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Abstract001

Traditional sparse and dense retrieval meth-002
ods independently exhibit critical limitations:003
sparse models offer high lexical precision but004
lack semantic flexibility, while dense models005
capture semantic similarity but may introduce006
false positives due to embedding generalization.007
Hybrid retrieval aims to unify their strengths,008
yet current methods typically use static weight-009
ing, failing to adapt to query-specific retrieval010
uncertainties. We propose a dynamic hybrid011
retrieval method that performs multi-round012
entropy-based reweighting to iteratively opti-013
mize the linear combination of sparse and dense014
scores. Leveraging normalized Shannon en-015
tropy as a proxy for retrieval confidence, we016
update weight coefficients ws and wd across it-017
erations until convergence or a predefined max-018
imum is reached. The top-k documents are019
re-ranked at each step, using fixed sparse and020
dense retrieval outputs, improving robustness021
without repeated querying. We implement our022
approach using a BM25-FAISS hybrid pipeline023
with MiniLM-L6-v2 embeddings and evalu-024
ate performance on HotPotQA and TriviaQA.025
Experimental results demonstrate that our dy-026
namic hybrid model, under an optimal con-027
vergence threshold of ϵ = 0.10, significantly028
outperforms both pure dense and fixed-weight029
hybrid baselines in LLM-as-a-Judge (LLMJ)030
scores across both datasets, with statistically031
significant gains on TriviaQA (p < 0.01) and032
marginal gains on HotPotQA (p ≈ 0.055), con-033
firming the efficacy of entropy-aware adaptive034
retrieval.035

1 Introduction036

Information retrieval (IR) is a critical component in037

the retrieval-augmented generation (RAG) pipeline,038

which utilizes both IR and natural language pro-039

cessing (NLP) for enhanced large language model040

(LLM) outputs via external knowledge sources041

(Lewis et al., 2020). Traditional pure RAG sys-042

tems typically utilize a single retrieval methodol-043

ogy, usually dense vector retrieval using embed- 044

ding similarity, where documents and queries are 045

embedded into a shared vector space and their rele- 046

vance is computed through similarity metrics like 047

cosine similarity (Karpukhin et al., 2020). How- 048

ever, as the volume of digital information grows 049

and the popularization of RAG in modern artifi- 050

cial intelligence applications, optimizing search 051

efficacy and efficiency is growing in demand. Tra- 052

ditional retrieval models, both sparse and dense, 053

have well-documented strengths and weaknesses: 054

sparse retrieval excels in precise keyword matching 055

and subsequent retrieval but struggles with seman- 056

tic representation, while dense retrieval improves 057

semantic understanding at the cost of increased 058

probabilities of false positives due to vector embed- 059

ding generalization errors (Mandikal and Mooney, 060

2024). 061

Currently, hybrid retrieval systems are being uti- 062

lized to combine both sparse and dense methods for 063

optimal retrieval. However, existing hybrid mod- 064

els often rely on static weighting strategies, where 065

a predefined and fixed combination of sparse and 066

dense retrieval scores determines ranking. These 067

methods fail to adapt dynamically in response to 068

varying query complexities and retrieval uncertain- 069

ties (Zhang et al., 2024). 070

In response to these limitations, this study inves- 071

tigates and proposes a multi-round entropy-based 072

re-ranking approach to improve retrieval confi- 073

dence and result relevance. This approach uses 074

a weighted sparse-dense retrieval combination and 075

consequent iterative re-ranking based on Shannon 076

semantic entropy scores that adjusts the weights 077

of the sparse and dense contributions dynamically. 078

We hypothesize that hybrid retrieval methods that 079

combine sparse and dense retrieval outperform pure 080

static RAG retrieval and that adaptive weighting 081

based on retrieval entropy can accommodate the 082

weaknesses of the sparse-dense combination for 083

each specific query. The computational overhead 084
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of this entropy-based optimization is justified by085

