
Multi-Action Sampling with Deep Reinforcement
Learning for Traveling Salesman Problem

Wei Liu, Thomas Bäck, and Yingjie Fan

LIACS, Leiden University, Leiden, Netherlands

Abstract. The Traveling Salesman Problem (TSP) is a classic com-
binatorial optimization challenge with broad applications in logistics
and transportation. While traditional heuristics remain dominant due
to their efficiency and reliability, recent developments in Deep Reinforce-
ment Learning (DRL) have introduced promising new directions for data-
driven approaches to solving the TSP. Although DRL-based methods
show promise, they often do not yet match classical heuristics in terms
of computational efficiency and solution quality. One promising direction
to bridging this gap is the integration of classical heuristics with learning-
based methods. The Learn-to-Improve (L2I) framework follows this hy-
brid paradigm, combining heuristics with reinforcement learning to iter-
atively refine solutions. In this paper, we propose a novel multi-action
sampling strategy that further enhances the L2I framework for solving
TSP. The core idea is to improve solution quality by averaging rewards
over multiple actions, which reduces bias and encourages more effective
exploration compared to single-action strategies. During inference, multi-
action sampling is applied in the later stages to explore diverse solution
paths in parallel, helping to prevent premature convergence. Experimen-
tal results demonstrate that the proposed method outperforms existing
L2I approaches while maintaining competitive computational efficiency.

Keywords: Vehicle Routing · Deep Reinforcement Learning · Multi-
action Sampling · Neural Networks · Learning-based Optimization

1 Introduction

Vehicle Routing Problems (VRPs) are critical yet challenging tasks in trans-
portation and logistics due to their NP-hard nature. Efficient solution meth-
ods are essential to enable scalable and effective routing systems. Among these
problems, the Traveling Salesman Problem (TSP) is a foundational case, with ex-
tensive research and wide-ranging applications in logistics, transportation, and
scheduling domains [1]. Efficiently solving the TSP is a practical step toward
addressing more complex VRPs.

Over the past few decades, numerous algorithms have been developed to
tackle the TSP, enhancing both the quality of the solution and computational
efficiency. Traditional approaches, including exact algorithms and heuristics al-
gorithms [2], have been extensively studied and applied. Exact methods, such as

2 W. Liu et al.

branch-and-bound [3], ensure optimal solutions but are often limited by scala-
bility due to their exponential time complexity. Moreover, heuristic algorithms
[4][5][6], while capable of producing promising solutions in significantly less time,
are more practical for large-scale routing problems. However, these methods
often rely on manually designed decision rules that require extensive domain
knowledge, which can limit their adaptability and performance on unfamiliar or
complex problem instances.

The development of machine learning, particularly deep reinforcement learn-
ing (DRL) [7], has introduced promising alternatives for solving routing prob-
lems. DRL-based methods can outperform traditional heuristics by offering faster
inference and removing the need for manually crafted rules. These models are
more generalizable and adaptive, as they learn decision-making policies through
environment interaction. DRL for VRPs can be categorized into two main ap-
proaches: Learn-to-Construct (L2C) and Learn-to-Improve (L2I) [8]. In L2C, the
trained model represents an approximate implicit mapping function between the
input and the final solution. During inference, solutions are generated sequen-
tially by predicting one decision at a time, incrementally constructing a com-
plete solution by adding a node to a partial solution at each step. In contrast,
L2I uses trained models as auxiliary components for improvement operators.
For instance, they can be used to select node pairs for local search operators
or to guide destroy-repair operators. Unlike L2C approaches, which construct
solutions from scratch, L2I methods start with an initial complete solution and
iteratively refine it to enhance the quality of solutions.

In this paper, we propose a novel training and inference strategy to enhance
L2I methods for solving the TSP. Unlike existing L2I approaches that rely on
fixed or heuristic-based improvement operations, limiting their adaptability. Our
method introduces multi-action sampling in both training and inference phases
to support broader exploration and more effective learning. During training, the
multi-action sampling method facilitates more stable policy training by averaging
the rewards of multiple sampled actions. In addition, we employ multi-action
parallel sampling method during the later stage of inference to systematically
explore the unknown region of the optimal solutions. Thus, our proposed method
enables better exploration of the solution space and reduces the risk of premature
convergence.

