
Semantic Probabilistic Layers for Neuro-Symbolic Learning

Kareem Ahmed1 Stefano Teso2 Kai-Wei Chang1 Guy Van den Broeck1 Antonio Vergari3

1Computer Science Department, University of California Los Angeles, USA
2Department of Computer Science and Information Engineering, University of Trento, Italy

3School of Informatics, University of Edinburgh, United Kingdom

Abstract

We design a predictive layer for structured-output
prediction (SOP) that can be plugged into any
neural network guaranteeing its predictions are
consistent with a set of predefined symbolic con-
straints. Our Semantic Probabilistic Layer (SPL)
can model intricate correlations, and hard con-
straints, over a structured output space while be-
ing amenable to end-to-end learning via maximum
likelihood. SPLs combine exact probabilistic infer-
ence with logical reasoning in a clean and modular
way, learning complex distributions and restricting
their support to solutions of the constraint. As such,
they can faithfully, and efficiently, model complex
SOP tasks beyond the reach of alternative neuro-
symbolic approaches. We show SPLs outperform
such competitors in terms of accuracy on challeng-
ing SOP tasks including hierarchical multi-label
classification, pathfinding and preference learning,
while retaining perfect constraint satisfaction.

1 INTRODUCTION

Modularity is among the major factors that propelled the
Cambrian explosion of deep learning [Goodfellow et al.,
2016]. By stacking multiple differentiable layers together,
practitioners are able to train deep classifiers in an end-to-
end fashion with little effort. However, despite its flexibility,
this modular approach to learning does not guarantee that
the predictions of these models conform to our expectations
as to what makes sense. On the contrary, unconstrained deep
classifiers are notorious for leading to predictions that are
inconsistent with the rules governing the underlying domain.

This is even more evident in, and crucial for, structured
output prediction (SOP) tasks, where classifiers have to
predict hundreds of mutually constrained labels [Tsochan-
taridis et al., 2004, Borchani et al., 2015]. Consider for ex-

ample a classical SOP task such as multi-label classification
(MLC) [Tsoumakas and Katakis, 2007]. Learning a multi-
label classifier that disregards the correlations among labels,
e.g., by considering them fully independent given the inputs,
yields sub-optimal results [Bielza et al., 2011]. In more chal-
lenging tasks such as hierarchical MLC (HMLC) [Sorower,
2010] or pathfinding [Pogančić et al., 2019], leveraging the
domain’s logical constraints (encoding, e.g., the label hier-
archy or acyclicity and connectedness of a path) at training
time can improve prediction accuracy [Levatić et al., 2015],
but it cannot guarantee that the predictions are always con-
sistent with the constraints at inference time [Giunchiglia
and Lukasiewicz, 2020]. fig. 1 illustrates this problem in
the context of pathfinding: constraint-unaware neural net-
works systematically fail to predict label configurations that
form a valid path. In many safety-critical scenarios such
as protein function [Radivojac et al., 2013] and interaction
prediction [Sacca et al., 2014], and drug discovery [De Cao
and Kipf, 2018, Di Liello et al., 2020], predicting incon-
sistent solutions can not only be harmful but also highly
expensive [Amodei et al., 2016, Giunchiglia et al., 2022].

Unsurprisingly, due to their discrete nature, injecting log-
ical constraints into deep neural networks while retain-
ing modularity and differentiability is extremely challeng-
ing, as demonstrated in the neuro-symbolic learning liter-
ature [Sarker et al., 2021]. One such attempt has been to
learn neural networks that satisfy the logical constraints by
explicitly minimizing a differentiable loss term, the proba-
bility that the networks violates the constraint for any given
prediction. And while successful, such approaches do not
guarantee consistency of the predictions at test time. More
recently, researchers have proposed predictive layers that
do guarantee consistency, but these are restricted to specific
kinds of symbolic knowledge [Giunchiglia and Lukasiewicz,
2020, Sivaraman et al., 2020] or are intractable for even mod-
erately complex logical constraints [Hoernle et al., 2022].

Motivated by these observations, we introduce a novel
Semantic Probabilistic Layer (SPL) for modeling intricate
correlations, and logical constraints on the labels of the out-

Accepted for the 5th Workshop on Tractable Probabilistic Modeling at UAI (TPM 2022).

mailto:<ahmedk@cs.ucla.edu>?Subject=Your UAI 2022 paper

GT RESNET-18 SL SPL (ours)

Figure 1: Neural nets struggle with satisfying validity
constraints in complex semantic SOP tasks such as pre-
dicting the lowest-cost path from the top-left to the bottom-
right corners of a Warcraft map. Even state-of-the-art neuro-
symbolic approaches like the Semantic Loss (SL) Xu et al.
[2018] fail to ensure consistency with hard rules (c). SPLs
in contrast guarantees validity while retaining modularity,
expressiveness and efficiency. See Sec. 4 for details.

put space in a modular and probabilistically sound manner.
It does so by leveraging recent advancements in the litera-
ture on probabilistic circuits [Vergari et al., 2020, Choi et al.,
2020]. The key features of SPL are that, on the one hand, it
can be used as a drop-in replacement for common predictive
layers such as sigmoid layers, and on the other, it guaran-
tees the output’s consistency with any prespecified logical
constraints. Importantly, SPL supports efficient inference
and – perhaps surprisingly – does not complicate training.

2 DESIGNING A PROBABILISTIC
LAYER FOR NEURO-SYMBOLIC SOP

Notation. We denote scalar constants x in lower case,
random variables X in upper case, vectors of constants x in
bold and vectors of random variables X in capital boldface.
1{ϕ} denotes the indicator function that evaluates to 1 if the
statement ϕ holds and to 0 otherwise. We denote by x |= K
that the value assignment x satisfies the logical formula K.

Neuro-symbolic SOP. We tackle SOP tasks in which a
neural net classifier must learn to associate instances x ∈
RD to L interdependent labels, identified by y ∈ {0, 1}L.
We assume that we can abstract any neural classifier into
two components: a feature extractor f that maps inputs X
to a M -dimensional embedding Z = f(X) and a predic-
tive final layer that outputs the label distribution p(Y | Z).
For example, the simplest [Mullenbach et al., 2018, Xu
et al., 2018, Giunchiglia and Lukasiewicz, 2020] predictive
layer in neural classifiers for SOP considers labels Yi to
be conditionally independent from each other given Z, i.e.,
p(Y | Z) = ∏L

i=1 p(Yi | Z).
We are interested in dependencies between labels that can
occur both as correlations, as in MLC [Dembczyński et al.,
2012], and as encoded by a logical formula K over the labels
Y and optionally a subset of the discrete inputs variables X.

SPL. At a high level, SPL is a single layer that combines
exact probabilistic inference with logical reasoning in a

F
I
L

S
P
L

SPL

Figure 2: A high level view of SPLs. The predictive layer
of a neural network for neuro-symbolic SOP, e.g., a FIL
(left), can be readily replaced by a SPL (middle). SPLs are
implemented (right) by multiplying a probabilistic circuit
qΘ(Y | f(X)) parameterized by (a function g of) the net-
work’s embeddings f(X), and a constraint circuit cK(X,Y)
embodying the symbolic knowledge. The result is normal-
ized by efficiently marginalizing over the product circuit
rΘ,K, so as to guarantee fully probabilistic semantics and
end-to-end differentiable learning by maximum likelihood.

clean and modular way, learning complex distributions and
restricting their support to solutions of the constraint.

