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ABSTRACT

The proliferation of deepfakes and AI-generated content has led to a significant
increase in media forgeries and misinformation, necessitating development of
more robust detection systems. Current datasets, however, lack comprehensive
diversity across modalities, languages, and real-world scenarios. To address this
gap, we present ILLUSION (Integration of Life-Like Unique Synthetic Identities
and Objects from Neural Networks), a large-scale multi-modal deepfake dataset
comprising over 1.3 million samples. ILLUSION encompasses (i) audio-visual
forgeries, (ii) diverse linguistic content with over 26 languages, (iii) challenging
noisy environments, and (iv) various manipulation protocols. Generated using
state-of-the-art generative models, ILLUSION includes face swaps, audio spoofing,
synchronized audio-video manipulations, and synthetic images, faces, and videos.
The proposed dataset has balanced representation of gender and skin tone, supports
multilingual experiments, and is designed to facilitate development of robust multi-
modal detection systems. We benchmarked state-of-the-art algorithms across
multiple modalities including image-based, audio-based, video-based, and multi-
modal detection. The results highlight critical challenges such as (a) performance
degradation in multi-lingual and multi-modal contexts, (b) accuracy reduction in
noisy environments, and (c) limited generalization to real-world scenarios and zero-
day attacks. It is our assertion that the comprehensive nature of the proposed dataset
enables researchers to develop and evaluate more resilient deepfake detection
methods, addressing the evolving landscape of synthetic media threats.

1 INTRODUCTION

Number of Generation Techniques

Total Number of Samples

Dataset Modality

Figure 1: Comparative analysis of the pro-
posed dataset with existing ones based on
modalities, size, and manipulations.

The emergence of social media platforms has funda-
mentally transformed our mode of communication
and information dissemination. Platforms such as
Facebook, YouTube, Instagram, and TikTok, which
boast billions of users worldwide, have expanded the
scope of shared content beyond text to include im-
ages, videos, and other forms of multimedia. This
shift has precipitated a surge in the volume of multi-
modal content accessible online. As social networks
evolve rapidly, they have emerged as the primary con-
duit for disseminating user-generated multi-modal
content. The data circulating on these social net-
works is predominantly multi-modal, encompassing
videos, audio, and images. With their billions-strong
user base, these platforms generate enormous data
every minute. Nonetheless, the rise of social media
and multi-modal content has concurrently fueled an upsurge in the spread of deepfakes and synthetic
media fabricated by deep learning techniques. The advancements in generative techniques like Gener-
ative Adversarial Networks (GANs), Variational Auto-Encoders (VAEs), and diffusion-based models,
have significantly enhanced the realism of synthetically generated content, making it more convincing
to the untrained eye. These AI foundational models and diffusion-based Generative AI (GenAI)
models have exhibited unparalleled competence in comprehending and generating human-like videos,
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Figure 2: Visual representation and organization of each subset in the proposed ILLUSION dataset.

images, and sounds. In 2023, deepfake videos online reached 95,820, which is a 550% increase
from 20191. Forecasts suggest that by 2026, up to 90% of online content could be synthetically
generated2. The accessibility of these models raises concerns about this prevalent misuse. Therefore,
developing deepfake detection techniques is crucial. Many researchers propose various detection
strategies for identity-based deepfakes (Afchar et al., 2018; Nguyen et al., 2019; Agarwal et al., 2019;
Khalid & Woo, 2020; Chhabra et al., 2023). High-quality deepfake datasets are essential for effective
detection methods. However, existing datasets focus mainly on identity-swap deepfakes and overlook
multi-modal, multi-lingual and AIGC content. There is a lack of datasets with entirely fabricated
data across images, audio, and video. This gap hinders progress in multi-modal and multi-lingual
deepfake detection research.

To bridge this dataset gap, we introduce ILLUSION: Integration of Life-Like Unique Synthetic
Identities and Objects from Neural Networks3, a novel multi-modal, multi-lingual deepfake dataset
divided across four sets (visualized in Figure 2). Set A is an identity forgery dataset with audio-video
synchronized. Set B incorporates AI-generated synthetic data covering three media modalities:
image, audio, and video. Set C, a test set, includes a pool of real-world AI-generated content (AIGC)
sampled from different sources and set D includes multi-lingual and multi-modal deepfake samples
spanning over 26 different languages. The dataset is prepared with continuous usage of 40 GPUs,
accounting for 2000 GB of cumulative memory. With over 800 GBs in size, the dataset contains
over 1.3 million samples encompassing the four sets. To the best of our knowledge, this is one of
the largest datasets containing vast variability of generation methods, different modalities, multiple
languages, and various challenges (refer Figure 1).

The proposed comprehensive dataset provides diverse AI-generated content to serve as a valuable asset
for research in detecting AI-generated media varying in input modality, generation models, different
languages, and content type. To assess and analyze the utility of our dataset, we conduct extensive
experiments and benchmark using 11 baseline deepfake methods and analyze their performance when
tested in different settings. The primary contributions of our work are summarized below:

• We introduce a multi-modal deepfake dataset developed using 28 GenAI models grounded
in GANs, VAEs, Transformers, and Diffusion-based models, spanning image, audio, and
video modalities. This dataset is partitioned into four distinct sets.

• The dataset encompasses identity manipulations, where forgery can manifest across audio,
video, or both. This set is seamlessly synchronized across audio-visual channels and
maintains a balance in terms of sex and skin tone.

