Under review as a conference paper at ICLR 2026

ALGORITHM GENERATION VIA CREATIVE IDEATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Designing system algorithms remains challenging, where the discontinuous nature
of the solution space often forces system engineers to rely on generic heuristics
at the expense of performance. We study whether LLMs can practically drive
algorithm generation, and find that they are biased towards well-known generic
designs, rather than making the creative leaps needed to navigate the discontinuous
solution space. To address this limitation, we introduce MetaMuse, a framework for
creative ideation built on three self-reflection principles: (1) quantifying solution
diversity and usefulness in measurable performance space, rather than abstract
idea space, (2) steering ideation through external stimuli, rather than internal
randomness, and (3) constructing executable solutions using waypoint reasoning,
rather than free-form chain-of-thought. Considering two critical online problems
at a global cloud provider, extensive evaluations show that MetaMuse can generate
high-performing solutions: cache replacement (reducing cache misses by up to
35.76%) and online bin packing (reducing bin usage by up to 30.93%).

1 INTRODUCTION

Designing system algorithms continues to be a central challenge in computing systems. Traditionally,
the development of such algorithms has been a manual and labor-intensive process. Our experience at
a global cloud provider indicates that even seemingly simple algorithms used in production — such as
cache replacement for data storage or bin packing for job scheduling — can require tens of thousands
of engineering hours to design. As a result, practitioners often resort to generic heuristics from the
literature, e.g., least-recently used (LRU) and least-frequently used (LFU) for cache replacement, and
first-fit for bin packing, which frequently result in suboptimal performance.

This paper asks whether large language models (LLMs) can practically drive algorithm generation,
with an emphasis on principles to transform this task into a systematic process. The core challenge in
system algorithm design arises from the nature of its solution space: it is an inherently discontinuous
space, where even a small change in algorithm design (e.g., data structure or control flow) can lead
to sharp and non-linear changes in performance. Although it is sometimes possible to estimate
the upper-bound performance, searching for practical solutions that approach this bound remains
non-trivial. Furthermore, the discontinuous solution space does not provide sufficiently predictable
patterns or a smooth landscape to guide the search.

Due to this discontinuity, we approach the algorithm generation task from a different angle, and frame
it as a sampling process in the solution space. LLM attempts to generate distinct solutions at each
step. This generative process represents a sequence of leaps in discontinuous solution space (Bubeck
et al.,|2023)), which we formulate as creative ideation for LLMs. In fact, the systems community has
long hypothesized algorithm design as a discovery process of ideas (Kant, |1985).

To study the algorithm generation task, we focus on high-impact problems at a global cloud provider:
cache replacement and online bin packing. Our initial attempts of repeatedly sampling GPT-4o,
Llama3.3-70B, and DeepSeek-V3 show that LLMs are fundamentally hindered by availability
bias (Tversky & Kahneman), |1973)) — LLMs are trained to output the most likely sequence of words,
according to training datasets. As a result, solutions tend to cluster around well-known heuristics
in the literature, e.g., LRU and LFU for caching. Furthermore, we find that this bias cannot be
practically addressed through LLM hyperparameters like temperature (Ackley et al.,|1985)).

The key to creative ideation is exploiting knowledge that LLMs assume to be probabilistically
irrelevant to the given problem. What is missing is a self-reflection process, which thinks how to

Under review as a conference paper at ICLR 2026

generate subsequent solutions by inspecting what solutions have been generated so far. In realizing
such a self-reflection framework, MetaMuse, we see three model-agnostic principles surfacing to best
guide this self-reflection. First, evaluating diversity of generated solutions should be grounded in
the measurable feedback space (e.g., simulation performance of system algorithms), rather than the
abstract idea space (Sankar & Senl [2024). Second, steering the ideation is achieved through external
stimuli (e.g., keywords), rather than internal randomness (Honghua Chen and Nai Ding, [2023). Third,
developing executable solutions from external stimuli takes structured checkpoint-based steps, or
waypoint reasoning, rather than free-form chain-of-thought (Wei et al., [2023; Mehrotra et al.| 2024).

Our work makes the following contributions:

1. Empirical analysis of LLMs’ fundamental limitations in the algorithm generation task (§2) —
shedding light on the impracticality of relying on LLMs’ internal randomness for ideation, based
on two online problems at a global cloud provider: cache replacement and online bin packing.

2. Principled framework for creative ideation, MetaMuse (§3) — systematically combining three
self-reflection principles, to guide the discontinuous leaps necessary to overcome LLMs’ bias.

3. Practical evaluation of the online algorithm generation task (§4)) — showing that (1) MetaMuse
generates better cache replacement and bin packing solutions, outperforming LLM-based baselines
(by up to 9.89% fewer cache misses, and up to 21.06% less bin usage) and human heuristics (by up
to 35.76% fewer cache misses, and up to 30.93% less bin usage); (2) MetaMuse has up to 1.78 x
more distinct cache replacement solutions and 1.80x more distinct bin packing solutions, than
LLM-based baselines; (3) MetaMuse has a low per-solution cost, up to 2.16 cents with GPT-4o.

2 BACKGROUND AND MOTIVATION

2.1 SYSTEM ALGORITHM DESIGN

System algorithms define how computing systems behave. They are typically designed to optimize
some performance objectives (e.g., cache hit ratio), for some scenarios or workloads (e.g., web
servers). The difficulty of designing such algorithms arises from the nature of their solution space.
It is discontinuous, where even a small change in algorithm design (e.g., the use of data structures)
can lead to sharp and non-linear changes in performance. In addition, the discontinuity does not
provide sufficiently predictable patterns or smooth landscape, to guide the search. This is a significant
departure from prior efforts on auto-tuning system config parameters (Alipourfard et al., 2017} |Cortez
et al.,[2017; |Liang et al., 2020), which can be formulated as numerical optimization in most cases.

