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ABSTRACT

Generating high-fidelity 3D geometries that satisfy specific parameter constraints
has broad applications in design and engineering. However, current methods typ-
ically rely on large training datasets and struggle with controllability and general-
ization beyond the training distributions. To overcome these limitations, we intro-
duce LAMP (Linear Affine Mixing of Parametric shapes), a data-efficient frame-
work for controllable and interpretable 3D generation. LAMP first aligns signed
distance function (SDF) decoders by overfitting each exemplar from a shared ini-
tialization, then synthesizes new geometries by solving a parameter-constrained
mixing problem in the aligned weight space. To ensure robustness, we further
propose a safety metric that detects geometry validity via linearity mismatch. We
evaluate LAMP on two 3D parametric benchmarks: DrivAerNet++ and Blended-
Net. We found that LAMP enables (i) controlled interpolation within bounds with
as few as 100 samples, (ii) safe extrapolation by up to 100% parameter difference
beyond training ranges, (iii) physics performance-guided optimization under fixed
parameters. LAMP significantly outperforms conditional autoencoder and Deep
Network Interpolation (DNI) baselines in both extrapolation and data efficiency.
Our results demonstrate that LAMP advances controllable, data-efficient, and safe
3D generation for design exploration, dataset generation, and performance-driven
optimization.
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Figure 1: Overview of LAMP: (I) aligned SDF weight space construction, (II) parameter-constrained
mixing, and (III) mesh extraction, enabling parametric control and large-range extrapolation.
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1 INTRODUCTION

Engineering design applications often require generating 3D geometries that satisfy explicit, human-
interpretable parameters (e.g., aerodynamic drag, roof height, and ramp angle). However, these
applications are often data-scarce and require exploration beyond the limited span of available ex-
emplars and parameter values unseen in the training distribution (e.g., generating a 3D car shape
with a much larger ramp angle compared to known cars in the dataset). This opens up a fundamental
challenge of how we can enable controllability and interpretability beyond training distributions in
generative models across many domains, such as images, 3D shapes, text, and audio.

Many existing methods achieve control by learning a shared latent space and then traversing or
disentangling latent dimensions to align with semantic or parametric factors (Vahdat et al., 2022;
Zhao et al., 2023; Morita et al., 2024; Xiang et al., 2025). While powerful, latent approaches require
a single generator to capture all variability, achieving clean, interpretable directions often proves
difficult. The problem is particularly challenging in 3D shape generation, as most 3D generative
models—whether voxel, point cloud, mesh, or implicit—rely on large datasets and provide few
guarantees about parameter control or generalization beyond the training distribution.

We introduce LAMP (Linear Affine Mixing of Parametric shapes), a data-efficient framework for
parameter-controlled 3D mesh generation. LAMP aligns signed distance function (SDF) decoders
by overfitting each exemplar from a shared initialization, producing a consistent weight-space basis
tied to design parameters. Given a target specification, we solve a constrained mixing problem to
obtain coefficients, linearly combine exemplar weights, and decode a mesh. In other words, we cast
controllable generation as parameter-space affine mixing across exemplar-specific networks.

This formulation leverages two simple but powerful observations: (i) interpretable attributes in many
domains often combine approximately linearly in a suitable basis (e.g., control-point deformations in
geometry), and (ii) neural decoders behave approximately linearly in their weights in a local regime
around a common initialization. Together, these properties allow us to replace complex disentan-
glement or conditioning strategies with a lightweight linear solve and direct parameter mixing. We
show that this method allows extrapolation beyond the training data and requires few samples.

To demonstrate reliability in meeting parameter constraints, we also introduce a method for direct
linearity-mismatch safety check: for sampled 3D points, we compare the mixed decoder’s output
with the linear combination of individual SDFs, accepting generations only if the mean error is below
0.01. Constraint compliance is evaluated using a mesh-based surrogate that predicts parameters
from PointNet embeddings with R2 > 0.9 Qi et al. (2017), complemented by direct geometric
measurements on decoded meshes. This combination provides both flexibility and accountability in
design generation.

We validate LAMP on two parametric benchmarks, DrivAerNet++ and BlendedNet, across four case
studies: (i) controlled interpolation within dataset bounds, (ii) safe extrapolation up to 100% beyond
training ranges, and (iii) optimization for aerodynamic properties under fixed parameters. Together,
these results demonstrate that LAMP enables controllable, data-efficient, and safe mesh generation
for design exploration and performance-driven optimization.

LAMP thus bridges the gap between data-efficient generative modeling and practical engineering
design. By combining aligned SDF weight spaces, provably safe mixing, and mesh-based surrogate
validation, our framework provides a principled foundation for parameter-controlled 3D mesh gener-
ation. This enables not only faithful reproduction of in-distribution designs but also safe exploration
of new configurations, including extrapolated and performance-optimized geometries. Ultimately,
LAMP offers a scalable approach to transform a few annotated exemplars into a versatile design
engine for constrained yet creative geometry synthesis.

More specifically, our contributions can be summarized as follows:
• LAMP Method. We propose LAMP, a data-efficient framework for parameter-controlled 3D

mesh generation that aligns exemplar-specific SDF decoders to create a shared weight space
and synthesizes new shapes through affine mixing from it.

• Safety Metric. We introduce a linearity-mismatch metric that certifies whether interpolated or
extrapolated weight-space combinations by LAMP remain geometrically valid.
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• Engineering Applications. We demonstrate LAMP on two benchmarks of aerodynamic 3D
design (DrivAerNet cars and BlendedNet aircraft), showing controlled interpolation, large-
range extrapolation (up to 100% beyond dataset bounds), and performance-driven optimization.

