
A Curriculum Perspective of Robust Loss Functions

Anonymous Author(s)
Affiliation
Address
email

Abstract

Learning with noisy labels is a fundamental problem in machine learning. A large1

body of work aims to design loss functions robust against label noise. However,2

it remain open questions why robust loss functions can underfit and why loss3

functions deviating from theoretical robustness conditions can appear robust. To4

tackle these questions, we show that a broad array of loss functions differs only in5

the implicit sample-weighting curriculums they induce. We then adopt the resulting6

curriculum perspective to analyze how robust losses interact with various training7

dynamics, which helps elucidate the above questions. Based on our findings, we8

propose simple fixes to make robust losses that severely underfit competitive to9

state-of-the-art losses. Notably, our novel curriculum perspective complements the10

common theoretical approaches focusing on bounding the risk minimizers.111

1 Introduction12

Labeling errors are non-negligible [1] in datasets from expert annotation [2, 3], crowd-sourcing13

[4] and automatic annotation [5, 6]. The resulting noisy labels can hamper generalization, as over-14

parameterized neural networks can memorize all training samples [7]. To combat the impact of15

noisy labels, a large body of research aims to design loss functions robust against label noise [8–13].16

Theoretical results show that loss functions satisfying certain robustness conditions [9, 11] will lead17

to the same optimum with clean or noisy labels.18

Existing approaches focus on bounding the risk minimizer of a loss function [9–11, 14, 15] with the19

presence of label noise, which are agnostic to the training dynamics. Though theoretically appealing,20

they may fail to fully characterize the performance of robust losses with noisy labels. In particular,21

it has been shown that (1) robust losses can underfit difficult tasks [1, 10, 12, 13], while (2) losses22

failing to satisfy theoretical robustness conditions [12, 13, 16] can exhibit robustness. The reasons23

behind these observations remain open questions. For (1), existing explanations [10, 17] can be24

limited as discussed in §2.3. For (2), to our knowledge, there is no work directly addressing it.25

To tackle the above questions, we consider training dynamics in our analysis, which complements26

existing theoretical approaches [9–11]. By rewriting loss functions into a standard form, we show27

that many loss function differs in the implicitly sample-weighting curriculums they induce (§3),28

which connects robust losses to the seemingly distinct [1] curriculum learning approaches [18–22]29

for noise-robust training. The original definition [23] of curriculum learning aims to present training30

samples with gradually increasing difficulty and diversity to ease learning. We adopt a generalized31

definition of curriculum [24], i.e., a curriculum specifies a sequence of re-weighting of training sample32

distributions, which can manifest as sample weighting [18–20] or sample selection [21, 22, 25].33

The curriculum perspective helps elucidate underfitting and noise robustness from the interaction34

between the sample-weighting curriculums and various training dynamics. We first attribute un-35

derfitting to the marginal average sample weights with the implicit curriculums (§4.1). We then36

show that an increased number of classes can lead to marginal initial sample weights with some loss37
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functions (§4.2). By adapting their curriculums accordingly, we make robust losses that severely38

underfit perform competitively to state-of-the-art loss functions (§4.2). Finally, we attribute the noise39

robustness of loss functions to higher average sample weights for clean samples compared to noisy40

ones (§4.3). We hypothesize that clean samples can receive higher weights with sample-weighting41

curriculums that magnify the learning speed differences and neglect unlearnt samples, which explains42

our empirical observations (§4.3). Inspired by this hypothesis, we find two unexpected results when43

viewed from existing theoretical robustness guarantees: by simply changing the learning rate schedule,44

robust losses can be vulnerable to label noise and cross entropy can appear robust (§4.3).45

2 Background46

After formulating classification with label noise, we briefly review typical sufficient conditions and47

loss functions for noise robustness to set the context for our novel curriculum perspective. We then48

summarizing open questions to be addressed in this work.49

2.1 Classification with Label Noise and Noise Robustness50

The k-ary classification problem with input x ∈ Rd can be solved with classifier argmaxi si,51

where si is the score of the i-th class from the class scoring function sθ : Rd → Rk. The class52

scores sθ(x) can be turned into class probabilities with the softmax function pi = esi/(
∑k

j=1 e
sj ),53

where pi is the probability for class i. Given a loss function L(sθ(x), y) and data (x, y) with54

ground truth label y ∈ {1, . . . , k}, the parameter θ of sθ can be estimated with risk minimization55

argminθ Ex,yL(sθ(x), y), whose solution are called risk minimizers. For notation simplicity, we56

omit the dependence on θ and x if possible.57

The annotation process may introduce errors, resulting in a potentially corrupted label ỹ following58

ỹ =

{
y, with probability P (ỹ = y|x, y)
i, i ̸= y with probability P (ỹ = i|x, y)

Label noise is symmetric (or uniform) if P (ỹ = i|x, y) = η/(k−1),∀i ̸= y, with η = P (ỹ ̸= y) the59

noise rate constant. Label noise is asymmetric (or class-conditional) if P (ỹ = i|x, y) = P (ỹ = i|y).60

Given data (x, ỹ) with noisy label ỹ, a loss function L is robust against label noise if61

argmin
θ

Ex,ỹL(sθ(x), ỹ) = argmin
θ

Ex,yL(sθ(x), y) (1)

Most existing work [9–11, 14, 15] aim to derive bounds for the difference between risk minimizers62

obtained using noisy and clean data, i.e., ensuring Eq. (1) holds with some conditions. As typical63

examples, loss functions satisfying the symmetric [9] or asymmetric [11] conditions are theoretically64

guaranteed to be robust. A loss function L is called symmetric if65 ∑
i

L(sθ(x), i) = C,∀x, sθ (2)

where C is a constant. When noise rate η < (k − 1)/k, a symmetric loss is robust against symmetric66

label noise [9]. Such stringent condition is later relaxed by Zhou et al. [11]. Suppose a loss function67

can be written as a function of softmax probability pi, i.e., L(sθ(x), i) = l(pi). As an equivalent68

rephrase of the sufficient condition, L is called asymmetric if69

max
i ̸=y

P (ỹ = i|x, y)
P (ỹ = y|x, y)

= r̃ ≤ r = inf
0≤pi,∆p≤1
pi+∆p≤1

l(pi)− l(pi +∆p)

l(0)− l(∆p)
(3)

where ∆p is a valid increment of pi. When clean labels dominate the data, i.e., r̃ < 1, an asymmetric70

loss is robust against generic label noise. Notably, both symmetric and asymmetric conditions for71

noise robustness are agnostic to training dynamics to reach the risk minimizers.72

2.2 Review of Selected Loss Functions73

In addition to cross entropy (CE) that is vulnerable to label noise [9], we review typical loss functions74

for later analysis. We ignore differences in constant scaling factors and constant additive bias in the75

loss functions. They are either equivalent to learning rate scaling in SGD or irrelevant in the gradient76

computation. See Table 1 for the exact formulas and Appendix A for an extended review.77
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Type Name Function Sample Weight w Constraints

CE − log py 1− py

Sym.
MAE/RCE 1− py py(1− py)

NCE − log py∑k
i=1 − log pi

γNCE

(
wCE + k−1

k
ϵNCE

)
Asym.