To this end, our work explores the use of LLMs to design heuristic algorithms, i.e., the algorithm
generation task. Due to the discontinuous solution space, we approach this task as a sampling process
in this space. At each step, LLMs attempt to generate distinct solutions. Conceptually, solving such a
discontinuous task requires certain “Eureka” ideas that constitute leaps in the progress towards the
final solution (Bubeck et al.|, [2023)). Here, we refer to these leaps as creative ideation.

2.2 CREATIVE IDEATION

The goal of creative ideation is to discover useful solutions to a user-given problem, through a process
of generating diverse solutions over time. The first requirement is usefulness — a generated solution
should be relevant to the problem. The second requirement is diversity — a generated solution
should produce feedback (or an outcome) that is unseen in the current process (Boden,|1998)). As we
accumulate diverse and useful solutions, the process advances towards finding the optimal solution.

For the algorithm generation task, creative ideation can be formulated as the following iterative
process. Each iteration takes in problem statements of the algorithm, along with the set of functions to
be implemented. For example, most caching algorithms can be abstracted into insert and evict
functions (Yang et al.||2020). We can also take in metadata and feedback of previous solutions, as
optional inputs. At iteration 7, the output is an executable cache solution (c;) with all functions coded.
We can optionally provide feedback to iteration ¢ + 1, by measuring hit ratio of previous solutions
(C?“, s c?”) on user-given workload trace, in an environment such as simulators. After n cache
solutions, we select the best-performing one from (cy, ..., ¢;,).

Under review as a conference paper at ICLR 2026

75% 75% 75%
= Repeated Sampling = Repeated Sampling = Repeated Sampling
é 60% (w/o previous solutions) 9> 60% (w/o previous solutions) é 60% (w/o previous solutions)
Repeated Sampling Repeated Sampling Repeated Sampling
é 45% = (w/ previous solutions) é 45% = (w/ previous solutions) g 45% = (w/ previous solutions)

22 eevLee 2 e ERg L2 2eERgeeLae
& E -5 0% 3w & & - 50%® 3w & & - 52°% 3w &
éu) " ?u) 0 é‘u) "

(a) GPT-40 (b) Llama3.3-70B (c) DeepSeek-V3

Figure 1: Repeatedly sampling LLMs can generate biased solutions. In the cache replacement
problem, solutions tend to cluster around well-known ones in literature, e.g., LRU, LFU, and FIFO.

2.3 LLM LIMITATIONS IN CREATIVE IDEATION

Our work is motivated by the observation, where LLMs’ creative ideation capability is fundamentally
limited by the same mechanism that enables it — the next-token prediction. In cognitive terms,
responses are influenced by what one has frequently or recently seen, i.e., availability bias. For LLMs,
this bias arises from the data frequency distribution in the training dataset.

Impacts on algorithm generation. Due to this bias, LLMs tend to generate certain designs.
We illustrate with cache replacement, using GPT-40 (version: 1120), Llama3.3-70B (version:
Instruct), and DeepSeek-V3 (version: 0324).

shows our attempts with Repeated Sampling (Brown et al., [2024} |Snell et al.| [2024). At
iteration 4, each LLM is prompted to create a new design c;, with the default temperature of 1. Then,
¢; is implemented by GPT-40 in Python, and benchmarked in the simulator to measure hit ratios on
30 synthetic traces. We try two approaches of Repeated Sampling, and they differ in whether each
iteration’s prompt includes all previous solutions (i.e., solution descriptions and implementations).
[Figure T|clusters 1,200 solutions into centroids of human heuristics, according to the similarity of
hit ratios. The cluster sizes should ideally be uniform, but LLMs tend to design caches behaving
similarly to well-known heuristics: LRU, LFU, and first-in-first-out (FIFO). Another observation is
that making Repeated Sampling aware of previous solutions does not mitigate this bias.

Even if LLMs are instructed to generate new solutions by mutating previous solutions (Novikov et al.|
2025; Sharmal, |2025)), we observe a bias towards tweaking the solution’s scoring function. LLMs
tend to ignore other design dimensions such as data structure, hierarchical architecture, etc.

Is adjusting LLM hyperparameters all you need? One such parameter is temperature (Ackley
et al.,[1985), which internally regulates randomness in the generative process. Temperature smooths
the probability distribution of next-token candidates, as computed by the softmax of their logits. At
higher temperatures, high probabilities are decreased, and low probabilities are increased.

Unfortunately, high temperatures only mitigate availability bias, without practically addressing it.
The reason is that increasing temperature smooths the probability distribution, which is a monotonic
transformation retaining the relative ranking of output token candidates. Even at extreme temperatures,
the distribution would approach flat and result in incoherent LLM outputs.

2.4 RELATED WORK

The first category is automatic heuristic design (Liu et al.l 2024b; |Ye et al., [2024; Zheng et al.
2025; Romera-Paredes et al.,|2024; Novikov et al., 2025} |Sharma, [2025). These efforts mostly rely
on LLM:s to evolve an initial population of candidate designs, through mutations and crossovers.
This dependence on the initial population inherently constrains the reachable solution space. In
addition, availability bias can impact how the population is evolved. Our case study highlights a
bias towards frequently tweaking the cache algorithm’s scoring function, rather than leaping to other
design dimensions. MetaMuse addresses these limitations by making leaps in the solution space.