Extensive experimental evaluations demonstrate that our proposed method
improves solution quality and training stability, delivering superior performance
compared to existing L2I baselines while maintaining competitive computational
efficiency. It is important to note that the objective of this paper is not to
develop a learning-based optimization method that competes directly with exact
solvers such as Concorde, or classical heuristics like evolutionary algorithms.
Rather, our goal is to investigate the extent to which learning-based methods
can perform in terms of computational efficiency and solution quality within
their own paradigm. Accordingly, we primarily compare our approach against
other learning-based methods. To provide a clearer picture of the optimality gap

Title Suppressed Due to Excessive Length 3

between learning-based and classical approaches, we also include results from
representative classical heuristics in our experimental evaluation.

2 Related Work

Bello et al. [9] introduced a DRL-based Pointer Network that replaced manually
designed local search heuristics and outperformed its supervised counterpart on
TSP50 and TSP100. However, it was not suitable for the capacitated vehicle
routing problem (CVRP). Nazari et al. [10] extended this approach by incorpo-
rating dynamic embeddings, enabling adaptation to evolving customer demands
and reducing the inference time by 60% compared to OR-Tools [13].

With the development of Graph Neural Networks (GNNs) [12], researchers
observed that Pointer Networks struggle to effectively capture the complex topo-
logical structures in routing problems. As a result, instead of using the sequence-
to-sequence paradigm, Khalil et al. [11] tackled the TSP by integrating reinforce-
ment learning with a GNN-based approach called Structure2Vec. Their model
achieved performance comparable to the model in [9].

Inspired by the success of Transformers [14] in sequential decision problems,
Deudon et al. [15] were the first to apply the transformer architecture, using
multi-head attention and a feed-forward encoder-decoder with a pointing mech-
anism in the decoding process to solve the TSP. Joshi et al. [16] introduced a
graph convolutional network (GCN) trained under a supervised learning frame-
work for TSP, while Kool et al. [17] retained the multi-head attention-based
encoder and incorporated self-attention along with a modified context node vec-
tor during decoding. Their work presented a general framework for solving VRPs
and remains one of the most widely adopted end-to-end approaches.

Ma et al. [18] proposed graph pointer networks with DRL for TSP, achieving
better generalization on instances up to 1,000 nodes than previous learning-based
methods. Peng et al. [19] built on [17] by introducing a dynamic attention model
with an adaptive encoder-decoder architecture for CVRP, effectively incorporat-
ing graph structure information throughout the optimization process.

Kwon et al. [20] addressed symmetry issues in DRL-based TSP solutions by
introducing parallel rollouts using the POMO framwork. In addition, they ap-
plied data augmentation to increase training diversity and overcome the limited
number of solution trajectories.

Xin et al. [21] improved the model from [17] by using multiple decoders with
distinct parameters, selecting the best decoder output to determine the next
node. Fu et al. [22] successfully generalized a small pre-trained model to large
TSP instances. Jiang et al. [23] exploited group distributionally robust optimiza-
tion and designed a convolutional embedding layer to improve the generalization
of solutions cross different data distributions.

Chen and Tian [24] proposed the first DRL-based L2I model, selecting so-
lution fragments for re-optimization through a dual-policy framework. Lu et al.
[25] enhanced this by incorporating a richer set of improvement operators and

4 W. Liu et al.

a threshold-based mechanism to decide between further refinement or perturba-
tion.

Wu et al. [27] introduced Learning Improvement Heuristic (LIH), a DRL-
based model that leverages a Transformer-like architecture to select node pairs
for 2-opt operations in TSP and CVRP, which Ma et al. [26] later improved by
incorporating cyclic positional encoding to better capture solution symmetry.

Hottung and Tierney [28] applied DRL to Large Neighborhood Search (LNS)
for CVRP, training a pointer network to guide repair operations while relying
on manually designed heuristics. Gao et al. [29] addressed this limitation by
developing EGATE, a graph-attention network that used edge embeddings to
enhance neighborhood search efficiency.

Xin et al. [30] integrated DRL-based learning with the powerful LKH heuris-
tic, training a sparse graph network to guide edge selection, significantly im-
proving TSP scalability. Li et al. [32] developed a divide-and-conquer strategy
for large-scale CVRP, using a Transformer model to predict sub-problem costs
before solving and merging them, achieving an order of magnitude speedup over
LKH3 [31] while maintaining solution quality.

L2I methods iteratively refine complete solutions, gradually improving their
quality in multiple steps. Although these approaches are effective in finding high-
quality solutions, they typically entail higher computational costs during both
training and inference compared to L2C methods, as they require exploring a
significantly larger search space.