AUL (a−py)
q−(a−1)q

q
py(1− py)(a− py)

q−1 a > 1, q > 0

AGCE (a+1)−(a+py)
q

q
py(a+ py)

q−1(1− py) a > 0, q > 0

Comb.

GCE
1−pqy

q
pqy(1− py) 0 < q ≤ 1

SCE (1− q) · LCE + q · LMAE (1− q + q · py)(1− py) 0 < q < 1

NCE+MAE (1− q) · LNCE + q · LMAE (1− q) · wNCE + q · wMAE 0 < q < 1

Table 1: Expressions, constraints of hyperparameters and sample weights of the implicit curriculums
(§3.1) for loss functions reviewed in §2.2. Note that wNCE is an approximation as discussed in §3.2.

Symmetric Loss The mean absolute error (MAE) [9] and the subsequent reverse cross entropy78

(RCE) [13] are essentially equivalent, both satisfying Eq. (2). Ma et al. [10] normalize generic79

loss functions satisfying L(s, i) > 0,∀i ∈ {1, . . . ,K} into symmetric losses with LN(s, y) =80

L(s, y)/(
∑k

i=1 L(s, i)). We include normalized cross entropy (NCE) as an example.81

Asymmetric Loss We include two asymmetric losses [11] for our analysis: asymmetric generalized82

cross entropy (AGCE) and asymmetric unhinged loss (AUL). Notably, AGCE with q ≥ 1 and AUL83

with q ≤ 1 are both completely asymmetric [11], i.e., Eq. (3) always holds when r̃ < 1.84

Combined Loss Loss functions can be combined for both robust and sufficient learning. For85

example, generalized cross entropy (GCE) [12] can be viewed as a smooth interpolation between86

CE and MAE. Alternatively, symmetric cross entropy (SCE) [13] uses a weighted average of CE87

and RCE (MAE). Finally, Ma et al. [10] argue that robust and sufficient training requires a balanced88

combination of active and passive losses. Suppose loss function L can be rewritten into89

L(s, y) =

k∑
i=1

l(s, i) (4)

where l is a function of scores s and any possible label i. An active loss requires ∀i ̸= y, l(s, i) = 0,90

which focuses on learning the target label. In contrast, a passive one satisfies ∃j ̸= y, l(s, i) ̸= 0,91

which can improve by unlearning non-target labels. Accordingly, CE and NCE are active while MAE92

(RCE) is passive. We use NCE+MAE as an example.93

2.3 Open Questions94

Why do robust losses underfit? Ma et al. [10] attribute underfitting to failure in balancing active-95

passive components. However, different specifications of Eq. (4) can lead to ambiguities in the96

active-passive dichotomy. For example, with LMAE(s, y) ∝
∑k

i=1 |I(i = y)− py| where I(·) is the97

indicator function, MAE is passive; yet the equivalent LMAE(s, y) ∝
∑k

i=1 I(i = y)(1− py) makes98

MAE an active loss. Wang et al. [17] instead view ∥∇sL(s, y)∥1 as weights for sample gradients99

and attribute underfitting to their low variance, making clean and noisy samples less distinguishable.100

However, as we show in §4.1, MAE also underfits on clean datasets. Why robust losses underfit thus101

remains an open question.102

What affects the robustness of a loss function? Although combined losses such as GCE and SCE103

fail to satisfy existing robustness conditions (Eq. (2) and (3)), it is unclear why they exhibit robustness104

against label noise [12, 13]. Furthermore, it is unclear how training dynamics, which are irrelevant in105

many theoretical robustness guarantees [9–11, 14, 15], affect the noise robustness of a loss function.106
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3 Implicit Curriculums of Robust Loss Functions107

We derive the standard form of reviewed loss functions and show that each implicitly induces a108

sample-weighting curriculum, which helps examine how they interact with various training dynamics.109

3.1 The Implicit Sample-Weighting Curriculums110

Loss functions in Table 1 are generally functions of the target softmax probability py , i.e., L(s, y) =111

l(py). Note that py can be rewritten as112

py =
esy∑k
i=1 e

si
=

1

elog
∑

i̸=y esi−sy + 1
=

1

e−∆y + 1
(5)

where113

∆y = sy − log
∑
i̸=y

esi ≤ sy −max
i ̸=y

si = ∆∗
y (6)

is the soft margin between sy and the maximum of other scores, a smooth approximation of the hard114

margin ∆∗
y . ∆y indicates how well a sample is learnt given classifier argmaxi si, as ∆y ≥ 0 leads to115

∆∗
y ≥ 0, ensuring successful classification with scores s. Since ∇sl(py) = l′(py) · p′y(∆y) · ∇s∆y ,116

these loss functions can be rewritten into a standard form with equivalent gradients:117

L(s, y) = − stop_grad[w(∆y)] ·∆y (7)
where stop_grad(·) avoids backpropagating through w(∆y) = l′(py) · p′y(∆y). The equivalence118

is valid only with first-order derivatives. Each loss function in the form of Eq. (7) thus implicitly119

induces a sample-weighting curriculum, where w(∆y) is the sample weight and ∆y the implicit loss.120

By examining how w(∆y) interacts with different training dynamics, we can elucidate the reasons121

behind underfitting and noise robustness. Table 1 summarizes w(∆y) for the reviewed loss functions.122

Wang et al. [16, 17] treat ∥∇sL(s, y)∥1 as weights for sample gradients, which share similar formulas123

as w(∆y) in Table 1. Instead of directly weighting sample gradients, our derivation identifies the124

implicit loss ∆y , making our sample-weighting scheme compatible with the definition of curriculum125

learning [24]. In addition, the extracted ∆y and ∆∗
y can serve as direct metrics for sample performance126

in curriculums, compared to loss [26, 27] and gradient magnitude [28] that are affected by preference127

from w(∆y) of a loss function. Finally, the ∆y distribution is essential in analyzing the interaction128

between loss functions and training dynamics in §4.129

3.2 The Additional Entropy-Reducing Curriculum of NCE130

Due to normalization, LNCE(s, y) in Table 1 additionally depends on ∆i where i ̸= y, which cannot131

be be trivially rewritten into Eq. (7). A derivation of the gradient gives132

∇sLNCE(s, y) =
1∑k

i=1 LCE(s, i)

{
∇sLCE(s, y) +

kLCE(s, y)∑k
i=1 LCE(s, i)

· ∇s

[
−1

k

k∑
i=1

LCE(s, i)

]}
= γNCE · [∇sLCE(s, y) + ϵNCE · ∇sRNCE(s)]

Thus NCE can be rewritten as133

LNCE(s, y) = γNCE · LCE(s, y) + γNCE · ϵNCE ·RNCE(s) (8)
In this equivalent form, there is no backpropagation through the computation of γNCE and ϵNCE.134

The first term results in a similar sample-weighting curriculum as CE, with an additional factor135

γNCE = 1/(
∑k

i=1 − log pi) ≤ 1/(k log k). The second term is a regularizer136

RNCE(s) = −1

k

k∑
i=1

LCE(s, i) (9)

which reduces the entropy of the softmax output. The regularizer has per-sample weights ϵNCE =137

k(− log py)/(
∑k

i=1 − log pi). It can thus be interpreted as a regularization curriculum. Notably, the138

two curriculums work synergically in reducing the entropy of the softmax output.139

The extra regularizer makes NCE incompatible to Eq. (7). However, as shown in Appendix C, since140