There are also efforts exploring human-LLM collaborations to produce diverse outputs (Liu et al.,
2024c; [Wan et al., 2024} |Vaccaro et al., 2024)). However, they require human efforts and can be

Under review as a conference paper at ICLR 2026

(N N\ (3
o Evaluating Diversity o Steering with External Stimuli o Developing Stimuli into Executable Solutions
IA- flower (0
= o [AZ| _ y stimuii(flower) - property extraction @@
: E ° = -
= 0.26 a diverse solution "RsDict \"/ a ring of petals) GO
.) ; I problem mapping waypoint
& o 0.33 RSDict-SF # circular buffer reasoning|
feedback » stimuli 1 ,o 4 solution formulation
embedding . predict solution description
= 9 0.10 > stimuli2 ——>€Q code generation @ &®
L~ ey JL JL python code)

train I

Figure 2: MetaMuse reflects on previous solutions, in order to think about how to generate subsequent
solutions. Each iteration goes through three steps: evaluating the diversity of generated solutions
(§3-1), steering ideation with external stimuli (§3.2), and developing executable solutions (§3.3).

subject to human bias. Instead, MetaMuse posits that LLMs themselves are capable of thinking
“outside the box” (Mehrotra et al.,|2024)), and proposes to combine three self-reflection principles to
achieve this capability (§3).

3 METAMUSE

Towards effective creative ideation, we address availability bias through a principled framework of
self-reflection, MetaMuse. The key is to enable LLMs to think “outside the box,” i.e., exploiting
knowledge that otherwise seems probabilistically irrelevant to solving the user problem.
shows the overview of an iteration, which outputs one executable solution. The first step is to evaluate
the diversity of generated solutions so far (§3.1)). This evaluation is based on the embedding computed
from each solution’s feedback (e.g., cache hit ratios in the figure). The second step is to steer ideation,
by selecting a set of stimuli (e.g., the “flower” keyword in the figure) based on the diversity evaluation.
§3.2] describes two stimuli selection strategies in the current implementation: RSDict and RSDict-SF.
Finally, MetaMuse develops stimuli into executable solutions (§3.3), through four waypoints of
reasoning: property extraction, problem mapping, solution formulation, and code generation.

3.1 EVALUATING DIVERSITY

MetaMuse grounds diversity evaluation in feedback space, rather than idea space. In our case study,
the former refers to performance measurements such as cache hit ratio, and the latter refers to the
semantic embedding of algorithm descriptions or code implementations. MetaMuse represents each
solution with a feedback embedding, which is a vector [p1, pa, ...,] of feedback measurements on
n workload traces. Ideally, these traces should be different, and one way is to randomly synthesize
traces with tools from the systems community (e.g., libCacheSim (Yang et al., [2020) for cache
workloads).

This principle is motivated by the observation that semantic differences do not necessarily imply
distinct solutions. Considering a case where GPT-40 generated functionally equivalent LFU-based
solutions twice from different design descriptions: “The cache evicts the object that is least frequently
accessed,” and “The cache evicts the object with the lowest priority. Upon a cache hit, the object’s
priority is incremented.” Code semantics exhibit similar shortcomings, where a solution implemented
with a linked list or a priority queue can have the same hit ratio.

Furthermore, feedback embedding has two desirable properties. First, since each dimension is a
quantitative metric conveying magnitude, the Euclidean distance of two embeddings is a direct
indication of how different corresponding solutions are. For the LFU case above, those two solutions
would be considered equivalent because their distance is 0. Second, since feedback metrics typically
pre-define a fixed range (e.g., 0—-100% for cache hit ratio), the n-dimensional embedding space is
inherently structured and bounded. This allows us to compute the steering direction (§3.2).

3.2 STEERING WITH EXTERNAL STIMULI

The objective of steering is to guide LLMs to generate solutions, which targets regions of the feedback
embedding space. Rather than relying on LLMSs’ internal randomness, MetaMuse uses external

Under review as a conference paper at ICLR 2026

stimuli as the starting point for ideation. Stimuli can be unbiased to the problem, forcing LLMs to
associate with knowledge that seems probabilistically irrelevant. One domain-agnostic instantiation
of stimuli is keywords from an English dictionary.

Realizing this principle of steering has practical challenges. The first is the source of stimuli. In the
case of keywords, a large dictionary offers a broader keyword coverage, but it also contains many
keywords of little value. An example is technical jargon, e.g., “prolamin” in biology. In our case
study, if LLMs are forced to associate these keywords, they would frequently use them as variable
names, rather than inspiration to ideate new solutions. The second challenge is selecting s stimuli at
each iteration. §3.2.Tnext presents selection strategies in our current implementation.

3.2.1 STIMULI SELECTION STRATEGIES
Our current implementation of MetaMuse includes two strategies: RSDict and RSDict-SF.

RSDict. RSDict is a stateless strategy that always randomly selects s keywords from the dictionary.
Since RSDict does not rely on evaluation results of previous solutions, it can steer scenarios where
evaluation is infeasible or costly (e.g., human judges).

RSDict-SF. Unlike RSDict, RSDict-SF considers the feedback embeddings of previous solutions,
to compute the steering direction at each iteration. Steering direction is specified by a feedback
embedding, which serves as the objective that RSDict-SF should aim to achieve in subsequent
solutions. In our case study, steering direction enables both exploration (for diversity) and exploitation
(for usefulness). For the former, the steering direction should be the farthest point from all previous
solutions, i.e., the feedback embedding that has the greatest Euclidean distance from all other
embeddings. For the latter, we set all dimensions of the target embedding vector to be a high value
(e.g., 100% cache hit ratio).

