduction

In reinforcement learning (RL), rewards are typically discounted exponentially, meaning that a reward
obtained t time steps in the future is discounted by a factor of γt (Bellman, 1957b; Sutton & Barto,
1998). This approach establishes a fixed learning horizon for the agent: a smaller γ value prioritizes
short-term rewards, while a larger γ value emphasizes long-term rewards. However, human and
animal behavior often follows hyperbolic discounting patterns (Mazur, 1987), characterized by the
hyperbolic function 1

1+kt , where k > 0 represents the hyperbolic discounting rate. Unlike exponential
models, hyperbolic discounting accounts for preference reversal over time (Green et al., 1994) and
offers better alignment with decision-making scenarios involving multiple reward variables, such as
delay length, reward magnitude, and probability (Green & Myerson, 2004).

In addition to discounting rewards that are received after a delay, individual differences in the
perception of delay also exist. While one individual may exhibit impatience by preferring immediate
rewards, another may display patience by choosing to wait for the delayed reward. Human studies
have demonstrated that the single-parameter hyperbolic (base model) tends to overestimate the
perceived value of shorter delays and underestimate the value of longer delays (McKerchar et al.,
2009). To address these individual variations, a sensitivity-to-delay parameter, denoted as s where
0 < s < 1, has been introduced as a second parameter to the hyperbolic function. Two methods have
been proposed for this purpose: one by Rachlin (1989), which applies s solely to the delay term,
yielding 1

1+kts , and another by Myerson & Green (1995), which applies s to the entire denominator
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Figure 1: Single-parameter Hyperbolic Discounting vs Two-parameter Generalized Hyperbolic (also
known as Rachlin, after its inventor (Rachlin, 1989)). The Rachlin hyperbolic discounting allows
variation not only in the rate of discounting (k), but also sensitivity to delay (s). A lower value of s
indicates less sensitivity to delay, meaning that the subjective value of a reward decreases less rapidly
as the delay increases. Conversely, a value closer to 1 indicates a higher sensitivity to delay, with the
subjective value decreasing more rapidly.

resulting in 1
(1+kt)s . When fixed at s = 1, both models simplify to Mazur’s one-parameter hyperbolic

discounting model ( 1
(1+kt) ).

To illustrate the differences, let us consider an example. Suppose you are given the choice to receive
$50 today or $100 one month from now. Considering the immediate benefit of choosing $50 now
versus waiting much longer for $100, many would choose the $50 option. Now suppose you are given
the choice to receive $50 in twelve months or $100 in thirteen months. The exponential discounting
model predicts you would still choose $50, since the $100 option is again delayed by an extra month
so the proportion discounted remains the same. However, many people would choose $100 in this
scenario, since the difference between 12 and 13 months is relatively smaller than the difference
between 0 and 1 month. Sensitivity-to-delay models come into play if your answers differ from the
above. If you were willing to wait a month in the first scenario and chose $100, then you exhibit lower
sensitivity to delays (s closer to 0). If you choose not to wait a month in the second scenario and
choose $50, then you have higher sensitivities toward delays (s closer to 1). This is a prime example
demonstrating preference reversal, which is properly accounted for by hyperbolic discounting models,
and how sensitivity-to-delay models can accommodate individual preferences.

The Rachlin model provides certain advantages over the base model (Franck et al., 2023); it offers
flexibility and aligns closely with empirical discounting data. Moreover, compared to other two-
parameter discounting models, the Rachlin model provides the advantage of easily obtaining unique
best estimates for parameters across a wide range of potential discounting patterns. Figure 1 depicts
the one-parameter hyperbolic discounting and two-parameter Rachlin model of hyperbolic discounting,
with three different values of the sensitivity-to-delay parameter s shown. The main contribution of
this work is to demonstrate a practical way of integrating the two-parameter Rachlin model into deep
RL to evaluate whether RL agents respond differently to changes in delay sensitivity while examining
the potential benefits and drawbacks of such a technique. We examine Rachlin discounting in the
off-policy value-based RL algorithm Rainbow (Hessel et al., 2018) and evaluate the performance of
the Rachlin model for three different values of the sensitivity-to-delay parameter s on a variety of RL
benchmarks such as Atari-5 (Aitchison et al., 2023) and Procgen (Cobbe et al., 2020). Our results
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show that the applicability of sensitive-to-delay discounting varies greatly with the environment
properties. In more deterministic environments like Atari-5, the agent has no incentive to decrease in
perceived delay. However, for environments like Procgen that are used to study generalization, there
is a consistent performance improvement as the agent becomes less sensitive to perceived delay (s
value closer to 0).