improved retrieval quality.086

2 Background087

Sparse retrieval algorithms retrieve documents by088

matching exact keywords from the query to the doc-089

uments. The most widely used sparse retrieval algo-090

rithm is BM25, which computes relevance scores091

using term frequency (TF) and inverse document092

frequency (IDF). In the case of BM25, higher rele-093

vance scores are assigned to documents with higher094

frequencies of queried terms (TF), but adjust the095

general prevalence of the term in the corpus, or096

document space, to account for overly common097

words (IDF) (Robertson and Zaragoza, 2009). The098

ranking function is given by Where f(t,D) is the099

term frequency of term t in document D, |D| is100

document length, avgdl is the average document101

length in the corpus, and k1, b are hyperparameters102

controlling the saturation of frequency scaling and103

the degree of length normalization, respectively.104

While these perform efficiently with well-defined105

queries containing relevant key terms, they struggle106

in capturing semantic relationships between words,107

limiting efficacy for queries with significant lexical108

variation.109

Dense retrieval algorithms, on the other hand,110

map queries and documents into high-dimensional111

vector spaces using deep learning models, usually112

through contrastive learning or softmax-based loss113

functions. Recent studies demonstrate that unsuper-114

vised dense retrievers trained through constrastive115

learning outperform traditional sparse methods like116

BM25 on various benchmark, making them ideal117

for pure RAG pipelines (Izacard et al., 2021).118

In this paper, we use Facebook AI similarity119

Search (FAISS), a widely used approximate near-120

est neighbors (ANN) search algorithm for dense121

retrieval that utilizes cosine similarity. The cosine122

similarity score used for FAISS-based dense re-123

trieval is:124

SFAISS(D,Q) =

{
q · di

∥q∥∥di∥

}k

i=1

(1)125

where q and di are query and document vectors, and126

∥ · ∥ is the Euclidean norm. Scores are normalized127

(Johnson et al., 2017).128

Semantic entropy quantifies the uncertainty and129

disorder within a distribution, and in this paper, is130

used as an indicator of confidence in the ranking131

scores of different retrieval algorithms. Retrieval132

methods resulting in low entropy, and therefore 133

lower uncertainty, are associated with higher con- 134

fidence in ranking assignments, while those with 135

higher entropy suggest a greater amount of ranking 136

uncertainty. 137

In this paper, we utilize normalized Shannon 138

entropy as a proxy for retrieval uncertainty. For 139

a set of top-k scores S = {s1, s2, . . . , sk}, we 140

compute the probability distribution: 141

pi =
si∑k
j=1 sj

142

The Shannon entropy over these normalized scores 143

is: 144

H(S) = −
k∑

i=1

pi log pi 145

To ensure comparability across different values of 146

k, we normalize the entropy by dividing by the 147

maximum possible entropy log k: 148

Ĥ(S) =
H(S)

log k
149

This normalized form ensures Ĥ ∈ [0, 1], enabling 150

interpretable weighting across queries. We use this 151

for both sparse and dense score distributions. It 152

should be noted that other uncertainty measures 153

may be used in future work. 154

The individual limitations of sparse and dense 155

retrieval methods have motivated the development 156

and implementation of hybrid retrieval pipelines 157

that integrate and use both approaches in IR sys- 158

tems, balancing both precision and recall. 159

Queries are fundamental inputs to information 160

retrieval systems that serve as the main inter- 161

face between users and the given retrieval mech- 162

anism. However, not all queries behave homoge- 163

neously and uniformly within retrieval pipelines, 164

with some being highly structured and keyword- 165

focused, while others may have semantic complex- 166

ity that requires the ability to capture nuanced 167

meanings. For example, queries may be open- 168

ended and lack specific keywords, while close- 169

ended queries may be more succinct but lack the 170

variability for deeper and subtle interpretations 171

(Bailey et al., 2017). Current static weight ap- 172

proaches overlook these differences and apply a 173

predefined and fixed combination of sparse and 174

dense scores without accounting for query variabil- 175

ity. In the proposed model, queries are treated as 176

dynamic elements that guide retrieval optimization, 177

where retrieval efficacy adapts to query characteris- 178

tics rather than operating under fixed assumptions. 179
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SBM25(D,Q) =
∑
t∈Q

