
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

INFLUENCE-BASED ATTRIBUTIONS CAN BE MANIPU-
LATED

Anonymous authors
Paper under double-blind review

ABSTRACT

Influence Functions are a standard tool for attributing predictions to training data in
a principled manner and are widely used in applications such as data valuation and
fairness. In this work, we present realistic incentives to manipulate influence-based
attributions and investigate whether these attributions can be systematically tam-
pered by an adversary. We show that this is indeed possible for logistic regression
models trained on ResNet feature embeddings and standard tabular fairness datasets
and provide efficient attacks with backward-friendly implementations. Our work
raises questions on the reliability of influence-based attributions in adversarial
circumstances.

1 INTRODUCTION

Influence Functions are a popular tool for data attribution and have been widely used in many
applications such as data valuation (Richardson et al., 2019; Hesse et al., 2023; Sundararajan &
Krichene, 2023; Jia et al., 2019), data filtering/subsampling/cleaning (Wu et al., 2022; Wang et al.,
2020; Miao et al., 2021; Teso et al., 2021; Meng et al., 2022), fairness (Li & Liu, 2022; Wang et al.,
2024; Sattigeri et al., 2022; Kong et al., 2021; Pang et al., 2024; Chhabra et al., 2023; Chen et al.,
2024; Yao & Liu, 2023; Ghosh et al., 2023) and so on. While earlier they were being used for benign
debugging, many of these newer applications involve adversarial scenarios where participants have
an incentive to manipulate influence scores; for example, in data valuation a higher monetary sum
is given to samples with a higher influence score and since good data is hard to collect, there is an
incentive to superficially raise influence scores for existing data. Thus, an understanding of whether
and how influence functions can be manipulated is essential to determine their proper usage and
for putting guardrails in place. While a lot of work in the literature has studied manipulation of
feature-based attributions (Heo et al., 2019; Anders et al., 2020; Slack et al., 2020), whether data
attribution methods, specifically influence functions, can be manipulated has not been explored. To
this end, our paper investigates the question and shows that it is indeed possible to systematically
manipulate influence-based attributions according to the manipulator’s incentives.

Simply put, we show that it is possible to systematically train a malicious model very similar
to the honest model in test accuracy but has desired influence scores. To formalize the setup
we divide the function pipeline in terms of two entities – Data Provider who provides training data
and Influence Calculator who trains a model on this data and finds the influence of each training
sample on model predictions. Out of these, Influence Calculator is considered to be the adversary
who wishes to change the influence scores for some training samples and does so covertly by training
a malicious model which is indistinguishable from the original model in terms of test accuracy but
leads to desired influence scores. This setting captures two important downstream applications where
incentives are meaningful: data valuation, where the adversary has an incentive to raise influence
scores for monetary gain and fairness, where the adversary wants to manipulate influence scores for
reducing the fairness of a downstream model.

We next define and provide algorithms to carry out two kinds of attacks in this setup: Targeted
and Untargeted. Targeted attacks are for the data valuation application and specifically manipulate
influence scores for certain target samples. The primary challenge with these attacks is that calculating
gradients of influence-based loss objectives is highly computationally infeasible. We address this
challenge by proposing a memory-time efficient and backward-friendly algorithm to compute the
gradients while using existing PyTorch machinery for implementation. This contribution is of

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

independent technical interest, as the literature has only focused on making forward computation
of influence functions feasible, while we study techniques to make the backward pass viable. Our
algorithm brings down the memory required for one forward + backward pass from not being feasible
to run on a 12GB GPU to 7GB for a 206K parameter model and from 8GB to 1.7GB for a 5K model.

Experiments on multiclass logistic regression models trained on ResNet50 features show that our
targeted attacks achieve a high success rate, a maximum of 94%, without much accuracy drop
across three datasets. One final question that comes to mind is – is it always possible to manipulate
the influence scores for any given training sample? Using a theoretical construction, we give an
impossibility theorem which states that there exist samples for which the influence score cannot be
manipulated irrespective of the model, making this a property of the data rather than the model.

Untargeted attacks are for the fairness application and unlike targeted attacks, manipulate influence
scores arbitrarily without targeting specific samples. We find that surprisingly enough scaling
model weights is a good enough strategy for such attacks without changing model accuracy. In our
experiments on standard tabular fairness datasets, we observe that due to influence score manipulation
fairness of downstream models is affected a lot, leading to a maximum of 16% difference in fairness
metric with and without influence manipulation.

Summarizing, we formalize a setup for systematically manipulating influence-based attributions and
instantiate it for data valuation and fairness use-cases, where adversarial incentives are involved. We
provide algorithms for targeted and untargeted attacks on influence scores, and illustrate their efficacy
experimentally. Our work exposes the susceptibility of influence-based attributions to manipulation
and highlights the need for careful consideration when using them in adversarial contexts. This is
akin to what has been previously observed for feature attributions Bordt et al. (2022).

2 PRELIMINARIES

Consider a classification task with an input space X = Rd and labels in set Y . Let the training
set of size n be denoted by Ztrain = {zi}ni=1 where each sample zi is an input-label pair,
zi = (xi, yi) ∈ X × Y . Let the loss function at a particular sample z and model parameters
θ ∈ Θ be denoted by L(z, θ). Using the loss function and the training set, a model parameterized
by θ ∈ Θ is learnt through empirical risk minimization, resulting in the optimal parameters
θ⋆ := argminθ∈Θ

1
n

∑n
i=1 L (zi, θ). The gradient of the loss w.r.t. parameters θ for the minimizer

at a sample z is given by ∇θL (z, θ⋆). Hessian of the loss for the minimizer is denoted by
Hθ⋆ := 1

n

∑n
i=1 ∇2

θL (zi, θ
⋆). For brevity, we call the model parameterized by θ as model θ. Next

we give the definition of Influence Functions used in our paper.

Definition 1 (Influence Function Koh & Liang (2017)). Assuming that the empirical risk is twice-
differentiable and strictly convex in model parameters θ, the influence of a training point z on the
loss at a test point ztest is given by,

Iθ⋆(z, ztest) := −∇θL (ztest, θ
⋆)

⊤
H−1

θ⋆ ∇θL(z, θ
⋆) (1)

where ∇θL (ztest, θ
⋆) and ∇θL (z, θ⋆) denote the loss gradients at ztest and z respectively, while

H−1
θ⋆ denotes the hessian inverse.

For logistic regression, the influence function has a closed form given by,

Iθ(z, ztest) = −ytesty · σ(−ytestθ
⊤xtest) · σ(−yθ⊤x) · x⊤

testH
−1
θ x (2)

where y ∈ {−1, 1} and σ(t) = 1
1+exp(−t)Koh & Liang (2017).

Given a test set of size m, Ztest = {ztest i}mi=1, we define the overall influence of a training point z
on the loss of the test set to be the sum of its influence on all test points ztest i individually, written as

Iθ⋆(z, Ztest) :=

m∑
i=1

Iθ⋆(z, ztest i) (3)

The difference between Eq.1 and Eq. 3, that is whether the influence is calculated on a single test
point vs. a test set, is understood from context.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Figure 1: Threat Model. Data Provider provides training data. Influence Calculator trains a model and
computes influence scores for the training data on the trained model and a test set. It outputs both the
trained model and the resulting influence scores, which are used for a downstream application such
as data valuation or fairness. Adversarial manipulation happens in the model training process, which
trains a malicious model to achieve desired influence scores, while maintaining similar accuracy as
the honest model.

3 GENERAL THREAT MODEL

In this section, we give a description of our setup and general threat model. We later instantiate these
with two downstream applications, data valuation and fairness, where the objectives and incentives
differ. While we ground our discussion on these two applications, the attacks or their slight variations
can apply to other applications.

Setup. The standard influence function pipeline comprises of two entities: a Data Provider and
an Influence Calculator. Data Provider holds all the training data privately and supplies it to the
Influence Calculator. Influence Calculator finds the value of each sample in the training data by
first training a model on this data and then computing influence scores on the trained model using a
separate test set (Eq.3). We assume that the test set comes from the same underlying distribution as
the training data. Influence Calculator outputs the trained model and the influence scores of each
training sample ranked in a decreasing order of influence scores. These rankings/scores are then used
for a downstream application.