3 Preliminaries

3.1 Traveling Salesman Problem

The goal of the Traveling Salesman Problem (TSP) is to determine the shortest
possible route that allows a salesman to start and end at the same city while
visit each city in a given set exactly once. Let C = {c1, c2, . . . , cn} denote the
set of cities, where n is the total number of cities. The distance between any
two cities i and j is denoted by d(i, j). The objective is to find a permutation
x = (x1, x2, . . . , xn) of the cities that minimizes the total length of the tour. This
can be formulated as the following minimization problem:

fTSP(x) =

n−1∑
i=1

d(cxi , cxi+1) + d(cxn , cx1). (1)

This expression represents the total distance traveled by visiting the cities in the
order defined by x, including the final return to the starting city.

3.2 Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) differs from traditional Deep Learning
(DL) by learning decision-making policies through interactions with dynamic
environments. At each time step t, an agent observes the current state st of the

Title Suppressed Due to Excessive Length 5

environment and selects an action at. The environment then transitions to a new
state st+1 and provides the agent with a reward rt as feedback. This iterative
process enables the agent to learn optimal strategies without the need for labeled
data, an inherent limitation in supervised learning (SL).

The ability of DRL to explore and interact with the environment grants it
superior generalization capabilities compared to SL methods. Therefore, DRL
has been extensively applied to optimization problems in routing and logistics.

To formalize this, we define the agent’s objective as maximizing the expected
return (i.e., negative tour length) under policy pθ for a given instance S as:

J(θ | S) = −Eτ∼pθ(·|S)[L(τ | S)], (2)

where S represents a VRP instance, τ is a solution trajectory, and L(τ | S) is
the tour length (negative reward). The policy pθ(τ | S) denotes the probability
distribution of selecting solution τ based on parameters θ.

To optimize θ, the REINFORCE algorithm is commonly employed. Its gra-
dient is given by:

∇θJ(θ | S) = Eτ∼pθ(·|S) [(L(τ | S)− b(S)) · ∇θ log pθ(τ | S)] , (3)

where b(S) is a baseline function to reduce variance and stabilize training.
Recent advancements, such as the POMO method [20], have further improved

the efficiency of DRL in VRPs by incorporating shared baselines and multiple
starting points, enhancing both solution quality and training stability.

4 Methodology

4.1 Multi-Action Sampling in Training

Each TSP instance consists of a set of N nodes, where each node i is represented
by its 2D coordinates and other problem-specific features. In conventional DRL
approaches, the positional features and coordinates of the nodes are fed into a
neural network as input. The policy network then generates a probability matrix,
from which a single action is selected at each time step based on the calculated
probabilities. The selected action is subsequently applied to modify the original
solution through state transitions in the environment. The path length f(st+1) of
the updated state st+1 is used as a reward to update the network, as illustrated
in the left part of Fig. 1.

In this paper, we extend the standard framework by performing multiple
action selections at each time step (see MS-improve in Fig. 1), enhancing explo-
ration and improving solution quality. The policy network follows an encoder-
decoder architecture with multi-layer self-attention, aligning with the design
proposed in [27]. This architecture, inspired by Transformer models [14], en-
ables the network to capture spatial dependencies among nodes by encoding the
problem instance into contextual representations and decoding actions based on
learned attention weights.

6 W. Liu et al.

Fig. 1. Actor-Critic Learning Framework for TSP with 2-Opt Improvement Heuristic.

During the training phase, we propose a multi-action sampling strategy to
improve the efficiency of policy learning. Instead of selecting a single action
per time step from the policy network, we perform multiple samplings based
on the probability distribution to obtain multiple node pairs. For each sampled
action, we compute the corresponding solution length and use the average of
these lengths to calculate the reward. In addition, we update the policy network
using the average probability of the selected actions.

Action Set Generation: The policy network encodes the solution informa-
tion using a neural network (encoder-decoder) to generate a probability matrix
for node pairs. At time step t, a set of k actions At = {a1t , a2t , . . . , akt } is sampled
from this matrix. The 2-opt heuristic is then applied to each selected node pair
to modify the original path, resulting in a new state and an improved solution.

Reward Computation: For each action ait in the sampled action set, the
corresponding new state sit+1 is obtained by applying the 2-opt operator. The
solution length f(sit+1) is then computed. The reward at step t is defined as the
average tour length across the k generated solutions:

Rt =
1

k

k∑
i=1

f(sit+1). (4)

This reward averaging reduce the variance introduced by individual actions,
providing a more stable learning process and encouraging more balanced policy
updates.

