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Abstract

Social distancing is an important component
of the response to the novel Coronavirus
(COVID-19) pandemic. Minimizing social in-
teractions and travel reduces the rate at which
the infection spreads, and ”flattens the curve”
such that the medical system can better treat
infected individuals. However, it remains un-
clear how the public will respond to these poli-
cies. This paper presents the Twitter Social
Mobility Index, a measure of social distancing
and travel derived from Twitter data. We use
public geolocated Twitter data to measure how
much a user travels in a given week. We find a
large reduction in travel in the United States
after the implementation of social distanc-
ing policies, with larger reductions in states
that were early adopters and smaller changes
in states without policies. Our findings
are presented on http://socialmobility.

covid19dataresources.org and we will
continue to update our analysis during the pan-
demic.

1 Introduction

The outbreak of the SARS-CoV-2 virus, a Coro-
navirus that causes the disease COVID-19, has
caused a pandemic on a scale unseen in a gen-
eration. Without an available vaccine to reduce
transmission of the virus, public health and elected
officials have called on the public to practice social
distancing. Social distancing is a set of practices in
which individuals maintain a physical distance so
as to reduce the number of physical contacts they
encounter (Maharaj and Kleczkowski, 2012; Kelso
et al., 2009). These practices include maintaining
a distance of at least six feet and avoiding large
gatherings (Glass et al., 2006). At the time of this
writing, in the United States nearly every state has
implemented state-wide “stay-at-home” orders to
enforce social distancing practices (Zeleny, 2020).

While an important tool in the fight against
COVID-19, the implementation of social distanc-
ing by the general public can vary widely. While
a state governor may issue an order for the prac-
tice, individuals in different states may respond in
different ways. Understanding actual reductions in
travel and social contacts is critical to measuring
the effectiveness of the policy. These policies may
remain in effect for an extended period of time.
Thus, the public may begin to relax their practices,
making additional policies necessary. Additionally,
epidemiologists already model the impact of social
distancing policies on the course of an outbreak
(Prem et al., 2020; Fenichel et al., 2011; Caley
et al., 2008). These models may be more effective
when incorporating actual measures of social dis-
tancing, rather than assuming official policies are
implemented in practice.

It can be challenging to obtain data on the effi-
cacy of social distancing practices, especially dur-
ing an ongoing pandemic. A recent Gallup poll
surveyed Americans to find that many adults are
taking precautions to keep their distance from oth-
ers (Saad, 2020). However, while polling can pro-
vide insights, it cannot provide a solution. Polling
is relatively expensive, making it a poor choice for
ongoing population surveillance practices and pro-
viding data on specific geographic locales, i.e. US
States and major cities (Dredze et al., 2016a). Addi-
tionally, polling around public health issues suffers
from response bias, as individuals may overstate
their compliance with established public health rec-
ommendations (Adams et al., 1999).

Over the past decade, analyses of social media
and web data have been widely adopted to sup-
port public health objectives (Paul and Dredze,
2017). In this vein, several efforts have emerged
over the past few weeks to track social distancing
practices using these data sources. Google has re-
leased “COVID-19 Community Mobility Reports”
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which use Google data to “chart movement trends
over time by geography, across different categories
of places such as retail and recreation, groceries
and pharmacies, parks, transit stations, workplaces,
and residential” (Google, 2020). The Unacast “So-
cial Distancing Scoreboard” uses data collected
from 127 million monthly active users to measure
the implementation of social distancing practices
(Unacast, 2020). Researchers at the Institute for
Disease Modeling have used data from Facebook’s
“Data for Good” program to model the decline in
mobility in the Greater Seattle area and its effect
on the spread of COVID-19 (Burstein et al., 2020).
Using cell phone data, the New York Times com-
pleted an analysis that showed that stay-at-home
orders dramatically reduced travel, but that states
that have waited to enact such orders have contin-
ued to travel widely (Glanz et al., 2020). These
efforts provide new and important opportunities to
study social distancing in real-time.