Given an embedding of steering direction, RSDict-SF computes the set of s stimuli that would likely
develop into solutions close to it. Our current implementation formulates this step as a prediction
problem, and solves it with Gaussian Process Regression (GPR) models. Given the sum of semantic
embeddings of s stimuli, we use n GPR models (M1, ..., M,,), to predict each of the n dimensions
in embedding. Having (M, ..., M,,) allows RSDict-SF to predict the expected feedback embedding
of any set of stimuli. GPR models are fitted with all previous solutions at each iteration. We use
the dot-product kernel for GPR models. Dot-product kernel K can capture the pairwise semantic
similarity between all observations across two solutions and is invariant to their ordering. For two
solutions ¢; and c;, their similarity captured by K is

K(ciyej) o< Y Y embedding(o;,p) " embedding(oj.q),

p=1g=1
where 0; ;, denotes the s observations derived from ¢;’s s stimuli, and similar for 0; 4.

We highlight two implementation details. First, predicting for all possible sets of stimuli is not
feasible in practice, and a dictionary with 3,000 common English words would already have 3,000°
sets. To this end, MetaMuse exercises the power-of-two random choices (Mitzenmacher et al.
2001). It randomizes two sets of stimuli from the dictionary, and predicts their expected feedback
embeddings. Then, MetaMuse selects the one closest to the target embedding. Second, RSDict-SF is
bootstrapped, with w solutions generated by RSDict, in order to start training GPR models.

3.3 DEVELOPING STIMULI INTO EXECUTABLE SOLUTIONS

Third, developing executable solutions from s stimuli involves structured waypoint reasoning.
Waypoints are intermediate checkpoints, which develop seemly unrelated stimuli (c.f. into
solutions for the problem at hand. In contrast to free-form chain-of-thought (Wei et al., 2023
Mehrotra et al., 2024), we observe that waypoints prevent LLMs from superficially developing
solutions, e.g., simply turning stimuli into variable names in code.

MetaMuse currently specifies the following waypoints. The first waypoint focuses on property
extraction, where LLMs are prompted to associate the given stimuli, to related concepts and properties.
Considering the keyword “flower”, one associated property can be “a ring of petals”. These outputs

Under review as a conference paper at ICLR 2026

are then fed to the second waypoint, problem mapping. Here, LLMs are prompted to associate to
problem-related observations. Continuing our example of “a ring of petals”, LLMs can associate the
shape, to the observation of circular buffer in algorithm design. These observations are then fed to the
third waypoint, solution formulation. LLMs are prompted to combine observations, and synthesize
the complete description of a new solution. The final waypoint is code generation, where LLMs turn
the solution description into executable Python code. Waypoint prompts are included in §C.2]

4 EMPIRICAL RESULTS

Baselines. We have 21 extensive baselines. LLM-based heuristics design baselines include MCTS-
AHD (Zheng et al.,[2025)), ReEvo (Ye et al.,2024), OpenEvolve (Sharma, |2025), PlanSearch (Wang
et al.,[2025)), and Repeated Sampling (Brown et al.,|2024). We also include human-crafted SOTA
heuristics for cache replacement problem (LRU, LFU, FIFO, Sieve (Zhang et al.,2024), S3FIFO (Yang
et al., 2023)), TinyLFU (Einziger et al.,|2017), SLRU (Huang et al.| 2013)), Clock (Corbato, |1969),
and ARC (Megiddo et al.l [2003))), and online bin packing problem (Next Fit, Worst Fit, Almost
Worst Fit (AWF) (Johnson, [2010), First Fit (Ddsa & Sgall, [2013)), Best Fit (Désa & Sgall, 2014)),
Harmonic-k (Lee & Lee, |1985), and Refined First Fit (RFF) (Yao, [1980)). For Harmonic-k, we set
k=4 to align its number of bin categories with RFF.

MetaMuse. We take a dictionary of common English words and remove stop-words to get 2,899
keywords. Each solution is ideated from s=4 keywords. The feedback embedding consists of
performance measurements on n=30 traces. For cache replacement, these n traces are generated by
libCacheSim (Yang et al.,2020), from different Zipfian distributions. For bin packing, n traces are
from various Weibull distributions. The number of RSDict-SF warmup solutions is w=100, roughly
one-third of the total solutions in one experiment. Finally, prompts are included in §C]

Experiment setup. We focus on two high-impact problems at a global cloud provider: cache
replacement and bin packing. In each experiment, all methods aim to ideate and generate 350
executable solutions. To the best of our ability, we configure PlanSearch to output at least 15, 11, and
12 observations, while ideating with GPT-40, Llama3.3-70B, and DeepSeek-V3, respectively. Many
baselines such as MCTS-AHD can tune parameters in their solutions. §5|discusses safeguards against
unsafe solutions, and environments are instrumented to catch errors, e.g., long-running execution.
Unsafe solutions are re-implemented. Coding prompts are in §C.2}

To evaluate cache replacement solutions, we use 96 real-world workload traces from four data access
scenarios (Table I)): RetrievalAttention (Liu et al.l 2024a) (24 “ra-fwe” and 24 “ra-multikey” traces),
Tencent block storage (Zhang et al., [2020} [2018)) (24 “tencent-storage” traces), and Alibaba cloud
storage (ali; L1 et al., 2020; Wang et al., 2022} (24 “alibaba-storage” traces). The cache capacity is
set to 10% of the number of distinct objects in each trace.