An adversary who has incentives in the downstream application, would want to send manipulated
influence scores to the downstream application. Now the question is, in which part of the IF pipeline
should the adversarial manipulation occur? Turning to prior work on manipulating feature attributions
(Anders et al., 2020; Slack et al., 2020; Heo et al., 2019; Pruthi et al., 2019), the popular choice has
been to corrupt the model training process. In these attacks the compromised model training process
outputs a malicious model which simultaneously has desired influence scores and is similar to the
unaltered original model in test accuracy, thereby making the two models indistinguishable w.r.t. test
predictions. Such an attack cannot be detected without access to the training pipeline or logs, making
it the popular choice for manipulating explanations. Motivated by this, we attack the model training
process in our paper and specify the resultant threat model next.

General Threat Model. We consider the training data held by the data provider and the test set
used by the influence calculator to be fixed. We also assume the influence calculation process to
be honest. The adversarial manipulation to maliciously change influence scores for some training
samples happens during model training. To achieve this, the compromised model training process
outputs a malicious model θ′ such that θ′ leads to desired influence scores but has similar test accuracy
as original honest model θ⋆.

Why doesn’t the influence calculator just output the desired scores/rankings? A natural tech-
nique that comes to mind for manipulation of influences scores is to simply output the desired
scores/rankings. This would be a viable attack only if the manipulation is discreet and cannot be
detected; however an auditor with the ability to supply test samples can easily detect this manipulation
(without access to training data) by checking the rank of the outputted influence matrix in only O(d)
queries where d is the feature dimension. Kindly see Appendix Sec. A.0.1 for the detailed technique
and proof. Intuitively speaking, since honest influence scores come from a closed form (even more
so for logistic regression Eq. 2) and the fact that real-life learning tasks follow a structure, a lot of
natural attacks in the influence calculation process might be detectable by an auditor with querying

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

abilities. An exploration and design of non-trivial working attacks in the influence calculation process
makes for an interesting research direction and is left to future work.

Takeaway : We will systematically train a malicious model which is very similar to the honest
model in test accuracy, but has the desired influence scores/rankings.

4 DOWNSTREAM APPLICATION 1: DATA VALUATION

The goal of data valuation is to determine the contribution of each training sample to model training
and accordingly assign a proportional monetary sum to each. One of the techniques to find this value
is through influence functions, by ranking training samples according to their influence scores in
a decreasing order (Richardson et al., 2019; Hesse et al., 2023; Sundararajan & Krichene, 2023;
Jia et al., 2019). A higher influence ranking implies a more valuable sample, resulting in a higher
monetary sum. Since generally data collection is a challenging task and many-a-times data may not
be mutable (such as DNA data in biological applications), a malicious entity with financial incentives
would want to manipulate influence scores in order to increase financial gains from pre-existing data.
See App. Fig.6 for a pictorial representation of the data valuation setting.

Threat Model. The canonical setting of data valuation consists of 1) multiple data vendors and
2) influence calculator. Each vendor supplies a set of data; the collection of data from all vendors
corresponds to the fixed training set of the data provider. The influence calculator is our adversary
who can collude with data vendors while keeping the data fixed. The adversarial model training can
change model parameters from θ∗ to θ′ while maintaining similar test accuracy as discussed in Sec.3.

Goal of the adversary. Given a set of target samples Ztarget ⊂ Z, the goal of the adversary is to
push the influence ranking of samples from Ztarget to top-k or equivalently increase the influence
score of samples from Ztarget beyond the remaining n− k samples, where k ∈ N.

Single-Target Attack. Let us first consider the case where Ztarget has only one element, Ztarget =
{ztarget}. We formulate the adversary’s attack as a constrained optimization problem where the
objective function, ℓattack, captures the intent to raise the influence ranking of the target sample to
top-k while the constraint function, dist, limits the distance between the original and manipulated
model, so that the two models have similar test accuracies. The resulting optimization problem is
given as follows, where C ∈ R is the model manipulation radius,

min
θ′:dist(θ⋆,θ′)≤C

ℓattack(ztarget, Z, Ztest, θ
′) (4)

Multi-Target Attack. When the target set consists of multiple target samples, Ztarget =
{ztarget1 , ztarget2 · · · ztargetq}, the adversary’s attack can be formulated as repeated applications
of the Single-Target Attack, formally given as,

min
θ′:dist(θ⋆,θ′)≤C

∑
ztargeti∈Ztarget

ℓattack(ztargeti , Z, Ztest, θ
′) (5)

The actual objective used for both the attacks is given as, ℓattack(·) = −Iθ′(ztarget, Ztest) +
1

|Sθ′ |
∑

z∈Sθ′
Iθ′(z, Ztest) where Sθ′ ⊂ Ztrain contains all training samples z s.t. Iθ′(z, Ztest) >

Iθ′(ztarget, Ztest) (see ablation study in Sec. 4.1) to understand why we chose this loss objective).
Here the first term maximizes the influence of the target sample ztarget while the second term
minimizes the influence of all samples which are currently more influential than ztarget. Since this
objective is non-convex, the optimization process results in local minima, which might be non-optimal.
Therefore to get better results, we run every attack mutiple times, starting with random initializations
of θ⋆ in a radius C, as discussed later in the experiments (Sec.4.1).

Efficient Backward Pass for Influence-based Objectives. A natural algorithm to solve complicated
optimization problems as our attacks in Eq. 4 & 5 is Gradient Descent, which involves a forward

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

and backward pass. However, for influence-based attack objectives, naive gradient descent is not
feasible for either of the passes, mainly due to Hessian-Inverse-Vector Products (HIVPs) in the
influence function definition which lead to a polynomial scaling of memory and time requirements
w.r.t model parameters. Backward pass on our attack objectives is even harder as it involves gradients
of influence-based loss objectives, making the attacks too expensive even for linear models trained on
top of ResNet50 features used in our experiments where #parameters range from ∼76k-206k.

While literature has studied ways to make the forward computation of influence functions efficient
Schioppa et al. (2022); Guo et al. (2020); Koh & Liang (2017); Kwon et al. (2023), not much
work has been done on making the backward pass efficient. To this end, we propose a simple
technique – rewriting the original objective into a backward-friendly form – which renders the
gradient computations efficient for influence-based objectives. This allows us to still use gradient
descent and other existing machinery in PyTorch (Paszke et al., 2017). Our idea of rewriting the
attack objective involves two essential steps : (1) linearizing the objective (2) making the linearized
objective backward-friendly in PyTorch, as outlined in Alg.1. This algorithm is of independent
technical interest and is generalizable to other use-cases where backward passes through HIVPs are
needed. The complete algorithm for optimizing the loss with both forward and backward pass is
elucidated in App. Alg. 3.

4.1 DATA VALUATION EXPERIMENTS

In this section, we investigate if the attacks we proposed for data valuation can succeed empirically.
Specifically, we ask the following questions : (1) do our influence-based attacks perform better than
a non-influence baseline?, (2) what is the behavior of our attacks w.r.t. different parameters such
as radius C and target set size? ,(3) what components contribute to the success of our attacks? and
(4) lastly, can our attacks transfer to an unknown test set?. In what follows, we first explain our
experimental setup and then discuss the results.

Datasets & Models. We use three standard image datasets for experimentation : CI-
FAR10 (Krizhevsky et al., 2009), Oxford-IIIT Pet (Parkhi et al., 2012) and Caltech-101 (Li et al.,
2022). We split the respective test sets into two halves while maintaining the original class ratios for
each. The first half is the test set shared between the model trainer and influence calculator used to
optimize influence scores while the second is used as a pristine set for calculating the accuracy of
models and also for transfer experiments discussed later. We pass all images through a pretrained
ResNet50 model (He et al., 2016) from PyTorch to obtain feature vectors of size 2048 for and train
linear models (θ∗) on top of these features with cross-entropy loss and a learning rate of 0.001.