• The dataset also includes AI-generated content (AIGC) produced by various text-to-modality
models across image, audio, and video domains. It encompasses a subset of entirely synthetic
faces. Additionally, the dataset features real-world deepfakes, designed to evaluate detection
algorithms in a practical context that spans multiple modalities and languages.

1Deepfake Statistics – Current Trends, Growth, and Popularity
2How can we combat the worrying rise in the use of deepfakes in cybercrime
3Dataset Webpage: https://anonymousillusion.github.io/glowing-sniffle/
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Table 1: Details of publicly available deepfake datasets.
Dataset Name Year Real

Samples

Fake Samples Total
Samples

Generation
Techniques

Identity
Swapping

AI Generated
Content Multi-Lingual AI-Swap-LingualImages Audio Video

Deepfake-TIMIT (Korshunov, 2018) 2018 640 N/A N/A 320 960 2 ✓ × × ×
FaceForensics++ (Rossler et al., 2019) 2019 1000 N/A N/A 4,000 5000 4 ✓ × × ×
Celeb-DF (Li et al., 2020) 2020 590 N/A N/A 5,639 6,229 1 ✓ × × ×
DFDC (Dolhansky et al., 2020) 2020 23,654 N/A N/A 104,500 128,154 8 ✓ × × ×
DeeperForensics-1.0 (Jiang et al., 2020) 2020 50,000 N/A N/A 10,000 60,000 1 ✓ × × ×
ASVSpoof (Yamagishi, 2019) 2021 16,492 N/A 148,148 N/A 164,640 19 ✓ × × ×
WaveFake (Joel Frank, 2021) 2021 0 N/A 117,985 N/A 117,985 6 ✓ × × ×
FakeAVCeleb (Khalid et al., 2021) 2021 500 N/A 500 9000 10,000 4 ✓ × × ×
TIMIT-TTS (Salvi et al., 2022) 2022 430 N/A 80,000 N/A 80,430 14 ✓ × × ×
DeePhy (Narayan et al., 2022) 2022 100 N/A N/A 5,040 5,140 3 ✓ × × ×
LAV-DF (Cai et al., 2022b) 2022 36,431 N/A 33,176 65,997 136,304 2 ✓ × × ×
Midjourney Kaggle (Iulia Turc, 2022) 2022 0 250,000 N/A N/A 250,000 1 × ✓ × ×
DF-Platter (Narayan et al., 2023) 2023 764 N/A N/A 132,496 133,260 3 ✓ × × ×
AV-Deepfake1M (Cai et al., 2023) 2023 286,721 N/A N/A 860,039 1,146,760 3 ✓ × × ×
AGIQA1K (Zhang et al., 2023) 2023 0 1,080 N/A N/A 1,080 2 × ✓ × ×
TWIGMA (Chen & Zou, 2024) 2024 0 800,000 N/A N/A 800,000 N/A × ✓ × ×
ILLUSION (Proposed) 2024 139,740 905,548 27,244 299,454 1,371,986 28 ✓ ✓ ✓ ✓

• We benchmark the proposed dataset using state-of-the-art detection methods and conduct a
comprehensive analysis of their performance across a range of challenging protocols.

2 RELATED WORKS

Deepfake detection performance is highly dependent on the quality of the dataset used in terms of
the variation in the modality of deepfakes, generation techniques, and the realisticity of each sample.
Also, a balanced dataset is crucial for unbiased learning and detection. Early datasets like DF-TIMIT
(Korshunov, 2018), FaceForensics++ (Rössler et al., 2018), Celeb-DF (Li et al., 2020), WildDeepfake
(Zi et al., 2020) and DeeperForensics-1.0 (Jiang et al., 2020) were small to medium in size and
unimodal. Larger datasets like FFIW10k (Zhou et al., 2021), KoDF (Kwon et al., 2021), and DF-
Platter (Narayan et al., 2023) focused on visual manipulation. Unimodal audio-based manipulation
was introduced in ASVSpoof (Wang et al., 2020b), WaveFake (Joel Frank, 2021), TIMIT-TTS (Salvi
et al., 2022), and multi-modal manipulation in DFDC (Dolhansky et al., 2020) and FakeAVCeleb
(Khalid et al., 2021). LAV-DF (Cai et al., 2022a) and AV-Deepfake1M (Cai et al., 2023) were the
first large-scale datasets with multi-modal AV manipulations but lacked non-identity-based AIGC.
Most previous datasets focused on a few specific generation techniques. Our study presents a dataset
overcoming these limitations by including a diverse set of generative models. It’s balanced across
sex and skin tone for identity forgery-based deepfakes, and includes non-identity-based synthetic
samples across all domains with multiple modalities, making it one of the only datasets with partial
and fully synthetic samples.