2 RELATED WORK

Generative Models for 3D Shapes. A wide range of 3D generative models have been proposed,
spanning voxel grids Wu & et al. (2016), point clouds Achlioptas & et al. (2018), meshes Groueix
& et al. (2018), and neural implicit representations such as signed distance functions (SDFs) Park
et al. (2019); Chibane et al. (2020). Neural SDFs capture high-resolution geometry and have been
applied to generation and reconstruction Chen & et al. (2022) and reconstruction Atzmon & Lipman
(2020). Recent diffusion-based 3D generators operate on implicit or latent representations, including
LION, GET3D, Diffusion-SDF, SDFusion, and SALAD Zeng et al. (2022); Gao et al. (2022); Chou
et al. (2023); Cheng et al. (2023); Koo et al. (2023). However, these methods typically assume
abundant training data and lack explicit mechanisms for parameter-constrained generation or safe
extrapolation. More recently, HyperDiffusion Erkoç et al. (2023) modeled the distribution of overfit
implicit networks directly in weight space, sampling new fields via diffusion. These works treat
networks themselves as data points in parameter space, but focus on unconditional sampling or
learned meta-combination rather than explicit affine mixing under interpretable constraints.

Controllable and Conditional Generation. Efforts to introduce control often rely on condition-
ing on labels or attributes Gao et al. (2019); Niemeyer et al. (2020), or on parametric templates
derived from CAD data Yumer & Mitra (2016); Wang et al. (2022). Diffusion models have recently
been adapted for class-conditional and partially conditional shape generation Chen & et al. (2023);
Liu & et al. (2023). Multimodal conditioning has also been explored for controllable 3D generation,
e.g., CLIP-Forge and Michelangelo Sanghi et al. (2022); Zhao et al. (2023). However, these meth-
ods rarely support precise parameter specification (e.g., generating a car body with fixed ramp angle
and width) and are not designed for data-efficient regimes. Our approach complements this line of
work by enabling direct control through interpretable parameters.

Weight-Space Interpolation and Model Merging A few works have shown that linear opera-
tions in weight space can produce coherent outputs. Deep Network Interpolation (DNI) Wang et al.
(2019) demonstrated smooth visual transitions by averaging parameters of two correlated image
translation networks. In classification, model soups Wortsman et al. (2022) average fine-tuned net-
works to improve robustness. In generative modeling, researchers have merged GANs trained on
different categories to yield hybrid semantics Avrahami et al. (2022), and also commonly combine
diffusion models by interpolating or adding weight deltas to merge styles Biggs et al. (2024). These
approaches confirm that weight-space mixing can yield meaningful interpolations, but typically op-
erate on pairs of models and lack mechanisms for interpretable, constraint-driven control.

Parametric Design and Engineering Constraints. Engineering design relies heavily on paramet-
ric modeling, where small sets of interpretable variables govern global shape Seff & et al. (2020);
Wang et al. (2022); Du & et al. (2023). While recent learning-based CAD systems leverage sym-
bolic histories or constraint graphs, they often require large, structured datasets. By contrast, we
target the data-efficient setting where only meshes and parameter annotations are available. LAMP
directly links parameters to mesh geometry via aligned SDF weight spaces, and enforces validity
through a linearity-mismatch safety metric and mesh-based surrogate checks.

Shape Interpolation and Extrapolation. Latent-space interpolation has been widely explored in
autoencoders Achlioptas & et al. (2018) and implicit representations Park et al. (2019), but these
spaces are often not semantically aligned, leading to unrealistic interpolations or invalid extrapo-
lations. Our method leverages affine mixing of aligned SDF weights, which—combined with the
linearity-mismatch criterion—ensures that interpolated or extrapolated meshes remain geometrically
consistent and satisfy parametric constraints.

Position of This Work. Our approach bridges these threads. Like HyperDiffusion, we treat overfit
exemplar networks as aligned points in parameter space, but instead of learning a generative model
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over them, we provide direct, interpretable control by solving for mixing coefficients in parameter
space and applying them in weight space. Unlike latent traversal or disentanglement, we do not
rely on a single model to encode all variation. And unlike prior weight interpolation methods,
we generalize beyond two-model blends to a bank of exemplars, enabling constraint-driven, multi-
way affine mixing. To our knowledge, this is the first work to formulate controllable generation as
parameter-space affine mixing of aligned exemplar networks.

3 METHOD

We present LAMP, a data-efficient framework for controllable 3D mesh generation that can safely
interpolate and extrapolate in parameter space. LAMP (i) constructs an aligned weight-space basis
by overfitting signed distance function (SDF) networks to a small set of 3D shapes, (ii) solves a
parameter-constrained mixing problem to synthesize new SDF weights and decode meshes, and (iii)
evaluates reliability using a linearity-based safety metric and a surrogate that predicts parameters
directly from generated meshes.

Problem Setup and SDF Weight Space We are given N exemplars, each with mesh Mi and
parameter vector pi ∈ Rd (e.g., length, width, roof height, ramp angle). For every design, we overfit
an SDF network fθi , starting from a shared initialization at the mean design. This yields weights
wi = θi ∈ RD that live in an approximately aligned weight space. Stacking rows gives

P ∈ RN×d, W ∈ RN×D.

An arbitrary weight vector w is decoded into a mesh M = Decode(w) by evaluating the zero-
level set of the SDF distribution on a dense voxel grid at the desired resolution, and extracting the
isosurface using the marching cubes algorithm Lorensen & Cline (1998).