Attack Setup & Evaluation. The constraint function dist is set to L2-norm. Forward pass for the
attacks is using the LiSSA Algorithm Koh & Liang (2017); details including parameters used can be
found in App. Sec.A.1.2. For the Single-Target Attack, we randomly pick a training sample (which is
not already in the top-k influence rankings) as the target and carry out our attack on it. We repeat this
process for 50 samples and report the fraction out of 50 which could be (individually) moved to top-k
in influence rankings as the success rate. To carry out the Multi-Target Attack, we randomly pick
target sets of different sizes from the training set. The success rate now is the fraction of samples in
the target set which could be moved top-k in influence rankings. For many of our results, the success
rates are reported under two regimes : (1) the high-accuracy similarity regime where the manipulated
and original models are within 3% accuracy difference and (2) the best success rate irrespective of
accuracy difference. We optimize every attack from 5 different initializations of θ⋆ within a radius of
C and report the runs which eventually lead to the highest success rates.

Baseline: Loss Reweighing Attack. While our attacks are based on influence functions, we

propose a non-influence baseline attack for increasing the importance of a training sample : reweigh
the training loss, with a high weight on the loss for the target sample. We call this baseline the
Loss Reweighing Attack, formally defined as, minθ′

∑
z∈Ztrain\{ztarget} L(z; θ

′) + α · L(ztarget; θ′),
where L is the model training loss and α ∈ R is the weight on the loss of target sample. Intuitively,
a larger weight α increases the influence of ztarget on the final model, but results in a lower model
accuracy and vice-versa. Directly reweighing the loss as in the baseline led to unstable training, so

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Table 1: Success Rates of the Baseline vs. our Single-Target Attack for Data Valuation. k is the
ranking, as in top-k. ∆acc := TestAcc(θ⋆) − TestAcc(θ′) represents drop in test accuracy for
manipulated model θ′. Two success rates are reported : (1) when ∆acc ≤ 3% (2) the best success
rate irrespective of accuracy drop. (%) represents model accuracy. (-) means a model with non-zero
success rate could not be found & hence accuracy can’t be stated. Our attack has a significantly
higher success rate as compared to the baseline with a much smaller accuracy drop under all
settings.

Dataset (Honest Model θ⋆ Accuracy) CIFAR10 (89.8%) Oxford-IIIT Pet (92.2%) Caltech-101 (94.9%)
Success Rate ∆acc ≤ 3% Best (∆acc) ∆acc ≤ 3% Best (∆acc) ∆acc ≤ 3% Best (∆acc)

k = 1
Baseline 0.00 0.00 (-) 0.00 0.00 (-) 0.00 0.00 (-)
Our 0.64 0.90 (5.7%) 0.88 0.94 (5.4%) 0.74 0.85 (3.8%)

k = 300
Baseline 0.00 0.00 (-) 0.10 1.00 (87.3%) 0.08 0.84 (93.6%)
Our 0.76 0.90 (5.7%) 0.88 0.94 (5.4%) 0.74 0.85 (3.8%)

top-10 top-10 (transfer) top-300 top-300 (transfer) honest model accuracy

0.0 0.2 0.4 0.6 0.8
Success Rate

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

M
od

el
 A

cc
ur

ac
y

CIFAR10

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Success Rate

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

M
od

el
 A

cc
ur

ac
y

Oxford-IIIT Pet

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Success Rate

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

M
od

el
 A

cc
ur

ac
y

Caltech-101

Figure 2: Behavior and Transfer results for Single-Target Attack in the Data Valuation use-case.
Value of manipulation radius C (Eq.4) increases from left to right in each curve. (1) Behavior on
original test set (solid lines) : As manipulation radius C increases, manipulated model accuracy
drops while attack success rate increases. (2) Transfer on an unknown test set (dashed lines): Success
rate on an unknown test set gets better with increasing values of ranking k.

we instead implemented the baseline with weighted sampling according to weight α in each batch
(rather than uniform sampling).

For more experimental details, kindly refer to the Appendix Sec. A.1.2. Next we discuss our results.

Our Single-Target attack performs better than the Baseline. As demonstrated in Table 1, our
influence-based attacks indeed performs better than the baseline – while the baseline has a low success
rate across the board, our attack achieves a success rate of 64-88% in the high accuracy regime
and 85-94% without accuracy constraints. The baseline is able to achieve a high success rate when
ranking k is large, but only with a massive accuracy drop. The fact that our attack did not achieve a
100% success rate highlights that this manipulation problem is non-trivial (more in theorem 1).

Behavior of our Single-Target attack w.r.t manipulation radius C & training set size. Theo-
retically, the manipulation radius parameter C in our attack objectives (Eq. 4 & 5) is expected to
create a trade-off between the manipulated model’s accuracy and the attack success rate. Increasing
C should result in a higher success rate as the manipulated model is allowed to diverge more from the
(optimal) original model but on the other hand its accuracy should drop and vice-versa. We observe
this trade-off for all three datasets and different values of ranking k, as shown in Fig.2 (solid lines).

We also anticipate our attack to work better with smaller training sets, as there will be fewer samples
competing for top-k rankings. Experimentally, this is found to be true – Pet dataset with the smallest
training set has the highest success rates, as shown in Fig.2 & Table 1.

Our attacks transfer when influence scores are computed with an unknown test set. When
an unknown test set is used to compute influence scores, our attacks perform better as ranking k
increases, as shown in Fig.2. This occurs because rank of the target sample, optimized with the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Target Set Size 20 40 60 80 100

3 10 20 30 40 50 60 70 80 90 100
k

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

Oxford-IIIT Pet

3 10 20 30 40 50 60 70 80 90 100
k

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s r

at
e

Caltech-101

3 10 20 30 40 50 60 70 80 90 100
k

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

CIFAR10

Figure 3: Performance of Multi-Target Attack in the Data Valuation use-case. Results for the high-
accuracy regime. Success Rates are higher when target set size is greater than the desired ranking k.

original test set, deteriorates with the unknown test set and a larger k increases the likelihood of the
target still being in the top-k rankings.

Next we discuss results for the Multi-Target Attack scenario, where the target is not a single training
sample, but rather a collection of multiple training samples. We investigate the following question.

How does our Multi-Target Attack perform with changing target set size and desired ranking
k? Intuitively, our attack should perform better when the size of the target set is larger compared to
ranking k – this is simply because a larger target set offers more candidates to take the top-k rankings
spots, thus increasing the chances of some of them making it to top-k. Our experimental results
confirm this intuition; as demonstrated in Fig.3, we observe that (1) for a fixed value of ranking k, a
larger target set size leads to a higher success rate; target set size of 100 has the highest success rates
for all values of ranking k across the board, and (2) the success rate decreases with increasing value
of k for all target set sizes and datasets. These results are for the high-accuracy similarity regime
where the original and manipulated model accuracy differ by less than 3%.

Easy vs. Hard Samples. We find that target samples which rank very high or low in the original
influence rankings are easier to push to top-k rankings upon manipulation (or equivalently samples
which have a high magnitude of influence either positive or negative). This is so because the influence
scores of extreme rank samples are more sensitive to model parameters as shown experimentally in
Fig. 4 and App. Fig.7, thus making them more susceptible to influence-based attacks.

0 500 1000 1500 2000 2500 3000 3500
Easy-to-Manipulate Data's Original Rank

0

2

4

6

8

10

Fr
eq

ue
nc

y

Oxford-IIIT Pet

0 500 1000 1500 2000 2500 3000 3500
Hard-to-Manipulate Data's Original Rank

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Fr
eq

ue
nc

y

Oxford-IIIT Pet

0 500 1000 1500 2000 2500 3000 3500
Original Rank

10 3

10 2

10 1

100

101

No
rm

 o
f I

nf
lu

en
ce

 G
ra

di
en

t Oxford-IIIT Pet

Figure 4: Histograms for original ranks of easy-to-manipulate samples (L), that of hard-to-manipulate
samples (M), scatterplots for influence gradient norm vs. original ranks of (R) 50 random target
samples. Ranking k := 1. For other datasets, see App. Fig.7.