3 THE ILLUSION DATASET

In this paper, we present ILLUSION: Integration of Life Like Unique Synthetic Identities and Objects
from Neural networks, a comprehensive large-scale multi-modal deepfake dataset4. This dataset
comprises 1,376,371 samples, spanning image, audio, video, and synchronized audio-video modalities.
It stands as the largest multi-modal dataset in the current deepfake literature. The dataset is divided
into four subsets: Set A, Set B, Set C, and Set D. Set A includes identity manipulations featuring
faceswaps, voice spoofs, and both. Set B comprises synthetically generated media, including images
and videos of sceneries, objects, situations, and music audio. This set also incorporates synthetic
faces generated from the website5. Set C encompasses real-world testing samples, i.e., Fakes in
the Wild, generated using proprietary generative models, and Set D is a multi-lingual multi-modal
deepfake testing set. The dataset is produced using 28 distinct generative models, encompassing
open-source and proprietary models. Although most publicly available deepfake datasets exhibit
an imbalance in terms of sex and skin tone (Nadimpalli & Rattani, 2022; Xu et al., 2022a), the
ILLUSION dataset ensures balance across both subgroups.

3.1 DATASET STATISTICS AND ORGANIZATION

This section discusses the statistics and organization of each set of the proposed ILLUSION dataset.
Table 2 presents the set-wise statistics.

4The collection and generation of the ILLUSION dataset is approved by the Institutional Ethics Review
Committee. The dataset will be provided only to academic institutions for research purposes

5This Person Does Not Exist: https://thispersondoesnotexist.com
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Figure 3: Illustration of generation pipeline employed in set A for identity swaps.

Table 2: Dataset statistics of the ILLUSION dataset. In
Set A, the audio and images are extracted from the origi-
nal video for manipulation. Further, the videos in Set A
comprises of 3 compressions (raw, C23, and C40).

Sets Modality Generation
Methods

Real
Samples

Fake
Samples Total

Set A
Audio 8 N/A 6,400 6,400
Images 2 N/A 403,200 403,200
Videos 4 1,032 278,400 279,432

Set B

Audio 4 5,211 20,844 26,055
Images 4 118,287 473,148 591,435
Videos 3 7,010 21,030 28,040
Faces 1 8,200 8,200 16,400

Set C Images 2 N/A 21,000 21,000
Videos N/A N/A 24 24

Set D Audios N/A 1600 2560 4160
Videos N/A 100 125 225
Total 28 141,440 1,234,931 1,376,371

Set A: This set comprises a total of
13 identity manipulations, generated
from 200 unique identities sampled
from the CelebV-Text dataset (Yu et al.,
2023). Each audio, video, and audio-
synchronized clip in this set is 20 sec-
onds long. The samples in this set incor-
porate variations such as occlusions (e.g.,
hats, glasses, beards, etc.), body move-
ments, and lighting conditions, thereby
ensuring a diversity of variations in the
dataset. This set is categorized into four
classes: (i) Real Audio- Real Video (RA-
RV), (ii) Real Audio and Fake Video
(RA-FV), (iii) Fake Audio and Real
Video (FA-RV), and (iv) Fake Audio and
Fake Video (FA-FV) (as visualized in Figure 3). Table 2 summarizes the number of samples available
in each class of Set A. Manipulations in images and videos for each of these classes are introduced by
swapping the faces of the source identity onto the target video. For this purpose, we employ 6 different
face-swapping models, namely, MobileFaceSwap (Xu et al., 2022b), FSGAN (Nirkin et al., 2019),
FaceShifters (Li et al., 2019b), ROOP (s0md3v, 2023), DiffFace (Kim et al., 2022), and DiffSwap
(Zhao et al., 2023). The audio deepfakes are created using the English transcription generated through
the MMS model (Pratap et al., 2023). This transcription is then employed by Text-to-Speech systems
to create identity-swapped voice clones. We utilize 7 different audio-generative models, namely,
FreeVC (Li et al., 2023), XTTS (Eren & The Coqui TTS Team, 2021), DiffVC (Popov et al., 2022),
DiffHierVC (Choi et al., 2023), YourTTS (Casanova et al., 2022), DiffGAN-TTS (Liu et al., 2022),
and GradTTS (Popov et al., 2021) for voice-swapping. For classes RA-FV, FA-RV, and FA-FV, we
employ Audalign6, a fingerprinting-based model to ensure seamless synchronization between the
audio and video, thereby enhancing the realism of the generated fake. The details of all the models
utilized in this set are available in the Appendix.

Set B: This set comprises a total of 523,222 entirely synthetic samples and their 138,708 real
counterparts, generated through 11 open-source models and one closed-source model. This set
includes images, audio, and videos primarily generated using diffusion models and transformers. For
the generation of synthetic images, we employ the images and their corresponding prompts from the
training set of the COCO dataset (Lin et al., 2014) to generate using four text-to-image generative
models. These models include Stable Diffusion-XL (Podell et al., 2023), Kandinsky 2.1 (Razzhigaev
et al., 2023), MultiDiffusion (Bar-Tal et al., 2023), and SDXL-Turbo (Sauer et al., 2023). We also
collected 8,200 synthetic face images from “This Person Does Not Exist", ensuring a balance in
terms of sex and skin tone. These identities are entirely synthetic, have not been swapped, and do not
exist in the real world. To generate synthetic audio, we utilize audios and corresponding captions
from the MusicCaps dataset (Agostinelli et al., 2023) and generate 5,211 synthetic audio samples
each from three text-to-audio generative models and one audio-to-audio model, namely, AudioLDM

6Audalign: https://github.com/benfmiller/audalign
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(Liu et al., 2023), MusicGen (Copet et al., 2024), MAGNeT (Ziv et al., 2024), and Audio Diffusion 7.
Similarly, we also generated synthetic videos using three text-to-video generative models, namely,
Text2Video-Zero (Khachatryan et al., 2023), ModelScopeT2V (Wang et al., 2023a), and ZeroScope
8. For this, we borrow the corresponding caption for each video from the training set of MSRVTT
dataset (Xu et al., 2016) and utilize it to generate 7,010 synthetic videos. The details of all the models
utilized in this set are available in the Appendix.