Policy Update: To update the policy network, we compute the average
probability of the sampled actions in the action set At:

π̄θ(At|st) =
1

k

k∑
i=1

πθ(a
i
t|st). (5)

Title Suppressed Due to Excessive Length 7

The policy parameters are then updated using the REINFORCE gradient esti-
mator:

∇θJ(θ) = E

[
T−1∑
t=0

∇θ log π̄θ(At|st)Gt

]
, (6)

where Gt represents the cumulative reward from time step t onward. By using
the average probability of multiple sampled actions, this update strategy ensures
stable policy learning and prevents fluctuations caused by high-probability or
high-reward individual actions.

The proposed multi-action sampling strategy enhances exploration by eval-
uating multiple actions simultaneously, thereby reducing the risk of premature
convergence to suboptimal solutions. It mitigates policy learning bias by lever-
aging averaged rewards and log-probabilities, ensuring a more balanced update
process. In addition, it improves generalization by learning from a wider variety
of solution trajectories, enhancing adaptability across various problem instances.
Lastly, it improves the stability of training by smoothing the gradient updates,
reducing fluctuations, and facilitating a more stable learning process.

4.2 Multi-Action Sampling in Inference

We also employ the multi-action sampling strategy during the inference stage to
enhance solution exploration. After training, the model performs inference based
on the learned policy, iteratively refining the initial path through a sequence
of 2-opt operations at each time step until reaching the predefined time step
threshold. Here, we introduce a multi-action sampling mechanism in the later
stages of inference to expand the search space. Specifically, at each time step
n, we sample k candidate actions from the probability distribution, applying
k distinct 2-opt transformations to the solutions obtained at step n − 1. This
process generates k candidate paths, from which we select the shortest as the
updated solution for the next time step. These k transformations are executed
in parallel in our experiment with minimal computational overhead, ensuring
efficient search expansion.

5 Experiments

In this section, we evaluate the performance of the proposed multi-action sam-
pling approach on the TSP. We generate synthetic datasets for TSP with varying
numbers of nodes (20, 50, and 100). The coordinates of the nodes were sampled
uniformly from the unit square [0,1]x[0,1]. All experiments were carried out on
a system with an Intel i7-9700K CPU, 32 GB RAM, and an NVIDIA RTX 3090
GPU. The code was implemented in Python using Pytoch 2.3.0. The policy and
value networks were trained using the Adam optimizer with a learning rate of
10−4. We evaluate our method with a variety of baselines, including: 1) concorde
[33], an efficient exact solver specialized for TSP; 2) LKH3 [31], a well-known
heuristic solver that achieves state-of-the-art performance on various routing

8 W. Liu et al.

problems; 3) OR-Tools [13], a mature and widely used solver for routing prob-
lems based on metaheuristics; and 4) AM [17], the pioneering application of the
transformer model to solving VRPs, which has yielded outstanding results. 5)
GNNGLS [34], a hybrid data-driven approach based on graph neural networks
and guided local search to solve the TSP. 6) LS-Improve [27], a classic learning-
to-improve technique that iteratively applies 2-opt swaps to refine the initial
solution, ultimately achieving an optimal route.

5.1 Results and Discussion

Table 1. Performance comparison across various methods for TSP20, TSP50, and
TSP100. The table presents the objective value (Obj.), optimality gap (Gap), and
computation time (Time) for each method. MS-Improve (RO) refers to our method
with the modified reward mechanism only, while MS-Improve (RO + MA20) and MS-
Improve (RO + MA50) incorporate both the modified reward mechanism and multi-
action sampling with 20 and 50 actions, respectively, during inference.