Imposibility Theorem for Data Valuation Attacks. We observe in Fig.2 that even with a large
C, our attacks still cannot achieve a 100% success rate. Motivated by this, we wonder if there exist
target samples for which the influence score cannot be moved to top-k rank? The answer is yes and
we formally state this impossibility result as follows, with the proof in Appendix Sec. A.1.3.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Theorem 1. For a logistic regression family of models and any target influence ranking
k ∈ N, there exists a training set Ztrain, test set Ztest and target sample ztarget ∈ Ztrain,
such that no model in the family can have the target sample ztarget in top-k influence rankings.

Ablation Study : What components contribute to the success of our attack? Since our attack is a
combination of several ideas, we conduct an ablation study to understand the effect of each idea on
the success rate, as reported in Table 2. The different ideas are as follows.

• Maximize the target data’s influence: Given a target sample, the simplest idea to move it
to top-k influence rankings is to maximize its own influence score, objective written as
maxθ′:dist(θ∗,θ′)≤C Iθ′(ztarget, Ztest). This attack doesn’t achieve high success rates, even
without accuracy constraints which could be due to an inherent drawback : this objective
doesn’t consider other training samples’ influence scores.

• + Minimize the influence of samples that are ranked top-k: Instead of just increas-
ing the influence score of the target sample, this objective also lowers the score for
the samples currently ranked top-k, given as maxθ′:dist(θ∗,θ′)≤C Iθ′(ztarget, Ztest) −
1
K

∑
z:rank of z≤k Iθ′(z, Ztest). We observe empirically that the optimization procedure

of this objective gets stuck in local minima easily.
• + (Our objective) Minimize the influence score of all samples whose influence is larger than

that of the target sample : This is the final objective used by us and lowers the influence of all
training samples which have a higher influence than that of the target sample instead of just
the top-k (as in the previous objective), minθ′:dist(θ∗,θ′)≤C

1
|Sθ′ |

∑
z∈Sθ′

Iθ′(z, Ztest) −
Iθ′(ztarget, Ztest) where Sθ′ ⊆ Ztrain has all training samples z s.t. Iθ′(z, Ztest) >
Iθ′(ztarget, Ztest). Empirically, we find that this objective function decreases the chance of
being stuck at suboptimal solutions and the loss keeps reducing throughout the optimization
trajectory resulting in higher success rates.

• + (Our final attack) Multiple random initializations. Because the above objective function
is non-convex, we find that using multiple random initializations of the honest model within
a radius C helps to obtain a better solution, especially with a larger value of parameter C,
when the search space is bigger. As a result, we observe significant improvement in terms of
‘best’ success rates (where C can be very large). This is our final attack.

Table 2: Ablation study for Single-Target Attack in Data Valuation. Ranking k := 10.
∆acc := TestAcc(θ⋆)− TestAcc(θ′) represents the drop in test accuracy for a manipulated model.
(%) represents model accuracy. Two success rates are reported : (1) when ∆acc ≤ 3% and (2) the best
success rate irrespective of accuracy drop. Our final objective with multiple random initializations of
original model within radius C leads to highest success rates.

Dataset (Honest Model θ⋆ Accuracy) CIFAR10 (89.8%) Oxford-IIIT Pet (92.2%) Caltech-101 (94.9%)
Success Rate ∆acc ≤ 3% Best (∆acc) ∆acc ≤ 3% Best (∆acc) ∆acc ≤ 3% Best (∆acc)

Max. Target Inf. 0.44 0.64 (15.9%) 0.64 0.70 (15.2%) 0.52 0.72 (11.7%)
+ Min. Top-k Inf. 0.60 0.72 (20.0%) 0.74 0.74 (1.6%) 0.68 0.68 (3.6%)
+ Min. Higher-Rank Inf. 0.60 0.80 (6.0%) 0.88 0.88 (2.1%) 0.74 0.77 (8.3%)
+ Multiple Rand Init. (Ours) 0.64 0.90 (5.5%) 0.88 0.94 (5.3%) 0.74 0.85 (7.1%)

5 DOWNSTREAM APPLICATION 2: FAIRNESS

Recently, a lot of studies have used influence functions in different ways to achieve fair models (Li
& Liu, 2022; Wang et al., 2024; Sattigeri et al., 2022; Kong et al., 2021; Pang et al., 2024; Chhabra
et al., 2023; Chen et al., 2024; Yao & Liu, 2023; Ghosh et al., 2023). In our paper, we focus on the
study by Li & Liu (2022) as they use the same definition of influence functions as us. The suggested
approach in Li & Liu (2022) to achieve a fair model is by reweighing training data based on influence
scores for a base model and then using this reweighed data to train a new downstream model from

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

scratch. This downstream model is expected to have high fairness as a result of the reweighing. For a
pictorial representation of this process, see App. Fig. 8. The weights for training data are found by
solving an optimization problem which places influence functions in the constraints. See Appendix
Sec.A.2 for more details on the optimization problem.

Ultimately, weights of the training data determine the fairness of the downstream model. Since these
weights are derived from influence scores, manipulating the influence scores can alter the fairness of
the downstream model. As a result, a malicious entity who wants to spread unfairness is incentivized
to manipulate influence scores.

Threat Model. Similar to the general setup, training and test set are fixed, influence calculator is
assumed to be the adversary. Model trained by the influence calculator is now the base model used by
the reweighing pipeline. The adversarial model training can tamper the base model parameters from
θ∗ to θ′ to manipulate the influence scores while maintaining similar test accuracy.

Goal of the adversary. Fairness of the final downstream model is measured with a fairness met-
ric. The concrete goal of the adversary is to make the value of this fairness metric worse for the
downstream model than what could have been achieved without adversarial manipulation.

Attack. Since the goal of the adversary in this case is not tied to specific target samples, we propose
an untargeted attack for the adversary. Our attack is deceptively simple – scale the base model θ⋆ by a
constant λ > 0. The malicious base model output by the model trainer is now θ′ = λ · θ⋆, instead of
θ⋆. Note that for logistic regression the malicious and original base model are indistinguishable since
scaling with a positive constant maintains the sign of the predictions, leading to the same accuracy.

5.1 FAIRNESS MANIPULATION EXPERIMENTS

We investigate experimentally if our scaling attack can be successful in reducing fairness of the
final downstream model. We use three standard fairness benchmarks : Adult Credit Becker &
Kohavi (1996), German Credit Hofmann (1994) and Compas Angwin et al. (2022). For details about
these datasets, see Appendix Table 3. We train L2-regularized logistic regression models for these
datasets which act as base models for the training data reweighing pipeline. To carry out our fairness
manipulation attack, we scale the models weights with different scaling coefficients and feed these
scaled models to the reweighing pipeline. The reweighed training data is then used to train a final
downstream model, which is expected to be fair. Parameter values for L2 regularization and the
reweighing are same as in Li & Liu (2022) and can be found in Appendix Tables 4 and 3.

Evaluation. We evaluate the fairness of the final downstream model with a popular fairness metric,
called demographic parity (DP) (See Appendix Def. 2 for definition). A higher value of DP gap
implies less fairness and vice-versa. We call the attack a success if the final downstream model
post-attack is less fair (higher DP gap) than the final model achieved without attacking. Additionally,
we expect the test accuracies of the downstream model with and without attack to be similar to keep
the manipulation discreet. Note that this is different from our threat model’s indistinguishability
constraint, which applies to the base model, not to the downstream model.

Results. As can be seen from our results in Fig.5, the scaling attack works surprisingly well across all
datasets – downstream models achieved after our attack are considerably less fair (higher DP gap) than
the models without attack, achieving a maximum difference of 16% in the DP gap. Simultaneously,
downstream models post-attack maintain similar test accuracies to downstream models without
attack. Since the process to achieve the downstream model involves a lot of steps, including solving
a non-convex optimization problem to find training data weights and then retraining a model, we
sometimes do not see a smooth monotonic trend in fairness metric values w.r.t. scaling coefficients.
However, this does not matter much from the attacker’s perspective as all the attacker needs is one
scaling coefficient which meets the attack success criteria.