IDF(t)f(t,D)

(k1 + 1)f(t,D) + k1

(
1− b+ b |D|

avgdl

)

3 Model180

Under an iterative entropy-based framework, this181

model converges on the ideal weighting parameters182

through inverse-entropy normalization per iteration.183

The sparse and dense document sets are retrieved184

once per query and held fixed; entropy is computed185

over these fixed sets. The weighting parameters are186

iteratively updated until the weight delta |∆ws| ≤ ϵ187

or a maximum of n iterations is reached.188

3.1 Entropy-based Optimization189

We utilize entropy for weight optimization and190

adjustment under the observation that different191

queries interact with sparse and dense methods192

in distinct ways, and therefore depending on the193

query, each call necessitates a different weighting194

for retrieval contributions.195

In order to implement entropy-based optimiza-196

tion, we employ a multi-step process. Let ϵ be the197

threshold for weight convergence. Let t be the it-198

eration index, up until the condition
∣∣∣∆w

(t)
s

∣∣∣ ≤ ϵ199

or t = n. Let k represent the number of top docu-200

ments di ∈ D retained for final ranking.201

Initialization. Given a query Q, we retrieve the202

top-k documents independently from BM25 and203

FAISS.204

Ssparse = {Ssparse,1, Ssparse,2, . . . , Ssparse,k}205

206
Sdense = {Sdense,1, Sdense,2, . . . , Sdense,k}207

These scores are normalized to form standard prob-208

ability distributions:209

p(Ssparse,i) =
Ssparse,i∑k
j=1 Ssparse,j

,210

211

p(Sdense,i) =
Sdense,i∑k
j=1 Sdense,j

212

Initially, we set equal weights for both retrieval213

methods:214

w(0)
s = w

(0)
d = 0.5215

Entropy-guided Weight Update. Next, we216

compute the normalized Shannon entropy for both217

distributions. The entropy values are defined as: At218

each iteration t, we update the sparse weight using 219

inverse normalized entropy: 220

w(t+1)
s =

1− Ĥsparse

(1− Ĥsparse) + (1− Ĥdense)
, 221

222

w
(t+1)
d = 1− w(t+1)

s 223

This iterative process continues until convergence 224

as defined by: 225∣∣∣w(t+1)
s − w(t)

s

∣∣∣ ≤ ϵ or t = n 226

Top-k Fusion. After convergence, we compute 227

the final combined score: 228

S
(∗)
combined,i = w(∗)

s · Ssparse,i + w
(∗)
d · Sdense,i 229

and select the top k documents by sorting S
(∗)
combined 230

in descending order. Let: 231

D
(∗)
top-k = {d1, d2, . . . , dk} 232

denote the re-ranked document list returned to the 233

LLM. 234

This dynamic hybrid model is retriever-agnostic 235

and unsupervised, making it applicable to diverse 236

datasets without necessitating domain tuning. 237

4 Methodology 238

4.1 Baseline/Benchmark 239

To evaluate the effectiveness and generalizability 240

of our entropy-based hybrid retrieval model, we im- 241

plemented benchmarks on two different data sets: 242

1. HotPotQA Distractor (Yang et al., 2018): A 243

Wikipedia-based question-answer benchmark 244

specifically designed for multi-hop reasoning, 245

containing 113,000 question-answer pairs that 246

requires reasoning over multiple supporting 247

documents. The corpus contains both sup- 248

porting facts and distractor documents, chal- 249

lenging models to distinguish accurate and 250

relevant content. 251

2. TriviaQA (Joshi et al., 2017): A large- 252

scale reading comprehension dataset with over 253

650,000 question-answer-evidence triples that 254

works particularly well with LLM-as-a-judge 255
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Hsparse = −
k∑

i=1

p(Ssparse,i) log p(Ssparse,i),

Hdense = −
k∑

i=1

p(Sdense,i) log p(Sdense,i)