Methods TSP20 TSP50 TSP100
Obj. Gap Time Obj. Gap Time Obj. Gap Time

Concorde 3.83 0.00% <1m 5.69 0.00% 2m 7.76 0.00% 20m
LKH3 3.83 0.00% <1m 5.69 0.00% 1.5m 7.76 0.00% 14m
OR-Tools 3.86 0.94% 1.2m 5.85 2.87% 5m 8.06 3.86% 23m
AM (N=1,280) 3.84 0.30% 1.8m 5.72 0.48% 7.4m 7.95 2.45% 1.7h
AM (N=5,000) 3.83 0.04% 16m 5.72 0.47% 45m 7.93 2.18% 4.3h
GNNGLS 3.83 0.00% - 5.69 0.01% - 7.81 0.70% -
LS-Improve (T = 3, 000) 3.83 0.00% 39m 5.71 0.34% 45m 7.91 1.85% 1.5h
MS-Improve (RO) 3.83 0.00% 39m 5.70 0.20% 45m 7.85 1.10% 1.5h
MS-Improve (RO + MA20) 3.83 0.00% 42m 5.69 0.00% 1.1h 7.81 0.64% 1.7h
MS-Improve (RO + MA50) 3.83 0.00% 47m 5.69 0.00% 1.3h 7.78 0.24% 2.2h

We evaluate all algorithms on 10,000 randomly generated TSP instances and
report their average solution quality and runtime. For exact solvers such as Con-
corde and LKH3, the runtime per instance is extremely short. Since we batch
10,000 instances during evaluation, the reported total runtimes are approximate
and may slightly overestimate due to I/O and orchestration overhead. The com-
parative performance of various methods across TSP20, TSP50, and TSP100 is
summarized in Table 1.

Our proposed MS-Improve algorithm demonstrates strong performance, par-
ticularly when multi-action sampling is used during inference, achieving near-
optimal solutions across all problem sizes. For TSP20, we successfully achieved
the optimal objective value 3.83 even without multi-action sampling during infer-
ence. For TSP50 and TSP100, our enhanced reward mechanism yielded superior
solutions compared to the LS-Improve method. Furthermore, the implementation
of multiple sampling techniques during the inference phase resulted in additional
performance improvements.

Title Suppressed Due to Excessive Length 9

Notably, our approach (RO + MA50) achieves the best performance among
learning-based methods, attaining an objective value of 7.78 with a minimal
optimality gap of 0.24%. While the computation time of RO + MA50 (2.2 hours)
exceeds that of LKH3 (23 minutes), it remains competitive with other learning-
based methods such as LS-Improve (1.5 hours).

Although our algorithm increases the execution time compared to the original
LS-Improve, it supports parallel execution of path exchanges. In other words,
the training time required to perform 20 actions (samples) is almost equivalent
to that for 50 actions (samples), excluding the time spent sequentially selecting
actions.

In summary, our algorithm, MS-Improve, achieves near-optimal solutions
with competitive computational time, demonstrating its effectiveness and scala-
bility for solving TSP across varying instance sizes.

5.2 Ablation Study

To better understand the contributions of individual components in MS-Improve,
we perform a series of ablation studies. Specifically, we analyze the effects of the
proposed multi-action reward computation during training and the multi-action
sampling strategy during inference.

Impact of Multi-Action Reward Computation on Training

To examine the effect of the proposed multi-action reward computation method
on the training process, we compare the training dynamics of LS-Improve with
those of our method. As shown in Fig. 2, the multi-action reward computation
significantly improves training stability compared to LS-Improve. Specifically,
the objective value curves for our method exhibit notably smaller fluctuations,
indicating a more consistent and stable convergence trajectory.

Moreover, the proposed method effectively accelerates the reduction of the
objective value during early epochs, achieving competitive performance within
fewer iterations. This improvement is primarily attributed to the averaging of
rewards across multiple sampled actions, which reduces the variance in the policy
gradient updates and improve learning efficiency.

Impact of Multi-Action Sampling on Inference

We further investigate the impact of the number of sampled actions on inference
performance by conducting a controlled study on multi-action sampling.

Fig.3 illustrates the performance variations across different values of k and
corresponding inference time steps. Here, the time step represents the point at
which multi-action sampling is activated, and k denotes the number of actions
sampled per step. Notably, k = 1 serves as the baseline, where only one action
is selected at each time step to update the solution.

The results demonstrate that applying larger k values at earlier time steps
(500–600) may cause instability in the convergence process, resulting in higher

10 W. Liu et al.

Fig. 2. Performance Variations Across Different Reward Computation Methods in the
Training Phase of TSP50.

objective values. In contrast, introducing multi-action sampling at later time
steps (900–1000) significantly improves solution quality. During these later stages,
larger k values exhibit clear advantages by achieving lower objective values and
further optimizing path quality. This suggests that while fewer actions are prefer-
able in the early inference phase to maintain stability, leveraging a greater num-
ber of actions in the later phases expands the search space for potential optimal
solutions, thereby improving the overall performance.