To evaluate online bin packing solutions, we use 288 workload traces: BPPLIB library (Delorme
et al.) (72 “Falkenauer-U” and 72 “Scholl-1" traces), Weibull distribution with parameter (shape=3,
scale=45) (Castineiras et al. 2012) (72 “Weibull”), and Gaussian distribution with parameter
(mean=0.3662, std=0.1416) (Yan et al.}|2022) (72 “Gaussian”).

4.1 METAMUSE GENERATES HIGH-PERFORMING SOLUTIONS

Cache replacement. [Figure 3[compares top solutions, as selected by the average cache miss ratio
over all 96 workload traces. Box plots show their miss ratio reduction, with respect to FIFO heuristics.

We first delve into results from GPT-4o0. At the 90th-percentile trace, MetaMuse achieves 5.17%—
9.89% lower miss ratio than LLM-based baselines, and 1.75%—-13.03% lower than human heuristics.
At the 75t"-percentile trace, MetaMuse achieves 3.62%—6.39% lower miss ratio than LLM-based
baselines, and 6.62%-35.76% lower than human heuristics. We also see improvement with Llama3.3-
70B — at the 90th—percentile trace, MetaMuse achieves 2.41%-7.20% lower miss ratio than LLM-
based baselines, and 0.94%-10.34% lower than human heuristics; at the 75th-percentile trace,
MetaMuse achieves 3.67%—-5.17% lower miss ratio than LLM-based baselines, and 5.48%—-34.62%
lower than human heuristics. On DeepSeek-V3, at the 90th-percentile trace, MetaMuse achieves up
to 6.05% lower miss ratio than LLM-based baselines, and up to 9.14% lower than human heuristics.

Under review as a conference paper at ICLR 2026

c 40 c 40 c 40 g 40
S S S 2
B =l B~ iy
3830 EEEN 3830 230
20
Q Q Q
Iem “Em mem SE 20
o o oir o
= £ =1
© £ © £ T £ T E
S 10 < 510 @ 510 x o10
2 2 2 wE
wE aE e 8 l
S o s o s o = o=
O 3 X O 3 VDO o o
FER R FER R FER R EFFEREE
85 o £ S § = %8 o £ S § = Ta e $ S § = o @ Z v
QE & v W g 8 oE & 0 L yn © oE £ 0 O ¢y © =1
O © 5 S £ B O © 5 S < © O © 5 S ¢ @
[} © xcwun © -4V} ©
= g =a = = g & = sz =
(a) GPT-40 (b) Llama3.3-70B (c) DeepSeek-V3 (d) Human Heuristics

Figure 3: Comparisons of top cache solutions generated by MetaMuse and baselines. Each box plot
represents the best solution from each model, and shows the miss ratio reduction (with respect to
FIFO heuristics) achieved over 96 traces. MetaMuse has higher reduction across nearly all percentiles,
on different LLMs.

c 32 c 32 c 32
S S_ S §_*
o oxX X =)
ST S 52 S,
o= o= o= 5 =
o = =
o 016 o 216 o 216 w*@'w
i i oL o
3 e RE g A€ g 8¢
558 S0 S0 =) 8
c & c = & ==
@ 0 m 0 o 0 o 0 -
3222 ¢ 5 3 3222 ¢ % 8 222 ¢ 5 8 B EEEEE
ge g 3 S 8 = s ¢ 3 % § = gs ¢ I ¢ § = L
QET v @ § ® QE X v 4 § T QE T v @ § ® S v 5 E
5 ¢ © E ¢ < F e 2 g c = 38
a8 & § 5§ ¢ g8 o § § 2 &8 O § 5 2 £ =
= 8— = = 8 T = 8- x o
(a) GPT-40 (b) Llama3.3-70B (c) DeepSeek-V3 (d) Human Heuristics

Figure 4: Comparisons of top online bin packing solutions generated by MetaMuse and baselines.
Each box plot represents the best solution from each model, and shows the bin usage reduction (with
respect to First Fit heuristics) achieved over 288 traces. MetaMuse has higher reduction across nearly
all percentiles, on different LLMs. We note that some human heuristics are not visibile because they
perform worse than First Fit.

Online bin packing. compares top solutions, as selected by the average bin usage over all
96 workload traces. Box plots show their bin usage reduction, with respect to First Fit heuristics.

We first delve into results from GPT-40. At the 90th-percentile trace, MetaMuse achieves 9.25%—
9.42% lower bin usage than LLM-based baselines, and 9.25%—-20.59% lower than human heuristics.
At the 75t"-percentile trace, MetaMuse achieves 6.94%—7.75% lower bin usage than LLM-based
baselines, and 7.56%-18.36% lower than human heuristics. With Llama3-7B, at the 90*"-percentile
trace, MetaMuse achieves up to 0.19% less bin usage than LLM-based baselines, and up to 12.50%
lower bin usage than human heuristics. With DeepSeek-V3, at the 90*"-percentile trace, MetaMuse
achieves up to 21.06% less bin usage than LLM-based baselines, and up to 30.93% lower bin usage
than human heuristics.

4.2 METAMUSE GENERATES THE MOST DIVERSE SET OF SOLUTIONS

Cache replacement. The discovery of useful solutions depends on having diverse solutions. We
evaluate diversity by the number of solutions with a distinct feedback embedding. Across all LLMs,
MetaMuse consistently achieves higher diversity over LLM-based baselines. From analyzing 350
solutions generated by each method on GPT-40, MetaMuse has 1.47x more distinct solutions on
average. On DeepSeek-V3, MetaMuse has 1.57 x more distinct solutions on average. On Llama3.3-
70B, results show that MetaMuse can have 1.78 x more distinct solutions on average.