Ĥsparse =
Hsparse

log k
, Ĥdense =

Hdense

log k

evaluations. Though not multi-hop, contained256

passages exhibit lexical and syntactic variabil-257

ity that is ideal in testing LLMJ’s semantic258

understanding, as well as answer ambiguity to259

test hallucination detection.260

For comparison, we implement two baseline261

pipelines:262

• Pure RAG (Dense Retrieval): FAISS263

pure RAG implementation with sentence-264

transformers/all-MiniLM-L6-v2 embedding265

model, which maps both documents and266

queries to a 384-dimensional dense vector267

space to allow for semantic search and clus-268

tering.269

• Fixed Hybrid RAG: BM25 and FAISS hybrid270

model with static weights (ws = wd = 0.5) to271

represent the standard approach for hybrid272

RAG in literature and industry practice.273

These baselines allow us to compare and iso-274

late the performance of our iterative entropy-based275

dynamic model.276

4.2 Dataset and Preprocessing277

The experiments utilize the HotPotQA distractor278

dataset and the TriviaQA reading comprehension279

dataset. Preprocessing for both datasets includes:280

• Tokenization using NLTK’s "word tokenize"281

• Stopword removal using NLTK’s stopwords282

corpus283

• Document normalization and indexing284

The experiments used the following hyperparam-285

eters:286

• Convergence Threshold (ϵ): 0.10, 0.05, 0.01287

for both HotPotQA and TriviaQA288

• Maximum Iterations (t): 5 for HotPotQA289

• Top-k Documents Retrieved: 5 for HotPotQA, 290

7 for TriviaQA 291

• BM25 Parameters: k1 = 1.5, b = 0.75 292

• Embedding Mode: sentence-transformers/all- 293

MiniLM-L6-v2 294

4.3 LLM-as-a Judge 295

For evaluation, LLaMa 3 is locally run through the 296

Ollama server for generation integrated into the 297

pipeline through LangChain. This entails a two- 298

step process: 299

1. Generation: LLM generates an answer us- 300

ing the top-k documents produced by each 301

retrieval model. 302

2. Evaluation: A separate LLM-as-a-Judge eval- 303

uator assesses the quality of the generated an- 304

swer against the ground truth. 305

This research uses LLM-as-a-Judge (LLMJ) as a 306

key benchmark of performance given its prioritiza- 307

tion in quantifying semantic relevance over lexical 308

matching, permitting an automated evaluation of 309

groundedness without manual human annotation. 310

Recent studies demonstrate that LLM-evaluators 311

achieve high agreement with human judgements, 312

making them effective tools for answer quality as- 313

sessment(Chen et al., 2025). Other metrics like 314

Recall@K may lead to more accurate results with- 315

out actual relevance, whereas LLMJ accounts for 316

this by capturing depth of reasoning and aligning 317

with human judgment, key factors that traditional 318

informational retrieval metrics miss. This makes 319

LLMJ ideal for multi-hop datasets like HotPotQA 320

and reading comprehension datasets like TriviaQA 321

and complex retrieval tasks in general where an- 322

swers are ambiguous (Gu et al., 2024). The LLM 323

evaluator assesses each answer on a 0-5 scale: 324

• 0: Completely wrong/irrelevant 325

• 1: Mostly wrong/minor relevance 326
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• 2: Partially correct, but incomplete327