We present the Twitter Social Mobility Index,
a measure of social distancing and travel patterns
derived from public Twitter data. We use public
geolocated Twitter data to measure how much a
user travels in a given week. We compute a metric
based on the standard deviation of a user’s geolo-
cated tweets each week, and aggregate these data
over an entire population to produce a metric for
the United States as a whole, for individual states
and for some US cities. We find that, taking the
US as a whole, there has been a dramatic drop in
travel in recent weeks, with travel between March
16 and April 27, 2020 showing the lowest amount
of travel since January 1, 2019, the start of our
dataset. Additionally, we find that travel reductions
are not uniform across the United States, but vary
from state to state. However, there’s no clear corre-
lation between the social mobility and confirmed
COVID-19 cases at the state level. A key advantage
of our approach is that, unlike other travel and so-
cial distancing analyses referenced above, we rely
on entirely public data, enabling others to replicate
our findings and explore different aspects of these
data. Additionally, since Twitter contains user gen-
erated content in addition to location information,
future analyses can correlate attitudes, beliefs, and
behaviors with changes in social mobility.

Our findings are presented on http://

socialmobility.covid19dataresources.org

and we will continue to update our analysis during
the pandemic.

2 Data

Twitter offers several ways in which a user can
indicate their location. If a user is tweeting from
a GPS enabled device, they can attach their exact
coordinate to that tweet. Twitter may then display
to the user, and provide in their API, the specific
place that corresponds to these coordinates. Al-
ternatively, a user can explicitly select a location,
which can be a point of interest (coffee shop), a
neighborhood, a city, state, or country. If the tweet
is public, this geolocation information is supplied
with the tweet.

We used the Twitter streaming API1 to download
tweets based on location. We used a bounding box
that covered the entire United States, including ter-
ritories. We used data from this collection starting
on January 1, 2019 and ending on April 27, 2020.
In total, this included 3,768,959 Twitter users and
469,669,925 tweets in United States.

3 Location Data

We process the two types of geolocation informa-
tion described in the previous section.

Coordinates The exact coordinates (lati-
tude/longitude) provided by the user (”coordinates”
field in the Twitter JSON object). About 8% of our
data included ”coordinates”.

Place The ”place” field in the Twitter json ob-
ject indicates a known location in which the tweet
was authored. A place can be a point of interest (a
specific hotel), a neighborhood (”Downtown Jack-
sonville”), a city (”Kokomo, IN”), a state (”Ari-
zona”) or a country (”United States”). The place
object contains a unique ID, a bounding box, the
country and a name. More information about the
location is available from the Twitter GEO API.
A place is available with a tweet in either of two
conditions. First, Twitter identifies the coordinates
provided by the user as occurring in a known place.
Second, if the user manually selects the place when
authoring the tweet.

Since coordinates give a more precise location,
we use them instead of place when available. If
we only have a place, we assume that the user is
in the center of the place, as given by the place’s
bounding box.

For points of interest and neighborhoods, Twit-
ter only provides the country in the associated
metadata. While in some cases the city can be

1https://developer.twitter.com/en/docs/tweets/filter-
realtime/overview/statuses-filter
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parsed from the name, and the state inferred, we
opted to exclude these places from our analysis for
states. The full location details can be obtained
from querying the Twitter API, but the magnitude
of data in our analysis made this too time consum-
ing. This excluded about 1.8% of our data.

We include an analysis of the 50 most populous
United States cites. For this analysis, we included
points of interest that had the city name in their
names, e.g. ”New York City Center”. Specifi-
cally for New York City, we include places that
corresponded to each of the five New York City
boroughs (Brooklyn, Manhattan, Queens, Staten
Island, The Bronx).

In summary, for each geolocated tweet we have
an associated latitude and longitude.

4 Computing Mobility

We define the Twitter Social Mobility Index as fol-
lows. For each user, we collect all locations (coordi-
nates) in a one week period, where a week starts on
Monday and ends the following Sunday. We com-
pute the centroid of all of the the coordinates and
consider this the “home” location for the user for
that week. We then measure the distance between
each location and the centroid for that week. For
distance, we measure the geodesic distance in kilo-
meters between two adjacent records using geopy2.
After collecting the distances we measure the stan-
dard deviation of these distances. In summary, this
measure reflects the area and regularity of travel
for a user, rather than the raw distance traveled.
Therefore, a user who takes a long trip with a small
number of checkins would have a larger social mo-
bility measure than a user with many checkins who
traveled in a small area. As the measure is sensitive
to the number of checkins, it would reflect when
people has less checkins during the pandemic.

We aggregate the results by week by taking the
mean measure of all users in a given geographic
area. We also present results for a 7-day moving
average aggregation as a measure of daily move-
ment. We record the variance of these measures to
study the travel variance in the population, which
will indicate if travel is reduced overall but not for
some users.