∆y induces gradients with constant L1 norm, we can approximate the upperbound of wNCE with141

wNCE =
∥∇sLNCE(s, y)∥1

∥∇s∆y∥1
≤ γNCE

(
wCE +

k − 1

k
ϵNCE

)
(10)

See Appendix C for derivations. Note that directions of ∇sLNCE(s, y) and ∇s∆y may be different.142
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CIFAR100 CIFAR10
Underfitting Loss Acc. ᾱ∗

t Acc. ᾱ∗
t

No

CE 71.33 ± 0.23 8.183 92.76 ± 0.30 5.541
GCE 69.95 ± 0.40 8.861 92.96 ± 0.13 6.151
SCE 71.36 ± 0.39 9.541 93.17 ± 0.06 7.018

NCE+MAE 68.89 ± 0.23 2.971 92.37 ± 0.33 2.414

Moderate
NCE 43.18 ± 1.55 1.769 91.28 ± 0.22 1.072
AUL 58.75 ± 1.07 5.278 92.43 ± 0.19 5.171

AGCE 49.27 ± 1.03 4.537 92.61 ± 0.18 5.225

Severe
MAE 3.69 ± 0.59 0.035 91.56 ± 0.11 2.492
AUL† 3.13 ± 0.43 0.033 91.13 ± 0.06 2.308

AGCE† 1.62 ± 0.69 0.009 87.14 ± 4.96 1.701

Table 2: With clean labels, robust losses can underfit CIFAR100 but CIFAR10. Hyperparameters of
loss functions are tuned on CIFAR100 and listed in Table 7. We report test accuracy and average
effective learning rate ᾱ∗

t (scaled by 103) at the final training step with 3 different runs, using learning
rate α = 0.1. AUL† and AGCE† with inferior hyperparamters are included as reference. See
Appendix D for results with α = 0.01.

(a) Severe underfitting (b) Moderate underfitting (c) No underfitting

Figure 1: Sample-weighting functions w(∆y) for selected loss functions and hyperparameters in
Table 2. We include the initial distributions of ∆y on CIFAR10 and CIFAR100 for reference.

4 Understanding Robust Losses with Their Implicit Curriculums143

We empirically investigate the interaction between sample-weighting curriculums and various training144

dynamics for questions in §2.3. Experiments are conducted on MNIST [29] and CIFAR10/100 [30]145

with synthetic symmetric and asymmetric label noises following standard settings [10, 11]. We also146

include real human noisy labels provided by Wei et al. [31] on CIFAR10/100. We use a 4-layer CNN147

for MNIST, an 8-layer CNN for CIFAR10 and a ResNet-34 [32] for CIFAR100. By default, models148

are trained with a fixed number of epochs using SGD with momentum, weight decay and cosine149

learning rate annealing. See Appendix B for more experimental details. Different from standard150

settings, we rescale w(∆y) to have unit maximum to avoid complications, since hyperparameters of151

loss functions can change the maximum of w(∆y), essentially adjusting the learning rate of SGD.152

4.1 Underfitting of Robust Losses from a Sample-Weighting Curriculum Perspective153

Robust losses can underfit. We confirm that on difficult tasks like CIFAR100 [10, 12, 13], underfiting154

results from robust losses themselves rather than inferior hyperparameters. We tune hyperparameters155

of loss functions on CIFAR100 and report results on CIFAR100 and CIFAR10 without label noise. As156

shown in Table 2, the performance of NCE, AGCE and AUL lag behind CE by a nontrivial margin on157

CIFAR100. Notably, MAE performs much worse compared to CE, similar to AGCE† and AUL† with158

inferior hyperparameters. In contrast, all loss functions fit CIFAR10 well. See Table 8 in Appendix D159

for similar results with a smaller learning rate.160

Marginal effective learning rate explains underfitting. We attribute underfitting to the diminishing161

effective learning rate α∗
t = αt · w̄t, where w̄t is the average sample weight of the batch and αt the162

learning rate at step t. We use the average effective learning rate up to step t, ᾱ∗
t =

∑t
i=1 α

∗
i /t, to163

characterize the overall α∗
t . In Table 2, for loss functions that heavily underfit on CIFAR100, their ᾱ∗

t164

at the final step is marginal compare to CE.165
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(a) AUL with inferior/superior hyperparameters. (b) NCE with estimated weight upperbound.

Figure 2: Different causes of underfitting: (a) marginal initial sample weights; (b) fast diminishing
sample weights. We plot the average effective learning rate ᾱ∗

t at different training steps t with
selected loss functions on CIFAR100.

Marginal effective learning rate due to marginal initial sample weights. In Fig. 1 we compare166

sample-weighting functions w(∆y) of robust losses to the ∆y distribution of CIFAR10 and CIFAR100167

at initialization. For robust losses that severely underfit (Fig. 1a), the ∆y distribution of CIFAR100168

concentrates at regions with marginal sample weights, resulting in small effective learning rate α∗
t . It169

can be hard for these samples to escape the region with marginal weights before the learning rate170

attenuates. In contrast, loss functions with non-trivial initial sample weights (Fig. 1b and 1c) result in171

moderate or no underfitting in Table 2. As a corroboration, we plot the average effective learning172

rate ᾱ∗
t of AUL with different hyperparameters in Fig. 2a. With superior hyperparameters (AUL173

in Table 2), ᾱ∗
t quickly increase to a non-negligible value before annealing. In contrast, ᾱ∗

t stays174

marginal with inferior hyperparameters (AUL† in Table 2).175

Marginal effective learning rate due to fast diminishing sample weights. In Fig. 2b, different176

from other robust losses but similar to CE, the effective learning rate of NCE peaks at initialization.177

However, it decreases much faster compared to CE, which can be attributed to the synergy between178

the two implicit curriculums of NCE in reducing wNCE. As ∆y improves, γNCE, ϵNCE and wCE all179

decreases. In addition, the regularizer RNCE(s) further decreases the entropy of softmax output and180

thus γNCE. Thus wNCE decreases much faster compared to wCE, leading to faster attenuating α∗
t .181

Loss combination mitigates marginal initial sample weights. As wCE and wNCE peak at ini-182

tialization, they compensate the marginal initial sample weights when combined with other robust183

losses, helping initial learning and thus avoiding underfitting. In Table 2, the effective learning rate184

on CIFAR100 is substantially increased when combining MAE with CE and NCE. Interestingly, CE185

and NCE are both “active” as their sample weights peak at initialization, while other robust losses are186

“passive” due to their marginal initial sample weights. Such dichotomy based on sample-weighting187

curriculums complements the active-passive dichotomy [10] from a distinct perspective.188

4.2 Addressing Underfitting by Adapting the Sample-Weighting Curriculums189

As shown in Table 2, robust losses can underfit on CIFAR100 but CIFAR10. Such difference has190

been vaguely attributed to the increased task difficulty [1, 12]. We further show that with static191

sample-weighting curriculums, loss functions suffer from marginal initial sample weights due to the192

increased number of classes k. By adapting the curriculums accordingly, robust losses that severely193

underfit can become competitive with the state-of-the-art. We leave the fix for NCE to future work,194

and use MAE as a typical example for illustration.195

Intuitively, the larger number of classes, the more subtile differences to be distinguished, thus the196

harder the task is. In addition, the number of classes k determines the ∆y distribution at initialization.197

Assuming that class scores si at initialization are i.i.d. variables following the normal distribution, i.e.,198

si ∼ N (µ, σ). In particular, µ = 0 and σ = 1 for most neural networks with standard initializations199

[33] and normalization layers [34, 35]. See Appendix E for comparisons between simulations and200

real settings. The expected ∆y can be approximated with201

E[∆y] ≈ − log(k − 1)− σ2/2 +
eσ

2 − 1

2(k − 1)
(11)
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(a) Simulated initial distributions (b) Add E[∆y] to ∆y’s (c) Shifted/rescaled wMAE(∆y)

Figure 3: (a). Simulated initial ∆y distributions with different k assuming si ∼ N (µ, σ). We include
the plot of wMAE(∆y) for reference. (b). Adding E[∆y] to ∆y’s centers simulated distributions in
(a) to the origin. (c). The shifted and rescaled wMAE(∆y) with a = 2.6 and k = 100. We include
the initial ∆y distribution of CIFAR100 for reference.