Definition 2.1 (Semantic probabilistic layer (SPL)). Given
an input configuration x, a SPL decomposes the computa-
tion of the probability of a label configuration as:

p(y | f(x)) = qΘ(y | f(x)) · cK(x,y)/Z(x), (1)

where Z(x) =
∑

y qΘ(y | x) · cK(x,y). Here, qΘ(y |
f(x)) is a module to perform probabilistic reasoning by
encoding an expressive distribution over the labels param-
eterized by Θ; cK(x,y) is a module to ensure consistency
of the predictions by encoding logical constraints K be-
ing non-zero only when K is satisfied, i.e., cK(x,y) =
1{(x,y) |= K}; and Z(x) is a normalization term. fig. 2
illustrates the computational graph of our SPL at training.

3 REALIZING SPLS WITH CIRCUITS

SPLs can be realized as circuits, a large class of computa-
tional graphs that can represent both functions and distribu-
tions [Choi et al., 2020, Darwiche and Marquis, 2002], and
subsume a plethora of tractable probabilistic models. The
key idea is to leverage this single formalism to represent
both an expressive joint distribution for qΘ(y | f(x)) and
a compact encoding of the logical constraints for cK(x,y),
while ensuring the exact and efficient evaluation of eq. (1).
This can be achieved by ensuring that these computational
graphs respect certain structural properties: smoothness, de-
composability, determinism and compatibility [Darwiche
and Marquis, 2002, Vergari et al., 2021]. Next, we introduce
probabilistic circuits for modeling qΘ and constraint cir-
cuits for cK, while in Sec. B we propose a more efficient
implementation of SPL that utilizes a single circuit.

3.1 EXPRESSIVE DISTRIBUTIONS VIA
PROBABILISTIC CIRCUITS

We start by introducing circuits for joint probability distri-
butions, which we then extend to conditional distributions,

2

that are used to implement qΘ(Y | f(X)) in SPLs.

Definition 3.1 (Circuits). A circuit h over variables Y is
a computational graph encoding a parameterized function
hΘ(Y) by combining different computational units: input
functional units, sum units, and product units. An input func-
tional n represents a base parametric function hn(sc(n);λ)
over some variables sc(n) ⊆ Y, its scope, and is param-
eterized by λ. Sum and product units n elaborate the out-
put of other units, denoted in(n). Sum units are parame-
terized by ω and compute the weighted sum of their in-
puts

∑
c∈in(n) ωchc(sc(n)), while product units compute∏

c∈in(n) hc(sc(n)). The parameters Θ of a circuit encom-
pass parameters of input functionals (λ) and sum units (ω).

For any input y, the value of hΘ(y) can be evaluated by
propagating the output of the input units through the compu-
tational graph and reading out the value of the last unit. The
support of h is the set of all states y for which the output is
non-zero, i.e., supp(h) = {y ∈ val(Y) |h(y) 6= 0}.
Definition 3.2 (Probabilistic circuits (PCs)). A circuit q is
a PC if it encodes a (possibly unnormalized) distribution,
i.e., qΘ(y) is non-negative for all configurations y of Y.

From here on, we will assume PCs to have positive sum pa-
rameters ω and whose input units model valid distributions,
e.g., Bernoullis, as these conditions are sufficient for satis-
fying Def. 3.2. Moreover, w.l.o.g. we will assume the sum
and product units to be organized into alternating layers,
and that every product unit n receives only two inputs c1, c2,
i.e., qn(X) = qc1(Y) · qc2(Y). These conditions can easily
be enforced in polynomial time [Vergari et al., 2015, 2019].
We are specifically interested in smooth and decomposable
PCs, as they will be enabling efficient inference in SPL.

Definition 3.3 (Smoothness & Decomposability). A circuit
is smooth if the inputs of every sum unit n depend on the
same variables: ∀ c1, c2 ∈ in(n), sc(c1) = sc(c2). It is de-
composable if inputs of every product unit n depend on dis-
joint sets of variables: in(n) = {c1, c2}, sc(c1)∩sc(c2) = ∅.

Smooth and decomposable PCs are both expressive and
efficient: they encode distributions with hundred millions of
parameters and be effectively learned [Peharz et al., 2020].

As proposed by Shao et al. [2022], a (smooth and decompos-
able) PC qΘ(Y) encoding a distribution on Y can be turned
into a (smooth and decomposable) circuit conditioned on an
input X by having its parameters be a function of X.

Definition 3.4 (Neural conditional circuits [Shao et al.,
2020]). A conditional circuit q(Y;Θ = g(X)) models
the conditional distribution p(Y | X) via a differentiable
gating function g that maps each input x to parameters Θ.

An example of a smooth and decomposable conditional
circuit is shown in fig. 3.

3.2 ENCODING LOGICAL FORMULAS
WITH CONSTRAINT CIRCUITS

The next step is to translate a logical constraint K into a
smooth and decomposable circuit cK(x,y). To this end, we
employ a special type of PCs, defined as follows.

Definition 3.5 (Constraint circuits). A PC c over variables
X∪Y is a constraint circuit encoding prior knowledge K if
it computes 1{(x,y) |= K} for every configuration (x,y).

As a means to realizing such a circuit, we will consider
constraint circuits whose sum unit parameters are equal to 1
and input functionals that are indicator functions over their
scope, e.g., cn(z) = 1{z |= ϕ(n)} where Z is the scope of
the input and ϕ(n) a constraint over it. Furthermore, we will
require that each sum unit in the circuit be deterministic.

Definition 3.6 (Determinism). A sum unit n is determin-
istic if its inputs have disjoint supports, i.e., ∀ c1, c2 ∈
in(n), c1 6= c2 =⇒ supp(c1) ∩ supp(c2) = ∅.

fig. 3 shows an example of a deterministic constraint circuit,
and Sec. D illustrates the comilation process in detail.

3.3 EFFICIENT INFERENCE IN SPLS

What remains to be shown to complete SPLs is that the
product supports efficient normalization and inferenceTo
this end, we need to introduce the notion of compatibility
between the two circuits [Vergari et al., 2021].

Definition 3.7 (Compatible circuits in SPLs). A smooth
and decomposable conditional PC q(Y;Θ) is compat-
ible over variables Y with a smooth and decompos-
able constraint circuit cK(Y,X) if any pair of product
units n ∈ p and m ∈ m with the same scope over
Y can be rearranged to be mutually compatible and
decompose in the same way: (sc(n) = sc(m)) =⇒
(sc(ni) = sc(mi), ni and mi are compatible) for some re-
arrangement of the inputs of n (resp. m) into n1, n2 (resp.
m1,m2). fig. 3 shows two compatible circuits q and c.

Theorem 3.1 (Efficient inference in SPLs). If q(Y;Θ) and
cK(Y,X) are two smooth, decomposable and compatible
circuits, then computing eq. (1) can be done in O(|q||c|)
time. Furthermore, if they are also deterministic, then com-
puting the MAP state can be done in O(|q||c|) time.

The proof, as well as how to come up with compatible
circuits can be found in Sec. F and Sec. A, resp.

4 EXPERIMENTS

We evaluate SPLs on standard neuro-symbolic SOP bench-
marks such as simple path prediction, preference learn-
ing [Xu et al., 2018], shortest path finding in War-
craft [Pogančić et al., 2019] and HMLC [Giunchiglia and

3

Table 1: SPLs outperform all loss-based competitors in the
neuro-symbolic benchmarks of [Xu et al., 2018].

SIMPLE PATH PREFERENCE LEARNING

ARCHITECTURE EXACT HAMMING CONSISTENT EXACT HAMMING CONSISTENT

MLP+FIL 5.6 85.9 7.0 1.0 75.8 2.7
MLP+LSL 28.5 83.1 75.2 15.0 72.4 69.8
MLP+NESYENT 30.1 83.0 91.6 18.2 71.5 96.0
MLP+SPL 37.6 88.5 100.0 20.8 72.4 100.0

Table 2: SPLs outperform competitors in pathfinding in War-
craft. Predicted paths that do not exactly match the ground
truth are still valid paths and yield very close costs to the
ground truth. Competitors’ predictions can have higher Ham-
ming scores but be invalid. See Sec. G.3 for more examples.