We produce aggregate scores by geographic area
for the United State as a whole, for each US state
and territory, and for the 50 most populous cities
in the US. We determine the geographic area of a

2https://github.com/geopy/geopy

user based on their centroid location for all time in
our collection.

We compute the social mobility index for each
day and week between January 1, 2019 and April
27, 2020. We select the date of March 16, 2020 as
the start of social distancing on the national level,
though individual states have implemented prac-
tices at different times. Therefore, we divide the
data into two time periods: before social distancing
(January 1, 2019 - March 15, 2020) and after social
distancing (March 16th, 2020 - April 27, 2020).

We then compute the group level reduction in
social mobility by considering average values as
follows:

Mobility Reduction = 1− mobility after social distancing
mobility before social distancing

.

(1)

We also compute the reduction for each user and
then track the median value, number of users active
in both periods, and proportion of active users that
completely reduce their mobility. We also conduct
a similar analysis for seasonal effects by comparing
mobility after social distancing and mobility during
same period in 2019.

To handle sparse data issues in our dataset, we
exclude (1) users with less than 3 geolocated tweets
overall, and (2) a weekly record for a user if that
user has less than 2 geolocated tweets in that week.
Additionally, due to data loss in our data collec-
tion process we remove two weeks with far less
data than other time periods by taking a 99.75%
confidence limit on number of users and records.

5 Results

Social Mobility Index Table 2 shows the Twit-
ter Social Mobility Index measured in kilometers
for every state and territory in United States, and
United States as a whole. City results appear in
Table 3. We also include the rank of location by
the group level reduction.

A few observations. The overall drop in mobility
across the United States was large: 61.83%. Fig-
ure 1 shows the weekly social mobility index for
the United States for the entire time period of our
dataset. The figure reflects a massive drop in mo-
bility starting in March, with the four most recent
weeks the lowest on record in our dataset. Second,
every US state and territory saw a drop in mobility,
ranging from 38.54% to 76.80% travel compared
to numbers before March 16, 2020. However, the



Figure 1: Mean social mobility index (KM) in United States from January 1, 2019 to April 27, 2020. Weeks with
missing data are excluded from the figure.

variance by state was high. States that were early
adopters of social distancing practices are ranked
highly on the reduction in travel: e.g. Washing-
ton (3) and Maryland (9). In contrast, the eight
states that do not have state wide orders as of the
start of April (Zeleny, 2020) rank poorly: Arkansas
(45), Iowa (37), Nebraska (35), North Dakota (22),
South Carolina (38), South Dakota (46), Oklahoma
(50), Utah (14), Wyoming (53). We observe similar
trends in the city analysis, but the median users in
these cities have a larger mobility reduction than
the ones in the states.

Besides the group level mobility reduction (Eq.
4), we also examine the distribution of user level
reduction. We only consider users that have at least
two checkins in both periods, leading to a subgroup
of all the users in the dataset for the reduction dis-
tribution. The median values for the reduction dis-
tribution is close to 100% for most states. The me-
dian values for seasonal reduction are all smaller,
but still suggest that people substantially reduce
their mobility during the pandemic. Moreover, in
the United States, 40% of the 818,213 active users
completely reduced their mobility, i.e., mobility
reduction of 100%. In contrast, the same period in
2019 saw a 31% reduction among 286,217 active
users.

The White House announced “Slow the Spread”
guidelines for persons to take action to reduce the
spread of COVID-19 on March 16, 2020. 49.06%
of the states had their largest mobility drop in the

week March 16 - 22, 2020 and 22.64% in the fol-
lowing week. We compute a moving-average of
daily mobility data, and use an offline change point
detection method (Truong et al., 2020) on this trend.
62.26% of the change points in 2020 are after the
national announcement date but before the dates
when individual state policies were enacted. This
suggest that the national announcement had the
largest effect as compared to state policies, a simi-
lar finding to the cell-phone-based mobility analy-
sis of four large cities (Lasry et al., 2020). We also
observe that, among 40 states that have announced
Stay at Home policy, 92.5% of the states have a
more stationary daily mobility time series before
the policy-announced date, compared to the mo-
bility time series over all time, suggesting a rapid
mobility change during pandemic.

Finally, Figure 2 shows a box-plot of the mo-
bility variance across all users in a given time pe-
riod. The distribution is long-tailed with a lot zeros,
so we take the log of 1 plus each mobility index.
While mobility is reduced in general, some users
are still showing a lot of movement, suggesting
that social distancing is not being uniformly prac-
ticed. These results clearly demonstrate that our
metric can track drops in travel, suggesting that it
can be used as part of ongoing pandemic response
planning.