Clean Symmetric Asymmetric Human

Loss η = 0 η = 0.4 η = 0.8 η = 0.4 η = 0.4

CE [11] 71.33 ± 0.43 39.92 ± 0.10 7.59 ± 0.20 40.17 ± 1.31
GCE [11] 63.09 ± 1.39 56.11 ± 1.35 17.42 ± 0.06 40.91 ± 0.57
NCE [11] 29.96 ± 0.73 19.54 ± 0.52 8.55 ± 0.37 20.64 ± 0.40
NCE+AUL [11] 68.96 ± 0.16 59.25 ± 0.23 23.03 ± 0.64 38.59 ± 0.48

AGCE 49.27 ± 1.03 47.76 ± 1.75 16.03 ± 0.59 33.40 ± 1.57 30.45 ± 1.50
AGCE shift 67.50 ± 1.48 53.33 ± 1.08 10.47 ± 0.57 38.37 ± 1.55 44.44 ± 1.39
AGCE rescale 67.20 ± 0.79 56.32 ± 0.59 12.75 ± 1.10 40.00 ± 0.27 49.08 ± 0.74

MAE 3.69 ± 0.59 1.29 ± 0.50 1.00 ± 0.00 2.53 ± 1.34 2.09 ± 0.55
MAE shift 69.02 ± 0.78 44.60 ± 0.24 8.08 ± 0.26 40.57 ± 0.47 48.31 ± 0.31
MAE rescale 69.95 ± 1.21 60.70 ± 0.30 10.79 ± 0.97 39.22 ± 1.54 54.65 ± 0.73

Table 3: Shifting or rescaling ∆y mitigates underfitting on CIFAR100 with different noise types and
noise rate η. Human noisy labels are from CIFAR100-N [31]. Test accuracies are reported with 3
different runs. We use a = 4.5 for AGCE and a = 2.6 for MAE. Results from [11] are included as
context. See Appendix E for results on WebVision and CIFAR100 with additional noise rates.

We leave detailed derivations to Appendix E. With more output classes, the ∆y distribution will202

have smaller expectation, corresponding to diminishing initial sample weights with the fixed MAE203

curriculum, as shown in Fig. 3a. In Fig. 3b, subtracting E(∆y) from ∆y centers distributions to 0.204

Shifting or rescaling w(∆y) mitigates underfitting from increased number of classes. To assign205

nontrivial sample weights at initialization, the sample-weighting curriculum of robust losses should206

be adapted according to the number of classes k. A simple strategy is to make the expected initial207

sample weights agnostic to k. Given a sample-weighting function w(∆y), we can either shift208

wshift(∆y) = w(∆y + E[∆y]− a) (12)

or rescale209

wrescale(∆y) = w(∆y/E[∆y] · a) (13)

it, where a > 0 is a hyperparameter. The shifted and scaled wMAE(∆y) are shown in Fig. 3c as an210

illustration. Intuitively, shifting or scaling with E[∆y] can cancel the effect of increased k on the211

expected initial sample weights. With smaller a, samples will get higher weights at initialization.212

In Table 3, we test our fixes with different noise types and noise rates on CIFAR100. See Appendix E213

for more results on the large scale noisy dataset WebVision [36] and CIFAR100 with different214

synthetic noise rates. Rescaling and shifting alleviate the underfitting issues, making MAE and AGCE215

perform comparable to the previous best (NCE+AUL) [11]. Notably, the performance of MAE is216

substantially improved. Interestingly, despite being effective fixes for underfitting, simply scaling or217

shifting w(∆y)’s can risk assigning large weights for noisy samples, which have lower ∆y in general218

as discuss in §4.3, thus hampering the noise robustness of loss functions. Under symmetric label219

noise with η = 0.8, the performance of AGCE decreases after applying the fixes.220
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Clean Symmetric Human

η = 0.2 η = 0.4 η = 0.6 η = 0.8 η = 0.4
Loss Acc ∆acc snr ∆acc snr ∆acc snr ∆acc snr ∆acc snr

CE 90.49 -15.85 0.39 -32.34 0.58 -51.57 0.77 -71.14 0.95 -28.18 0.53

SCE 91.06 -8.10 0.76 -21.55 1.03 -43.86 1.29 -71.10 1.32 -22.96 0.74
GCE 90.85 -2.02 3.25 -5.59 3.16 -14.16 2.95 -50.10 2.29 -12.52 1.14

MAE 90.56 -1.96 3.46 -8.25 3.15 -12.31 2.88 -38.11 2.53 -22.49 1.00

AUL 90.79 -1.90 3.51 -5.06 3.40 -13.43 3.01 -50.99 1.79 -22.36 1.02
AGCE 90.56 -4.28 3.11 -4.47 3.29 -17.76 2.69 -44.87 2.04 -21.62 1.02

Table 4: Robust losses assign larger weights to clean samples. We report snr and drop in test accuracy
with symmetric and human label noise on CIFAR10 at the final step with 3 different runs. We use the
“worst” version of CIFAR10-N [31] as human label noise. Standard deviation are omitted due to space
limitation. Hyperparameters of loss functions are tuned with noise rate η = 0.6. See Appendix B for
detailed hyperparameters.

(a) CE: 58.05 (b) SCE: 69.62 (c) MAE: 85.86

Figure 4: How ∆y distribution of noisy (green, left) and clean (orange, right) samples evolve during
training on CIFAR10 with 40% symmetric label noise. We include w(∆y) curves for reference, and
omit vertical axes denoting probability density for brevity. Vertical axes are scaled to the peak of
histograms for better readability, with epoch number (axis scaling factor) denoted on the right of
each subplot. We also include the final accuracy of the corresponding run for each loss function as
reference. See Appendix F for results of more loss functions with human label noise.