Set C: This set serves as a real-world testing set, comprising 21,024 fake samples. It is a curated
collection of viral deepfake videos circulated on social media platforms and samples generated using
proprietary models such as MidJourney9 and ArtGuru10. The former includes 24 identity-swapped
videos. The latter consists of synthetic images generated through a premium API and a web interface,
respectively. For Midjourney, we utilize prompts from the validation set of the COCO dataset, and for
each prompt, we obtain four corresponding images, resulting in a total of 20,000 images. ArtGuru,
specializes in generating identity-driven images for a given prompt. Therefore, we randomly select
1000 prompts from class “person" from COCO dataset to generate a total of 1000 images.

Set D: This set is a multi-lingual, multi-modal real-world testing set comprising 4385 samples.
Curated from social media platforms, it spans over 26 different languages, including French, German,
Italian, Chinese, Korean, Arabic, Japanese, Tamil, Kannada, Oriya, Hindi, Sanskrit, Latin, Punjabi,
and Gujarati. Set D is divided into two parts: D.1 consists of 4160 web-curated multi-lingual
samples, while D.2 is a subset of 225 multi-modal multi-lingual deepfake samples, annotated with
four classes (RA-RV, RA-FV, FA-RV, and FA-FV). Additionally, the audio and video in the samples
are synchronized.

3.2 SIZE AND FORMAT

The ILLUSION dataset is approximately 800 GB in size. Each clip in Set A has a duration of 20
seconds. All face images in the dataset were either synthetically generated or obtained from publicly
available datasets with proper licensing and consent where applicable. The videos are provided in
the MPEG4.0 format, with a resolution of 512 × 512 and the original frame rate of videos. The
dataset maintains consistency across resolution, compression, and the generation technique utilized.
For compression at levels c23 and c40, we employ the H.264 video compression standard. We
categorize skin tones into four bins based on the Fitzpatrick scale (details available in the Appendix)
and consider two sexes, resulting in eight sub-groups. To ensure high-quality swaps, identities are
swapped only within the same sub-groups. In Set B, we generate 24 frames for every video from
Text2Video-Zero and ZeroScope and 40 frames for each video from ModelScopeT2V. The videos in
Set C, being curated from various sources, exhibit variability in resolution and length. However, all
the images generated using MidJourney and ArtGuru maintain a consistent resolution of 1024× 1024
and 512× 512, respectively.

3.3 AUDIO AND VISUAL QUALITY ASSESMENT

Figure 4: Comparing Brisque Score of ILLUSION
with other datasets.

To evaluate the visual of the proposed dataset,
we use the BRISQUE score (Mittal et al., 2012)
quality metric, respectively, for all four sets as
shown in Figure 4. We observe a mean Brisque
Score of 38.04. On a scale of 0 (best) - 100
(worst), the average BRISQUE scores for the
entire dataset and individual sets are shown
in table 3. The BRISQUE scores for Face-
Forensics++, CelebDF, DFDC, OpenForensics,
and DF-Platter are approximated from (Narayan
et al., 2023). Further, the table also includes
FAD scores (Kilgour et al., 2018), quantitatively

reflecting the quality of audio samples individually in both the sets and the whole dataset. We report
a mean FAD of 9.43 for the proposed ILLUSION dataset. These scores highlight that the proposed
dataset is of high quality and is challenging with multiple covariates.

7Audio Diffusion: https://huggingface.co/teticio/audio-diffusion-256
8ZeroScope: https://huggingface.co/cerspense/zeroscope_v2_576w
9MidJourney: https://www.midjourney.com/home

10ArtGuru: https://www.artguru.ai/
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3.4 COMPUTATIONAL SETUP
Table 3: Audio and visual quality assessment of ILLU-
SION dataset.

Dataset
Split

Vision (Mean Brisque Score) Audio (Mean Fréchet Audio Distance)

Train Set Test Set Overall Train Set Test Set Overall
Set A 49.08 42.98 48.69 6.37 7.30 6.41
Set B 29.43 29.29 29.40 6.64 6.58 6.55
Set C N/A 35.66 35.66 N/A N/A N/A
Set D.1 N/A N/A N/A N/A 40.39 40.39
Set D.2 N/A 66.88 66.88 N/A N/A N/A

Overall: 38.04 Overall: 9.43

In Set A, we utilize a total of 13 genera-
tion methods to produce identity-swaps
across image, audio, video, and audio-
video synchronized modalities. This pro-
cess is facilitated by Nvidia A100 with
16 GPUs, each with 80GBs of mem-
ory. Set B is generated through 11 open-
source and one closed-source generative models, utilizing two Nvidia A40 GPUs, each with 48GBs
of memory, and three Nvidia DGX stations, each equipped with four V100 GPUs of 32GB memory.
Set C comprises samples generated from two proprietary models, produced on 2 Nvidia 3090 GPUs,
each with 24 GBs of memory. The benchmarking experiments for the dataset are conducted on 2 A40,
each with 48GBs of memory, and 6 A30 GPUs, each with 24GBs of memory, in a multi-GPU setup.