Correlation What are some of the factors that
may help explain our Twitter Social Mobility In-



Figure 2: User distribution of mean social mobility
index (KM) before/after social distancing in United
States.

dex? How well does the index track COVID-19
cases compared to other relevant factors? We an-
alyze our data using a correlation analysis. We
compute daily infection rate by dividing the num-
ber of new confirmed COVID-19 cases in each US
state3 by the population of the state. We compare
the daily infection rate with social mobility index
and the following trends (Raifman et al., 2020).

• The size of the state in square miles.

• The number of homeless individuals (2019).

• The unemployment rate (2018)

• The percentage of the population at risk for
serious illness due to COVID-19.

For each day we compute the correlation between
the daily infection rate and the above data by state.

Figure 3 shows the correlation by day. We adopt
infection rate because raw confirmed cases is not
as informative as the population has the highest
correlation. However, the most significant factor in
the early stage are still population related factors,
i.e., number of homeless. We don’t see signifi-
cant correlations with other factors including the
social mobility index. Starting from mid-March,
we observe trends that unemployment rate, size of
the state and social mobility index have increas-
ing correlation but still not significant enough (the
absolute correlation values < 0.5). The fluctua-
tion in the middle is when states started to report
confirmed cases.

3https://github.com/CSSEGISandData/COVID-19

Policy Correlation
State of emergency 0.2587
Date banned visitors to nursing homes 0.1510
Stay at home/ shelter in place 0.1507
Froze evictions 0.1411
Closed non-essential businesses 0.1359
Closed gyms 0.0765
Closed movie theaters 0.0737
Closed day cares 0.0563
Closed restaurants except take out 0.0341
Date closed K-12 schools -0.0821

Table 1: Pearson correlation between cumulative con-
firmed COVID-19 cases at May 10, 2020 and policy
release date at each state.

We conduct a similar correlation analysis be-
tween each data source and the social mobility in-
dex, shown in Figure 4. As expected, Geographical
state size has the highest positive correlation. We
also observe that the number of people at risk for
serious illness due to COVID-19 has negative cor-
relation at the early stage of the pandemic.

Table 1 investigates the effect of various restric-
tion policies on confirmed cases by running a sim-
ilar correlation analysis on cumulative confirmed
cases for each state on May 10, 2020. The policy
types follow the data from (Raifman et al., 2020).
We use the time difference (in days) between May
10, 2020 and policy-released date as the input for
the analysis, and assign a negative value (-1000) for
states that haven’t announced the policy. The factor
with the highest correlation to the social mobility
index is the declaration of a state of emergency,
which is the broadest type of policy.

6 Related Work

There is a long line of work on geolocation predic-
tion for Twitter, which requires inferring a location
for a specific tweet or user (Dredze et al., 2013;
Zheng et al., 2018; Han et al., 2014; Pavalanathan
and Eisenstein, 2015). This includes work on pat-
terns and trends in Twitter geotagged data (Dredze
et al., 2016c). While most of this work focused on
a user, and thus is not suitable for tracking a user’s
movements, there may be opportunities to combine
these methods with our approach.

There have been many studies that have ana-
lyzed Twitter geolocation data to study population
movements. Hawelka et al. (2014) demonstrated a
method for computing global travel patterns from
Twitter, and Dredze et al. (2016b) adapted this



Figure 3: Pearson correlation between daily COVID-19 infection rates and various factors at state level.

Figure 4: Pearson correlation between social mobility index and various factors at state level.

method to support efforts in combating the Zika
epidemic.

Several studies have used human mobility pat-
terns from Twitter data (Jurdak et al., 2015; Huang
and Wong, 2015; Birkin et al., 2014; Hasan et al.,
2013). These studies have included analyses of
urban mobility patterns (Luo et al., 2016; Soliman
et al., 2017; Kurkcu et al., 2016). Finally, some of
these analyses have considered mobility patterns
around mass events (Steiger et al., 2015).

7 Conclusion

We presented the Twitter Social Mobility Index, a
measure of social mobility based on public Twitter
geolocated tweets. Our analysis shows that overall
in the United States there has been a large drop
in mobility. However, the drop is inconsistent and
varies significantly by state. It appears that states
that were early adopters of social distancing prac-
tices have more significant drops than states that
have not yet implemented these practices.