Parameter-Constrained Mixing Given a target parameter vector yd with a constrained index set
C, we solve the following optimization problem for mixing coefficients α:

min
α

∥∥P⊤
:,Cα− pd,C

∥∥2
2

s.t. 1⊤α = 1. (1)

The synthesized weights and decoded mesh are

wd = W⊤α, Md = Decode(wd). (2)
Negative α is allowed, enabling extrapolation beyond dataset bounds.

Theoretical Justification of Mixing Our framework builds on two key assumptions:

(A1) Linearity of the control-point map. Each mesh Mp can be described by a set of geometric
control points C(p) ∈ Rn×3, such as spline knots or characteristic vertices that define the
surface. We assume the map from parameters to control points is linear:

C

(∑
i

αipi

)
=
∑
i

αiC(pi).

This reflects how most engineering deformations are modeled: affine transformations
(translation, scaling, stretching), spline coefficient adjustments, or superpositions of in-
dependent deformations. Even when nonlinear parameterizations are used (e.g., quadratic
variations in thickness or curvature), they can often be re-expressed in a linear basis of
control-point coefficients (see Appendix A).

(A2) Local linearity in SDF weights. For fixed input z, the decoder f(z;w) is approximately
linear in w in a neighborhood of a reference w0:

f

(
z;
∑
i

αiwi

)
≈
∑
i

αif(z;wi),

with error O(maxi ∥wi − w0∥2). (Proof in Appendix C)

Under (A1)–(A2), interpolating weights ŵα = W⊤α produces an SDF close to SDF(C(p̂α)) with
p̂α = P⊤α, ensuring that mixing in weight space corresponds to faithful geometric interpolation
and extrapolation. (Proof in Appendix B)
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Safety Metric: Linearity Mismatch We additionally quantify whether affine mixing remains in
a valid linear regime (A2). For Nz sampled 3D coordinates {z}, we compute

1

Nz

∑
z

∣∣∣f(z;∑
i

αiwi

)
−
∑
i

αif(z;wi)
∣∣∣.

A mesh is accepted if this mismatch is below ϵ. This provides a quantitative safety threshold: low
mismatch implies faithful linear mixing, while high mismatch indicates collapse (Fig. 5).

4 EXPERIMENTS, RESULTS, AND DISCUSSION

We evaluate LAMP against two representative baselines for parameter-controlled 3D generation:

DNI (Deep Network Interpolation): a learned model mapping design parameters directly to SDF
decoder weights Wang et al. (2019). AE-LPA (Autoencoder with Latent-Parameter Alignment):
an autoencoder trained to reconstruct SDF weights with its latent subspace linearly aligned to design
parameters Jain et al. (2021).

We benchmark these methods on two recent parametric datasets (Appendix I): DrivAerNet++: a
large-scale multimodal car dataset with ∼ 8,000 distinct geometries, each annotated with 26 in-
terpretable design parameters, high-resolution meshes, and CFD-based aerodynamic coefficients.
Elrefaie et al. (2024) BlendedNet: a blended wing-body (BWB) aircraft dataset with 999 geome-
tries, each simulated under 9 flight conditions, and annotated with planform parameters such as
chord-length ratios, spanwise widths, and sweep angles. Sung et al. (2025) For brevity, we focus on
DrivAerNet++ in the main paper and report full BlendedNet results in Appendix D.

Evaluation Metrics For in-dataset generation (when the target mesh is available), we evaluate:
Chamfer Distance (CD) and Intersection-over-Union (IoU) between generated and reference
meshes (see Appendix F). Parameter Error: mean absolute error (MAE) between target param-
eters and surrogate-predicted parameters for the generated mesh. For out-of-distribution extrapo-
lation (no ground-truth mesh), we evaluate: Parameter Fidelity: surrogate-predicted MAE and
R2 between target parameters pd and inferred p̂, Distributional Similarity: Minimum Matching
Distance (MMD) between generated shapes and a reference set of geometries. (see Appendix F).

Constraint Compliance via Mesh-Based Surrogates To assess whether generated shapes re-
spect design-parameter constraints, we employ a mesh-based surrogate model trained to predict
interpretable parameters (e.g., geometric or performance attributes). We compute fixed, randomly
initialized PointNet embeddings for each decoded mesh Amid et al. (2022), and fit a LASSO re-
gressor Tibshirani (1996) to map embeddings to physical parameters. Despite using an untrained
encoder, the surrogate consistently achieves R2 > 0.9 on held-out test sets, providing a robust
parameter validator. When possible, we further cross-check compliance through direct geometric
measurements of the meshes (details in Appendix G).

Interpolation within Dataset Range We evaluate interpolation by reconstructing meshes from
randomly sampled dataset examples that fall within the parameter range but are excluded from
training. As shown in Table 5, LAMP achieves the best performance across Chamfer Distance,
IoU, and parameter error. Notably, with only 100 samples, it surpasses AE-LPA trained on 1000
samples, demonstrating strong sample efficiency in low-data regimes.

Table 1: Interpolation results on DrivAerNet++. Comparison of Chamfer Distance (CD), IoU, and
parameter error (MAE) across methods.

Method # Samples CD ↓ IoU ↑ (%) MAE ↓
DNI 100 0.0118 97.12 0.0015
AE-LPA 100 0.0181 88.21 0.0025
AE-LPA 1000 0.0144 92.63 0.0020
LAMP (Ours) 100 0.0117 97.24 0.0014
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Extrapolation within Dataset Range We next evaluate extrapolation slightly beyond the train-
ing set. Training samples are drawn from a centered 50% interval of the parameter range, and
evaluation is performed on cars with parameter values outside that interval. Figure 8 illustrates
the single-parameter case, showing extrapolation along front bumper curvature. While DNI—the
strongest baseline within the dataset range—begins to drift outside the training span, LAMP main-
tains smooth, parameter-consistent geometry.