2 Related Work

Temporal discounting, a key concept in economics and decision theory, posits that individuals value
immediate rewards more than delayed ones. Traditional models use exponential discounting, where
reward value decreases at a constant rate over time (Samuelson, 1937). However, empirical studies
show human preferences align better with hyperbolic discounting, which captures steeper discounting
for shorter delays (Ainslie, 1975; Mazur, 1987). Research in psychology and behavioral economics
has extensively explored these preferences, revealing that hyperbolic models more accurately describe
human behavior, including preference reversals (McKerchar et al., 2009; Smith et al., 2023; Young,
2017). Sensitivity to delay models, like the Rachlin hyperboloid model, introduce a second parameter
to better fit human data, accounting for variance more effectively than exponential or single-parameter
models (Rachlin, 1989; McKerchar et al., 2009; Crystal, 2001; Myerson & Green, 1995). These models
have significantly influenced studies on intertemporal choice, showing superiority over exponential
discounting in explaining human decision-making (Green et al., 1994; Kirby, 1997).

Traditional RL algorithms, including Q-Learning and policy gradient methods, typically use exponen-
tial discounting to manage delayed rewards (Sutton & Barto, 1998). Kurth-Nelson & Redish (2009)
modeled hyperbolic discounting via distributed exponential discounting, and Fedus et al. (2019)
extended this to deep RL, approximating hyperbolic discounting through multi-horizon learning.
Further advancements include meta-learning approaches to use γ as a learnable parameter (Xu et al.,
2018), Γ-nets for value prediction across discount factors (Sherstan et al., 2020), non-exponential
discounting for model-based RL (Schultheis et al., 2022), and beta-weighted discounting (Kwiatkowski
et al., 2023), whereas another body of work has advocated for state dependent discounting (White,
2017; Pitis, 2019; 2023).

3 Methodology

3.1 Approximating Rachlin Q-values

In order to use Rachlin hyperbolic discounting in deep RL, we need to incorporate such a discounting
function into a learning algorithm. Following Fedus et al. (2019), we demonstrate a method to
re-purpose exponentially-discounted Q-values to compute Rachlin hyperbolic discounted Q-values.
The Bellman equation (Bellman, 1957a) is given by

Qγt

π (s, a) = Eπ,P [R(s, a) + γQπ(s′, a′)] (1)

where the expectation Eπ,P involves sampling a ∼ π(·|s), s′ ∼ P (·|s, a), and a′ ∼ π(·|s′). Let’s
consider estimating the value function under hyperbolic discounting. We denote Rachlin hyperbolic
Q-values as QΓkσ

π , using σ instead of s to denote the sensitivity-to-delay parameter in this section to
avoid confusion with the state s, as shown in Equation 3:

QΓkσ
π (s, a) =Eπ

[
Γkσ(1)R(s1, a1) + Γkσ(2)R(s2, a2) + · · ·

∣∣∣∣s, a

]
(2)

=Eπ

[∑
t

Γkσ(t)R(st, at)
∣∣∣∣s, a

]
(3)
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Remember that the value of a reward rt at timestep t with hyperbolic exponent k and sensitivity-to-
delay σ is give by:

V (t) = rt

1 + ktσ
(4)

We now relate the hyperbolic Q-value, QΓ
π, to exponential Q-value, Qγ

π, learned through standard
Q-learning. The hyperbolic discount Γkσ can be expressed as the integral of a specific function f(γ, t)
for γ = [0, 1) and σ = [0, 1]:

∫ 1

0
γktσ

dγ = 1
1 + ktσ

= Γkσ(t) (5)

This integral over the function f(γ, t) = γktσ yields the desired hyperbolic discount factor Γk(t) by
considering an infinite set of exponential discount factors γ over its domain γ ∈ [0, 1). Recognizing
that the integrand γkt is the standard exponential discount factor suggests a connection to standard
Q-learning. This implies that by considering an infinite set of γ, we can combine them to yield
hyperbolic discounts for the corresponding time-step t. We employ Equation 5 to compute the
QΓkσ

π -value according to the hyperbolic discount factor by considering an infinite set of Qγk

π -values
computed through standard Q-learning, as shown in Equation 9.

QΓkσ
π (s, a) =Eπ

[∑
t

Γkσ(t)R(st, at)
∣∣∣∣s, a

]
(6)

=Eπ

[∑
t

(∫ 1

γ=0
γktσ

dγ

)
R(st, at)

∣∣∣∣s, a

]
(7)

=
∫ 1

γ=0
Eπ

[∑
t

R(st, at)(γkt)σ

∣∣∣∣s, a

]
dγ (8)

=
∫ 1

γ=0
Q(γkt)σ

π (s, a)dγ (9)

This approach demonstrates how to compute hyperbolic Q-values by considering an infinite set of
exponential Q-values, each corresponding to a different discount factor γ. The number of concurrent
horizons (nγ) is an important factor to consider, along with the values of γ that enforce the minimum
and maximum horizon for the agent, beyond which the rewards are negligible. In practice, we start
by calculating the γ interval, which are the values of γ on which the integral is approximated using
a Riemann sum, and are specified by γk. The γk value thus obtained is raised to the power of tσ,
and the factor γktσ can be considered as the Bellman gamma, the value of gamma that is used for
learning in Q-Learning (Eq. 1). Note that Rachlin hyperbolic discounting necessitates the use of
n-step temporal difference learning, as traditional 1-step learning with t = 1, renders the sensitivity
to delay parameter σ ineffective, i.e. tσ = 1.