ARCHITECTURE EXACT HAMMING CONSISTENT

RESNET-18+FIL 55.0 97.7 56.9
RESNET-18+LSL 59.4 97.7 61.2
RESNET-18+SPL 78.2 96.3 100.0

GT FIL LSL SPL

Lukasiewicz, 2020]. We compare SPLs against several state-
of-the-art loss- and layer-based approaches (Sec. E) by ap-
plying them to the same base neural network architecture as
feature extractor f . As we are interested in measuring how
close to the ground truth and how safe the predictions of all
models are, we report the percentage of EXACT matches of
the predicted labels, also called subset accuracy [Tsoumakas
and Katakis, 2007], and the percentage of CONSISTENT pre-
dictions, also called “Constraint” [Xu et al., 2018]. Note
that, like other consistency layers, SPLs are guaranteed to
always output 100% consistent predictions. Additionally,
we report the HAMMING score [Tsoumakas and Katakis,
2007], mainly to maintain compatibility with previous ex-
perimental settings [Xu et al., 2018, Ahmed et al., 2022].
This metric does not consider consistency of predictions and
favors competitors that assume label independence and thus
can minimize the per-label cross-entropy [Dembczyński
et al., 2012] (table 2). Sec. G collects all experiment details.

Simple path prediction & preference learning. We
start by comparing SPLs against loss-based approaches,
reproducing the neuro-symbolic benchmarks of Xu et al.
[2018] In the first experiment, given a source and destina-
tion node in an unweighted grid G = (V,E), the neural net
needs to find the shortest unweighted path connecting them.
We consider a 4× 4 grid. The input (x,y) is a binary vector
of length |V | + |E|, with the first |V | variables indicating
the source and destination nodes, and the subsequent |E|
variables indicating a subgraph G′ ⊆ G. Each label is a
binary vector encoding the unique shortest path in G′.

In the preference learning taskthe input consist of the user’s
preference over 6 sushi types, and the model is to predict the
user’s preferences (a strict total order) over the remaining 4.

We employ a 5-layer and 3-layer MLP as a baseline for
the simple path prediction, and preference learning, respec-
tively, equipped with FIL layer and additionally with the
Semantic Loss [Xu et al., 2018] (MLP+LSL) or its entropic

Table 3: Comparison between SPL and HMCNN [Giunchiglia
and Lukasiewicz, 2020] on twelve HMLC datasets averaged
over 10 runs. Best results for each dataset are in bold. Results
which are not significantly worse than the competition, as
determined using an unpaired Wilcoxon test, are marked in
boldface. Consistency is always 100% for both approaches.

DATASET EXACT MATCH HAMMING SCORE

HMCNN MLP+SPL HMCNN MLP+SPL

CELLCYCLE 3.05± 0.11 3.79± 0.18 98.26± 0.00 97.84± 0.06
DERISI 1.39± 0.47 2.28± 0.23 98.32± 0.32 97.70± 0.07
EISEN 5.40± 0.15 6.18± 0.33 98.09± 0.01 97.30± 0.04
EXPR 4.20± 0.21 5.54± 0.36 98.29± 0.01 97.87± 0.02
GASCH1 3.48± 0.96 4.65± 0.30 98.37± 0.31 97.59± 0.05
GASCH2 3.11± 0.08 3.95± 0.28 98.27± 0.00 97.94± 0.07
SEQ 5.24± 0.27 7.98± 0.28 98.31± 0.01 97.66± 0.03
SPO 1.97± 0.06 1.92± 0.11 98.23± 0.00 98.17± 0.03
DIATOMS 48.21± 0.57 58.71± 0.68 99.75± 0.00 99.64± 0.01
ENRON 5.97± 0.56 8.18± 0.68 94.10± 0.04 93.19± 0.13
IMCLEF07A 79.75± 0.38 86.08± 0.45 99.40± 0.01 99.35± 0.03
IMCLEF07D 76.47± 0.35 81.06± 0.68 98.06± 0.02 98.07± 0.08

extension [Ahmed et al., 2022] (MLP+NESYENT). Table 1
clearly shows that the increased expressiveness of SPL,
coming from overparameterizing cK, allows to outperform
all competitors while guaranteeing consistent predictions.

Warcraft Shortest Path. Next, we evaluate SPL on the
more challenging task of predicting the minimum cost path
in a weighted 12 × 12 grid imposed over terrain maps of
Warcraft II [Pogančić et al., 2019]. Each vertex is assigned
a cost corresponding to the type of the underlying terrain
(e.g., earth has lower cost than water). The minimum cost
path between the top left and the bottom right vertices of
the grid is encoded as an indicator matrix, and serves as a
label. As in [Pogančić et al., 2019] we use a ResNet18 [He
et al., 2016] with FIL optionally with LSL as a baseline.
Given the largest size of the compiled constraint circuit cK
in this case 1010, we use a two-circuit implementation of
SPL. Results in fig. 1 and table 2 are striking: not only SPL
outperforms competitors by a large margin – approx. +23%
over FIL and +19% over the SL – but also consistently
delivers meaningful paths that are very close to the ground
truth in terms of cost, even when they encode very different
routes. See Sec. G.3 for a gallery of these examples.

Hierarchical Multi-Label Classification. Lastly, we fol-
low the experimental setup of Giunchiglia and Lukasiewicz
[2020] and evaluate SPL on 12 real-world HMLC tasks.
These tasks are especially challenging due to the limited
number of training samples, the large number of output
classes and the sparsity of the output space. We compare our
single-circuit SPL against HMCNN which was shown to
outperform several other state-of-the-art HMLC approaches
in Giunchiglia and Lukasiewicz [2020]. We show the effect
of increasing the expressiveness of SPL via overparameteri-
zation in an ablation test in Sec. G.4. The results in Table 3
highlight that SPL significantly outperforms HMCNN in
terms of exact match on 11 data sets and performs compara-
bly on 1,while achieving nearly identical Hamming score.

4

References

Kareem Ahmed, Eric Wang, Kai-Wei Chang, and Guy
Van den Broeck. Neuro-symbolic entropy regularization.
arXiv preprint arXiv:2201.11250, 2022.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Chris-
tiano, John Schulman, and Dan Mané. Concrete problems
in AI safety. arXiv preprint arXiv:1606.06565, 2016.

Concha Bielza, Guangdi Li, and Pedro Larranaga. Multi-
dimensional classification with bayesian networks. In-
ternational Journal of Approximate Reasoning, 52(6):
705–727, 2011.

Hanen Borchani, Gherardo Varando, Concha Bielza, and
Pedro Larranaga. A survey on multi-output regression.
Wiley Interdisciplinary Reviews: Data Mining and Knowl-
edge Discovery, 5(5):216–233, 2015.

Arthur Choi and Adnan Darwiche. Dynamic minimization
of sentential decision diagrams. In Marie desJardins and
Michael L. Littman, editors, Proceedings of the Twenty-
Seventh AAAI Conference on Artificial Intelligence, July
14-18, 2013, Bellevue, Washington, USA. AAAI Press,
2013. URL http://www.aaai.org/ocs/index.
php/AAAI/AAAI13/paper/view/6470.

YooJung Choi, Antonio Vergari, and Guy Van den Broeck.
Probabilistic circuits: A unifying framework for tractable
probabilistic modeling. 2020.

YooJung Choi, Tal Friedman, and Guy Van den Broeck.
Solving marginal map exactly by probabilistic circuit
transformations. In International Conference on Artificial
Intelligence and Statistics, pages 10196–10208. PMLR,
2022.