Table 6 reports quantitative results. For single-parameter extrapolation, LAMP improves Chamfer
Distance, IoU, and surrogate error relative to DNI. The advantage grows in the multi-parameter set-
ting, where three random parameters are simultaneously extrapolated outside a 60% centered range:
LAMP reduces surrogate MAE by 20–30%, showing greater robustness under multiple constraints.

Table 2: Extrapolation within dataset range (DrivAerNet++). LAMP outperforms DNI in both
single- and multi-parameter settings, with especially large gains when multiple parameters are ex-
trapolated simultaneously.

Method Single Parameter Multi-Parameter (3)
CD ↓ IoU ↑ MAE ↓ CD ↓ IoU ↑ MAE ↓

DNI 0.0129 95.32 0.098 0.0139 94.28 0.186
LAMP (Ours) 0.0126 95.75 0.077 0.0130 95.29 0.144

Large-Range Extrapolation Beyond the Dataset Bounds We next evaluate extrapolation far
outside the training span, extending parameters up to ±100% beyond the dataset limits (i.e., three
times the original parameter range). This task is challenging, as models must generate plausible
geometries without support from nearby training examples. We consider two extrapolation settings
in our experimental setup:

1. Single-Parameter Extrapolation. For each parameter, we sweep across the extrapolated range
(3× the dataset span) using 10 uniformly sampled target values, while allowing all other param-
eters to vary freely. This setup evaluates whether models sustain smooth and consistent shape
evolution along a single direction of variation (Figs. 3, 2).

2. Multi-Parameter Extrapolation (4D). We repeat 100 trials where four parameters are randomly
selected and set outside the dataset range (up to 50% extrapolation, i.e., 2× the span). Each
method generates meshes under these conditions, which are then converted to point clouds, em-
bedded with a fixed PointNet encoder, and visualized in 2D via multidimensional scaling (MDS).
This reveals both fidelity and diversity of extrapolated generations (Fig. 4).
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Figure 2: Single-parameter extrapolation showing LAMP’s smooth, plausible geometries.
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Table 3: Large-range extrapolation (DrivAerNet++). LAMP sustains high fidelity (R2 > 0.86),
while DNI collapses (R2 < 0).

Method Single Parameter Multi-Parameter (4)
MMD ↓ MAE ↓ R2 ↑ MMD ↓ MAE ↓ R2 ↑

DNI 0.043 0.705 0.143 0.060 1.313 -5.768
AE-LPA 0.031 0.405 0.750 0.030 0.420 0.685
LAMP (Ours) 0.030 0.247 0.902 0.030 0.324 0.867

Results. Quantitative results are reported in Table 3. For single-parameter extrapolation, LAMP
reduces parameter error by more than 40% compared to DNI and achieves R2 = 0.90 versus R2 =
0.14 for DNI. In the four-parameter case, DNI collapses completely (R2 < 0), AE-LPA remains
confined to the convex hull of the dataset, while LAMP sustains high fidelity (R2 = 0.87) with low
MMD and surrogate error.

Figures 2 and 3 illustrate the single-parameter sweeps: DNI collapses outside the training range and
AE-LPA undershoots, whereas LAMP produces smooth, parameter-consistent variations that remain
geometrically valid across the entire sweep. In the more challenging four-parameter extrapolation
(Fig. 4), DNI collapses to invalid meshes and scatters randomly in embedding space, AE-LPA stays
trapped in the dataset’s convex hull with low diversity, while LAMP extrapolates beyond the convex
hull and generates high-fidelity meshes in previously unobserved regions. This shows that LAMP
can be used for dataset augmentation and controlled generation from a few samples.

AE-LPADNILAMP

R2 = 0.994 R2 = 0.814 R2 = 0.905

R2 = 0.878 R2 = -1.119 R2 = 0.750
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Figure 3: Single-parameter extrapolation beyond the dataset range, with all other parameters allowed
to vary. Left: surrogate-predicted vs. target parameters. Right: decoded cross-sections. LAMP
extrapolates smoothly, while DNI collapses and AE-LPA fails to reach the expected parameter range.

Challenges and Safety in Extrapolation with Limited Data A major challenge of large-range
extrapolation is validating the plausibility of generated geometries when training data are scarce.
With only 100 samples, mesh-based surrogates cannot be trained reliably to evaluate out-of-
distribution designs. In such low-data regimes, models may occasionally produce collapsed or
implausible shapes, especially when extrapolating far beyond the dataset span.
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Figure 4: Four-parameter extrapolation. Left: distribution of generated meshes in a 2D point cloud
embedding. Right: decoded examples. LAMP remains within plausible regions, DNI collapses to
invalid meshes, and AE-LPA remains stuck in the dataset convex hull, lacking diversity.

To address this, we introduce a linearity-mismatch safety metric (Sec. 3), which quantifies whether
affine weight mixing remains locally valid in SDF space. Unlike surrogate-based validation, this
metric is lightweight and data-independent, enabling it to flag unsafe generations even when labeled
training data are unavailable. As shown in Fig. 5, failure cases (f) arise precisely when the mismatch
score exceeds a threshold.

We validate this metric against a human-annotated dataset of valid and invalid meshes (Appendix H).
The results show excellent discriminative power (ROC AUC = 0.989, PR AUC = 0.990), and
ϵ = 0.01 emerges as a reliable threshold for separating valid from invalid generations. Additional
examples of failure cases and validation analysis are provided in Figs. 17–18.