6 DISCUSSION ON SUSCEPTIBILITY AND DEFENSE

The susceptibility of influence functions to our attacks can come from the fact that there can exist
models that behave very similarly (Rashomon Effect Rudin et al. (2024)) but have different influential
samples up to an extent. Equivalently, changing the influence for many samples does not affect the
model accuracy much, as is shown by our experiments (though there exist some samples for which

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Demographic Parity Gap (after attack) Demographic Parity Gap (w/o attack) Downstream Model Test Acc. (after attack) Downstream Model Test Acc. (w/o attack)

10 3 10 2 10 1 100

Scaling Coefficient

0.12

0.13

0.14

0.15

0.16

0.17

0.18

De
m

og
ra

ph
ic

Pa
rit

y
Ga

p

0.6475

0.6500

0.6525

0.6550

0.6575

0.6600

0.6625

Do
wn

st
re

am
 M

od
el

 Te
st

 A
cc

.

German Credit

10 3 10 2 10 1 100

Scaling Coefficient

0.135

0.140

0.145

0.150

0.155

De
m

og
ra

ph
ic

Pa
rit

y
Ga

p

0.646

0.648

0.650

0.652

0.654

0.656

0.658

0.660

Do
wn

st
re

am
 M

od
el

 Te
st

 A
cc

.

Compas

10 3 10 2 10 1 100

Scaling Coefficient

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

De
m

og
ra

ph
ic

Pa
rit

y
Ga

p

0.79

0.80

0.81

0.82

0.83

Do
wn

st
re

am
 M

od
el

 Te
st

 A
cc

.

Adult Credit

Figure 5: Scaling attack for the Fairness use-case. Demographic Parity Gap of post-attack downstream
models is higher than that of those w/o attack while test accuracies are comparable. This implies that
post-attack downstream models are less fair than those w/o attacks. Scaling coefficients in log scale.

the influence can’t be manipulated, from theorem 1). Some plausible ways to defend against the
attacks are (1) providing cryptographic proofs of honest model training using Zero-Knowledge Proofs
Sun et al. (2023); Abbaszadeh et al. (2024) and, (2) to check if the model is atleast a local minima or
not, since IFs assume that the model is an optimal solution to the optimization.

7 RELATED WORK

Fragility of Influence Functions. Influence functions proposed in Koh & Liang (2017) are an
approximation to the effect of upweighting a training sample on the loss at a test point. This
approximation error can be large as shown by (Basu et al., 2020; Bae et al., 2022; Epifano et al.,
2023), making influence functions fragile especially for deep learning models. Our work is orthogonal
to this line of work as we study the robustness of influence functions w.r.t. model parameters instead
of approximation error of influence functions w.r.t. the true influence.

Model Manipulation in the Threat Model. Manipulating models to execute attacks is a prevalent
theme in the literature. Slack et al. (2020) use model manipulations to corrupt feature attributions
in tabular data while (Heo et al., 2019; Anders et al., 2020) do so in vision models. Pruthi et al.
(2019) corrupt attention-based explanations for language models while maintaining model accuracy.
Shahin Shamsabadi et al. (2022) show that it is possible to corrupt a fairness metric by manipulating
an interpretable surrogate of a black-box model while maintaining empirical performance of the
surrogate. Similar to these, our threat model also allows the adversary to manipulate models while
maintaining the test accuracy. However, our adversarial goal is to corrupt influence-based attributions.

Data Manipulation Attack on Explanations. (Ghorbani et al., 2019; Alvarez Melis & Jaakkola,
2018; Zhang et al., 2020; Dombrowski et al., 2019; Kindermans et al., 2019) have studied how data
can be manipulated to corrupt feature attributions. On the contrary, firstly, we keep data fixed and
manipulate the model and secondly, we work with data attributions rather than feature attributions.

8 CONCLUSION & FUTURE WORK

While past work has mostly focused on feature attributions, in this paper we exhibit realistic incentives
to manipulate data attributions. Motivated by the incentives, we propose attacks to manipulate outputs
from a popular data attribution tool – Influence Functions. We demonstrate the success of our attacks
experimentally on multiclass logistic regression models on ResNet features and standard tabular
fairness datasets. Our work lays bare the vulnerablility of influence-based attributions to manipulation
and serves as a cautionary tale when using them in adversarial circumstances.

While logistic regression is a good starting point for formulating and solving a new problem and
these models are still relevant in many domains, we do think attacking influence functions for large
models is an interesting avenue for future research. Some other future directions include exploring
different threat models, additional use-cases and manipulating other kinds of data attribution tools.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Kasra Abbaszadeh, Christodoulos Pappas, Jonathan Katz, and Dimitrios Papadopoulos. Zero-
knowledge proofs of training for deep neural networks. Cryptology ePrint Archive, 2024.

David Alvarez Melis and Tommi Jaakkola. Towards robust interpretability with self-explaining neural
networks. Advances in neural information processing systems, 31, 2018.

Christopher Anders, Plamen Pasliev, Ann-Kathrin Dombrowski, Klaus-Robert Müller, and Pan Kessel.
Fairwashing explanations with off-manifold detergent. In International Conference on Machine
Learning, pp. 314–323. PMLR, 2020.

Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias. In Ethics of data and
analytics, pp. 254–264. Auerbach Publications, 2022.

Juhan Bae, Nathan Ng, Alston Lo, Marzyeh Ghassemi, and Roger B Grosse. If influence functions
are the answer, then what is the question? Advances in Neural Information Processing Systems,
35:17953–17967, 2022.

Samyadeep Basu, Philip Pope, and Soheil Feizi. Influence functions in deep learning are fragile.
arXiv preprint arXiv:2006.14651, 2020.

Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5XW20.

Sebastian Bordt, Michèle Finck, Eric Raidl, and Ulrike von Luxburg. Post-hoc explanations fail to
achieve their purpose in adversarial contexts. In Proceedings of the 2022 ACM Conference on
Fairness, Accountability, and Transparency, pp. 891–905, 2022.

Ruizhe Chen, Jianfei Yang, Huimin Xiong, Jianhong Bai, Tianxiang Hu, Jin Hao, Yang Feng,
Joey Tianyi Zhou, Jian Wu, and Zuozhu Liu. Fast model debias with machine unlearning. Advances
in Neural Information Processing Systems, 36, 2024.

Anshuman Chhabra, Peizhao Li, Prasant Mohapatra, and Hongfu Liu. “what data benefits my classi-
fier?” enhancing model performance and interpretability through influence-based data selection.
2023.

Ann-Kathrin Dombrowski, Maximillian Alber, Christopher Anders, Marcel Ackermann, Klaus-
Robert Müller, and Pan Kessel. Explanations can be manipulated and geometry is to blame.
Advances in neural information processing systems, 32, 2019.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness through
awareness. In Proceedings of the 3rd innovations in theoretical computer science conference, pp.
214–226, 2012.

Jacob R Epifano, Ravi P Ramachandran, Aaron J Masino, and Ghulam Rasool. Revisiting the fragility
of influence functions. Neural Networks, 162:581–588, 2023.

Amirata Ghorbani, Abubakar Abid, and James Zou. Interpretation of neural networks is fragile. In
Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 3681–3688, 2019.

Bishwamittra Ghosh, Debabrota Basu, and Kuldeep S Meel. “how biased are your features?”:
Computing fairness influence functions with global sensitivity analysis. In Proceedings of the 2023
ACM Conference on Fairness, Accountability, and Transparency, pp. 138–148, 2023.

Han Guo, Nazneen Fatema Rajani, Peter Hase, Mohit Bansal, and Caiming Xiong. Fastif:
Scalable influence functions for efficient model interpretation and debugging. arXiv preprint
arXiv:2012.15781, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Juyeon Heo, Sunghwan Joo, and Taesup Moon. Fooling neural network interpretations via adversarial
model manipulation. Advances in neural information processing systems, 32, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Joshua Hesse, Davide Boldini, and Stephan Sieber. Data valuation: A novel approach for analyzing
high throughput screen data using machine learning. 2023.

Hans Hofmann. Statlog (German Credit Data). UCI Machine Learning Repository, 1994. DOI:
https://doi.org/10.24432/C5NC77.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nick Hynes, Nezihe Merve Gürel, Bo Li,
Ce Zhang, Dawn Song, and Costas J Spanos. Towards efficient data valuation based on the
shapley value. In The 22nd International Conference on Artificial Intelligence and Statistics, pp.
1167–1176. PMLR, 2019.