• 3: Mostly correct, with some errors328

• 4: Correct and relevant, but not complete329

• 5: Perfectly correct, relevant, and complete330

5 Results331

5.1 Quantitative Results332

This study evaluates the score and runtime perfor-333

mance of the proposed entropy-optimized hybrid334

model against the two baselines: a pure dense re-335

trieval model (FAISS) and a fixed-weight hybrid336

model (FAISS + BM25). The evaluation employs337

the LLM-as-a-Judge framework to assess answer338

quality against the ground-truth on a 0-5 scale. Ex-339

periments were conducted on the HotPotQA dis-340

tractor and TriviaQA datasets, averaging LLMJ341

scores and retrieval times across different conver-342

gence thresholds ϵ over different distinct paired343

queries.344

5.2 Case Study: Analysis of Hybrid Model345

Results346

To further illustrate the proposed entropy-based347

hybrid weighting framework, we include a repre-348

sentative case study drawn from the evaluation on349

the TriviaQA dataset. This example was selected350

to demonstrate the model’s iterative optimization351

behavior and the qualitative impact of weight con-352

vergence on answer relevance and correctness.353

High-Scoring Hybrid RAG Response Ex-
ample 2

Retrieval Type: Hybrid
Question: Which actor played Inspector
George Gently in the TV series of that
name?
Ground Truth Answer: MARTIN SHAW
Generated Answer: According to Docu-
ment 1, which is an IMDb page for Inspec-
tor George Gently, Martin Shaw played the
role of Detective Chief Inspector George
Gently. The show aired on BBC1 and was
set in the 1960s.
LLMJ Score: 5.0 (Perfect)
Retrieval Time: 0.0331s
Generation Time: 6.08s
Total Time: 6.11s
Final Weights: ws = 0.604, wd = 0.396

354

Evaluation Rationale: 355

• Factual Correctness: Identifies Martin Shaw 356

as the correct actor, aligning and agreeing with 357

the ground truth. 358

• Relevance: Fully answers the question and 359

adds confirming metadata (IMDb, BBC1). 360

• Completeness: Provides supporting informa- 361

tion that contextualizes the show and its set- 362

ting. 363

5.3 Statistical Significance 364

To assess the significance of performance differ- 365

ence, paired t-tests were performed between the 366

dynamic hybrid model at the empirically best con- 367

vergence threshold ϵ = 0.10 and each baseline, even 368

though LLMJ is a deterministic output. This ac- 369

counts for variability inherent to individual queries 370

and the available documents, and isolates the effect 371

of the retrieval model on performance (Li et al., 372

2025). Although normality is assumed, the test 373

is adequately robust to moderate deviations from 374

normality. For each query, the difference in LLMJ 375

scores was calculated between the dynamic and hy- 376

brid model, and the mean difference and standard 377

deviation of these differences were computed. We 378

utilize the standard t-statistic and the associated 379

t-distribution with n− 1 degrees of freedom and a 380

two-tailed p-value was obtained to determine the 381

significance of observed differences. The results 382

show: 383

• HotPotQA Distractor: 384

– Pure Dense vs Dynamic Hybrid: t(59) = 385

2.45, p = 0.017 386

– Fixed Hybrid vs Dynamic Hybrid: 387

t(59) = 1.96, p = 0.055 388

• TriviaQA: 389

– Pure Dense vs Dynamic Hybrid: t(39) = 390

3.12, p = 0.003 391

– Fixed Hybrid vs Dynamic Hybrid: 392

t(39) = 3.45, p = 0.001 393

These p-values indicate that the dynamic hybrid 394

model at ϵ = 0.10 significantly outperforms the pure 395

dense model on both datasets. The dynamic hybrid 396

model is marginally significant for HotPotQA and 397

statistically significant for TriviaQA. 398
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Table 1: Performance on HotPotQA (60 Questions, 994 Documents)

Convergence (ϵ) Model Type Avg LLMJ Score Retrieval Time (s)
– Pure Dense 3.88 6.30
– Fixed Hybrid 3.93 4.73

0.10 Dynamic Hybrid 3.95 4.60
0.05 Dynamic Hybrid 3.85 4.51
0.01 Dynamic Hybrid 3.79 4.44

Table 2: Performance on TriviaQA (40 Questions, 471 Documents)