Another limitation is that we were only able to hard-code the measurement of car length, as ex-
plained in Appendix G, achieving R2 = 0.999 under ±100% extrapolation sweeps. In contrast,
other parameters were far more difficult to hard-code due to the complexity of their deformations
across different car geometries and the absence of reliable methods for accurate measurement.

Finally, we study how reliability scales with data availability (Appendix E). As shown in Table 7,
increasing the training set size improves both predictive accuracy (R2, MAE) and the mean safe
extrapolation range, which grows from ∼ 145% with 10 samples to over 400% with 1000 samples
before saturating. This ablation highlights both the limitations of extrapolation in extremely low-
data regimes and the safety metric’s role in flagging unreliable extrapolations.

a
b

a

b

c

c d

f

e

d e

f

Figure 5: Linearity-mismatch safety metric for diffuser angle extrapolation. Failures (e.g., sample
f) occur when the metric exceeds the threshold. See Appendix H for more.

Performance-Driven Optimization Beyond geometric parameters, we also test whether LAMP
can enable performance-based control, where the goal is to optimize aerodynamic properties while
constraining selected physical parameters. Specifically, we sample 100 random test examples from
DrivAerNet++ outside the training set. For each example, we decay the drag coefficient (Cd) by 10%
and select a random subset of physical parameters to be constrained to their original values, while
treating the decayed Cd as an additional desired parameter. We then solve for mixing coefficients α
that jointly satisfy these constraints.
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To validate the results, we use the mesh-based surrogate (Appendix G) to predict both physical
parameters and drag coefficients from the generated meshes. The surrogate predictions are compared
to ground-truth values, with predicted vs. target plots provided in the Appendix. We evaluate two
objectives: (i) parameter fidelity, i.e. how closely the generated meshes respect the selected physical
parameter constraints, and (ii) drag fidelity, i.e. how accurately the achieved reduction matches the
10% target. Here, decay MAE denotes the mean absolute error between the desired 10% decay and
the observed (predicted) decay, averaged across all samples.

Table 4: Performance-driven optimization on DrivAerNet++ for a 10% drag reduction target. LAMP
achieves the best balance between parameter fidelity and aerodynamic performance.

Method Physical Parameters Drag Coefficient

MAE ↓ R2 ↑ Decay MAE ↓ (%) MAE ↓ R2 ↑
DNI 0.810 -0.184 10.2 0.333 -8.917
AE-LPA 0.161 0.797 5.2 0.146 0.297
LAMP (Ours) 0.087 0.938 2.7 0.121 0.792

Figure 6: Performance-driven drag optimization on DrivAerNet++. Left: target vs. predicted drag
reduction for LAMP, DNI, and AE-LPA. Right: error heatmaps relative to the reference mesh.
LAMP achieves accurate prediction and a physically interpretable modification (flattened wind-
screen), while DNI and AE-LPA fail to produce aerodynamically meaningful changes.

Results. Figure 6 and Table 4 summarize the outcomes. The scatter plot confirms that LAMP
aligns strongly with the target drag decay (R2 = 0.792), while DNI diverges completely (R2 < 0)
and AE-LPA shows weaker correlation. Error heatmaps highlight the geometric changes driving
drag reduction: LAMP produces a visibly flatter windscreen angle, reducing flow separation and
lowering drag, whereas DNI and AE-LPA introduce noisy or less interpretable deformations.

Quantitatively, DNI fails to satisfy both aerodynamic and parametric constraints, with large pa-
rameter drift (MAE = 0.810) and unstable drag predictions (R2 = −8.917). AE-LPA maintains
moderate parameter fidelity (R2 = 0.797) but overshoots the decay target (decay MAE = 5.2%).
In contrast, LAMP achieves the best trade-off: parameter fidelity improves to MAE = 0.087 with
R2 = 0.938, and drag reduction error is reduced to just 2.7%, while maintaining the strongest cor-
relation for drag. Together, these results show that LAMP not only respects parameter constraints
but also identifies physically meaningful pathways for aerodynamic optimization.

5 CONCLUSION

We presented LAMP, a data-efficient framework for parameter-controlled 3D mesh generation that
leverages affine mixing in aligned SDF weight spaces and a linearity-based safety metric. Ex-
periments on DrivAerNet++ and BlendedNet show that LAMP outperforms conditional autoen-
coders and DNI across interpolation, large-range extrapolation, and performance-guided optimiza-
tion, achieving reliable control with as few as 100 exemplars. The safety score provides a princi-
pled safeguard in low-data regimes, addressing a key challenge for robust generalization. LAMP
advances the goal of controllable, efficient, and verifiable 3D generation, common in engineering
applications. Future directions include extending the framework to partial parameter observability,
multi-modal conditioning, and integrating physics-aware constraints.
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A ON THE LINEARITY OF THE CONTROL-POINT MAP

Our theoretical justification in §3 requires assumption (A1), i.e., that the control points defining a
mesh are a linear function of design parameters. Here we explain why this assumption is natural and
broadly applicable.

Affine deformations. If a mesh is transformed by translation, scaling, or uniform stretching along
a coordinate axis, then each control point is exactly a linear function of the corresponding parameter.
For example, increasing the wing span of an aircraft by ∆s simply adds ∆s to the x-coordinates of
the wingtip control points.