Pieter-Jan Kindermans, Sara Hooker, Julius Adebayo, Maximilian Alber, Kristof T Schütt, Sven
Dähne, Dumitru Erhan, and Been Kim. The (un) reliability of saliency methods. Explainable AI:
Interpreting, explaining and visualizing deep learning, pp. 267–280, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International conference on machine learning, pp. 1885–1894. PMLR, 2017.

Shuming Kong, Yanyan Shen, and Linpeng Huang. Resolving training biases via influence-based
data relabeling. In International Conference on Learning Representations, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Yongchan Kwon, Eric Wu, Kevin Wu, and James Zou. Datainf: Efficiently estimating data influence
in lora-tuned llms and diffusion models. arXiv preprint arXiv:2310.00902, 2023.

Fei-Fei Li, Marco Andreeto, Marc’Aurelio Ranzato, and Pietro Perona. Caltech 101, Apr 2022.

Peizhao Li and Hongfu Liu. Achieving fairness at no utility cost via data reweighing with influence.
In International conference on machine learning, pp. 12917–12930. PMLR, 2022.

Xianjia Meng, Yong Yang, Ximeng Liu, and Nan Jiang. Active forgetting via influence estimation
for neural networks. International Journal of Intelligent Systems, 37(11):9080–9107, 2022.

Xiaoye Miao, Yangyang Wu, Lu Chen, Yunjun Gao, Jun Wang, and Jianwei Yin. Efficient and
effective data imputation with influence functions. Proceedings of the VLDB Endowment, 15(3):
624–632, 2021.

Jinlong Pang, Jialu Wang, Zhaowei Zhu, Yuanshun Yao, Chen Qian, and Yang Liu. Fair clas-
sifiers without fair training: An influence-guided data sampling approach. arXiv preprint
arXiv:2402.12789, 2024.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In 2012
IEEE conference on computer vision and pattern recognition, pp. 3498–3505. IEEE, 2012.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Danish Pruthi, Mansi Gupta, Bhuwan Dhingra, Graham Neubig, and Zachary C Lipton. Learning to
deceive with attention-based explanations. arXiv preprint arXiv:1909.07913, 2019.

Adam Richardson, Aris Filos-Ratsikas, and Boi Faltings. Rewarding high-quality data via influence
functions. arXiv preprint arXiv:1908.11598, 2019.

Cynthia Rudin, Chudi Zhong, Lesia Semenova, Margo Seltzer, Ronald Parr, Jiachang Liu, Srikar
Katta, Jon Donnelly, Harry Chen, and Zachery Boner. Amazing things come from having many
good models. arXiv preprint arXiv:2407.04846, 2024.

Prasanna Sattigeri, Soumya Ghosh, Inkit Padhi, Pierre Dognin, and Kush R Varshney. Fair infinitesi-
mal jackknife: Mitigating the influence of biased training data points without refitting. Advances
in Neural Information Processing Systems, 35:35894–35906, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Andrea Schioppa, Polina Zablotskaia, David Vilar, and Artem Sokolov. Scaling up influence functions.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 8179–8186, 2022.

Ali Shahin Shamsabadi, Mohammad Yaghini, Natalie Dullerud, Sierra Wyllie, Ulrich Aı̈vodji, Aisha
Alaagib, Sébastien Gambs, and Nicolas Papernot. Washing the unwashable: On the (im) possibility
of fairwashing detection. Advances in Neural Information Processing Systems, 35:14170–14182,
2022.

Dylan Slack, Sophie Hilgard, Emily Jia, Sameer Singh, and Himabindu Lakkaraju. Fooling lime
and shap: Adversarial attacks on post hoc explanation methods. In Proceedings of the AAAI/ACM
Conference on AI, Ethics, and Society, pp. 180–186, 2020.

Haochen Sun, Tonghe Bai, Jason Li, and Hongyang Zhang. Zkdl: Efficient zero-knowledge proofs of
deep learning training. Cryptology ePrint Archive, 2023.

Mukund Sundararajan and Walid Krichene. Inflow, outflow, and reciprocity in machine learning. In
International Conference on Machine Learning, pp. 33195–33208. PMLR, 2023.

Stefano Teso, Andrea Bontempelli, Fausto Giunchiglia, and Andrea Passerini. Interactive label
cleaning with example-based explanations. Advances in Neural Information Processing Systems,
34:12966–12977, 2021.

Haonan Wang, Ziwei Wu, and Jingrui He. Fairif: Boosting fairness in deep learning via influence
functions with validation set sensitive attributes. In Proceedings of the 17th ACM International
Conference on Web Search and Data Mining, pp. 721–730, 2024.

Zifeng Wang, Hong Zhu, Zhenhua Dong, Xiuqiang He, and Shao-Lun Huang. Less is better:
Unweighted data subsampling via influence function. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 6340–6347, 2020.

Ga Wu, Masoud Hashemi, and Christopher Srinivasa. Puma: Performance unchanged model
augmentation for training data removal. In Proceedings of the AAAI conference on artificial
intelligence, volume 36, pp. 8675–8682, 2022.

Yuanshun Yao and Yang Liu. Understanding unfairness via training concept influence. arXiv preprint
arXiv:2306.17828, 2023.

Xinyang Zhang, Ningfei Wang, Hua Shen, Shouling Ji, Xiapu Luo, and Ting Wang. Interpretable
deep learning under fire. In 29th {USENIX} security symposium ({USENIX} security 20), 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A APPENDIX

A.0.1 AUDITING THE INFLUENCE CALCULATOR BY SUPPLYING TEST DATA

We provide an auditing algorithm that can detect if the influence calculator outputs arbitrary numbers
as influence scores.

We first collect a sequence of test points ztest 1, · · · , ztest d such that the rank of Gtest is d, where
the ith row in Gtest ∈ Rd×d is ∇θL(ztest, θ

∗) and d is the size of model parameters θ∗. This can
be done because θ∗ is publicly known by the auditor. We then query the influence calculator by
feeding ztest i one by one and collect the returned influence scores as I ∈ Rm×n. We compute
the matrix C := G−1

testI . Then we feed a new sequence of test points ztest d+1, · · · , ztest 2d and
suppose Ii ∈ Rm (i = d + 1, · · · , 2d) are the returned influence scores. If there is any i s.t.
Ii ̸= ∇θL(ztest, θ

∗)⊤C, we return True, i.e. state this influence calculator is malicious; otherwise,
we return False.

We prove that if the influence calculator is honest, this algorithm will return False. In this
case, I = −GtestHθ∗G⊤

train. Then the returned score Ii = −∇θL(ztest, θ
∗)⊤Hθ∗G⊤

train =
∇θL(ztest, θ

∗)⊤G−1
test

(
−GtestHθ∗G⊤

train

)
= −∇θL(ztest, θ

∗)⊤G−1
testI = ∇θL(ztest, θ

∗)⊤C
should pass the auditing. In contrast, if the malicious influence calculator returns arbitrary scores, it
will be captured by this auditing algorithm.

A.1 DATA MANIPULATION ATTACK DETAILS

Figure 6: Data Valuation Setup and Threat Model.

A.1.1 EFFICIENT BACKWARD PASS ALGORITHM

Our idea of rewriting the attack objective involves two essential steps : (1) linearizing the objective
(2) making the linearized objective backward-friendly in PyTorch.

Linearize the attack objective: Generally the attack objective can be a non-linear combination of
influence functions over different training samples, which makes the backward pass inefficient.
Therefore we first transform the given objective into a linear combination of influence functions,
ℓ̂attack((Iθ(z, Ztest) : z ∈ Z)) := u⊤(Iθ(z, Ztest) : z ∈ Z) for some vector u ∈ Rn, such that, the
objective and gradient values are the same, ℓ̂attack(·) = ℓattack(·) and ∇θ ℓ̂attack(·) = ∇θℓattack(·).
Observe that from chain rule ∇θℓattack(Iθ(z, Ztest) : z ∈ Z) =

∑
z∈Z

∂ℓattack
∂Iθ(z,Ztest)

· ∇θIθ(z, Ztest).