4 EXPERIMENTAL SETUP

This section outlines the training and testing protocol established for the proposed ILLUSION dataset,
followed by a discussion on the deepfake detection methods and evaluation metrics employed for
benchmarking. The proposed dataset is designed to address the following pivotal research questions:

RQ1: How effective are the detection systems in detecting multi-modal identity-swaps?

RQ2: How effective are the detection systems in identifying synthetically generated media?

RQ3: How robust and reliable are the current state-of-the-art detection algorithms when deployed in
real-world scenarios?

RQ4: Is it feasible to detect identity swaps and synthetic media in a zero-day attack setting?

RQ5: Is it possible to successfully trace back the source of a given deepfake?

4.1 EVALUATION PROTOCOLS

The ILLUSION dataset is composed of four sets. Sets A and B are partitioned into training and
testing subsets in a ratio of 3:1. The training data is split into a 9:1 ratio to divide into train and
validation data. To mitigate the skew between the “Real" and “Fake" classes in set A, we borrow an
additional 144 videos (18 subjects/sub-group) from the CelebV-Text dataset. In contrast, set C and D
is exclusively a test set. For all the videos in Set A, we extract 10 frames from each fake video and
all from each real video. For Set B, we pick 24 frames each from the generative models and select
every sixth frame from real videos. Further, for synthetic images generated from four text-to-image
models, we repeat their corresponding real images four times. This approach addresses the imbalance
between the dataset’s real and fake samples.

Protocol 1 - Multi-modal Deepfake Detection: This protocol utilizes Set A and Set B, each with
their respective training and test sets. Set A is divided in a subject-disjoint manner, incorporating
160 subjects in the training set (20 subjects/sub-group) and 40 subjects in the test set (5 subjects/sub-
group). The state-of-the-art audio, video, and multi-modal deepfake detection models are then trained
and tested on the samples from Set A. The results are presented in three compression settings - raw,
C23, and C40 - to facilitate the assessment of deepfake quality in the dataset relative to existing
datasets (results in the Appendix). For Set B, images borrowed from the COCO dataset (Lin et al.,
2014) and BFW dataset (Robinson, 2022) serve as real samples corresponding to the fake samples
generated using text-to-image models and synthetic faces, respectively. Similarly, audio and video
samples from the MusicCaps dataset (Agostinelli et al., 2023) and MSRVTT dataset (Xu et al.,
2016) are used as real samples corresponding to the fake samples generated using text-to-audio and
text-to-video models. We extract 24 frames from fake videos to classify synthetic videos and select
every 6th real video frame to maintain data balance.

Protocol 2 - Zero-shot/Zero-day Generalization: The primary aim of this protocol is to test the
generalizability of detections on new or unseen generation methods. The detection models are initially
trained on the train set of Set A and subsequently tested on the test set of Set B. The performance of
the models is also evaluated in a vice-versa setting.
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Table 4: Classification performance for visual components of the dataset obtained by varying the
training and testing sets.

Trained
On Models Set A Set B Set C (All Fake)

Accuracy Accuracy-Fake Accuracy-Real AUC Accuracy Accuracy-Fake Accuracy-Real AUC Accuracy

Set A

F3Net 0.851 0.751 0.951 0.945 0.468 0.475 0.460 0.462 0.341
DSP-FWA 0.984 0.982 0.986 0.997 0.428 0.437 0.418 0.396 0.214
MesoInceptionNet 0.505 0.999 0.882 0.883 0.505 0.988 0.473 0.487 0.991
Xception 0.851 0.846 0.856 0.920 0.497 0.749 0.283 0.515 0.633

Set B

F3Net 0.498 0.008 0.993 0.497 0.981 0.991 0.970 0.998 0.717
DSP-FWA 0.498 0.001 0.999 0.501 0.993 0.995 0.990 0.999 0.727
MesoInceptionNet 0.495 0.009 0.987 0.386 0.757 0.553 0.967 0.919 0.045
Xception 0.502 0.018 0.992 0.526 0.977 0.987 0.966 0.997 0.725

Set A
+
Set B

F3Net 0.881 0.926 0.836 0.958 0.956 0.986 0.925 0.994 0.703
DSP-FWA 0.972 0.975 0.970 0.995 0.992 0.995 0.989 1.000 0.863
MesoInceptionNet 0.481 0.013 0.425 0.701 0.834 0.806 0.912 0.948 0.241
Xception 0.881 0.926 0.835 0.954 0.972 0.982 0.963 0.997 0.650

Protocol 3 - Generalization on Real-World Deepfake Media: This protocol assesses the perfor-
mance of existing state-of-the-art models on real-world deepfake samples. Here, the models are
trained on the train set of either Set A, Set B, or both, and their performance is evaluated on Set C.

Protocol 4 - Performance on Model Attribution: The final protocol presents a challenging model
attribution task, i.e. to predict the generative technique used to create the input deepfake. The models
are trained and tested on fake samples generated from each technique from Set A and Set B. The
detection models are evaluated separately for image, video, and audio modalities.