4.3 Noise Robustness from a Sample-Weighting Curriculum Perspective221

Intuitively, loss functions exhibiting noise robustness should weight clean samples more than noisy222

ones. We provide an explanation based on how w(∆y) interacts with two training dynamics.223

Robust losses assign larger weights to clean samples. The average weight assigned to noisy samples224

during training, adjusted by learning rate αt, is w̄noise =
∑

i,t I(ỹi,t = yi,t)αtwi,t/(
∑

i,t I(ỹi,t ̸=225

yi,t)αt), where wi,t denotes the weight of i-th sample of the batch at step t. w̄clean for clean samples226

can be defined similarly. The ratio snr = w̄clean/w̄noise characterizes their relative contribution227

during training. We report snr and the drop in test accuracy under different label noise on CIFAR10228

in Table 4. Loss functions with less performance drop have higher snr in general.229

To explain what leads to a high snr, we first examine how ∆y distributions of noisy and clean samples230

evolve during training on CIFAR10 with symmetric label noise in Fig. 4. See Appendix F for results231

of more loss functions with human label noise. When trained using loss functions with increased232

robustness (Fig. 4b and 4c), the noisy and clean distributions of ∆y gets better separated and more233

spread. In addition, ∆y’s of some noisy samples gets decreased, suggesting that noisy samples can234

be unlearnt. In contrast, with CE (Fig. 4a), the noisy and clean distributions of ∆y are less separated235

and more compact.236
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(a) α = 0.01 with different (η, loss). (b) CE with different (η, α).

Figure 5: Learning curves with fixed learning rate and extended training epochs on MNIST, where α
is the learning rate and η the symmetric label noise rate. Vertical axes are scaled for readability.

We now give a possible explanation for Fig. 4 with the following two training dynamics: (D1) clean237

samples are learnt faster than noisy samples; (D2) noisy samples can be unlearnt when trained238

on clean samples. D1 is identified in [7, 37], which later manifests itself in curriculum-based robust239

training [38, 39]. It can result from the dominance of clean samples (r̃ < 1) in the expected gradient.240

In addition, gradients of clean samples are more correlated than those of noisy samples [40]. Thus241

performance on clean samples can be improved when training on one another, leading to D1. D2 only242

become apparent when examining Fig. 4b and 4c, which can result from generalization with clean243

samples. Suppose in MNIST, a sample of 0 is erroneously labeled as 9. Then a model well-trained244

with clean samples of class 9 and 0 can result in a low ∆y for this noisy sample. D1 and D2 can act245

in synergy to separate the clean and noisy distributions of ∆y , as shown in Fig. 4.246

We hypothesis that robust losses enhance the synergy of D1 and D2. In Table 1, w(∆y) of loss247

functions can be decomposed into f(∆y)·g(∆y), where f(∆y) is a monotonically increasing function248

and g(∆y) a decreasing one. For example, fCE(∆y) degenerates to constant 1 and gCE(∆y) = 1−py ,249

while fMAE(∆y) = py and gMAE(∆y) = 1 − py. Notably, g(∆y) shared by all loss functions250

converges to 0 as ∆y increases, preventing ∆y from growing infinitely large. In addition, a non-251

degenerated f(∆y) can enhance the synergy between D1 and D2. Since the initial ∆y distribution252

generally lies on the monotonically increasing part of w(∆y) determined by f(∆y), faster learning253

of samples results in their larger weights during training. Thus robust losses magnify the difference254

in learning speed between clean and noisy samples, which can also account for the substantially255

spread ∆y distributions in Fig. 4b and 4c. As w(∆y) can assign negligible sample weights with256

low ∆y due to the monotonically increasing f(∆y), unlearnt noisy samples are neglected with257

diminishing weights, which can account for the decrease of ∆y’s for noisy samples in Fig. 4b and 4c.258

In contrast, as wCE(∆y) assign high sample weights for small ∆y’s, it compensates the synergy of259

D1 and D2, thus results in compact ∆y distribution, larger ∆y’s for noisy samples, and less separated260

∆y distributions in Fig. 4a.261

With sufficient training, clean samples will eventually have high ∆y’s with diminishing sample262

weights thanks to g(∆y). Noisy samples will then dominate the expected gradient and can lead to263

overfitting, leading to two unexpected results when viewed from robustness conditions [9, 11]:264

Robust losses are vulnerable to label noise with extended training. In Fig. 5a we show the learning265

curve of CE and MAE using constant learning rate under different symmetric noises on MNIST.266

Although enjoying theoretically guaranteed noise robustness [9, 11], similar to CE, MAE eventually267

overfits to noisy samples, becoming vulnerable to label noise as weights of clean samples diminish.268

Loss functions can become robust by adjusting the learning rate schedule. Interestingly, in Fig. 4a,269

despite the compensation of wCE(∆y), the synergy between D1 and D2 still results in partially-270

separated ∆y distributions of noisy and clean samples. We can thus improve the noise robustness of271

CE by preventing the weights of clean samples from diminishing due to g(∆y), which can be achieve272

by slowing down the convergence or early stopping [41]. In Fig. 5b we show the learning curve of273

CE using fixed learning rates under symmetric noise on MNIST. By simply increasing or decreasing274

the learning rate, which strengthens the implicit regularization of SGD [42] or directly slows down275

the convergence, the noise robustness of CE can be substantially improved.276
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5 Related Work277

Our work is closely related to robust loss functions [8–13] for robust training with noisy labels [1].278

Theoretical results [9, 11] derive sufficient conditions for robustness against label noise without con-279

sidering the training dynamics. We complement these results by considering the interaction between280

robust losses and various training dynamics. The underfitting of robust losses has been heuristically281

mitigated with loss combination [10, 12, 13]. We further elucidate the cause of underfitting from a282

curriculum perspective, based on which we provide an effective solution.283

Curriculum-based approaches combat label noise with either sample selection [21, 22] or sample-284

weighting [18–20]. In particular, sample weights are designed [16–18] or predicted by a model285

trained on a separated dataset [19, 20]. In contrast, the sample-weighting curriculums considered286

in this work are implicitly induced by robust loss functions. Most related to our work, Wang et al.287

[16] identifies gradient norms as weights for sample gradients of each robust loss. In contrast, as288

discussed in §3.1, we explicitly extract the implicit loss, which helps draw the connection to standard289

curriculum learning [24] and facilitates analysis of training dynamics.290

Our work is also related to the ongoing debate [24, 43] on strategies for selecting or weighting291

samples in curriculum learning: whether easier first [23, 26] or harder first [27, 44] is better. The292

implicit curriculums of robust losses in this work differ in two important ways. First, the implicit293

loss identified in §3.1 more directly measures sample difficulty than loss value [26, 27] and gradient294

magnitude [28]. Second, the implicit sample-weighting curriculums can be viewed as a combination295

of both weighting strategies by emphasizing moderately difficult samples, as discussed in §4.3.296

6 Conclusion297

We identify the implicit sample-weighting curriculums of selected loss functions. By decoupling298

the implicit loss as a direct sample performance metric and sample weights specifying the implicit299

sample preference, we can analyze how robust loss functions and curriculums interact with different300

training dynamics. Such a perspective complements existing research on theoretical bounds for301

the risk minimizer, and connects robust loss functions to the seemingly distinct approaches based302

on curriculum learning. Following the curriculum perspective, we elucidate the reasons behind303

underfitting and robustness against label noise for existing robust loss functions, and design a simple304

approach to address the underfitting issue.305
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A Extended Review of Loss Functions568