Our work on this data is ongoing, and there are
several directions that warrant further study. First,



as states begin to reopen, and some states main-
tain restrictions, tracking changes in population
behaviors will be helpful in making policy deci-
sions. Second, we focused on the United States,
but Twitter data provides sufficient coverage for
many countries to replicate our analysis. Third, for
each user in the dataset there exists tweet content,
that can reflect a user’s attitudes, beliefs and behav-
iors. Studying these together with their mobility
reduction could yield further insights. Our find-
ings are presented on http://socialmobility.

covid19dataresources.org and we will con-
tinue to update our analysis during the pandemic.
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Mobility (KM) User level reduction
location Before distancing After distancing Group level reduction Median reduction Median seasonal reduction Rank

AK 109.76 25.47 76.80% 99.84% 63.73% 1
AL 48.04 22.57 53.03% 84.47% 72.94% 47
AR 50.54 23.15 54.19% 91.87% 76.81% 45
AZ 62.85 23.47 62.66% 93.69% 85.55% 26
CA 78.58 29.60 62.33% 96.65% 91.35% 29
CO 72.23 24.47 66.12% 98.23% 93.37% 12
CT 45.51 14.89 67.28% 96.29% 89.25% 8
DC 77.67 19.74 74.58% 100.00% 97.75% 2
DE 43.63 13.61 68.81% 93.44% 85.08% 7
FL 76.99 32.24 58.13% 92.38% 82.92% 42
GA 65.64 27.11 58.70% 85.26% 78.00% 39
HI 147.61 70.75 52.07% 97.69% 89.21% 51
IA 50.42 20.59 59.17% 95.91% 89.82% 37
ID 70.77 33.36 52.86% 94.12% 78.19% 49
IL 55.59 19.38 65.15% 98.71% 93.01% 16
IN 45.86 17.15 62.60% 97.19% 89.61% 27
KS 65.50 23.19 64.60% 97.03% 81.57% 19
KY 44.67 15.31 65.74% 93.93% 83.42% 13
LA 45.98 19.39 57.83% 86.13% 77.76% 43
MA 58.69 17.64 69.95% 98.83% 93.93% 5
MD 46.10 15.19 67.04% 94.80% 88.67% 9
ME 59.68 22.45 62.38% 93.77% 78.53% 28
MI 56.24 20.96 62.72% 96.84% 90.42% 25
MN 64.01 21.68 66.13% 98.36% 91.34% 11
MO 52.27 20.08 61.59% 95.89% 88.65% 31
MS 50.24 24.36 51.51% 79.09% 69.11% 52
MT 69.93 32.96 52.86% 90.17% 65.58% 48
NC 52.11 19.73 62.14% 94.27% 85.26% 30
ND 65.77 23.65 64.04% 99.71% 97.21% 22
NE 55.11 21.88 60.29% 99.95% 91.40% 35
NH 55.09 19.48 64.64% 96.26% 85.35% 18
NJ 49.27 14.62 70.33% 97.28% 93.41% 4
NM 58.20 24.23 58.37% 95.66% 73.14% 41
NV 80.25 33.19 58.64% 93.42% 85.00% 40
NY 71.17 24.57 65.48% 98.94% 94.20% 15
OH 44.88 15.73 64.95% 94.81% 88.68% 17
OK 52.34 24.69 52.83% 88.38% 76.99% 50
OR 71.12 25.97 63.49% 97.51% 92.68% 24
PA 54.40 19.45 64.24% 97.59% 89.85% 20
PR 44.96 14.94 66.77% 97.26% 90.38% 10
RI 46.80 14.50 69.01% 96.74% 90.55% 6
SC 48.28 19.85 58.88% 86.03% 77.92% 38
SD 68.41 31.52 53.92% 95.91% 86.66% 46
TN 56.77 21.83 61.55% 94.89% 85.89% 32
TX 73.24 28.60 60.95% 93.81% 84.18% 34
UT 68.43 23.62 65.49% 93.56% 91.50% 14
VA 57.37 22.33 61.07% 95.62% 87.51% 33
VI 132.16 47.57 64.00% 98.66% 87.72% 23
VT 56.84 20.33 64.23% 96.35% 86.70% 21
WA 75.34 21.31 71.71% 98.43% 95.72% 3
WI 56.32 22.68 59.74% 96.88% 91.75% 36
WV 46.59 20.02 57.02% 88.95% 82.40% 44
WY 71.64 44.03 38.54% 84.95% 50.90% 53

United States 65.59 25.04 61.83% 95.86% 88.36% -

Table 2: Reduction of mobility for all states and territories in United States and United States. Ranks are based on
group level reduction.