Adnan Darwiche. SDD: A new canonical representation
of propositional knowledge bases. In Twenty-Second
International Joint Conference on Artificial Intelligence,
2011.

Adnan Darwiche and Pierre Marquis. A knowledge compi-
lation map. Journal of Artificial Intelligence Research,
17:229–264, 2002.

Tirtharaj Dash, Sharad Chitlangia, Aditya Ahuja, and Ash-
win Srinivasan. A review of some techniques for inclu-
sion of domain-knowledge into deep neural networks.
Scientific Reports, 12(1):1–15, 2022.

Nicola De Cao and Thomas Kipf. MolGAN: An implicit
generative model for small molecular graphs. ICML 2018
workshop on Theoretical Foundations and Applications
of Deep Generative Models, 2018.

Krzysztof Dembczyński, Willem Waegeman, Weiwei
Cheng, and Eyke Hüllermeier. On label dependence and
loss minimization in multi-label classification. Machine
Learning, 88(1-2):5–45, 2012.

Aryan Deshwal, Janardhan Rao Doppa, and Dan Roth.
Learning and inference for structured prediction: A uni-
fying perspective. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence
(IJCAI-19), 2019.

Luca Di Liello, Pierfrancesco Ardino, Jacopo Gobbi, Paolo
Morettin, Stefano Teso, and Andrea Passerini. Efficient
generation of structured objects with constrained adver-
sarial networks. Advances in neural information process-
ing systems, 33:14663–14674, 2020.

Michelangelo Diligenti, Marco Gori, Marco Maggini, and
Leonardo Rigutini. Bridging logic and kernel machines.
Machine learning, 86(1):57–88, 2012.

Michelangelo Diligenti, Marco Gori, and Claudio Sacca.
Semantic-based regularization for learning and inference.
Artificial Intelligence, 244:143–165, 2017.

Anton Dries, Angelika Kimmig, Wannes Meert, Joris
Renkens, Guy Van den Broeck, Jonas Vlasselaer, and
Luc De Raedt. Problog2: Probabilistic logic program-
ming. In Joint european conference on machine learning
and knowledge discovery in databases, pages 312–315.
Springer, 2015.

Greg Durrett and Dan Klein. Neural CRF parsing. In
Proceedings of the 53rd Annual Meeting of the Asso-
ciation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language Pro-
cessing of the Asian Federation of Natural Language
Processing, pages 302–312. The Association for Com-
puter Linguistics, 2015. doi: 10.3115/v1/p15-1030. URL
https://doi.org/10.3115/v1/p15-1030.

Marc Fischer, Mislav Balunovic, Dana Drachsler-Cohen, Ti-
mon Gehr, Ce Zhang, and Martin Vechev. Dl2: Training
and querying neural networks with logic. In Interna-
tional Conference on Machine Learning, pages 1931–
1941. PMLR, 2019.

Francesco Giannini, Michelangelo Diligenti, Marco Gori,
and Marco Maggini. On a convex logic fragment for
learning and reasoning. IEEE Transactions on Fuzzy
Systems, 27(7):1407–1416, 2018.

Eleonora Giunchiglia and Thomas Lukasiewicz. Coher-
ent hierarchical multi-label classification networks. Ad-
vances in Neural Information Processing Systems, 33:
9662–9673, 2020.

Eleonora Giunchiglia and Thomas Lukasiewicz. Multi-
label classification neural networks with hard logical con-
straints. Journal of Artificial Intelligence Research, 72:
759–818, 2021.

Eleonora Giunchiglia, Mihaela Catalina Stoian, and Thomas
Lukasiewicz. Deep learning with logical constraints.
arXiv preprint arXiv:2205.00523, 2022.

5

http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6470
http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6470
https://doi.org/10.3115/v1/p15-1030

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
learning. MIT press, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

Nicholas Hoernle, Rafael-Michael Karampatsis, Vaishak
Belle, and Ya’akov Gal. Multiplexnet: Towards fully
satisfied logical constraints in neural networks. In AAAI,
2022.

Daphne Koller and Nir Friedman. Probabilistic graphical
models: principles and techniques. MIT press, 2009.

Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and
F Huang. A tutorial on energy-based learning. Predicting
structured data, 1(0), 2006.

Jurica Levatić, Dragi Kocev, and Sašo Džeroski. The im-
portance of the label hierarchy in hierarchical multi-label
classification. Journal of Intelligent Information Systems,
45(2):247–271, 2015.

Fayao Liu, Guosheng Lin, and Chunhua Shen. Crf learn-
ing with cnn features for image segmentation. Pattern
Recognition, 48(10):2983–2992, 2015.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig,
Thomas Demeester, and Luc De Raedt. Deepproblog:
Neural probabilistic logic programming. Advances in
Neural Information Processing Systems, 31, 2018.

Nicholas Mattei and Toby Walsh. PrefLib: A library for
preferences. In International conference on algorithmic
decision theory, pages 259–270. Springer, 2013.

James Mullenbach, Sarah Wiegreffe, Jon Duke, Jimeng
Sun, and Jacob Eisenstein. Explainable prediction
of medical codes from clinical text. arXiv preprint
arXiv:1802.05695, 2018.

Mathias Niepert, Pasquale Minervini, and Luca Franceschi.
Implicit MLE: Backpropagating through discrete expo-
nential family distributions. Advances in Neural Informa-
tion Processing Systems, 34, 2021.

Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf,
and Pedro Domingos. On theoretical properties of sum-
product networks. In Artificial Intelligence and Statistics,
pages 744–752. PMLR, 2015.

Robert Peharz, Robert Gens, Franz Pernkopf, and Pedro
Domingos. On the latent variable interpretation in sum-
product networks. IEEE transactions on pattern analysis
and machine intelligence, 39(10):2030–2044, 2016.

Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro
Molina, Xiaoting Shao, Martin Trapp, Kristian Kersting,
and Zoubin Ghahramani. Random sum-product networks:
A simple and effective approach to probabilistic deep
learning. In Uncertainty in Artificial Intelligence, pages
334–344. PMLR, 2020.

Knot Pipatsrisawat and Adnan Darwiche. New compilation
languages based on structured decomposability. In AAAI,
volume 8, pages 517–522, 2008.

Marin Vlastelica Pogančić, Anselm Paulus, Vit Musil,
Georg Martius, and Michal Rolinek. Differentiation of
blackbox combinatorial solvers. In International Confer-
ence on Learning Representations, 2019.

Predrag Radivojac, Wyatt T Clark, Tal Ronnen Oron,
Alexandra M Schnoes, Tobias Wittkop, Artem Sokolov,
Kiley Graim, Christopher Funk, Karin Verspoor, Asa Ben-
Hur, et al. A large-scale evaluation of computational pro-
tein function prediction. Nature methods, 10(3):221–227,
2013.

Claudio Sacca, Stefano Teso, Michelangelo Diligenti, and
Andrea Passerini. Improved multi-level protein–protein
interaction prediction with semantic-based regularization.
BMC bioinformatics, 15(1):1–18, 2014.

Md Kamruzzaman Sarker, Lu Zhou, Aaron Eberhart, and
Pascal Hitzler. Neuro-symbolic artificial intelligence:
Current trends. arXiv preprint arXiv:2105.05330, 2021.

Xiaoting Shao, Alejandro Molina, Antonio Vergari, Karl
Stelzner, Robert Peharz, Thomas Liebig, and Kristian
Kersting. Conditional sum-product networks: Imposing
structure on deep probabilistic architectures. In Inter-
national Conference on Probabilistic Graphical Models,
pages 401–412. PMLR, 2020.