Parameterized curves and surfaces. For many design families, parameters control polynomial
or spline coefficients. Since a spline curve is itself a linear combination of control points, perturbing
these coefficients changes the embedding linearly in parameter space. Even nonlinear geometric
trends (e.g., quadratic camber variation) can be re-expressed in a linear basis of coefficients.

Superposition of deformations. When multiple independent deformations (length, width, rota-
tion about an axis) are applied, the resulting control-point positions are affine functions of all
parameters. Thus, any convex combination of parameter vectors yields a convex combination of
control-point sets, consistent with (A1).

Coverage of practical deformations. Most engineering shape variation in engineering practice
can be decomposed into linear control-point operations: extrusion height, lofting length, angle of
attack, or wheelbase translation are all captured. More exotic nonlinear changes (e.g., tree-like
topological branching) violate (A1) but are outside the scope of our controlled parametric families.

Takeaway. Assumption (A1) is not an artificial simplification but instead reflects how engineering
models are actually parameterized: the majority of mesh variations of interest in engineering design
are affine in a suitable control-point basis. This ensures that our interpolation scheme faithfully
reproduces the geometry implied by parameter mixing in nearly all practical scenarios.

B THEORETICAL JUSTIFICATION OF SDF WEIGHT INTERPOLATION

Theorem. Let p1, . . . , pN ∈ Rd be parameter vectors defining meshes Mpi
via control points

C(pi) ∈ Rn×3, where the map x 7→ C(x) is linear. Let wi ∈ Rm denote the weights of an MLP
SDF decoder f(z;w) overfit to the mesh Mpi

, and trained from a shared initialization. Suppose
that:

(1) Control point interpolation is linear:

C

(
N∑
i=1

αipi

)
=

N∑
i=1

αiC(pi),

N∑
i=1

αi = 1.

(2) Each MLP decoder satisfies:

f(z;wi) ≈ SDF(z;C(pi)) := di(z),

where di(z) denotes the signed distance from a queried location z to mesh Mpi .
(3) The decoder f(z;w) is locally linear in weights w for fixed input z:

f

(
z;

N∑
i=1

αiwi

)
≈

N∑
i=1

αif(z;wi),

with error bounded by O(maxi ∥wi − w0∥2).
Then the interpolated SDF f(z; ŵα) approximates the signed distance function of the mesh defined
by the control points C (p̂α), where p̂α =

∑
i αipi. That is,

f(z; ŵα) ≈ SDF(z;C(p̂α)).

14
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Proof. By assumption (2), for each i,

f(z;wi) ≈ di(z) = SDF(z;C(pi)).

Then by local linearity of f in weights (3),

f(z; ŵα) ≈
∑
i

αif(z;wi) ≈
∑
i

αidi(z).

Now, because control points interpolate linearly by assumption (1), we define:

Cα :=
∑
i

αiC(pi) = C

(∑
i

αipi

)
= C(p̂α).

If the SDFs di(z) correspond to shapes with shared topology and smooth variation in geometry, then
the signed distances satisfy: ∑

i

αidi(z) ≈ SDF(z;Cα).

Therefore,
f(z; ŵα) ≈ SDF(z;C(p̂α)).

Thus, the zero-level set of f(z; ŵα) corresponds to the mesh defined by p̂α, completing the proof.

C APPROXIMATE LINEARITY OF THE SDF DECODER IN WEIGHTS

Let z ∈ R3 be a fixed 3D input point, and let γ(z) ∈ RD denote its Fourier positional encoding,
defined as:

γ(z) =
[
z, sin(20πz), cos(20πz), . . . , sin(2Lπz), cos(2Lπz)

]
.

Let f(z;w) be a feedforward multilayer perceptron (MLP) with parameters w and input γ(z). The
network is composed of K layers with weights and biases {Wk, bk}Kk=1, where:

h0 = γ(z),

hk = ϕ(Wkhk−1 + bk), for k = 1, . . . ,K − 1,

f(z;w) = WKhK−1 + bK ,

with ϕ(·) a fixed elementwise nonlinearity (e.g., ReLU). The parameter vector w collects all
{Wk, bk}.

Claim. For fixed z, if all weights {wi}Ni=1 lie in a small neighborhood of a reference w0, then
f(z;w) is approximately linear in w. In particular, for convex coefficients {αi}Ni=1 with

∑N
i=1 αi =

1, we have

f

(
z;

N∑
i=1

αiwi

)
≈

N∑
i=1

αif(z;wi),

with an error term of order O(∥wi − w0∥2).
Proof. Fix the input z, so γ(z) is constant. Consider the Taylor expansion of f(z;w) about w0:

f(z;w) = f(z;w0) +∇wf(z;w0)
⊤(w − w0) +R(w),

where R(w) is the second-order remainder term.

Applying this to each wi gives

f(z;wi) = f(z;w0) +∇wf(z;w0)
⊤(wi − w0) +R(wi).

Now evaluate at the convex combination ŵα =
∑

i αiwi:

f(z; ŵα) = f(z;w0) +∇wf(z;w0)
⊤
(∑

i

αi(wi − w0)
)
+R(ŵα).

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

On the other hand, the convex combination of outputs is∑
i

αif(z;wi) = f(z;w0) +∇wf(z;w0)
⊤
(∑

i

αi(wi − w0)
)
+
∑
i

αiR(wi).

Subtracting the two expressions gives

f(z; ŵα)−
∑
i

αif(z;wi) = R(ŵα)−
∑
i

αiR(wi).

Since the remainder terms R(·) are second-order in the deviations (wi − w0), this difference is
O(maxi ∥wi − w0∥2). Thus, when all weights are close, the error is small and the decoder behaves
approximately linearly in w.