Mobility (KM) User level reduction
location Before distancing After distancing Group level reduction Median reduction Median seasonal reduction Rank

New York City 86.37 29.91 65.38% 99.70% 96.69% 27
Los Angeles 103.16 40.86 60.39% 98.69% 93.87% 40

Chicago 64.09 19.87 69.00% 99.96% 94.58% 14
Houston 53.70 21.50 59.96% 97.04% 88.00% 41
Phoenix 60.07 19.12 68.17% 96.32% 91.08% 18

Philadelphia 54.80 17.70 67.71% 99.16% 93.70% 19
San Antonio 45.43 15.93 64.93% 99.00% 91.33% 28
San Diego 79.21 28.19 64.41% 98.67% 92.77% 30

Dallas 63.92 21.85 65.81% 95.48% 89.32% 25
San Jose 60.63 14.82 75.55% 99.88% 97.34% 2
Austin 72.50 22.84 68.50% 99.66% 94.66% 17

Jacksonville 47.06 26.87 42.90% 96.60% 92.92% 50
Fort Worth 51.67 19.68 61.92% 95.33% 85.72% 37
Columbus 44.67 14.73 67.02% 96.91% 93.15% 22

San Francisco 113.77 31.99 71.89% 99.93% 98.94% 8
Charlotte 58.13 20.90 64.04% 96.26% 89.83% 31

Indianapolis 46.50 14.53 68.76% 99.26% 91.85% 15
Seattle 98.92 21.64 78.12% 99.98% 99.06% 1
Denver 81.11 23.08 71.55% 99.05% 96.30% 9

Washington 80.26 22.12 72.43% 99.93% 97.27% 7
Boston 77.58 27.47 64.59% 99.42% 96.40% 29
El Paso 51.10 21.50 57.92% 100.00% 95.97% 44
Detroit 53.94 22.38 58.50% 94.89% 83.68% 43

Nashville 72.83 23.94 67.13% 98.45% 94.88% 21
Portland 78.91 24.81 68.56% 99.45% 96.81% 16
Memphis 48.64 18.41 62.15% 98.65% 86.75% 35

Oklahoma City 46.07 16.78 63.57% 91.34% 75.19% 33
Las Vegas 80.21 35.69 55.50% 94.87% 83.90% 47
Louisville 45.52 12.97 71.51% 94.31% 77.68% 10
Baltimore 45.61 11.66 74.43% 96.10% 89.37% 4
Milwaukee 52.01 22.78 56.19% 97.01% 91.86% 46

Albuquerque 51.04 16.88 66.93% 98.95% 75.81% 23
Tucson 53.58 23.10 56.89% 95.73% 84.48% 45
Fresno 37.39 10.84 71.02% 96.06% 89.20% 11
Mesa 48.77 21.72 55.47% 92.40% 71.33% 48

Sacramento 62.14 25.45 59.05% 94.82% 94.47% 42
Atlanta 87.90 33.39 62.02% 93.50% 86.36% 36

Kansas City 62.93 17.23 72.61% 98.30% 96.54% 6
Colorado Springs 64.82 23.55 63.67% 99.47% 95.66% 32

Miami 114.33 55.77 51.22% 97.55% 88.56% 49
Raleigh 51.62 15.24 70.47% 97.79% 89.51% 12
Omaha 49.99 15.38 69.24% 100.00% 93.72% 13

Long Beach 54.97 20.51 62.70% 93.33% 89.75% 34
Virginia Beach 48.91 18.92 61.33% 96.35% 88.38% 39

Oakland 87.36 22.26 74.52% 98.41% 96.26% 3
Minneapolis 69.67 18.72 73.14% 99.14% 94.21% 5

Tulsa 48.54 18.51 61.85% 99.89% 93.20% 38
Arlington 56.42 18.27 67.62% 97.58% 93.25% 20

Tampa 70.50 23.55 66.59% 94.48% 83.23% 24
New Orleans 55.96 19.18 65.73% 97.00% 88.75% 26

Table 3: Reduction of mobility for top 50 United States cities by population. Ranks are based on group level
reduction.