Convergence (ϵ) Model Type Avg LLMJ Score Retrieval Time (s)
– Pure Dense 3.67 7.09
– Fixed Hybrid 3.58 6.79

0.10 Dynamic Hybrid 3.95 6.71
0.05 Dynamic Hybrid 3.40 6.85
0.01 Dynamic Hybrid 3.70 7.06

Figure 1: Average LLMJ scores across the two datasets

Figure 2: LLMJ scores against convergence parameters

6 Discussion399

Quantitatively, this experiment shows that ϵ = 0.10400

is the ideal relative entropy convergence threshold,401

indicating that the weight adjustments may be con-402

verging quickly, allowing computational efficiency403

and retrieval permission. This also indicates that 404

most queries may not require deep optimization and 405

that the initial entropy calculation may be strong 406

enough to guide effective re-weighting. This sug- 407

gests that lightweight adaptive mechanisms may 408

be preferable over exhaustive reweighting for real- 409

world deployment, and that further convergence 410

does not necessarily imply better accuracy. This 411

aligns with recent work on entropy-aware optimiza- 412

tion in multimodal adaptation, where dynamic en- 413

tropy was shown to enhance model robustness with- 414

out significant computational overhead (Cao et al., 415

2025). Similarly, the integration of entropy and 416

relative entropy regularization has been demon- 417

strated to improve learning stability and sample ef- 418

ficiency in reinforcement learning models (Zhang 419

et al., 2025). Analyzing the results on the datasets, 420

we find that the experiment is statistically signif- 421

icant at p < 0.01 for TriviaQA, indicating that 422

the proposed model consistently outperforms base- 423

lines across the full distribution of questions. This 424

implies that the dynamic weighting mechanism is 425

robust in semantically ambiguous domains. Hot- 426

PotQA on the other hand had a marginal p-value 427

≈ 0.055 that shows a mean increase in LLMJ 428

scores, but implies that the inter-query variance ad- 429

vantage may not be universal. The observed robust- 430

ness in TriviaQA may be attributed to the hybrid 431

model’s ability to adaptively weigh information, 432

which is a strategy shown to be effective in cross- 433

domain recommendation systems, where dynamic 434

integration of language models allow for nuanced 435

understanding across different and diverse domains 436

(Xiao and Zhang, 2021). In contrast, the marginal 437
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improvement in HotPotQA may suggest that multi-438