Furthermore, we observe that having a higher diversity translates into lower availability bias. We
recall that Repeated Sampling tends to generate solutions that tightly cluster to well-known human
heuristics such as LRU, LFU, and FIFO, due to availability bias (§2.3). Using the nine human
heuristics as centroids, empirical results show that MetaMuse reduces the cluster density (computed

by g;‘:ﬁi‘:fj:ﬂ‘iﬁfi&), for nearly all centroids. In other words, MetaMuse solutions are less

Under review as a conference paper at ICLR 2026

EEmRepeated Sampling (w/o previous solutions) C—JRepeated Sampling (w/ previous solutions) —_JReEvo IMCTS-AHD EZTOpenEvolve EETPlanSearch BB MetaMuse

%

%o

%
> >
=

=

GPT-40 Llama3.3-70B DeepSeek-V3

Ay

Figure 5: MetaMuse generates a more diverse set of solutions. Using human heuristics as centroids,
results show that the cluster sizes for MetaMuse solutions have a lower standard deviation. In contrast,
baselines can cluster to a a subset of centroids.

~
G
X

Cluster Size (%)
w B (=}
S & 3
X X

-
w
<

o

Iru%-

Ifu

fifos

Y]
=4
©

fo-
slrug.

s3fifo-
sIruL
sIrui

Iru
s3fifo

f

tinyLFu?
clock%
arcEr-_,
tmyLFUi
-
clock%
arc;_
smve%‘

~
[v]
o
3]

sieve
s3fifo
sieve

tinyLFU§

tightly clustered than Repeated Sampling. For example, MetaMuse reduces the LRU cluster density
by 35.25% (i.e., 6.15 down to 3.98). We see cluster density reduction even on the less common
heuristics, e.g., the ARC cluster density reduces by 77.45% (i.e., 1.02 down to 0.23).

Finally, [Figure 5uses human heuristics as centroids, and evaluate whether generated solutions tend to
cluster to a subset of centroids. Ideally, the cluster sizes should be uniform. The standard deviation of
cluster size percentages for MetaMuse is 0.08/0.06/0.06, for GPT-40/DeepSeek-V3/Llama3-70B. This
is much lower than baselines: Repeated Sampling (0.14/0.11/0.11), Repeated Sampling with previous
solutions (0.11/0.11/0.11), ReEvo (0.14/0.10/0.10), MCTS-AHD (0.17/0.08/0.08), OpenEvolve
(0.19/0.19/0.19), and PlanSearch (0.12/0.10/0.99).

Online bin packing. We evaluate diversity by the number of solutions with a distinct feedback
embedding. Across all LLMs, MetaMuse consistently achieves a higher diversity over LLM-based
baselines. From analyzing 350 solutions generated by each method on GPT-40, MetaMuse has 1.44 x
more distinct solutions on average. On DeepSeek-V3, it has 1.80x more distinct solutions on average.
On Llama3-70B, it has 1.31 x more distinct solutions on average.

4.3 METAMUSE HAS A LOW PER-SOLUTION COST

We see having a low per-solution cost, as a factor driving the adoption of LLMs for creative ideation.
Considering the cache case study, the average cost for MetaMuse to generate one full solution is 2.16
cents with GPT-40, 2.11 cents with DeepSeek-V3, and 2.35 cents with Llama3.3-70B. These costs
include using GPT-40 for code generation. For reference, running the Repeated Sampling baseline
(with previous solutions) costs an average of 3.38 cents per solution.

Specifically, property extraction and problem mapping consume an average of 589.39/141.54 in-
put/output tokens per solution with GPT-40, 982.60/233.75 input/output tokens with DeepSeek-V3,
and 768.20/207.50 input/output tokens with Llama3.3-70B. Solution formulation consumes an av-
erage of 934.04/230.21 input/output tokens per solution with GPT-40, 473.01/425.77 input/output
tokens with DeepSeek-V3, and 409.53/353.10 input/output tokens with Llama3.3-70B. Code gen-
eration consumes an average of 1463.92/1190.39 input/output tokens per solution with GPT-4o,
2223.72/1937.29 input/output tokens with DeepSeek-V3, and 2259.62/1979.89 input/output tokens
with Llama3.3-70B. We note that if an implementation is considered unsafe (§5), it is re-implemented.

4.4 SURPRISING DESIGNS FROM METAMUSE

In addition to quantitative evaluations, we highlight MetaMuse-generated designs that are not im-
mediately obvious to engineers. To do so, we look at top-performing cache replacement solution:
MetaMuse-533 (§D.1)) and MetaMuse-488 (§D.2).

One is the counter named NSE in MetaMuse-533. NSE deviates from the common belief of favoring
newly admitted objects. Instead, it tracks the number of times that a cached object has witnessed
eviction events. It is used in the score calculation, along with recent access time and frequency
counter. Effectively, MetaMuse-533 behaves to favor objects that have remained longer in the cache
(up to some thresholds). Engineers hypothesize that NSE helps to learn objects’ access patterns and
prevent thrashing (Denning & J.,|{1968)).