For instance, at the 500 time step, sampling fewer actions (k = 20) results
in better objective values compared to higher k values, such as k = 40 or k =
50. However, as the time step progresses to 1000, the performance of larger k
values overtakes that of smaller ones, indicating that multi-action sampling at
later stages effectively enhances exploration and solution quality. This analysis
underscores the importance of adapting the sampling strategy to different phases
of inference, balancing exploration and convergence to achieve optimal results.

6 Conclusion

In this paper, we proposed a novel multi-action sampling strategy to enhance
the the training efficiency of Learn-to-Improve (L2I) methods for VRPs. Our
approach integrates multi-action sampling in both the training and inference
stages. By averaging rewards over multiple sampled actions during training, our
method mitigates bias and stabilizes policy updates. In inference, we employ
multi-action sampling to explore more possibilities of optimal solutions in par-
allel, reducing the risk of premature convergence and enhancing final solution
quality.

Extensive experiments on the TSP demonstrate the effectiveness of our ap-
proach. Compared to state-of-the-art DRL baselines, our method achieves su-
perior or comparable solution quality while maintaining competitive computa-

Title Suppressed Due to Excessive Length 11

Fig. 3. Performance Variations Across Different k Values and Time Steps in the Infer-
ence Phase of TSP50.

tional efficiency. The ablation study further validates the impact of multi-action
sampling, showing that increasing the number of sampled actions improves opti-
mization performance without significantly increasing computational overhead.
From this perspective, dynamically adjusting the number of actions during the
inference stage may further improve both solution quality and inference effi-
ciency.

As a next step, we aim to further explore the potential of combining classical
heuristics with learning-based methods, with the goal of developing more efficient
optimization approaches for large-scale and real-world problems that are difficult
to model explicitly.

References

1. G. Laporte, A. Asef-Vaziri, and C. Sriskandarajah, “Some applications of the gen-
eralized travelling salesman problem,” Journal of the Operational Research Society,
vol. 47, no. 12, pp. 1461–1467, 1996.

2. P. Festa, “A brief introduction to exact, approximation, and heuristic algorithms
for solving hard combinatorial optimization problems,” in Proceedings of the 16th
International Conference on Transparent Optical Networks, 2014.

3. E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,” Operations
Research, vol. 14, no. 4, pp. 699–719, 1966.

4. N. Ghanem, C. Altehoefer, A. Furtwängler, J. Winterer, O. Schäfer, O. Springer,
E. Kotter, and M. Langer, “Computed tomography in gastrointestinal stromal tu-
mors,” European Radiology, vol. 13, pp. 1669–1678, 2003.

5. X. Xiang, Y. Tian, J. Xiao, and X. Zhang, “A clustering-based surrogate-assisted
multiobjective evolutionary algorithm for shelter location under uncertainty of road

12 W. Liu et al.

networks,” IEEE Transactions on Industrial Informatics, vol. 16, no. 12, pp. 7544–
7555, 2020.

6. Y. Su, N. Guo, Y. Tian, and X. Zhang, “A non-revisiting genetic algorithm based
on a novel binary space partition tree,” Information Sciences, vol. 512, pp. 661–674,
2020.

7. D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, and D. Hassabis, “Mastering
the game of Go without human knowledge,” Nature, vol. 550, no. 7676, pp. 354–359,
2017.

8. R. Shi and L. Niu, “A brief survey on learning based methods for vehicle routing
problems,” 2025.

9. Bello, I., Pham, H., Le, Q. V., Norouzi, M., Bengio, S.: Neural combinatorial op-
timization with reinforcement learning. In: International Conference on Learning
Representations (ICLR), 2017.

10. Nazari, M., Oroojlooy, A., Snyder, L., Takác, M.: Reinforcement learning for solving
the vehicle routing problem. Advances in Neural Information Processing Systems,
vol. 31 (2018).

11. Khalil, E., Dai, H., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial opti-
mization algorithms over graphs. Advances in Neural Information Processing Sys-
tems, vol. 30 (2017).

12. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, S. P.: A comprehensive survey
on graph neural networks. IEEE Transactions on Neural Networks and Learning
Systems, 32(1), 4–24 (2020).

13. Google Inc.: OR-Tools: Google optimization tools. Available at:
https://developers.google.com/optimization/.

14. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, Ł., Polosukhin, I.: Attention is all you need. In: Proceedings of Neural In-
formation Processing Systems, pp. 6000–6010 (2017).