As a general reference, we provide an extended review of loss functions for classification that is569

relevant to the standard form Eq. (7), complementing review in §2.2. Loss functions and their570

sample-weighting functions are summarized in Table 5. We plot how hyperparameters affect their571

sample-weighting functions in Fig. 6.572

A.1 Loss Functions without Robustness Guarantees573

Cross Entropy (CE)574

LCE(s, y) = − log py

is the standard loss function for classification.575

Focal Loss (FL) [45]576

LFL(s, y) = −(1− py)
q log py

aims to address the label imbalance in object detection. Note that both CE and FL are neither577

symmetric [10] nor asymmetric [11].578

15



A.2 Symmetric Losses579

Mean Absolute Error (MAE) [9]580

LMAE(s, y) =
1

k

k∑
i=1

|I(i = y)− pi| = 2− 2py ∝ 1− py

is a classic symmetric loss, where I(i = y) is the indicator function.581

Reverse Cross Entropy (RCE) [13]582

LRCE(s, y) =

k∑
i=1

pi log 1(i = y) =
∑
i̸=y

piA = (1− py)A ∝ 1− py = LMAE(s, y)

is equivalent to MAE in implementation, where log 0 is truncated to a negative constant A to avoid583

numerical overflow.584

Ma et al. [10] argued that any generic loss functions with L(s, i) > 0,∀i ∈ {1, . . . , k} can become585

symmetric by simply normalizing them. As an example,586

Normalized Cross Entropy (NCE)587

LNCE(s, y) =
LCE(s, y)∑k
i=1 LCE(s, i)

=
− log py∑k
i=1 − log pi

is a symmetric loss [10]. However, NCE does not follow the standard form of Eq. (7). It involves an588

additional regularizer as discussed in §3.2 and Appendix C, thus being more relevant to discussions589

in Appendix A.4.590

A.3 Asymmetric Losses591

Zhou et al. [11] derived the asymmetric condition for noise robustness, and propose an array of592

asymmetric losses:593

Asymmetric Generalized Cross Entropy (AGCE)594

LAGCE(s, y) =
(a+ 1)− (a+ py)

q

q

where a > 0 and q > 0. It is asymmetric when I(q ≤ 1)(a+1
a )1−q + I(q > 1) ≤ 1/r̃.595

Asymmetric Unhinged Loss (AUL)596

LAUL(s, y) =
(a− py)

q − (a− 1)q

q

where a > 1 and q > 0. It is asymmetric when I(q ≤ 1)( a
a−1 )

q−1 + I(q ≤ 1) ≤ 1/r̃.597

Asymmetric Exponential Loss (AEL)598

LAEL(s, y) = e−py/q

where q > 0. It is assymetric when e1/q ≤ 1/r̃.599

A.3.1 Combined Losses600

Loss functions can be combined to enjoy better learning.601

Generalized Cross Entropy (GCE) [12]602

LGCE(s, y) =
1− pqy

q

can be viewed as a smooth interpolation between CE and MAE, where 0 < q ≤ 1. CE or MAE can603

be recovered by setting q → 0 or q = 1.604

Symmetric Cross Entropy (SCE) [13]605

LSCE(s, y) = a · LCE(s, y) + b · LRCE(s, y) ∝ (1− q) · (− log pi) + q · (1− pi)
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Name Function Sample Weight w Constraints

CE − log py 1− py

FL −(1− py)
q log py (1− py)

q(1− py − qpy log py) q > 0

MAE/RCE 1− py py(1− py)

AUL (a+1)−(a+py)
q

q
py(1− py)(a− py)

q−1 a > 1, q > 0

AGCE (a−py)
q−(a−1)q

q
py(a+ py)

q−1(1− py) a > 0, q > 0

AEL e−py/q 1
q
py(1− py)e

−py/q q > 0

GCE (1− pqy)/q pqy(1− py) 0 < q ≤ 1

SCE −(1− q) log py + q(1− py) (1− q + q · py)(1− py) 0 < q < 1

TCE
∑q

i=1(1− py)
i/i py

∑q
i=1(1− py)

i q ≥ 1

Table 5: Expressions, constraints of hyperparameters and sample-weighting functions of loss functions
in Appendix A that follows the standard form Eq. (7).

is a weighted average of CE and RCE (MAE), where a > 0, b > 0, and 0 < q < 1.606

Taylor Cross Entropy (TCE) [15]607

LTCE(s, y) =

q∑
i=1

(1− py)
i

i

is originally derived from Taylor series of the log function. TCE reduces to MAE when q = 1.608

Interestingly, the summand of TCE (1− py)
i/i with i > 2 is proportional to AUL with a = 1 and609

q = i. Thus TCE can be viewed as a combination of symmetric and asymmetric losses.610

Ma et al. [10] propose to additively combine active and passive loss functions. We review NCE+MAE611

as an example:612

LNCE+MAE(s, y) = a · LNCE(s, y) + b · LMAE(s, y) ∝ (1− q) · − log py∑k
i=1 − log pi

+ q · (1− py)

where a > 0, b > 0, and 0 < q < 1.613

A.4 Loss Functions with Additional Regularizers614

We additionally review loss functions that implicitly involve a regularizer and a primary loss function615

that fits the standard form Eq. (7). See Table 6 for a summary. We leave investigation on how these616

additional regularizers affect noise robustness for future work.617

Mean Square Error (MSE) [9]618

LMSE(s, y) =

k∑
i=1

(I(i = y)− pi)
2 = 1− 2py +

k∑
i=1

p2i

∝ 1− py +
1

2
·

k∑
i=1

p2i = LMAE(s, y) + α ·RMSE(s)

is argued [9] to be more robust than CE, where α = 1
2 and the regularizer619

RMSE(s) =

k∑
i=1

p2i (14)

reduces the entropy of the softmax output. We can generalize α to a hyperparamter, making MSE a620

combination of MAE and an entropy regularizer RMSE.621
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(a) FL (b) AUL, a = 2.0 (c) AUL, q = 0.1

(d) AGCE, a = 1.0 (e) AGCE, q = 0.5 (f) AEL

(g) GCE (h) SCE (i) TCE

Figure 6: How hyperparameters affect the sample-weighting functions of loss functions in Table 5.
The initial ∆y distribution of CIFAR100 are included as reference.

Given a generic loss function L(s, y), Peer Loss (PL) [14]622

LPL(s, y) = L(s, y)− L(sn1
, yn2

)

can make it robust against label noise, where sn1
and yn2

denote scores (of input xn1
) and labels623

randomly sampled from the noisy data. PL is inspired by the peer prediction mechanism to truthfully624

elicit information when there is no ground truth verification. Its noise robustness is theoretically625

established for binary classification and extended to multi-class setting [14]. Cheng et al. [46] later626

show that PL in its expectation is equivalent to the original loss plus a Confidence Regularizer (CR):627

RCR(s) = −Eỹ[L(s, ỹ)]

Substituting L with the standard LCE, RCR(s) becomes628

RCR(s) = −Eỹ[− log pỹ] =

k∑
i=1

P (ỹ = i) log pi (15)

Minimizing RCR(s) thus makes the softmax output distribution pi’s deviate from the prior label629

distribution of the noisy dataset P (ỹ = i)’s, reducing the entropy of the softmax output.630

Label smoothing [47] has been shown to mitigate overfitting with label noise [48]. With the standard631

cross entropy, Generalized Label Smoothing (GLS) [49]632

LGLS+CE(s, y) =

k∑
i=1

−[I(i = y)(1− α) +
α

k
] log pi

= −(1− α) log py − α · 1
k

k∑
i=1

log pi

∝ − log py −
α

1− α
· 1
k

k∑
i=1

log pi = LCE(s, y) + α′ ·RGLS(s)
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Name Original Primary Loss Regularizer

MSE 1− 2py +
∑k

i=1 p
2
i 1− py

∑k
i=1 p

2
i

PL − log py + log pyn2 |xn1
− log py

∑k
i=1 P (ỹ = i) log pi

GLS −
∑k

i=1[I(i = y)(1− α) + α
k
] log pi − log py ±

∑k
i=1

1
k
log pi

NCE − log py∑k
i=1 − log pi

stop_grad
(

1∑k
i=1 log pi

)
log pi

∑k
i=1

1
k
log pi

Table 6: Original expressions, primary losses following the standard form Eq. (7) and regularizers
for loss functions reviewed in Appendix A.4. We view PL in its expectation to derive its regularizer.
pyn2 |xn1

is the softmax output with a random input xn1
and a random label yn2

sampled from the
noisy data.