3.2 Model Architecture

We evaluate Rachlin discounting in value-based model-free RL by using Rainbow (Hessel et al., 2018)
as our base algorithm. The proposed network architecture is presented in Figure 2. We employ
the deeper IMPALA-CNN architecture (Espeholt et al., 2018) with 15 convolutional layers instead
of the small 3-layer network (Nature-CNN) used in Fedus et al. (2019). The residual blocks (He
et al., 2016) in the IMPALA-CNN architecture keep the optimization process light while enabling
substantially deeper feature learning. The network predicts Q-values for each discount factor γ,
and these Q-values are used for the agent’s learning (loss calculation). Rainbow combines several
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Figure 2: Network architecture. Output layers predict Q-values for different discount factors using
an individual output block for each γ, which are then used to approximate the Hyperbolic Q-value.

independent improvements on top of the Deep Q-Learning framework (Mnih et al., 2015). We include
five of the six; double DQN (van Hasselt et al., 2016), dueling DQN (Wang et al., 2016), noisy nets
(Fortunato et al., 2018), prioritized experience replay buffer (Schaul et al., 2016), and n-step returns
(Sutton, 1988). However, we exclude the Distributional RL (C51) (Bellemare et al., 2017) component
as we trade off implementation complexity with performance benefits, particularly by evaluating for
a lesser number of time steps (25M). As noted by Hessel et al. (2018), optimizing the distribution of
returns helps in the long run, such as training beyond 40M time steps. Schmidt & Schmied (2021)
also note marginal performance improvement with the inclusion of C51 when training for limited
time steps (10M) and suggest the exclusion of this component.

4 Experiments

We evaluate our proposed approach on a suite of tasks designed to test the agent’s ability to make
decisions involving intertemporal trade-offs. These tasks include delayed gratification scenarios, where
the agent must choose between an immediate smaller reward or a larger delayed reward, as well as
more complex environments that require long-term planning and decision-making. We conducted
experiments to assess the effectiveness of Rachlin hyperbolic discounting across two benchmark
environments: Atari-5 (Aitchison et al., 2023) and Procgen (Cobbe et al., 2020). For all experiments,
the hyperbolic discount factor k = 0.1 remained constant. We varied the n-step values between 3
and 20 (results are only shown for nstep = 3) and compared the performance of Rachlin discounting
across three arbitrary selections of s ∈ {0.1, 0.5, 0.9}. We compared with single-parameter hyperbolic
discounting as a baseline. We do not perform hyperparameter tuning. All agents are evaluated using
undiscounted, episodic returns, following the guidelines of Agarwal et al. (2021). Experimental setup
and hyperparameter details are provided in Appendix A.

4.1 Atari-5

We first conduct experiments on Atari-5, a subset of 5 environments from the Arcade Learning
Environment (ALE) (Bellemare et al., 2013) as presented by Aitchison et al. (2023), which produces
57-game median score estimates within 10% of their true values. The aggregated results (Figure
3a) show that in ALE, higher values of σ fare better, with hyperbolic discounting (σ = 1) achieving
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(a) Atari-5

(b) Procgen

Figure 3: Aggregated results for the Generalized Hyperbolic discounting function (Rachlin, 1989)
and the single-parameter Hyperbolic Discounting function (Mazur, 1987) across the Atari-5 and
Procgen benchmarks. Results were aggregated across all constituent environments (5 in Atari-5, 16
in Procgen) and each environment/method combination was run for 5 seeds.

the best overall IQM score. This implies that sensitivity to delay (smaller σ values) is penalized for
agents, and difference between actual delay and perceived delay needs to be minimal. Full results
shown in Appendix B, Figure 4.

4.2 Procgen

Procgen consists of 16 unique environments which are designed to assess an agent’s generalization
ability by evaluating agents on levels it has not encountered during training. Figure 3b shows the
performance of Rachlin hyperbolic discounting for 3 different values of s against the one-parameter
Hyperbolic discounting (baseline). Surprisingly, the results for Procgen are opposite of ALE, and
lower values of σ (more sensitive to delay) increase the agent’s overall performance. Full results
shown in Appendix B, Figure 5.