hop tasks and reasoning may benefit from more so-439

phisticated dynamic weighting mechanisms, such440

as those explored in recent retrieval-augmented op-441

timization studies (Zhong et al., 2025)442

7 Limitations443

7.1 FAISS-CPU Constraints444

Though the results mention runtime performance,445

this metric should be used only as a relative signal446

for computational efficiency due to limitations in-447

troduced by FAISS-CPU. Given that FAISS-CPU448

was used for all the dynamic model and the two449

baselines, this may skew retrieval time compar-450

isons and runtime tradeoffs may be exaggerated451

compared to real-world settings that use FAISS-452

GPU. Standardized measures of runtime perfor-453

mance may also be difficult to establish given the454

weighting of the dense contribution. This intrin-455

sically suggests that the dynamic hybrid model456

performance is also dependent on the relative com-457

putational efficiency of the two chosen methods for458

the sparse and dense algorithms.459

7.2 Score-Time Tradeoff460

Lower convergence thresholds led to more itera-461

tions in the entropy optimization process, however,462

a maximum iterations parameter t = 5 was in-463

troduced to ensure tractable runtime and consis-464

tent evaluation conditions, but it may have also465

restrained the proposed model’s convergence po-466

tential, especially when operating under extremely467

low entropy thresholds where the maximum thresh-468

olds capped convergence. It remains an open ques-469

tion however whether LLM evaluation scores are470

inversely related with the convergence threshold,471

especially when t is permitted to increase beyond472

the imposed ceiling. Lower thresholds may pro-473

mote more accurate and granular refinement of474

sparse-dense combinations, resulting in potentially475

more semantically relevant rankings, as judged by476

the language model. However, this relationship477

is not implied to be linear or monotonic, espe-478

cially given how previous optimization literature479

shows diminishing returns may occur after certain480

iteration depth, especially in particularly noisy or481

distractor-rich environments, like that imposed by482

HotPotQA (Clarke et al., 2020).483

7.3 Dataset Characteristics 484

This experiment highlights varying results across 485

datasets and shows that advantages may not be uni- 486

versally distributed across distinct datasets. There- 487

fore, performance may vary depending on the 488

dataset’s nature. For example, TriviaQA’s factoid- 489

dependent questions may benefit more compared 490

to multi-hop questions like those introduced in the 491

HotPotQA dataset. It should also be noted that 492

the HotPotQA distractor set was used and that per- 493

formance may have been better with full supervi- 494

sion or gold paragraph setting, where the model 495

is provided with a guaranteed answer-containing 496

corpus. The distractor setting introduces additional 497

noise with the inclusion of semantically similar but 498

irrelevant documents, which tests robustness but 499

may not be an appropriate comparison to the stan- 500

dard trivia dataset. Furthermore, this variation rein- 501

forces the notion that retrieval optimization strate- 502

gies must be contextualized within the structure of 503

the dataset, and that retrieval model efficacy is not 504

a sole function of its architecture, but also of the 505

tested dataset’s complexity and distractor structure 506

(Kwiatkowski et al., 2019). 507

8 Conclusion 508

This work introduced an entropy-based dynamic 509

hybrid retrieval model that adaptively weights 510

sparse and dense retrieval contributions for every 511

query, using Shannon entropy as a proxy for re- 512

trieval confidence. Evaluated on the HotPotQA 513

distractor and TriviaQA under an LLM-as-a-Judge 514

framework, our method significantly outperforms 515

both pure dense and fixed hybrid baselines, with sta- 516

tistically significant gains at a convergence thresh- 517

old of ϵ = 0.10 on TriviaQA p < 0.01 and marginal 518

gains on HotPotQA p ≈ 0.055. These results con- 519

firm that retrieval efficacy can be improved by ac- 520

counting for query-specific uncertainty without re- 521

peated document indexing or supervised training. 522

Our entropy-guided model is retriever-agnostic, 523

lightweight, and easily integrable into standard 524

RAG and existing hybrid RAG pipelines, making it 525

practical for deployment. Future work may include 526

exploring learned or context-aware weighting func- 527

tions, performance under different sparse-dense 528

algorithms, and relationships between convergence 529

thresholds and retrieval accuracy. This study pro- 530

vides a rigorous, interpretable, and deployable 531

foundation for adaptive retrieval in knowledge- 532

intensive NLP pipelines. 533
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Appendix624
Prompt for LLM-as-a-Judge625

Prompt for Extracting Scenarios

You will be given a question and its ground
truth answer list where each item can be a
ground truth answer...
Here is the criteria for the judgement:

• The pred_answer doesn’t need to be
exactly the same as any of the ground
truth answers, but should be semanti-
cally the same for the question.

• Each item in the ground truth an-
swer list can be viewed as a ground
truth answer for the question, and the
pred_answer should be semantically
the same as at least one of them.

Input format:

question: {question}
ground truth answers: {gt_answer}
pred_answer: {pred_answer}

626

Hybrid RAG Case Study (TriviaQA)627

Hybrid RAG Case Study

Question ID: sfq_648

Question: Which Cypriot born, Greek
general led the guerrilla organisation,
EOKA, in Cyprus, during the 1950’s?

Ground Truth Answer: George Grivas

Generated Answer: Based on the
provided documents...

Final Score (LLMJ): 5.0

Final Weights: Sparse = 0.1954,
Dense = 0.8046

628
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