Loss CIFAR10 CIFAR100

SCE q = 0.7 q = 0.95
GCE q = 0.3 q = 0.9
NCE+MAE q = 0.3 q = 0.9
AUL a = 1.1, q = 5 a = 7.0, q = 0.5
AGCE a = 0.1, q = 0.1 a = 3.0, q = 1.2

AUL† a = 3.0, q = 0.7 /
AGCE† a = 1.6, q = 2.0 /

FL / q = 2
AEL / q = 1.5
TCE / q = 6

Table 7: Hyperparameters of each loss function on different datasets. AUL† and AGCE† are with
inferior hyperparameters.

where α′ = α/(1− α), has regularizer RGLS633

RGLS(s) = −
k∑

i=1

1

k
log pi (16)

With α′ > 0, RGLS corresponds to the original label smoothing [47], which increases the entropy of634

softmax outputs. In contrast, α′ < 0 corresponding to negative label smoothing [49], which decreases635

the output entropy similar to RCR.636

Finally, with equivalent derivatives, NCE discussed in §3.2 and Appendix C can be decomposed into637

LNCE(s, y) =
1∑k

i=1 − log pi

{
− log py +

k log py∑k
i=1 log pi

·

[
1

k

k∑
i=1

log pi

]}
= stop_grad(γNCE) · [LCE(s, y) + stop_grad(ϵNCE) ·RNCE(s)]

where638

RNCE(s) =

k∑
i=1

1

k
log pi (17)

is the same regularizer as RGLS with a negative weight −ϵNCE.639

B Detailed Experimental Settings640

Our settings follow [10, 11], with differences explicitly stated in the main text. All models on641

CIFAR10/100 and MNIST are trained on NVIDIA 2080ti gpus with FP32. For models on the large642

scale dataset WebVision [36], we use FP16 to accelerate training.643

Synthetic noise generation The noisy labels are generated following [10, 11, 50]. For symmetric644

label noise, the training labels are randomly flipped to a different class with with probabilities645
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η ∈ {0.2, 0.4, 0.6, 0.8}. Asymmetric label noise are generated by a class-dependent flipping pattern.646

On CIFAR-100, the 100 classes are grouped into 20 super-classes each having 5 sub-classes. Each647

class are flipped within the same super-class into the next in a circular fashion. The flip probabilities648

are η ∈ {0.1, 0.2, 0.3, 0.4}.649

Models and Training We use a 4-layer CNN for MNIST, an 8-layer CNN for CIFAR10, a650

ResNet-34 [32] for CIFAR100, and a ResNet-50 [32] for WebVision, all with batch normalization651

[34]. Data augmentation including random width/height shift and horizontal flip are applied to652

CIFAR10/100. On WebVision, we additionally include random cropping and color jittering. Without653

further specifications, all models are trained using SGD with momentum 0.9 and batch size 128654

for 50, 120, 200 and 250 epochs on MNIST, CIFAR10, CIFAR100 and WebVision, respectively.655

Learning rates with cosine annealing are 0.01 on MNIST and CIFAR10, 0.1 on CIFAR100, and 0.2656

on WebVision. Weight decays are 10−3 on MNIST, 10−4 on CIFAR10, 10−5 on CIFAR100 and657

3× 10−5 on WebVision. Notably, all loss functions are normalized to have unit maximum in sample658

weights, which is different from [10]. See Table 7 for hyperparameters of loss functions on different659

datasets.660

C Deriving the Upperbound of Sample Weights of NCE661

We provide detailed derivations for results in §3.2.662

Constant Norm of ∥∇s∆y∥1: Since663

∂∆y

∂si
=

{
1, i = y
− esi∑

k ̸=y esk = pi

1−py
, i ̸= y

then664

∥∇s∆y∥1 =
∑
i

|∂∆y

∂si
| = 1 +

∑
i ̸=y

esi∑
k ̸=y e

sk
= 1 + 1 = 2

Approximating upperbound of wNCE in Eq. (10):665

wNCE =
∥∇sLNCE(s, y)∥1

∥∇s∆y∥1
=

1

2
∥∇sLNCE(s, y)∥1

≤ 1

2
γNCE · (∥∇sLCE(s, y)∥1 + ϵNCE · ∥∇sRCE(s)∥1)

≤ 1

2
γNCE ·

∥∇sLCE(s, y)∥1 + ϵNCE · 1
k

∑
j

∥∇sLCE(s, j)∥1


= γNCE

(
wCE +

k − 1

k
ϵNCE

)
The derivation is based on the inequality |x ± y| ≤ |x| + |y|, following the intuition [16, 17] that666

∥∇sLNCE(s, y)∥1 can be regarded as sample weights.667

D Underfitting of Robust Losses: Additional Results668

In Table 8 we report similar results as Table 2 in §4.1 with smaller learning rates. Although settings669

that severe underfits slightly improve, the performance gap compared to CE is still substantial. Such670

results further confirms that underfitting results from robust losses themselves.671

E Fixing Underfitting: Derivations and Additional Results672

We include detailed derivations and additional results for §4.2.673

Simulated ∆y’s well approximate real settings. We compare the simulated ∆y distributions to that674

of real datasets at initialization in Fig. 7. Although less accurate with the variance, the simulated675

expectations mostly follow real settings, which supports the analysis in §4.2.676
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CIFAR100 CIFAR10
Underfitting Loss Acc. ᾱ∗

t Acc. ᾱ∗
t

No CE 68.76 ± 0.21 0.962 90.24 ± 0.14 0.624

No
GCE 69.00 ± 0.24 0.956 90.83 ± 0.20 0.644
SCE 68.89 ± 0.05 1.165 91.07 ± 0.09 0.726

NCE+MAE 68.21 ± 0.51 0.520 90.14 ± 0.09 0.344

Moderate
NCE 57.95 ± 0.26 0.330 85.96 ± 0.21 0.206
AUL 47.98 ± 3.48 0.485 88.94 ± 0.29 0.604

AGCE 43.51 ± 2.58 0.406 90.71 ± 0.19 0.549

Severe
MAE 9.11 ± 0.83 0.025 90.65 ± 0.10 0.355
AUL† 10.04 ± 2.33 0.023 90.77 ± 0.04 0.337

AGCE† 5.34 ± 0.67 0.008 81.59 ± 8.55 0.243

Table 8: Similar results as Table 2 except with learning rate α = 0.01. See Table 7 for detailed
hyperparameters. AUL† and AGCE† with inferior hyperparamters are included as reference. Robust
losses can underfit regardless of hyperparameters of training.