Xiaoting Shao, Alejandro Molina, Antonio Vergari, Karl
Stelzner, Robert Peharz, Thomas Liebig, and Kristian
Kersting. Conditional sum-product networks: Modular
probabilistic circuits via gate functions. International
Journal of Approximate Reasoning, 140:298–313, 2022.

Andy Shih and Stefano Ermon. Probabilistic circuits for
variational inference in discrete graphical models. Ad-
vances in Neural Information Processing Systems, 33:
4635–4646, 2020.

Aishwarya Sivaraman, Golnoosh Farnadi, Todd Millstein,
and Guy Van den Broeck. Counterexample-guided learn-
ing of monotonic neural networks. Advances in Neural
Information Processing Systems, 33:11936–11948, 2020.

Mohammad S Sorower. A literature survey on algorithms for
multi-label learning. Oregon State University, Corvallis,
18:1–25, 2010.

6

Ioannis Tsochantaridis, Thomas Hofmann, Thorsten
Joachims, and Yasemin Altun. Support vector machine
learning for interdependent and structured output spaces.
In Proceedings of the twenty-first international confer-
ence on Machine learning, page 104, 2004.

Grigorios Tsoumakas and Ioannis Katakis. Multi-label clas-
sification: An overview. International Journal of Data
Warehousing and Mining (IJDWM), 3(3):1–13, 2007.

Antonio Vergari, Nicola Di Mauro, and Floriana Esposito.
Simplifying, regularizing and strengthening sum-product
network structure learning. In Joint European Confer-
ence on Machine Learning and Knowledge Discovery in
Databases, pages 343–358. Springer, 2015.

Antonio Vergari, Nicola Di Mauro, and Floriana Espos-
ito. Visualizing and understanding sum-product networks.
Machine Learning, 108(4):551–573, 2019.

Antonio Vergari, YooJung Choi, Robert Peharz, and Guy
Van den Broeck. Probabilistic circuits: Representations,
inference, learning and applications. In Tutorial at the The
34th AAAI Conference on Artificial Intelligence, 2020.

Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso, and
Guy Van den Broeck. A compositional atlas of tractable
circuit operations for probabilistic inference. Advances
in Neural Information Processing Systems, 34, 2021.

Ashwin K Vijayakumar, Michael Cogswell, Ramprasath R
Selvaraju, Qing Sun, Stefan Lee, David Crandall, and
Dhruv Batra. Diverse beam search: Decoding diverse
solutions from neural sequence models. arXiv preprint
arXiv:1610.02424, 2016.

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and
Guy Van den Broeck. A semantic loss function for deep
learning with symbolic knowledge. In International con-
ference on machine learning, pages 5502–5511. PMLR,
2018.

Yu Zhang, Zhenghua Li, and Min Zhang. Efficient Second-
Order TreeCRF for Neural Dependency Parsing. In
Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R.
Tetreault, editors, Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 3295–3305.
Association for Computational Linguistics, 2020a. doi:
10.18653/v1/2020.acl-main.302. URL https://doi.
org/10.18653/v1/2020.acl-main.302.

Yu Zhang, Houquan Zhou, and Zhenghua Li. Fast and
accurate neural CRF constituency parsing. In Christian
Bessiere, editor, Proceedings of the Twenty-Ninth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI
2020, pages 4046–4053, 2020b. doi: 10.24963/ijcai.2020/
560. URL https://doi.org/10.24963/ijcai.
2020/560.

Y1

Y2

Y1

Y2

×

×

Y3

Y3

×

×

q

g

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

× ×

1{Y3 = 1}

1{Y3 = 0}

× c

Figure 3: Examples of circuits in SPL. Left: probabilistic
circuit qΘ. Red lines indicate how the parameters Θ flow
from the gating function g to the various input functional and
sum units of q. Right: constraint circuit encoding the logical
constraint (Ycat =⇒ Yanimal)∧ (Ydog =⇒ Yanimal) where
labels are Yi ∈ {Ycat, Ydog, Yanimal}. Note that q and c are
smooth, decomposable (Def. 3.3) and compatible (Def. 3.7)
and c is deterministic (Def. 3.6). By parameterizing c via g
we can obtain a single-circuit SPL (Sec. B).

A CONSTRUCTING COMPATIBLE
CIRCUITS

How do we come up with compatible circuits? One op-
tion is to have a PC q that is compatible with every possi-
ble smooth and decomposable circuit c. To do so, we can
represent q as a mixtures of M fully-independent models;
i.e.,

∑M
i=1 ωi

∏
j q(Yj ;Θi). This additional sum unit can

be enough to be more expressive than a FIL and already
delivers more accurate predictions than any competitor, as
our experiments in pathfinding show (Sec. 4). An example
of such a circuit is shown in fig. 3. Another sufficient con-
dition for compatibility is that both q and c share the exact
same hierarchical scope partitioning [Vergari et al., 2021],
sometimes called a vtree or variable ordering [Choi et al.,
2020, Pipatsrisawat and Darwiche, 2008]. This can be done
easily if one first compiles logical constraints into OBDDs
or SDDs and then uses a mechanized algorithm to build q
as in [Peharz et al., 2020] to create a compatible structure.
Additionally, to ensure q is a deterministic PC, we could
exploit the mechanized construction proposed in Shih and
Ermon [2020]. Computing the exact MAP state, however, is
of less concern as approximate inference algorithms, e.g.,
beam search decoding [Vijayakumar et al., 2016] or itera-
tive pruning Choi et al. [2022], are nowadays a commodity
in deep learning frameworks. For non-deterministic PCs,
we compute the MAP state with a faster approximation by
replacing non-deterministic sum units with max units Pe-
harz et al. [2016]. This runs in time linear in the size of
r, and yet delivers state-of-the-art accuracies in our experi-
ments Sec. 4.

B A SINGLE-CIRCUIT SPL

The two-circuit design we proposed for SPLs provides a
clear and theoretically-backed interface between neural net-
works and probabilistic and symbolic reasoning. This setup,
however, can sometimes be wasteful, as it requires to com-
pute the product of two circuits and renormalize. We circum-

7

https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.24963/ijcai.2020/560
https://doi.org/10.24963/ijcai.2020/560

vent this issue by designing a single-circuit implementation
of SPL.

Definition B.1 (Single-circuit SPL). Given an input con-
figuration x, a single-circuit SPL computes p(y | x) =
cK(Y,X;Ω = g(f(X))) where cK is a neural conditional
constraint circuit whose sum-unit parameters Ω are non-
unitary values parameterized via a gating function g.

In a nutshell, we can directly realize SPL by compiling a
complex logical constraints into a deterministic constraint
circuit cK, as before, and then parameterizing it with a gating
function of the network embeddings f(X), i.e., allowing
its sum units to be non-unitary and input dependent. Since
the support of cK is already restricted to exactly match the
constraint K, parameterizing Ω induces an expressive prob-
ability distribution over the label configurations that are
consistent with K. We can further guarantee that the cir-
cuit’s output are normalized probabilities by enforcing the
parameters ω of each sum unit to form a convex combi-
nation [Peharz et al., 2015]. This can be easily done by
utilizing a softmax activation function for g.

One of the advantages of the two-circuit implementation
of SPLs is that the size of the circuit qΘ can be easily in-
creased to improve the capacity of the model (Sec. 3.1). The
single-circuit implementation is not as flexible, as normally
the number of parameters is determined by the complexity
of the constraint circuit, which depends entirely on the com-
pilation step. In this case, one option is to overparameterize
the neural conditional circuit by introducing additional sum
units, hence allowing it to capture more modes in the dis-
tribution. We detail this process is Sec. C. A side effect of
overparameterization is that it relaxes determinism, meaning
that MAP inference needs to be approximated, as described
in Sec. 3.3. Additionally, training a gating function to map
relatively small embeddings to large parameter vectors in
overparameterized circuits, can slow down training. If so, a
two-circuit implementation of SPL is to be preferred.