Under review as a conference paper at ICLR 2026

200 200 200
¥ 150 { — RSDict /,x' ¥ 180{ — RSDict ¥ 180{ — RSDict
§ 100) — oo] S| e | §aeo| - b
=} - RSDict- - 4 B ---- RSDict- pe] ---- RSDict-
2 140 -=-=-- RSDict-SF-noWR > o E 140 -=- RSDict-SF-noWR - 2 140 ~=- RSDict-SF-noWwR
l% 120 8 120 (% 120
& 100 1 100 & 100
£ £ ® £ %
E‘ 60 4‘5 60 45 60
Ia) 40 I} 40 a 40
20 #* 20 F#* 20
0 0 0
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Solutions Solutions Solutions
(a) GPT-40 (b) Llama3.3-70B (c) DeepSeek-V3

Figure 6: Comparisons of the diversity of cache replacement solutions, generated by different stimuli
selection strategies: RSDict and RSDict-SF. “-noWR” means removing waypoint reasoning. We
ideate with different LLMs, and code with GPT-40. RSDict-SF (dashed lines) outperforms RSDict
(solid lines). Removing waypoint reasoning (blue lines) reduces solution diversity (red lines).

Another is the use of hashing functions to segment the cache space in MetaMuse-488, which differs
from the more common multi-tiered architecture. MetaMuse-488 tries to maintain different groups
of cache objects (as identified by their key hashes), and exercises per-group replacement policies in
different segments. In contrast, engineers tend to use multi-tiered architecture, as a way to differentiate
the importance of cache objects.

Finally, we highlight the use of saturating counters in MetaMuse-533. They increment until some
pre-defined threshold. MetaMuse-533 deviates from the typical usage scenarios, which are to reduce
storage overhead by capping the maximum value of a counter (Yang et al., 2023} |Corbato, |1969).
Instead, MetaMuse-533 seems to use saturating counters to accumulate meaningful usage history, but
not so much as to mislead eviction decisions. For example, a saturating frequency counter allows
MetaMuse-533 to identify bursty objects, while preventing their counts from growing too large during
the burst.

4.5 ABLATION STUDY

We test key components in MetaMuse, with the case study of cache replacement algorithms.

Stimuli selection strategies. We test RSDict and RSDict-SF by running experiments on GPT-4o.
First, the majority of RSDict and RSDict-SF solutions outperform Repeated Sampling solutions,
and this demonstrates the value of having stimuli for steering ideation. Comparing solutions for the
90th-percentile workload trace, 67.20% of RSDict solutions and 75.60% of RSDict-SF solutions have
a higher cache hit ratio than Repeated Sampling. In addition, these hit ratios can be up to 13.13%
and 27.07% higher, respectively. Similarly, for the 75¢"-percentile workload trace, we see 66.80% of
RSDict solutions and 72.40% of RSDict-SF solutions outperform Repeated Sampling. In addition,
these hit ratios can be up to 15.43% and 21.93% higher, respectively.

Second, compared to RSDict, RSDict-SF has a greater number of solutions that can outperform
Repeated Sampling. Empirical results show 12.50% and 8.38% more solutions, with respect to the
90" percentile and 75" percentile of workload traces, respectively. Furthermore, looking at solution
diversity, RSDict-SF results in 13.17% more distinct solutions than RSDict.

Waypoint reasoning. shows that waypoint reasoning enables MetaMuse to generate more
diverse solutions. We fix the coding agents to GPT-40. At each iteration, we instrument MetaMuse to
generate solutions with and without waypoint reasoning. When ideating with GPT-4o (Figure 6a)),
waypoint reasoning improves the number of distinct solutions from 149 to 175 for RSDict, and
from 152 to 197 for RSDict-SF. When ideating with DeepSeek-V3 (Figure 6c), waypoint reasoning
improves the number of distinct solutions from 113 to 144 for RSDict, and from 119 to 140 for
RSDict-SF. When ideating with Llama3.3-70B (Figure 6b), waypoint reasoning improves the number
of distinct solutions from 124 to 148 for RSDict, and from 129 to 154 for RSDict-SF.

Under review as a conference paper at ICLR 2026

5 DISCUSSION

Safeguards against unsafe solutions. In the case of system algorithms, three main errors result
in unsafe implementations: (1) long-running execution (e.g., more than 5 seconds), (2) excessive
memory usage over the user-specified requirement, and (3) illegal behaviors (e.g., falsely claiming
a cache hit when the requested object is not present). Our benchmark environments monitor the
per-benchmark execution time and peak memory usage, while running each solution. Both can be
collected from the GNU t ime command. For catching illegal behaviors, we check the returned
object value against the expected value in the trace. From our experience, ~2.28% of solutions
generated by MetaMuse are classified as being unsafe, and subsequently discarded.

Finally, with Python scripts as the output, it is possible to leverage libraries in the Python ecosystem.
We discuss two on-going efforts. One is performing unit tests, with libraries such as unittest juni
(2025)). Another is the design-and-code equivalence; we are exploring the use of LLMs to generate
state machines from design descriptions and code implementations, for the equivalence check.

Limitations and future discussion. First, our implementation explores an instantiation of external
stimuli (§3.2)), which is specifically chosen for being general and problem-agnostic. However, the
MetaMuse framework is extensible to take in other instantiations, and future work will explore
possibilities such as long-term task-related memories. Second, our work currently focuses on fully
automated ideation, and an interesting direction is to explore whether subjective human guidance (e.g.,
human expertise) could further improve the solution usefulness. Third, we evaluate on real-world
workload traces (§4), and deploying LLM-generated algorithms to a business-critical production
environment remains an ongoing collaboration with engineers at a global cloud provider. We look
forward to leverage lessons learned for deeper practical impacts.

Algorithm benchmarking costs. The RSDict-SF strategy considers the feedback embeddings
of previous solutions (c.f. §3.2.1)), and this requires benchmarking solutions on n workload traces.
Benchmarks can take a significant amount of time and resources, especially if they involve running
an end-to-end system with long workload traces. If costs are prohibitively high, RSDict-SF may
impact the practicality of MetaMuse. We note that benchmarking costs is a problem that the Systems
community has been actively addressing |Akram & Sawalhal(2019), with techniques such as discrete-
event simulations, hardware acceleration, parallelization, and so on. At the same time, we are
exploring stimuli selection strategies that have a lower requirement on running benchmarks.