(a) CIFAR10 (b) CIFAR100 (c) WebVision10

(d) WebVision50 (e) WebVision200 (f) WebVision400

Figure 7: Comparing simulated and real ∆y distributions at initialization. We simulate with class
scores following standard normal distribution, i.e., si ∼ N (0, 1). Histograms are real distributions
while the curves are from simulations, with the vertical axis denoting probability density f(∆y).

Deriving E(∆y) in Eq. (11) :677

E(∆y) = E[sy − log
∑
j ̸=y

esj ] = µ− E[log
∑
j ̸=y

esj ]

≈1 µ− logE[
∑
j ̸=y

esj ] +
V[

∑
j ̸=y e

sj ]

2E[
∑

j ̸=y e
sj ]2

=2 µ− log{(k − 1)E[esy ]}+ (k − 1)V[esy ]
2{(k − 1)E[esy ]}2

=3 µ− log[(k − 1)eµ+σ2/2] +
(k − 1)(eσ

2 − 1)e2µ+σ2

2[(k − 1)eµ+σ2/2]2

= − log(k − 1)− σ2/2 +
eσ

2 − 1

2(k − 1)

where ≈1 follows E[logX] ≈ logE[X]− V[X]
2E[X]2 [51], =2 utilize properties of sum of log-normal678

variables [52], and =3 substitutes the expression of E[esy ] and V[esy ] for log-normal distributions.679
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Clean Symmetric Noise (Noise Rate η)
Loss η = 0 η = 0.2 η = 0.4 η = 0.6 η = 0.8

CE [11] 71.33 ± 0.43 56.51 ± 0.39 39.92 ± 0.10 21.39 ± 1.17 7.59 ± 0.20
GCE [11] 63.09 ± 1.39 61.57 ± 1.06 56.11 ± 1.35 45.28 ± 0.61 17.42 ± 0.06
NCE [11] 29.96 ± 0.73 25.27 ± 0.32 19.54 ± 0.52 13.51 ± 0.65 8.55 ± 0.37
NCE+AUL [11] 68.96 ± 0.16 65.36 ± 0.20 59.25 ± 0.23 46.34 ± 0.21 23.03 ± 0.64

AGCE 49.27 ± 1.03 49.17 ± 2.15 47.76 ± 1.75 38.17 ± 1.43 16.03 ± 0.59
AGCE shift 67.50 ± 1.48 61.95 ± 1.48 53.33 ± 1.08 33.26 ± 0.37 10.47 ± 0.57
AGCE rescale 67.20 ± 0.79 64.28 ± 1.27 56.32 ± 0.59 38.52 ± 1.67 12.75 ± 1.10

MAE 3.69 ± 0.59 2.92 ± 0.46 1.29 ± 0.50 2.27 ± 1.24 1.00 ± 0.00
MAE shift 69.02 ± 0.78 59.75 ± 0.84 44.60 ± 0.24 24.27 ± 0.26 8.08 ± 0.26
MAE rescale 69.95 ± 1.21 66.42 ± 0.71 60.70 ± 0.30 45.17 ± 2.37 10.79 ± 0.97

Table 9: Shifting or rescaling ∆y mitigates underfitting on CIFAR100 with symmetric label noise.
We use a = 2.6 for MAE and AGCE and a = 4.5 for AGCE. Test accuracies are reported with 3
different runs. We also include results from [11] as context.

Clean Asymmetric Noise (Noise Rate η)
Loss η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

CE [11] 71.33 ± 0.43 64.85 ± 0.37 58.11 ± 0.32 50.68 ± 0.55 40.17 ± 1.31
GCE [11] 63.09 ± 1.39 63.01 ± 1.01 59.35 ± 1.10 53.83 ± 0.64 40.91 ± 0.57
NCE [11] 29.96 ± 0.73 27.59 ± 0.54 25.75 ± 0.50 24.28 ± 0.80 20.64 ± 0.40
NCE+AUL [11] 68.96 ± 0.16 66.62 ± 0.09 63.86 ± 0.18 50.38 ± 0.32 38.59 ± 0.48

AGCE 49.27 ± 1.03 47.53 ± 0.73 46.77 ± 2.37 39.82 ± 2.70 33.40 ± 1.57
AGCE-shift 67.50 ± 1.48 64.07 ± 0.90 56.16 ± 1.44 46.73 ± 1.39 38.37 ± 1.55
AGCE-rescale 67.20 ± 0.79 65.69 ± 0.24 60.80 ± 0.77 48.72 ± 1.39 40.00 ± 0.27

MAE 3.69 ± 0.59 3.59 ± 0.56 3.19 ± 0.98 2.11 ± 1.93 2.53 ± 1.34
MAE-shift 69.02 ± 0.78 63.82 ± 0.84 56.38 ± 0.45 48.93 ± 0.53 40.57 ± 0.47
MAE-rescale 69.95 ± 1.21 68.01 ± 1.08 65.71 ± 0.47 57.40 ± 0.35 39.22 ± 1.54

Table 10: Shifting or rescaling ∆y mitigates underfitting on CIFAR100 with asymmetric label noise.
We use a = 2.6 for MAE and AGCE and a = 4.5 for AGCE. Test accuracies are reported with 3
different runs. We also include results from [11] as context.

Additional results of shifted and rescaled fix to robust losses. We report results with symmetric680

(Table 9) and asymmetric (Table 10) label noise with diverse noise rates η. For real world noisy681

datasets, we subsample WebVision following standard settings [10, 11] with different number of682

classes, and report results with MAE and ResNet50 in Table 11. See Appendix B for detailed683

experimental settings. Notably, WebVision50 corresponds to the mini setting adopted in previous684

work [10, 11]. Shift and rescale ∆y mitigate underfitting of MAE and AGCE in general, resulting in685

performance similar to the state-of-the-arts.686

F Understanding Robustness: Additional Results687

As a more extended exploration to Fig. 4 in §4.3, in Fig. 8 we plot how distribution of ∆y evolve with688

more loss functions and more number of epochs on human label noise of CIFAR10-N [31]. They all689

follow similar trends as in Fig. 4.690
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k = 10 k = 50 k = 200 k = 400
a = 2.2 a = 2.0 a = 1.8 a = 1.6

CE 62.40 66.40 70.26 /
MAE 10.0 3.68 0.50 /
MAE-shift 58.40 60.76 59.31 /
MAE-rescale 48.40 66.72 71.92 /

Table 11: Shifting or rescaling ∆y mitigates underfitting on real noisy dataset WebVision [36] with
different number of classes. Due to the scale of the dataset, we only report test accuracy with a single
run.

(a) CE: 61.96 (b) FL: 61.02 (c) MAE: 68.34

(d) AUL: 68.51 (e) SCE: 68.61 (f) TCE: 72.42

(g) AGCE: 73.19 (h) AEL: 78.13 (i) GCE: 78.78

Figure 8: Additional results as Fig. 4 for more loss functions in Table 5 on CIFAR10-N [31] with
“worst” noisy labels (η = 0.4). Note that CE and FL do not enjoy robustness guarantees.
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