C OVERPARAMETERIZING THE
SINGLE-CIRCUIT SPL

As mentioned in Def. B.1, SPLs can be realized as a sin-
gle circuit by first compiling a complex logical constraint
into a deterministic constraint circuit, and then parameter-
izing it using a gating function of the network embeddings.
Intuitively, this parameterization induces a probability dis-
tribution over the possible solutions of a logical formula
encoded in the constraint circuit. The expressiveness of this
distribution depends on the number of parameters of the con-
straint circuit, i.e., the number of weighted edges associated
to sum units. As we would like to endow our single-circuit
SPL with the ability to induce complex distributions, we
devise two strategies to introduce more parameters than

Algorithm 1 OVERPARAMETERIZE(c, k, cache, first_call)

1: Input: a smooth, deterministic, and structured-
decomposable circuit c over variables X, an overpa-
rameterization factor k, and a cache for memoization,
and a flag to denote the first call

2: Output: an overparameterized, smooth, and structured-
decomposable circuit c over X

3: if q ∈ cache then
4: return cache [q]
5: if c is an input unit then
6: nodes← [c]
7: else if c is a sum unit then
8: elements← []
9: //For every product unit that is an input of c

10: //recursively overparameterize its inputs,
11: //which are sum units, and take their cross (cartesian)

product
12: for (cL, cR) ∈ in(c) do
13: left← OVERPARAMETERIZE(cL, k)
14: right← OVERPARAMETERIZE(cR, k)
15: elements.APPEND([CROSSPRODUCT(left, right)]
16: in(c)← elements
17: nodes = [c] + [COPY(c) for i = 1 to k]
18: if first_call then
19: //Create a sum unit whose inputs are nodes
20: //and whose parameters are 1s.
21: nodes← SUM(nodes, {1}|nodes|i=1)
22: cache(c)← nodes
23: return nodes

what the constraint circuit alone can offer: replication and
mixture multiplication.

Replication works by maintaining m copies of the circuit,
and taking their weighted average, i.e., introducing a sum
unit that mixes them [Peharz et al., 2020]. Mixture multi-
plication, instead, substitutes a single local marginal dis-
tribution encoded by a sub-circuit rooted into a sum unit
with k mixture models over the same scope. In practice, we
create k − 1 copies of each sum units and rewire them by
computing a cross product of their inputs as in Peharz et al.
[2020]. algorithm 1 formalizes this process.

As mentioned in Def. B.1, both strategies relax determinism.
However, note that they do not alter the support of the un-
derlying distribution. This guarantees that all the predictions
will be consistent with the encoded constraint (D3) (Sec. 2).

D COMPILING LOGICAL FORMULAS
INTO CONSTRAINT CIRCUITS

For our experiments we use standard compilation tools to
obtain a constraint circuit starting from a propositional log-
ical formula in conjunctive normal form. Specifically, we

8

use Graphillion1 to compile the constraints in the Warcraft
pathfinding experiment into an SDD. For all other experi-
ments, we use PySDD2 a python SDD compiler [Darwiche,
2011, Choi and Darwiche, 2013].

We now illustrate step-by-step one example of such a compi-
lation for a simple logical formula. Consider the constraint
circuit c in fig. 3 encoding the constraint

(Ycat =⇒ Yanimal) ∧ (Ydog =⇒ Yanimal). (2)

Intuitively, our aim is to compile the above logical formula
into a compact form representing all possible assignments to
Ycat, Ydog, Yanimal satisfying the above constraint. We com-
pile such a constraint by proceeding in a bottom up fashion,
where bottom-up compilation can be seen as composing
Boolean sub-functions whose domain is determined by a
variable ordering, also called vtree (see Sec. 3.3). In this
example, we assume the function f(Yanimal, Ycat, Ydog) de-
composes as f1(Yanimal) · f2(Ydog) · f3(Ycat) We therefore
start by compiling a constraint circuit that is a function of
Ycat and Ydog, and compose it with a constraint circuit that
is a function of Yanimal We first introduce input functionals
representing indicators associated with Ycat, Ydog, Yanimal.
We will denote by Yi the indicator 1{Yi = 1} and by ¬Yi
the indicator 1{Yi = 0}.

1{Y1 = 0} 1{Y1 = 1} 1{Y2 = 0} 1{Y2 = 1} 1{Y3 = 0} 1{Y3 = 1}

We start by disjoining the indicators Ycat with ¬Ycat, and
Ydog with ¬Ydog. This corresponds to introducing determin-
istic and smooth sum units in our circuits.

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

These units represent disjoint solutions to the logical for-
mula, meaning there exists distinct assignments, character-
ized by the children, that satisfy the logical constraint e.g.
Ycat, Ydog, Yanimal and Ycat,¬Ydog, Yanimal are two distinct
assignments that satisfy the logical constraint.

The compilation process proceeds by conjoining the con-
straint circuits for Ydog ∨ ¬Ydog with Ycat, Ydog with Ycat ∨
¬Ycat, and ¬Ydog with ¬Ycat.

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

×

A decomposable product units composes functions over
disjoint sets of variables. The above three product nodes
represent the Boolean functions (Ydog∨¬Ydog)∧Ycat, Ydog∧
(Ycat ∨ ¬Ycat), and ¬Ydog ∧ ¬Ycat.

1https://github.com/takemaru/graphillion
2https://github.com/wannesm/PySDD

We again disjoin (Ydog ∨ ¬Ydog) ∧ Ycat with Ydog ∧ (Ycat ∨
¬Ycat), and ¬Ydog ∧ ¬Ycat with true, the logical multiplica-
tive identity, guaranteeing alternating sum and product units.

So far, we have compiled constraint circuits for the logical
formula

((Ydog ∨ ¬Ydog) ∧ Ycat) ∨ (Ydog ∧ (Ycat ∨ ¬Ycat)) (3)

and the logical formula

¬Ydog ∧ ¬Ycat (4)

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

×

What remains is to conjoin eq. (3) with Yanimal, and eq. (4)
with ¬Yanimal, and disjoin the resulting constraint circuits.
What we get is a a mixture distribution over the possible
solutions of the constraint: If we predict there is a dog or a
cat, or both, in e.g., an image, we better predict that there’s
an animal. On the other hand, the absence of a dog and a
cat from an image implies nothing as to the presence of an
animal in the image.

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

× ×

1{Y3 = 1}

1{Y3 = 0}

×

Compilation techniques like the one we illustrated do not,
however, escape the hardness of the problem: the compiled
circuit can be exponential in the size of the constraint, in the
worst case. In practice, nevertheless, we can obtain compact
circuits because real-life logical constraints exhibit enough
structure (e.g., they encode repeated sub-problems) that can
be easily exploited by a compiler. We refer to the literature
of compilation for details on this [Darwiche and Marquis,
2002].

E RELATED WORKS

In this section, we position SPLs against state-of-the-art
In-depth surveys on this topic can be found in [Dash et al.,
2022] and [Giunchiglia et al., 2022].

Energy-based models. Deep energy-based models (EBMs)
replace FILs with an unnormalized factor graph [Koller
and Friedman, 2009] that captures higher-order label de-
pendencies LeCun et al. [2006] but at the cost of foregoing
probabilistic semantics and efficiency. EBMs are typically
unconcerned with hard constraints. Neural approaches for
segmentation [Liu et al., 2015] and parsing [Durrett and

9

Klein, 2015, Zhang et al., 2020a,b] remedy to this by replac-
ing the factor graph with a full-fledged intractable (discrim-
inative) graphical model [Koller and Friedman, 2009]. To
gain efficiency, one can restrict EBMs to simpler graphical
models (e.g., chains, trees), compromising expressiveness
and the ability to model non-trivial logical constraints.