4.2 BENCHMARKING DETAILS

DeepFake Detection Methods We utilize four state-of-the-art video and four audio deepfake detec-
tion models to benchmark all three sets of the proposed dataset. For video deepfake detection, we
employ MesoInceptionNet (Afchar et al., 2018), XceptionNet (Chollet, 2017), DSP-FWA (Li & Lyu,
2019), and F3Net (Wei et al., 2020). For audio deepfake detection, we use RawGAT-ST (Tak et al.,
2021), AASIST (Jung et al., 2022), SSLModel (Tak et al., 2022), and Conformer (Gulati et al., 2020).
We also benchmark the proposed dataset using multi-modal deepfake detection algorithms. Specif-
ically, we employ state-of-the-art methods such as MRDF (Zou et al., 2024) and FACTOR (Reiss
et al., 2023) from the literature. Additionally, we use an ensemble of F3Net and SSLModel, which
are baseline unimodal models (referred to as unimodal ensembling), and report class-wise video-level
accuracy. Benchmarking the proposed ILLUSION dataset with 11 baseline algorithms provides a
comprehensive evaluation, encompassing both typical methods and type-complete approaches. The
unimodal baselines focus on modality-specific behaviors, enabling a deeper understanding of how
state-of-the-art algorithms perform within their respective domains (e.g., image, audio, or video). In
contrast, the multimodal baselines evaluate type-complete methods, capturing the interplay between
multiple modalities and offering insights into cross-modal generalization and robustness. This dual
benchmarking strategy ensures a balanced assessment of both specialized and holistic detection
capabilities. Detailed descriptions of all these algorithms are provided in the the Appendix.

Evaluation Metrics For models trained on image and video data, we provide frame-level accuracy
and Area Under the Receiver Operating Characteristic (AUC) scores. Each frame in a video is
computed and classified as either fake or real. We also present class-wise accuracy for additional
analysis. For audio data, we report the Equal Error Rate (EER) and AUC score. For models trained
on multi-modal data, such as combined video and audio, we provide video-level accuracy, using a
threshold set at 50% of frames to classify a video as fake.

Implementation Details This section provides the details of the implementation of the benchmarking
experiments to ensure reproducibility. The DSFD detector (Li et al., 2019a) is used to extract faces
from the frames of videos containing faces. For all protocols, the models are trained for 30 epochs
with early stopping, and the models with the best validation accuracy are selected. We use the Adam
optimizer with an initial learning rate of 0.0001. A batch size of 256 is used for distributed training.

5 RESULTS AND DISCUSSION

This section discusses the benchmark results obtained using the state-of-the-art deepfake detection
models mentioned in Section 4.2 when trained and evaluated on the proposed ILLUSION dataset.
The performance analyzed is in accordance with the protocols described in section 4.1.

Protocol 1 - Multi-Modal Deepfake Detection: To analyze the performance of audio and visual
detection models, we trained and tested them on both Set A and Set B of the proposed ILLUSION

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 5: Classification performance for audio components of the dataset obtained by varying the
training and testing sets.

Trained
On Models Set A Set B

EER Accuracy-Fake Accuracy-Real AUC EER Accuracy-Fake Accuracy-Real AUC

Set A

RawGAT-ST 0.443 1.000 0.000 0.576 0.470 0.999 0.004 0.539
AASIST 0.049 0.879 1.000 0.991 0.430 0.240 0.922 0.563
Conformer 0.025 0.996 0.975 0.991 0.562 0.715 0.081 0.395
SSLModel 0.006 0.980 1.000 1.000 0.583 0.676 0.104 0.356

Set B

RawGAT-ST 0.381 0.125 1.000 0.699 0.032 0.988 0.939 0.995
AASIST 0.261 0.071 1.000 0.805 0.020 0.988 0.970 0.997
Conformer 0.821 0.008 0.825 0.119 0.005 0.992 0.994 0.999
SSLModel 0.694 0.005 0.925 0.252 0.006 0.993 0.993 0.999

Set A
+
Set B

RawGAT-ST 0.025 0.943 0.975 0.994 0.035 0.973 0.958 0.995
AASIST 0.050 0.946 0.950 0.992 0.027 0.983 0.951 0.996
Conformer 0.030 0.959 0.975 0.995 0.020 0.990 0.959 0.997
SSLModel 0.069 0.938 0.925 0.988 0.022 0.992 0.952 0.998

dataset. From Tables 4 and 5, for set A, we observe that all architectures perform well for visual
as well as audio detection models, with DSP-FWA achieving the best performance for visual data
(99.3% accuracy on Set B) and SSLModel excelling in audio data with an EER of 0.006. A similar
trend is visible in set B, where we observe that all the detection models, when trained on synthetic
data, are able to achieve a promising detection performance.

However, performance on Set C, which includes curated real-world and compressed deepfakes,
reveals significant variability. DSP-FWA achieves 21.4% accuracy when trained on Set A and
tested on Set C, compared to 72.7% accuracy when trained on Set B, highlighting the challenges of
generalizing from synthetic data to real-world scenarios. MesoInceptionNet shows unusually high
accuracy on Set C due to its tendency to classify most inputs as fake, leading to inflated performance
on the all-fake Set C.

Set C was intentionally designed as a challenging test set to mimic real-world deepfakes crafted
for mass misinformation. Its inclusion underscores the need for detection models to handle diverse
generative techniques and real-world complexities, highlighting the limitations of current approaches
and the forward-looking design of ILLUSION in advancing deepfake detection research.

Table 6: Classification performance of
multi-modal deepfake detection methods
on set A.