Therefore, we can set u as
(

∂ℓattack
∂Iθ(z,Ztest)

: z ∈ Z
)

while meeting the equal objective and gradient
value requirement. Influence scores in this vector are computed using an efficient forward pass
algorithm, given in Alg. 2.

Get a PyTorch backward-friendly attack objective: Simply expanding our linearized attack ob-
jective gives, ℓ̂attack(·) = v⊤θ,1H

−1
θ vθ,2 where vθ,1 = (−∇θ

∑m
i=1 L (ztest i, θ)) and vθ,2 =(

∇θ

∑
z∈Z uz · L(z, θ)

)
. Gradient computations for this objective will have to go through HIVPs,

which is highly inefficient. Therefore we next convert the linearized objective into one which does not
involve HIVPs, again such that the objective and gradient values are same as the original objective.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Using chain rule, the gradient of the expanded linearized attack objective can be written as
∇θ ℓ̂attack(·) = (∇θvθ,1)

⊤
u2 + u⊤

1 (∇θvθ,2) − u⊤
1 (∇θHθ)u2 where u1 = H−1

θ vθ,1 and u2 =

H−1
θ vθ,2. PyTorch supports the gradient computation for functions of gradient, making vθ,1 and

vθ,2 backward-friendly. PyTorch also calculates gradients for functions of hessian vector products
implicitly, which leads to efficiency. Additionally, we can precompute u1, u2 and freeze them.

As a result, our final backward-friendly objective function is efficient and backward-friendly with
PyTorch and is given as, ℓ̄attack(θ) = v⊤θ,1u2 + u⊤

1 vθ,2 − u⊤
1 Hθu2. The algorithm for computing our

backward-friendly objective ℓ̄attack is elucidated in Alg. 1.

Derivation for expanding the linearized objective:

ℓ̂attack((Iθ(z, Ztest) : z ∈ Z)) = u⊤(Iθ(z, Ztest) : z ∈ Z)

=
∑
z∈Z

uz · Iθ(z, Ztest)

=
∑
z∈Z

uz ·
m∑
i=1

Iθ(ztest i, z)

=
∑
z∈Z

uz ·
m∑
i=1

−∇θL (ztest,i, θ)
⊤
H−1

θ ∇θL(z, θ)

=

(
−∇θ

m∑
i=1

L (ztest,i, θ)

)⊤

H−1
θ

(
∇θ

∑
z∈Z

uz · L(z, θ)

)
= v⊤θ,1H

−1
θ vθ,2

where vθ,1 = (−∇θ

∑m
i=1 L (ztest,i, θ)) and vθ,2 =

(
∇θ

∑
z∈Z uz · L(z, θ)

)
.

Chain Rule for gradient of expanded linearized objective:

∇θ ℓ̂attack((Iθ(z, Ztest) : z ∈ Z)) = ∇θv
⊤
θ,1H

−1
θ vθ,2

= (∇θvθ,1)
⊤ ·H−1

θ vθ,2 + v⊤θ,1H
−1
θ (∇θvθ,2)− v⊤θ,1H

−1
θ (∇θHθ)H

−1
θ vθ,2

= (∇θvθ,1)
⊤
u2 + u⊤

1 (∇θvθ,2)− u⊤
1 (∇θHθ)u2

where u1 = H−1
θ vθ,1 and u2 = H−1

θ vθ,2.

Algorithm 1 Get Backward Friendly Attack Objective
Input: Model Parameters θ, Train Set Z, Test Set Ztest, Loss L, Original Attack Objective ℓattack
Output: Backward-Friendly Attack Objective ℓ̄attack(θ)

1: Compute (Iθ(z, Ztest) : z ∈ Z) from Appendix Alg. 2
2: Compute u :=

(
∂ℓattack

∂Iθ(z,Ztest)
: z ∈ Z

)
3: Compute vθ,1 := (−∇θ

∑m
i=1 L (ztest i, θ)) and vθ,2 :=

(
∇θ

∑
z∈Z uz · L(z, θ)

)
4: Compute and freeze u1 := H−1

θ vθ,1 and u2 := H−1
θ vθ,2

5: Compute ℓ̄attack(θ) := v⊤θ,1u1 + u⊤
2 vθ,2 − u⊤

1 Hθu2

6: Return: ℓ̄attack(θ)

When using the original influence-based objective naively, it was not possible to even do one backward
pass due to memory constraints. This algorithm brings down the memory required for one forward +
backward pass from not being feasible to run on a 12GB GPU to 7GB for a 206K parameter model
and from 8GB to 1.7GB for a 5K model.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Algorithm 2 ForwardOnlyInf
Input: Parameters θ, train set Z, test set Ztest, loss L
Output:(Iθ(z, Ztest) : z ∈ Z)

1: Compute L (Ztest, θ) := ∇θ

∑m
i=1 L (ztest i, θ)

2: Compute stest := H−1
θ L (Ztest, θ) by the hessian-inverse-vector product in Koh & Liang (2017).

3: ∀z ∈ Z, compute Iθ(z, Ztest) := s⊤test∇θL (z, θ)
4: Return: (Iθ(z, Ztest) : z ∈ Z)

Algorithm 3 Gradient-based optimization for Attack Loss ℓattack
Input: Parameters θ⋆, Radius C, train set Z, test set Ztest, loss L, attack objective ℓattack, gradient-
based optimizer Opt, distance function dist
Output: θ′

1: Set θ0 := Randomly chosen model parameters from a ball of radius C centered around θ⋆,
B(θ⋆, C) where distance is calculated using dist

2: for t = 1 to T do
3: ℓ̄attack(θt−1) = Get Backward Friendly Attack Objective(θt−1, Z, Ztest, L, ℓattack)
4: Compute ∇θ ℓ̄attack(θt−1) through ℓ̄attack(θt−1).Backward() in PyTorch
5: Update θt−1 → θt by the given gradient-based optimizer Opt
6: If θt /∈ B(θ⋆, C), clip θt to lie within B(θ⋆, C) where distance is calculated using dist
7: end for
8: Return: θ′ := θT

A.1.2 EXPERIMENTAL DETAILS

Dataset Details. CIFAR10 (Krizhevsky et al., 2009) has a training/test set size of 50000/10000 with
10 output classes, Oxford-IIIT Pet (Parkhi et al., 2012) has a training/test set size of 3680/3669 with
37 output classes and Caltech-101 (Li et al., 2022) has a training/test set size of 6941/1736 with 101
output classes.

Forward pass Details. We use the LiSSA implementation given at https://github.com/
nimarb/pytorch_influence_functionswith recursion depth=1e6, scale=25 and damping
factor= 0.01.

Attack Details. To optimize our attack objective, we use algorithm Alg. 3 for computing gradients
with Adam as the optimizer Kingma & Ba (2014). We use two learning rates {0.01, 0.1} and 100
steps of updates. We optimize every attack from 5 different initializations. We run our attacks with
multiple values of the constraint radius C = {0.05, 0.1, 0.2, 0.5}. For each regime, the reported
number is the highest we could obtain with different values of constants C or α.

Baseline Details. For training a model under the baseline attack we choose Adam as the optimizer,
set the batch size as 256 and update for 1400 steps. We ran the baseline for different weights α with
a logarithmic scaling from 10 to 1e18. We use weighted sampling instead of uniform to account for
the weight on the target sample.

A.1.3 PROOF OF IMPOSSIBILITY THEOREM (THEOREM 1)

Proof of Theorem 1. We first introduce a construction of 2-class classification dataset Ztrain, Ztest ⊆
Rd ×{1,−1} and show under this construction and a logistic regression model θ, there exists a target
data ztarget ∈ Ztrain such that no matter how we manipulate this linear model θ, i.e. ∀θ ∈ Rd, the
rank of Iθ(ztarget, Ztest) among (Iθ(z, Ztest) : z ∈ Ztrain) cannot reach top-1.