Loss-based methods. A prominent strategy consists of pe-
nalizing the network for producing inconsistent predictions
using an auxiliary loss [Dash et al., 2022, Giunchiglia et al.,
2022]. While popular, loss-based methods, however cannot
guarantee that the predictions will be consistent at test time.
Common losses include translating logical constraints into
a differentiable fuzzy logic [Diligenti et al., 2012, 2017], as
exemplified by DL2 Fischer et al. [2019]. Although efficient,
this solution is not probabilistically sound and crucially is
not syntax-invariant: different encodings of the same for-
mula (e.g., conjunctive vs. disjunctive normal form) yield
different losses Giannini et al. [2018], Di Liello et al. [2020].
Closer to our SPL, the Semantic Loss (SL) [Xu et al., 2018]
avoids this issue by penalizing the probability θi associ-
ated to the i-th label by the neural network via the loss
term−∑

y

∏
i q(Yi; θi)·cK(x,y).When K is compiled into

a constraint circuit cK one retrieves−Z(x) for a two-circuit
version of SPL that is as expressive as FIL as it assumes
independent labels via a conditional PC

∏
i q(Yi; θi). The

neuro-symbolic entropy (NESYENT) [Ahmed et al., 2022]
extends LSLby an entropy term that improves consistency,
but continues to assume conditional independence of labels.

Consistency layers. Approaches ensuring consistency by
embedding the constraints into the predictive layer as in
SPLs include MultiplexNet [Hoernle et al., 2022] and HM-
CCN [Giunchiglia and Lukasiewicz, 2020]. MultiplexNet
is able to encode only constraints in disjunctive normal
form, which is problematic for generality and efficiency
as neuro-symbolic SOP tasks involve an intractably large
number of clauses – e.g. our pathfinding experiments in-
volves billions of clauses. HMCCN encodes label dependen-
cies as fuzzy relaxation and is the current state-of-the-art
model for HMLC [Giunchiglia and Lukasiewicz, 2020]. A
recent extension [Giunchiglia and Lukasiewicz, 2021] is
also restricted to a certain family of constraints that can be
represented with fuzzy logic.

Other approaches. Other common approaches to neuro-
symbolic SOP require to invoke a solver to either obtain
the MAP state or to compute (often only approximately)
the gradient of the loss [Deshwal et al., 2019, Pogančić
et al., 2019, Niepert et al., 2021]. SPLs have no such re-
quirement. Some neuro-symbolic approaches [Sarker et al.,
2021] constrain the outputs of neural networks within com-
plex logical reasoning pipelines to solve tasks harder than
neuro-symbolic SOP. For instance, DeepProblog [Manhaeve
et al., 2018] uses Prolog’s backward chaining algorithm
for first order logical rules whose probabilistic weights are
predicted by the network. In modern implementations of

Problog, grounding a first order program and then compiling
it into constraint circuits [Dries et al., 2015] produces a con-
ditional circuit akin to those we use in SPLs, but in which (i)
only input distributions are parameterized and (ii) increasing
the parameter count is not considered straightforward.

F PROOFS

Theorem 3.1 (Efficient inference in SPLs). If q(Y;Θ) and
cK(Y,X) are two smooth, decomposable and compatible
circuits, then computing eq. (1) can be done in O(|q||c|)
time, where | · | denotes the circuit size. Furthermore, if they
are also deterministic, then computing the MAP state can
be done in O(|q||c|) time. .

We prove the first statement by first showing that the par-
tition function Z(x) in eq. (1) can solved exactly in time
O(|q||c|). It will then follow from it that computing eq. (1)
can be done in O(|q||c|+ |q|+ |c|) ≈ O(|q||c|) where the
last two additive factors derive from evaluating q and c for
an input configuration (x,y).

To do so, we will exploit two ingredients: i) the product
of q and c can be represented as a smooth and decompos-
able circuit in time O(|q||c|) [Vergari et al., 2021] and ii)
any smooth and decomposable circuit guarantees tractable
marginalization in time linear in its size [Choi et al., 2020].
The next two propositions formalize these statements.

Proposition F.1 (Tractable product of circuits). Let
q(Y;Θ) and cK(Y,X) be two smooth, decomposable cir-
cuits that are compatible over Y then computing their prod-
uct as a circuit rΘ,K(X,Y) = q(Y;Θ) · cK(Y,X) that is
decomposable over Y can be done in O(|q||c|). If both q
and c are also deterministic, then r is as well.

Proof. The proof directly follows from Theorem 3.2 from
Vergari et al. [2021].

Note that O(|q||c|) is a loose upperbound and the size of r
is in practice smaller [Vergari et al., 2021]. ?? shows as an
example the circuit obtained by multiplying the PC and the
constraint circuit in fig. 3.

Proposition F.2 (Tractable marginalization of circuits). Let
r(X,Y) be a circuit that is smooth and decomposable
over Y with input functions over Y that can be tractably
marginalized out. Then for any variables Y′ ⊆ Y and their
assignment y′, the marginalization

∑
y′ r(y′,y′′,x) can

be computed exactly in time linear in the size of r, where
Y′′ = Y \Y′.

Proof. The proof follows by considering that i) the in-
put functionals in SPLs are simple distributions such as
Bernoullis and indicators and can be easily marginalized in
O(1) and ii) that for every configuration x of variables X,

10

Table 4: A comparison of the performance of single-circuit SPL with different parameters: m, the number of circuit copies
in our replication strategy; gates, the number of layers in the gating function; and k the overparameterization factor in the
mixture multiplication strategy (algorithm 1). We report the percentage of exact matches of the predicted labels on the
validation set of the HMLC dataset, highlighting the best numbers in boldface. As can be seen, all datasets benefit from
overparameterization.

DATASET m: 2 m: 4 m: 8

GATES: 2 GATES: 4 GATES: 2 GATES: 4 GATES: 2 GATES: 4

k: 2 k: 4 k: 2 k: 4 k: 2 k: 4 k: 2 k: 4 k: 2 k: 4 k: 2 k: 4

CELLCYCLE 4.25 4.48 4.48 4.01 4.60 4.83 4.25 4.48 4.36 4.13 4.36 4.13
DERISI 2.26 2.02 2.14 2.26 2.49 2.26 2.38 2.38 2.49 2.38 2.26 2.49
EISEN 6.05 6.05 6.05 6.05 5.86 6.43 6.81 6.24 6.43 6.43 6.05 6.43
EXPR 5.42 4.83 5.18 5.30 4.83 5.54 5.54 5.18 5.54 5.42 5.18 5.42
GASCH1 5.56 5.79 5.67 5.91 5.44 5.67 6.03 6.26 5.79 5.79 6.26 6.03
GASCH2 4.00 4.24 4.83 4.95 4.12 4.00 4.12 4.36 4.24 3.53 4.24 4.59
SEQ 7.74 7.74 7.51 7.85 8.19 7.28 7.96 7.17 7.96 7.39 7.51 8.42
SPO 2.27 2.15 2.15 2.51 2.39 2.27 2.51 2.51 2.87 2.27 2.39 2.63
DIATOMS 53.71 54.68 50.16 51.29 53.23 52.10 49.35 48.23 52.90 52.58 46.61 47.26
ENRON 19.53 18.52 17.85 19.87 19.87 20.20 20.54 20.20 19.53 20.20 19.53 19.87
IMCLEF07A 86.97 87.03 86.27 86.60 87.00 87.33 86.50 86.70 87.07 86.90 87.00 86.83
IMCLEF07D 85.93 85.80 85.87 85.73 85.60 86.50 85.87 85.90 85.87 85.83 86.10 85.50

r(Y,x) is a circuit only over Y and therefore Proposition
2.1 from Vergari et al. [2021] can be directly applied.