16
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D ADDITIONAL QUANTITATIVE AND QUALITATIVE RESULTS

Figure 7: LAMP’s R2 scores for single-parameter sweeps on the DrivAerNet++ dataset, extrapo-
lated ±100% beyond the dataset range.

Figure 8: Single-parameter extrapolation within dataset range on DrivAerNet++. Training samples
are restricted to a centered 50% interval of the parameter, while evaluation is performed outside
this interval. LAMP maintains smooth, plausible extrapolation, while DNI drifts away from target
shapes.

Table 5: Interpolation performance. We compare LAMP against DNI and AE-LPA baselines on
BlendedNet using Chamfer Distance (CD ↓), Intersection-over-Union (IoU ↑, in %), and surrogate-
based parameter error (↓). Training uses 100 samples from the dataset, and testing uses 200 held-out
samples.

Dataset Method # Samples CD ↓ IoU ↑ (%) MAE ↓

BlendedNet
DNI 100 0.0346 94.21 0.0038
AE-LPA 100 0.0393 88.26 0.0078
LAMP (Ours) 100 0.0172 95.35 0.0031
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Table 6: Large-range extrapolation (BlendedNet) up to ±50%. LAMP sustains high fidelity
(R2 > 0.78) for both single- and multi-parameter extrapolation. Training uses 100 samples from the
dataset. For single-parameter extrapolation, we sample 10 values uniformly per parameter within
the extrapolated range, constraining that parameter while allowing the others to vary. For multi-
parameter extrapolation, we repeat 100 trials where four parameters are randomly selected and set
outside the dataset range (up to 50% extrapolation, i.e., twice the original span).

Dataset Method Single Parameter Multi-Parameter
MMD ↓ MAE ↓ R2 ↑ MMD ↓ MAE ↓ R2 ↑

BlendedNet
DNI 0.038 0.392 0.784 0.040 0.435 0.521
AE-LPA (100) 0.039 0.611 0.169 0.043 0.823 -0.069
LAMP (Ours) 0.035 0.305 0.868 0.037 0.353 0.782

A B C D E

A B C D E

A B C D E

Normalized Parameter

Training/Dataset Range

0 2-2 -1
A B C D E

1

S1

B1

C3

Figure 9: Single-parameter sweep on BlendedNet. LAMP sustains smooth, plausible geometry
under large parameter shifts.
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Figure 10: Single-parameter extrapolation beyond the dataset range. All other parameters are al-
lowed to vary. The plots show surrogate-predicted versus target parameters, comparing LAMP
against the baselines DNI and AE-LPA.
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E ABLATION STUDY: HOW DOES SAMPLE SIZE AFFECT RELIABILITY AND
EXTRAPOLATION IN LAMP?

We ablate the effect of sample size in Table 7. As the number of samples increases, MAE decreases
while both R2 and the mean safe extrapolation range (%) increase, before plateauing at larger sample
counts. This trend indicates that performance improves with more samples but saturates beyond a
certain scale.

Table 7: Ablation study on mixing quality and reliability across different numbers of samples using
LAMP

Number of Samples R2 ↑ MAE ↓ Mean Safe
Extrapolation Range (%) ↑

10 -7.289 2.650 145.8
50 -0.214 1.083 213.9
100 0.838 0.507 330.6
500 0.849 0.479 418.1
1000 0.862 0.486 427.8

Figure 11: Safety metric values as a function of target parameter sweeps across six design parame-
ters in DrivAerNet++. Curves correspond to different training set sizes (10–1000 samples). Larger
datasets consistently reduce the safety metric, indicating more reliable extrapolation across parame-
ter ranges.
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F EVALUATION METRICS

• Chamfer Distance (CD):

CD(X,Y ) =
1

|X|
∑
x∈X

min
y∈Y

∥x− y∥22 +
1

|Y |
∑
y∈Y

min
x∈X

∥y − x∥22,

where X and Y are point clouds sampled from the predicted and reference meshes.
• Intersection-over-Union (IoU):

IoU(A,B) =
|A ∩B|
|A ∪B|

,

where A and B are voxelizations of the predicted and reference meshes.
• Minimum Matching Distance (MMD):

MMD(Sg, Sr) =
1

|Sg|
∑
x∈Sg

min
y∈Sr

d(x, y),

where Sg and Sr are sets of generated and reference point clouds, and d(·, ·) is typically the
Chamfer distance between individual shapes.

G CONSTRAINT COMPLIANCE VALIDATION: SURROGATES AND DIRECT
MEASUREMENTS

Comparison of Mesh-Based Surrogates. In the main text, we validated design-parameter com-
pliance using a mesh-based surrogate model: we fixed random PointNet embeddings of each de-
coded mesh (deterministic initialization) and fit a LASSO regressor to predict physical parameters.
Interestingly, this simple surrogate achieves strong accuracy (R2 > 0.9 on held-out test sets), despite
the encoder being untrained.

To test whether stronger pretrained representations improve performance, we compared against the
OpenShape point cloud embedding model Liu et al. (2023). Across all parameters, the OpenShape-
based surrogate achieved consistently lower R2 scores than the randomly initialized PointNet em-
beddings. This suggests that domain-specific geometric structure is better captured by lightweight
randomized encoders than by pretrained embeddings trained on natural 3D categories.

Figure 12 illustrates the surrogate pipeline. Figures 14 and 13 show predicted versus ground-truth
parameter values on the BlendedNet and DrivAerNet++ datasets, respectively, demonstrating high
accuracy across test sets. We train the surrogates on 800 samples and evaluate on a held-out test set
of 200 samples.