Models RA-RV RA-FV FA-RV FA-FV
MRDF 0.775 0.446 0.827 0.871
FACTOR 0.157 0.352 0.369 0.413
Unimodal
Ensembling 0.208 0.887 0.359 0.779

We evaluated the effectiveness of multi-modal deepfake
detection methods on Set A of the proposed ILLUSION
dataset. These methods were trained on audio-video
synchronized samples from Set A. The performance
achieved are detailed in Table 6. Our findings show
that MRDF outperforms FACTOR across all classes,
notably achieving an 87.1% class-wise accuracy for the
FakeAudio-FakeVideo category. Conversely, FACTOR
consistently underperforms, with a notable low of 15.7% accuracy for the RealAudio-RealVideo class.
Unimodal Ensembling shows potential, achieving a 77.9% accuracy on the FakeAudio-FakeVideo
class, but falls short for the RealAudio-RealVideo class.

To assess the impact of noise and neural compression, we evaluate baseline models trained on Sets A
and B, testing them on the corrupted version of Set C (as shown in Table 1 of the Appendix). Here
we observe a significant performance degradation. Additionally, we investigate different compression
levels for deepfake detection models, individually training and testing them on raw, C23, and C40
compressions of Set A. From Table 2 (Appendix), DSP-FWA consistently performs well across most
combinations. While there’s a drop in performance when models are trained on higher quality and
tested on compressed samples, those trained on C23 and C40 exhibit better generalization for both
raw and C40 samples.

Protocol 2 - Zero-Day Attack Generalization: We evaluate the deepfake detection models on the
challenging setting of zero-day attack detection. In this, each model is trained on training data from
one set of the ILLUSION dataset and is tested on the test data of the other set. For evaluation on
unseen attack setting, we train each model on train data of set A and test its performance on test data
of set B, and vice-versa. The performance achieved is reported in Table 4 and Table 5. We clearly
observe that all the visual and audio detection models, when trained on set A data and tested on set B
data, consistently achieve random performance. The same observation is made for both visual and
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audio detection models when training data of set B is trained and evaluated on test data of set A.
From this, we infer that the artifacts introduced in identity-swaps deepfakes and completely synthetic
deepfakes are completely different. Due to this, the detection models trained on one is unable to
generalize on the other. With this, we note that the proposed ILLUSION dataset will provide the
researchers with a diverse range of deepfakes to capture variety of artifacts in training for better
generalizability in real-world deployment.

Protocol 3 - Generalization on Real-World Deepfake Media: Since set C contains only visual
deepfake media, we train the visual deepfake detection models in three different settings and report
the accuracy on set C in Table 4. First, the models are trained on the image and video data of set A and
then tested on set C. Then, the models are trained on set B and tested on set C. Finally, we train the
models on a combination of visual data from sets A and B and test it on set C. We observe that models
perform better on set C when trained on set B than when trained on set A. This behavior is observed
because most samples are synthetically generated using text-to-image models like MidJourney and
ArtGuru. Whereas identity swaps are very few. We also observe a slight increase in performance on
set C when the detection models are trained on a combination of set A and set B.

Table 7: Classification accuracy
of audio deepfake detection mod-
els (trained on Sets A and B)
tested on Set D.1. Set D com-
prises audio samples from more
than 26 languages.

Models EER AUC
SSLModel 0.578 0.397
Conformer 0.523 0.488
AASIST 0.506 0.471
RawGAT_ST 0.571 0.402

We further perform a comprehensive evaluation of audio and multi-
modal detection models on Set D, with detailed results presented
in Tables 7 and 8, respecctively. The samples in Set D were as-
sessed using audio detection models for both subsets D.1 and D.2.
For Set D.1, we employed audio detection models pretrained on
a combination of Set A and Set B from the ILLUSION dataset.
As shown in Table 7, all architectures encountered significant
challenges in generalization, with the conformer model achiev-
ing the highest AUC of 0.488. For Set D.2, we utilized MRDF,
FACTOR, and Unimodal Ensembling for multi-modal baselining
and report the performance in Table 8. It is evident that model

performance drastically declines when evaluated on Set D, which involves multi-modal real-world
fakes. Nonetheless, FACTOR outperformed Unimodal Ensembling.

Table 8: Classification performance of
multi-modal deepfake detection methods
on set D.2 of the ILLUSION dataset.

Models RA-RV RA-FV FA-RV FA-FV
MRDF 0.31 0.10 0.15 0.09
FACTOR 0.35 0.12 0.20 0.13
Unimodal
Ensembling 0.25 0.09 0.11 0.05

These results highlight the formidable challenge posed
by the multi-lingual and multi-modal nature of Set D,
revealing that current state-of-the-art algorithms strug-
gle to generalize to real-world deepfakes.

Our observations indicate that state-of-the-art detection
models face significant difficulties when confronted
with the complexity of multi-modal and multi-lingual
deepfakes prevalent on social media platforms. These findings highlight the challenges and limitations
these models encounter in adapting to the diverse and evolving nature of deepfake content.