5 Discussion

The conventional exponential reward discounting model in reinforcement learning fails to capture
the intricacies of human decision-making processes. Individual subjective value of a reward varies
based on the perceived time required to obtain it. In this work, we introduced a novel approach to
integrating the Rachlin hyperbolic discounting model into the deep reinforcement learning framework.
By modifying the value estimation process to incorporate both the discount factor and the sensitivity-
to-delay parameter, our approach enables RL agents to learn policies that align better with observed
human preferences and decision-making patterns in tasks involving intertemporal trade-offs. Our
results demonstrate the potential of this approach to improve decision-making and performance in
delayed gratification scenarios and other tasks requiring generalizability to unseen tasks. Our results
show that the optimal value of σ varies across different environments, indicating that environmental
dynamics significantly influence this parameter. Fine-tuning σ during hyperparameter optimization
may enhance the performance of Rachlin discounting.

By integrating sensitivity-to-delay models from psychological sciences into reinforcement learning
agents, we have demonstrated a method to incorporate subjective value and accommodate preference
reversals. This approach holds promise for developing AI agents that emulate human behavior
more accurately, enhancing social acceptability and facilitating smoother collaboration with humans.
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Future work could explore integrating our approach into more complex RL algorithms, such as multi-
agent reinforcement learning or hierarchical reinforcement learning frameworks. Further investigation
into the theoretical properties and convergence guarantees of our approach would be valuable, as
well as exploring alternative formulations of the two-parameter delay discounting function.
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Appendix

A Setup and Hyperparameters

The software used included Python (3.8.x) and PyTorch (1.12), with CUDA (11.4). Our computing
infrastructure involved using 2 GPU servers, each having an Intel Xeon 4215 processor (3.50GHz), 16
physical cores, 1 TB RAM, and 8 Nvidia A40 GPUs. We provide the hyperparameters used in our
implementation in Table 1. All figures in this paper are plotted using an exponential moving average
with a smoothing value of 0.9, where each point on the graph is calculated by taking the mean of
the last 5 observations (corresponding to the last 1M steps). In all plots, mean (dark line) and 95%
bootstrapped confidence intervals (shaded region) are calculated over 5 runs using a different seed.

Hyperparameters Values
Training protocol 25M steps

Evaluation protocol 10 episodes (every 250k train steps)
Max steps/episode 27k

Double DQN Yes
Dueling DQN Yes

σ0 for Noisy Layers 0.5
Number of Atoms Not Used

PER Importance sampling β0 0.4
n-step 3

Learning rate 0.00025
Batch size 256

Q-target update frequency 8000 steps
Adam ϵ 2e-5 (0.005/batch size)

Parallel environments 64
Replay buffer size ≈1M (220)
Training starts at 20000 steps

Number of γ 5
γmax 0.99

Hyperbolic exponent k 0.1
Integral estimate lower

γ intervals [0.374, 0.608, 0.755, 0.847, 0.904]
γ values [0.906, 0.951, 0.972, 0.985, 0.99]
σ values [0.1, 0.5, 0.9]

Procgen distribution mode Easy
Procgen num levels (training) 200

Procgen num levels (evaluation) 0 (infinite)
Procgen start level 0

ALE Sticky Actions probability 0
ALE Frame Stacking 4

ALE Frame Skip 4
Number of seeds per environment 5

Random seed values [64331, 74330, 95762, 282995, 801604]

Table 1: Hyperparameters for Rainbow



RLJ | RLC 2024

B Individual Results

B.1 Atari-5

Results on Atari-5 Aitchison et al. (2023), shown in Figure 4, confirm that the sensitivity-to-delay
parameter affects learning, with the base hyperbolic performing best on only 1 of the 5 environments.
We also note that different environments behave differently to the sensitivity-to-delay parameter,
meaning that this hyperparameter may need to be carefully tuned before it can be applied. In our
work, we did not do any hyperparameter tuning and selected 3 representative values from the range
[0, 1].
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Figure 4: Performance of Rachlin hyperbolic discounting for 3 different values of sensitivity-to-delay
(σ) on the Atari-5 benchmark (Aitchison et al., 2023). Mean (dark line) and 95% bootstrapped
confidence intervals (shaded region) are shown, calculated over 5 seeds for each experiment.

B.2 Procgen

Figure 5 shows the performance of Rachlin hyperbolic discounting for 3 different values of σ against
the one-parameter Hyperbolic discounting (baseline) on all Procgen environments for 25M timesteps.
The performance of the baseline one-parameter hyperbolic is close to the 3 Rachlin models studied
here, except in bigfish, coinrun and starpilot environments.
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Figure 5: Performance of Rachlin hyperbolic discounting for 3 different values of sensitivity-to-delay
(s) against the one-parameter Hyperbolic discounting (baseline) on the Procgen benchmark. Mean
and 95% confidence intervals are shown.

(a) Atari-5 (b) Procgen

Figure 6: (a) Sample Efficiency curve for IQM Human-normalized score across Atari-5 tasks (b)
Performance profile for Procgen tasks.