15. Deudon, M., Cournut, P., Lacoste, A., Adulyasak, Y., Rousseau, L.-M.: Learning
heuristics for the TSP by policy gradient. In: Integration of Constraint Program-
ming, Artificial Intelligence, and Operations Research, pp. 170–181 (2018).

16. Joshi, C. K., Laurent, T., Bresson, X.: An efficient graph convolutional network
technique for the Traveling Salesman Problem. arXiv preprint arXiv:1906.01227.

17. Kool, W., Van Hoof, H., Welling, M.: Attention, learn to solve routing problems!
In: International Conference on Learning Representations (ICLR), 2019.

18. Ma, Q., Ge, S., He, D., Thaker, D., Drori, I.: Combinatorial optimization by graph
pointer networks and hierarchical reinforcement learning. In: AAAI Workshop on
Deep Learning on Graphs: Methodologies and Applications, 2020.

19. Peng, B., Wang, J., Zhang, Z.: A deep reinforcement learning algorithm using
dynamic attention model for vehicle routing problems. In: Artificial Intelligence
Algorithms and Applications, pp. 636–650 (2020).

20. Kwon, Y., Choo, J., Kim, B., Yoon, I., Gwon, Y., Min, S.: POMO: Policy op-
timization with multiple optima for reinforcement learning. Advances in Neural
Information Processing Systems, vol. 33, pp. 21188–21198 (2020).

21. Xin, L., Song, W., Cao, Z., Zhang, J.: Multi-decoder attention model with em-
bedding glimpse for solving vehicle routing problems. In: Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, pp. 12042–12049 (2021).

22. Fu, Z., Qiu, K., Zha, H.: Generalize a small pre-trained model to arbitrarily large
TSP instances. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 35, pp. 7474–7482 (2021).

Title Suppressed Due to Excessive Length 13

23. Jiang, Y., Wu, Y., Cao, Z., Zhang, J.: Learning to solve routing problems via
distributionally robust optimization. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 36, pp. 9786–9794 (2022).

24. Chen, X., Tian, Y.: Learning to perform local rewriting for combinatorial opti-
mization. In: Proceedings of Neural Information Processing Systems, pp. 6278–6289
(2019).

25. Lu, H., Zhang, X., Yang, S.: A learning-based iterative method for solving vehicle
routing problems. In: International Conference on Learning Representations (ICLR),
2020.

26. Ma, Y., Li, J., Cao, Z., Song, W., Zhang, L., Chen, Z., Tang, J.: Learning to itera-
tively solve routing problems with dual-aspect collaborative transformer. Advances
in Neural Information Processing Systems, vol. 34, pp. 11096–11107 (2021).

27. Wu, Y., Song, W., Cao, Z., Zhang, J., Lim, A.: Learning improvement heuristics
for solving routing problems. IEEE Transactions on Neural Networks and Learning
Systems, pp. 1–13 (2021).

28. Hottung, A., Tierney, K.: Neural large neighborhood search for the capacitated
vehicle routing problem. In: ECAI 2020, pp. 443–450 (2020).

29. Gao, L., Chen, M., Chen, Q., Luo, G., Zhu, N., Liu, Z.: Learn to design the heuris-
tics for vehicle routing problem. arXiv preprint arXiv:2002.08539.

30. Xin, L., Song, W., Cao, Z., Zhang, J.: Neurolkh: Combining deep learning model
with Lin-Kernighan-Helsgaun heuristic for solving the traveling salesman problem.
Advances in Neural Information Processing Systems, vol. 34, pp. 7472–7483 (2021).

31. Helsgaun, K.: An effective implementation of the Lin–Kernighan traveling salesman
heuristic. European Journal of Operational Research, vol. 126, no. 1, pp. 106–130
(2000).

32. Li, S., Yan, Z., Wu, C.: Learning to delegate for large-scale vehicle routing. Ad-
vances in Neural Information Processing Systems, vol. 34, pp. 26198–26211 (2021).

33. D. Applegate, R. Bixby, V. Chvátal, and W. Cook, “Concorde TSP solver,” Avail-
able at http://www.math.uwaterloo.ca/tsp/concorde, 2006.

34. B. Hudson, Q. Li, M. Malencia, and A. Prorok, “Graph neural network guided local
search for the traveling salesperson problem,” in Proceedings of the International
Conference on Learning Representations, 2021.