Table 9: Model attribution on Set A

Attribute Models Accuracy AUC

Video

F3Net 0.923 0.933
DSP-FWA 0.987 1.000
MesoInceptionNet 0.444 0.620
Xception 0.880 0.832

Audio

RawGAT-ST 0.941 0.995
AASIST 0.957 0.998
Conformer 0.967 0.999
SSLModel 0.959 0.998

Protocol 4 - Performance on Model Attribution: Dif-
ferent generation techniques are shown to introduce
unique nuances in the generated deepfakes (Wang et al.,
2020a; Frank et al., 2020; Wang et al., 2023b). From
Protocol 2, we observed that the deepfake artifacts in-
troduced in identity-swap deepfakes are very different
from those of completely synthetic deepfake media.
In this experiment, we explore the performance of the
detection models for the identification of source gener-
ation technique. In Table 9, the performance of all the
deepfake detection models is reported for the identification of the source generation technique. We
observe that for visual models, all the techniques except MesoInceptionNet are successfully able to
identify the source of the identity-swap deepfakes with DSP-FWA achieving a near-perfect accuracy.
A similar trend is observed for audio models, where Conformer performs the best.

For the model attribution in set B, detection models are evaluated separately for each modality. We
report the performance in Table 10. For attribution in text-to-image (including synthetic faces samples)
and text-to-video models, DSP-FWA consistently achieves the highest performance with an AUC of
97.8% and 99.9%, respectively. Similarly, for attribution in text-to-audio data, all the detection models

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

are successfully able to identify the source of the generation model with comparable performance.
From these observations, we note that each generative model introduces unique signatures in their
generated output. The detection models pick these signatures for a near-perfect performance on
model attribution task.

6 DISCUSSION AND CONCLUSION

Table 10: Model attribution on Set B
Attribute Models Accuracy AUC

Images

F3Net 0.878 0.971
DSP-FWA 0.911 0.978
MesoInceptionNet 0.499 0.822
Xception 0.889 0.972

Video

F3Net 0.994 0.999
DSP-FWA 0.998 0.999
MesoInceptionNet 0.909 0.994
Xception 0.996 0.999

Audio

RawGAT-ST 0.991 0.999
AASIST 0.993 0.999
Conformer 0.989 0.998
SSLModel 0.989 0.999

In this paper, we introduce the ILLUSION dataset,
a significant step towards a comprehensive, multi-
modal deepfake dataset. Created using 28 state-of-
the-art generative models, ILLUSION provides diverse
AI-generated content across image, audio, and video
modalities and includes both curated real-world deep-
fakes and synthetic media. This design enables models
trained on ILLUSION to learn features that extend be-
yond synthetic artifacts, enhancing cross-domain gen-
eralization, particularly in multi-lingual and noisy set-
tings. Preliminary results show that detection models
trained on ILLUSION outperform those trained on ex-
isting datasets when evaluated on unseen generative

techniques and real-world forgeries. Designed to aid the development of robust, multi-modal, multi-
lingual detection systems, our analysis of the ILLUSION dataset reveals several key insights:

Multi-Modal Deepfake Detection: The high performance of models like DSP-FWA and ASSIST on
both visual and audio data suggests that current models are effective at detecting deepfakes when
trained on data from same distribution. However, the disparity in performance between identity swaps
and completely synthetic data indicates that models may be learning to identify artifacts specific to
the generation method rather than generalizable features of deepfakes.

Zero-Day Attack Generalization: The significant drop in performance when models trained on one
set are tested on another accentuates the challenge of zero-day attack detection. This suggests that
models are currently not robust against deepfakes generated by unfamiliar methods, highlighting the
need for diverse datasets like ILLUSION .

Generalization on Real-World Multi-Lingual Deepfake Media: The subpar performance of models
trained on identity-swap and synthetic data, when tested on real-world deepfakes across various
languages, depicts the necessity of a curated, multi-lingual deepfake dataset. Such a dataset is crucial
for enabling models to effectively generalize to the diverse deepfakes encountered in the wild.

Model Attribution: The ability of models to identify the source generation technique with high
accuracy demonstrates that generative models leave distinct signatures in their outputs. This could
have implications for the traceability of deepfakes and the accountability of generative model creators.

The ILLUSION dataset focuses on addressing deepfake detection challenges through specialized
generative AI techniques, while acknowledging that generalized forgery methods, such as digital
watermarking, image optimization, and Photoshop-based manipulations, represent another dimension
of media forensics. These generalized methods, often easier for deep-learning-based detectors to
identify, differ fundamentally from generative deepfake techniques and would require additional
design considerations to ensure dataset consistency. Further, despite its large scale, ILLUSION
prioritizes quality and diversity over size, with each subset curated for distinct purposes, such as
evaluating generalizability or robustness to compression artifacts. By incorporating 28 distinct
generative methods and multi-modal, multi-lingual, and real-world samples, the dataset minimizes
redundancy, ensuring relevance and providing valuable insights into detection performance across
diverse conditions. Future extensions of ILLUSION will explore the integration of generalized
forgery methods to further broaden its scope and utility.

7 BROADER IMPACT

Our analysis estimates that approximately 245 kg CO2-equivalent was emitted during the creation of
this dataset11. Despite this environmental impact, the societal benefits are significant. ILLUSION
offers a valuable resource for researchers to explore detection methods across diverse types of fake

11https://mlco2.github.io/impact/
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media. Additionally, its balanced representation of gender and skin tone promotes fairness in the
development and evaluation of detection techniques. As a comprehensive multi-modal, multi-lingual
deepfake dataset, ILLUSION is instrumental in the global fight against misinformation.

8 REPRODUCIBILITY STATEMENT

To promote reproducibility, we make the code, trained models, and dataset publicly available. The
codebase can currently be viewed at Anonymized Repository.
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