Denote zi ∈ Rd as a one-hot vector which has all zeros except 1 at the ith dimension. We construct
Ztest as {(e1, 1)}, and construct Ztrain = {(zi, yi)|i = 2, · · · , d}∪{(e1, 1), (−e1, 1)} where yi can
be arbitrarily selected from {1,−1}. By choosing ztarget = (e1, 1) ∈ Ztrain and zbar = (−e1, 1) ∈
Ztrain, next we are going to prove Iθ(ztarget, Ztest) < Iθ(zbar, Ztest) for any θ ∈ Rd, which
indicates Iθ(ztarget, Ztest) among (Iθ(ztarget, Ztest) : z ∈ Ztrain) cannot reach top-1.

16

https://github.com/nimarb/pytorch_influence_functions
https://github.com/nimarb/pytorch_influence_functions

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

We adopt the computation of influence function on logistic regression from the original influ-
ence function paper (Koh & Liang, 2017). Denote r(zi, θ) = σ(z⊤i θ) · σ(−z⊤i θ) where σ(t) =

1
1+exp(−t) > 0. Then the Hessian Hθ of the logistic regression training loss 1

d+1

∑
z∈Ztrain

L(z, θ)

is Hθ = 1
d+1

(
2r(e1, θ)e1e

⊤
1 +

∑d
i=2 r(zi, θ)ziz

⊤
i

)
. Then we can calculate the influence function

for ztarget and zbar:

Iθ(ztarget, Ztest) = −σ(−θ⊤e1) · σ(θ⊤e1) · e⊤1 H−1
θ e1 = −σ(−θ⊤e1) · σ(θ⊤e1) ·

d+ 1

r(e1, θ)
< 0,

Iθ(zbar, Ztest) = −σ(−θ⊤e1) · σ(θ⊤e1)e⊤1 H−1
θ (−e1) = σ(−θ⊤e1) · σ(θ⊤e1) ·

d+ 1

r(e1, θ)
> 0.

This complete the proof: ∀θ, Iθ(ztarget, Ztest) < 0 < Iθ(zbar, Ztest) and therefore ztarget can never
achieve top-1.

The above construction can be generalized to top-K for any K > 1: we can construct Ztest as
{(e1, 1)}, and construct Ztrain = {(zi, yi)|i = 2, · · · , d} ∪ {(e1, 1),K duplicated (−e1, 1)} where
yi can be arbitrarily selected from {1,−1}. Then similar to the proof above, by choosing ztarget =
(e1, 1) ∈ Ztrain and K duplicated training point in the training set zkbar = (−e1, 1), k ∈ [K], we
can prove ∀θ, Iθ(ztarget, Ztest) < 0 and ∀θ, k ∈ [K], Iθ(zkbar, Ztest) > 0. Consequently, ∀θ, ztarget
will not achieve top-K.

0 500 1000 1500 2000 2500 3000 3500
Easy-to-Manipulate Data's Original Rank

0

2

4

6

8

10

Fr
eq

ue
nc

y

Oxford-IIIT Pet

0 500 1000 1500 2000 2500 3000 3500
Hard-to-Manipulate Data's Original Rank

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Fr
eq

ue
nc

y

Oxford-IIIT Pet

0 500 1000 1500 2000 2500 3000 3500
Original Rank

10 3

10 2

10 1

100

101

No
rm

 o
f I

nf
lu

en
ce

 G
ra

di
en

t Oxford-IIIT Pet

0 1000 2000 3000 4000 5000 6000 7000
Easy-to-Manipulate Data's Original Rank

0

1

2

3

4

5

6

7

Fr
eq

ue
nc

y

Caltech-101

0 1000 2000 3000 4000 5000 6000 7000
Hard-to-Manipulate Data's Original Rank

0

2

4

6

8

Fr
eq

ue
nc

y

Caltech-101

0 1000 2000 3000 4000 5000 6000 7000
Original Rank

10 6

10 4

10 2

100

No
rm

 o
f I

nf
lu

en
ce

 G
ra

di
en

t Caltech-101

0 10000 20000 30000 40000 50000
Easy-to-Manipulate Data's Original Rank

0

1

2

3

4

5

Fr
eq

ue
nc

y

CIFAR10

0 10000 20000 30000 40000 50000
Hard-to-Manipulate Data's Original Rank

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fr
eq

ue
nc

y

CIFAR10

0 10000 20000 30000 40000 50000
Original Rank

10 4

10 3

10 2

10 1

100

101

No
rm

 o
f I

nf
lu

en
ce

 G
ra

di
en

t CIFAR10

Figure 7: Histograms for original ranks of easy-to-manipulate samples, Histograms for original ranks
of hard-to-manipulate samples, Scatterplots for influence gradient norm vs. original ranks of the 50
random target samples. Ranking k := 1. Easy-to-manipulate samples have extreme original influence
ranks (large positive or negative) as the samples with the extreme rankings also have higher influence
gradient norms, where the gradient is taken w.r.t. model parameters.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Figure 8: Overview of the process to achieve a fair model, as proposed by Li & Liu (2022). Our
adversary, the model trainer manipulates the base model used to calculate influence scores.

A.2 FAIRNESS MANIPULATION ATTACK DETAILS

Optimization Problem for Reweighing Training Data as proposed by Li & Liu (2022) is given as
follows,

minimize
∑

i wi

subject to
∑

i wiIfair (zi) = −fV
fair∑

i wiIutil (zi) ≤ 0
wi ∈ [0, 1]

(6)

where wi refers to the weight of the ith training sample, zi refers to the ith training sample, Iutil
refers to our influence function, Ifair refers to some fairness influence function and fV

fair corresponds
to a differentiable fairness metric. In our threat model, the adversary manipulates the base model,
which changes the influence scores Iutil .

An advanced version of the above optimization problem using additional parameters (β, γ) which
lead to various tradeoffs is given as,

minimize
∑

i wi

subject to
∑

i wiIfair (zi) ≤ −(1− β)ℓνfair ,∑
i wiIutil (zi) ≤ γ (minv

∑
i viIutil (zi)) ,

wi ∈ [0, 1].

(7)

Fairness Metric. We define the fairness metric used in our paper, Demographic Parity.
Definition 2 (Demographic Parity Gap (DP) Dwork et al. (2012)). Given a data distribution D
over X̄ × {0, 1} from which features x\a and sensitive attribute xa ∈ {0, 1} are jointly drawn
from, Demographic Parity gap for a model fθ is defined to be the difference in the rate of positive
predictions between the two groups, |Pr(ŷ | xa = 0)− Pr(ŷ | xa = 1)| where ŷ is the prediction
fθ(x

\a, xa).

Dataset Predict Train / Val. / Test Split #Dim. Sensitive Attribute Group Pos. Rate
Adult if annual income >= 50k 22622/7540/15060 102 Gender - Male / Female 0.312/0.113
Compas if defendant rearrested in 2 yrs. 3700/1234/1233 433 Race - White / Non-white 0.609/0.518
German Credit good/bad credit risk 600/200/200 56 Age - 30 0.742/0.643

Table 3: Details for datasets used in our Fairness Manipulation attack experiments. In our setting, the
Validation set is the test set shared between the model trainer and influence calculator. The Test set is
an untouched set which is used to assess the performance and fairness of the final model achieved
after the training with the reweighed training set. All our results are reported on this untouched Test
set. Table details borrowed from Li & Liu (2022).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Dataset Model ℓ2 reg. DP (β, γ)
Adult 2.26 (0.8,0.3)
Compas 37.00 (0.3,0.1)
German Credit 5.85 (0.5,0.0)

Table 4: Details for the Fairness Manipulation attack experiments. We use the same values of
parameters as used by Li & Liu (2022).

19

	Introduction
	Preliminaries
	General Threat Model
	Downstream Application 1: Data Valuation
	Data Valuation Experiments

	Downstream Application 2: Fairness
	Fairness Manipulation Experiments

	Discussion on Susceptibility and Defense
	Related Work
	Conclusion & Future Work
	Appendix
	Auditing the Influence Calculator by Supplying Test Data
	Data Manipulation Attack Details
	Efficient Backward Pass Algorithm
	Experimental details
	Proof of Impossibility Theorem (Theorem 1)

	Fairness Manipulation Attack Details