Mesh
ParametersMesh Surface-Sampled 

Point Cloud
Lasso

Regressor

p̂

Randomly
Initialized
PointNet

Figure 12: Diagram of the mesh-based surrogate pipeline. A decoded mesh is first converted into
a surface-sampled point cloud. The point cloud is passed through a randomly initialized PointNet
encoder to produce fixed embeddings, which are then mapped to interpretable mesh parameters via
a LASSO regressor. This simple pipeline achieves strong predictive accuracy (R2 > 0.9) despite
the encoder being untrained.
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Figure 13: Predicted vs. ground truth parameters on the DrivAerNet++ test set, evaluating the mesh-
based surrogate model for parameter prediction.
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Figure 14: Predicted vs. ground truth parameters on the BlendedNet test set, evaluating the mesh-
based surrogate model for parameter prediction.

Direct Geometric Measurements. Beyond surrogate-based validation, we also implemented di-
rect geometric measurements for certain parameters. For example, to compute Car Length on Dri-
vAerNet++ cars, we measure the distance between the centers of the front and rear wheels. Specifi-
cally:

1. We take slices of the decoded SDF along the wheel plane.
2. We detect circular cross-sections with radii in the expected range of wheel radii.
3. We identify the front and rear wheel centers and compute their distance.
4. We map this distance back to the labeled Car Length value by calibrating on ground-truth SDFs

from the dataset.

This method provides a parameter-compliant, geometry-based validation of mesh outputs. Figure 15
shows an example of wheel detection and length estimation on generated meshes.
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Figure 15: Direct geometric measurement of car length in DrivAerNet++. We slice the decoded
SDF, detect wheel cross-sections by circle fitting, compute the distance between wheel centers, and
map this measurement back to the dataset-defined Car Length parameter.

H VALIDATION OF THE LINEARITY-MISMATCH METRIC AGAINST HUMAN
ANNOTATED DATA

Assumption. Our safety metric relies on the assumption that the decoder f(z;w) is locally linear
in weights w for a fixed spatial coordinate z. Formally,

f

(
z;

N∑
i=1

αiwi

)
≈

N∑
i=1

αif(z;wi),

with approximation error bounded by O
(
maxi ∥wi − w0∥2

)
. This implies that as long as interpola-

tions in weight space remain sufficiently close to the training exemplars, affine mixing should yield
faithful mesh reconstructions. The linearity mismatch defined in Sec. 3 measures deviations from
this assumption.

Figure 16: Examples of meshes labeled during human annotation. Left: Invalid meshes, which ex-
hibit collapsed, distorted, or implausible geometries. Right: Valid meshes, which maintain smooth,
realistic car shapes with high geometric fidelity. These labels are used as ground truth to validate
the safety metric.
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Dataset Construction. To empirically validate this assumption, we constructed a diagnostic
dataset by systematically varying one shape parameter at a time. Each parameter was interpolated
and extrapolated up to a 700% (±300%) increase in range compared to its span in the main dataset.
For every setting, we decoded a mesh Md using mixed weights wd =

∑
i αiwi and computed the

linearity-mismatch score. (Fig. 16

Figure 17: Box plot of mean linearity error (log scale) across meshes labeled as valid vs. invalid.
Valid meshes concentrate at low mismatch values, while invalid meshes show significantly higher
errors, confirming that the linearity-mismatch metric is a strong predictor of mesh validity.

Human Annotation Protocol. All meshes were visually inspected and annotated as either valid
or invalid. A mesh was considered valid if it was smooth and resembled a high-fidelity car geometry
without collapse or severe distortion. Invalid meshes were those with degenerate or implausible
deformations. This produced a binary ground-truth dataset for evaluation.

Metric Validation. We used the mismatch score to predict mesh validity and compared it against
human annotations:

• The ROC curve (Fig. 18, top left) shows excellent discriminative power with an area under the
curve (AUC) of 0.989.

• The precision–recall curve (Fig. 18, top right) yields an AUC of 0.990, indicating reliable separa-
tion of valid from invalid meshes.

• Threshold analysis (Fig. 18, bottom) reveals that ϵ = 0.01 provides a good tradeoff, achieving
high recall while preserving precision.

Distributional Analysis. To further assess robustness, we examined the distribution of linearity
errors across mesh validity labels. As shown in Fig. 17, valid meshes cluster at low mismatch
values, while invalid meshes exhibit substantially higher errors, confirming that the safety metric is
well aligned with perceptual mesh quality.

Discussion. These experiments demonstrate that the linearity-mismatch metric is a reliable quan-
titative proxy for mesh validity. Its strong agreement with human annotations justifies our use of
ϵ = 0.01 as the default safety threshold throughout this work.
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Figure 18: Validation of the linearity-mismatch safety metric against human-annotated mesh va-
lidity. Top left: ROC curve showing high discriminative power (AUC = 0.989). Top right: Pre-
cision–recall curve (AUC = 0.990). Bottom left: true positive rate (TPR) and false positive rate
(FPR) as a function of linearity error threshold. Bottom right: precision and recall as a function of
threshold. Together, these results confirm that the safety metric reliably predicts mesh validity, with
ϵ = 0.01 providing a good tradeoff between precision and recall.

I PARAMETRIZATION OF DRIVAERNET++ AND BLENDEDNET

Figure 19: BlendedNet Parametrization Sung et al. (2025)
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Figure 20: DrivAerNet++ Parametrization Elrefaie et al. (2024)

J LLM USAGE

Large Language Models (LLMs) were used to aid or polish writing. The authors reviewed and take
full responsibility for the content.
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