Analogously, the second statement of theorem 3.1 follows
from proposition F.1 and recalling the MAP state of a deter-
ministic circuit can be computed in time linear in its size.

Proposition F.3 (Tractable MAP state of circuits (Choi et al.
[2020])). Let r(X,Y) be a circuit that is smooth, decom-
posable and deterministic over Y then for a configuration
x its MAP state argmaxy r(x,y) can be computed in time
O(|r|).

G ADDITIONAL EXPERIMENTAL
DETAILS

G.1 SIMPLE PATH PREDICTION AND
PREFERENCE LEARNING

In the simple path prediction task, given a source and desti-
nation node in an unweighted grid G = (V,E), the neural
net needs to find the shortest unweighted path connecting
them. We consider a 4× 4 grid. The input (x,y) is a binary
vector of length |V |+ |E|, with the first |V | variables indi-
cating the source and destination nodes, and the subsequent
|E| variables indicating a subgraph G′ ⊆ G. Each label is
a binary vector of length |E| encoding the unique shortest
path in G′. For each example, we obtain G′ by dropping
one third of the edges in the graph G uniformly at random,
filtering out the connected components with fewer than 5
nodes, to reduce degenerate cases, and then sample a source
and destination node uniformly at random from G′. The

dataset consists of 1600 such examples, with a 60/20/20
train/validation/test split.

In the preference learning task, given a user’s ranking over
a subset of items, the network has to predict the user’s
ranking over the remaining items. We encode an ordering
over n items as a binary matrix Yij , where for each i, j ∈
1, . . . , n, Yij indicates whether item i is the jth element in
the ordering. The input x consist of the user’s preference
over 6 sushi types, and the model has to predict the user’s
preferences (a strict total order) over the remaining 4. We
use preference ranking data over 10 types of sushi for 5, 000
individuals, taken from [Mattei and Walsh, 2013], and a
60/20/20 split.

We follow Xu et al. [2018] in employing a 5-layer with
50 hidden units each and sigmoid activation functions, and
3-layer MLP with 50 hidden units each as a baseline for the
simple path prediction, and preference learning, respectively.
We equip this baselines with a FIL and additionally with the
Semantic Loss [Xu et al., 2018] (MLP+LSL) or its entropic
extension [Ahmed et al., 2022] (MLP+NESYENT).

We compile the logical constraints into an SDD [Darwiche,
2011] and then turn it into a constraint circuit cK that is
used for LSL, NESYENT (Sec. E) and our 1-circuit im-
plementation of SPLs. To obtain the results for SPL in
Table 1, we perform a grid search over the using the vali-
dation set for a maximum of 2000 iterations, similar to Xu
et al. [2018]. We search over the learning rates in the range
{1×10−3, 5×10−3, 1×10−4, 5×10−4}, the overparameter-
ization factor k in the range {2, 4, 8}, as well as the number
of circuit mixtures m in the range {2, 4, 8}, evaluating the
model with the best performance on the validation.

11

G.2 HIERARCHICAL MULTI-LABEL
CLASSIFICATION

We follow the experimental setup of Giunchiglia and
Lukasiewicz [2020] and evaluate SPL on 12 real-world
HMLC tasks spanning four different domains: 8 functional
genomics, 2 medical images, 1 microalgea classification,
and 1 text categorization. These tasks are especially chal-
lenging due to the limited number of training samples, the
large number of output classes, ranging from 56 to 4130,
as well as the sparsity of the output space. We used the
same train-validation-test splits and experimental setup as
[Giunchiglia and Lukasiewicz, 2020]. For numeric features
we replaced missing values by their mean, and for cate-
gorical features by a vector of zeros, and standardized all
features. We used the validation splits to determine the num-
ber of layers in the gating function in the range {2, 4, 8}, the
overparameterization factor in the range {2, 4, 8}, and the
number of mixtures in the range {2, 4, 8}, keeping all other
hyperparameters fixed. The final models were obtained by
training using a batch size of 128 and early stopping with a
patience of 20 on the validation set.

G.3 WARCRAFT PATHFINDING

We evaluate SPL on the more challenging task of predicting
the minimum cost path in a weighted 12× 12 grid imposed
over terrain maps of Warcraft II [Pogančić et al., 2019].
Our setting differs from the one proposed by Pogančić et al.
[2019] in two ways: i) a node only neighbors four nodes
as instead of eight, excluding the diagonals; ii) the neural
network predicts the edges in the path, as opposed to the
vertices, resolving ambiguities in the previous task (note
that a set of vertices can might ambiguously encode more
than one path). Each vertex is assigned a cost corresponding
to the type of the underlying terrain (e.g., earth has lower
cost than water). The minimum cost path between the top
left and the bottom right vertices of the grid is encoded as
an indicator matrix, and serves as a label.

We use Graphillion3 to compile the path constraint, limiting
our constraint to the set of paths whose length is less than
29, as determined on the training set.

As in [Pogančić et al., 2019] we use a ResNet18 [He et al.,
2016] with FIL optionally with LSL as a baseline. Given
the largest size of the compiled constraint circuit cK in this
case 1010, we use a two-circuit implementation of SPL. We
use the identity function as our gating function and do a
grid search over only the number of mixtures in the range
{2, 4, 8} in our model, keeping all other hyperparameters as
proposed in [Pogančić et al., 2019].

3https://github.com/takemaru/graphillion

GT RESNET-18 SL SPL (ours)

cost: 55.22 cost:∞ cost:∞ cost: 55.22

cost: 57.31 cost:∞ cost:∞ cost: 58.09

cost: 97.38 cost:∞ cost:∞ cost: 98.38

cost: 30.50 cost:∞ cost:∞ cost: 30.80

cost: 39.31 cost:∞ cost:∞ cost: 45.09

Figure 4: More examples of shortest path predictions in
SPLs and competitors. SPLs always deliver valid paths
and when these do not exact match the ground truth, they
are very close in terms of their global cost. Paths from the
baselines might yield a higher Hamming score (due to more
overlapping edges with the ground truth) but are invalid.

G.4 A STUDY ON THE EFFECT OF
OVERPARAMETERIZATION IN SPL

We now illustrate the effect that overparameterization has
on the performance of the single-circuit SPL. To that end,
we performed an ablation study, comparing single-circuit
SPLs comprising a different number of circuit copies m
for our replication strategy, a different number of layers in
the gating function, denoted by Gates, and the overparam-
eterization factor k as used in algorithm 1 in our mixture
multiplication strategy.

We report the exact match percentage of the predicted labels
on the validation set of the 12 HMLC datasets in ??. As
a general trend, we can see that our overparameterization
strategies pay off and in general more mixture nodes help

12

(k = 4) as well as using more replicas (m ≥ 4). The
effect of employing a deeper gating function is less striking
instead, with a two-layer gating function achieving highest
performances on 9 datasets.

13

	Introduction
	Designing a probabilistic layer for neuro-symbolic SOP
	Realizing SPLs with circuits
	Expressive Distributions via Probabilistic Circuits
	Encoding logical formulas with constraint circuits
	Efficient inference in SPLs

	Experiments
	Constructing Compatible Circuits
	A single-circuit SPL
	Overparameterizing the single-circuit SPL
	Compiling logical formulas into Constraint circuits
	Related works
	Proofs
	Additional experimental details
	Simple path prediction and preference learning
	Hierarchical Multi-Label Classification
	Warcraft pathfinding
	A study on the effect of overparameterization in SPL