Synergy with existing approaches. Although MetaMuse focuses on creative leaps, we recognize
the value in related approaches that iteratively refine algorithm designs (Liu et al., [2024b; |Ye et al.,
2024} Zheng et al.| 2025} Romera-Paredes et al., 2024; Novikov et al.| [2025} Sharmal 2025). In
fact, both approaches are orthogonal, in a way similar to human’s divergent and convergent thinking
processes. MetaMuse can provide the initial population of solution candidates, which can then be
further improved by the iterative refinement approach.

6 CONCLUSION

To practically drive algorithm generation, MetaMuse is a framework of creative ideation that mitigates
LLMs’ availability bias. MetaMuse combines three self-reflection principles, guiding the stages of
creative ideation. Evaluations show that it can generate high-performing solutions for two high-impact

problems at a global cloud provider: cache replacement and bin packing algorithms. Furthermore,
we observe surprising design considerations not immediately obvious to human engineers.

7 REPRODUCIBILITY STATEMENT

We submit anonymized code in a zip file, as part of supplementary materials. Key prompts are
included in appendix (§C). After the paper is published, code and datasets will be made public in our
GitHub repository.

8 ETHICS STATEMENT

This work poses no ethical issues.

10

Under review as a conference paper at ICLR 2026

REFERENCES
Alibaba block trace. URL https://github.com/alibaba/block—-traces.

unittest — Python Unit Testing Framework, 2025. URL https://docs.python.org/3/
library/unittest.html.

David H. Ackley, Geoffrey E. Hinton, and Terrence J. Sejnowski. A Learning Algorithm for
Boltzmann Machines. Cognitive Science, 9(1), 1985.

Ayaz Akram and Lina Sawalha. A survey of computer architecture simulation techniques and tools.
IEEE Access, 2019.

Omid Alipourfard, Honggiang Harry Liu, Jianshu Chen, Shivaram Venkataraman, Minlan Yu, and
Ming Zhang. CherryPick: Adaptively Unearthing the Best Cloud Configurations for Big Data
Analytics. In NSDI. USENIX, 2017.

Margaret A. Boden. Creativity and Artificial Intelligence. Artificial Intelligence, 1(2), 1998.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher R, and Azalia
Mirhoseini. Large Language Monkey: Scaling Inference Compute with Repeated Sampling, 2024.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi, Marco Tulio
Ribeiro, and Yi Zhang. Sparks of Artificial General Intelligence: Early experiments with GPT-4,
2023.

Ignacio Castineiras, Milan de Cauwer, and Barry O’Sullivan. Weibull-based benchmarks for bin
packing. pp. 207-222, 01 2012. ISBN 9783642335570. doi: 10.1007/978-3-642-33558-7_17.

F. J. Corbato. A paging experiment with the multics system, 1969. URL https://multicians,
org/paging-experiment.pdfl

Cortez, Eli, Bonde, Anand, Muzio, Alexandre, Russinovich, Mark, Fontoura, Marcus, Bianchini,
and Ricardo. Resource Central: Understanding and Predicting Workloads for Improved Resource
Management in Large Cloud Platforms. In SOSP. ACM, 2017.

M. Delorme, M. Ilori, and S. Martello. BPPLIB. URL |https:
//site.unibo.it/operations—research/en/research/
bpplib-a-bin-packing-problem-library.

Denning and Peter J. Thrashing: its causes and prevention. In Proceedings of the December 9-11 and
1968 and Fall Joint Computer Conference and Part I, AFIPS ’68 (Fall and part I), pp. 915-922,
New York and NY and USA, 1968. Association for Computing Machinery. ISBN 9781450378994.
doi: 10.1145/1476589.1476705. URL https://doi.org/10.1145/1476589.1476705.

Gyorgy Doésa and Jiri Sgall. First Fit bin packing: A tight analysis. In Natacha Portier and Thomas
Wilke (eds.), 30th International Symposium on Theoretical Aspects of Computer Science (STACS
2013), volume 20 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 538-549,
Dagstuhl, Germany, 2013. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik. ISBN 978-3-
939897-50-7. doi: 10.4230/LIPIcs.STACS.2013.538. URL https://drops.dagstuhl,
de/entities/document/10.4230/LIPIcs.STACS.2013.538.

Gyorgy Désa and Jiff Sgall. Optimal analysis of best fit bin packing. In Javier Esparza, Pierre
Fraigniaud, Thore Husfeldt, and Elias Koutsoupias (eds.), Automata, Languages, and Programming,
pp. 429441, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg. ISBN 978-3-662-43948-7.

Einziger, Gil, Friedman, Roy, Manes, and Ben. TinyLFU: A Highly Efficient Cache Admission
Policy. ACM Trans. Storage, 2017.

Honghua Chen and Nai Ding. Probing the Creativity of Large Language Models: Can Models
Produce Divergent Semantic Association. In EMNLP. , 2023.

Huang, Qi, Birman, Ken, van Renesse, Robbert, Lloyd, Wyatt, Kumar, Sanjeev, Li, and Harry C. An
Analysis of Facebook Photo Caching. In SOSP. ACM, 2013.

11

https://github.com/alibaba/block-traces
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://multicians.org/paging-experiment.pdf
https://multicians.org/paging-experiment.pdf
https://site.unibo.it/operations-research/en/research/bpplib-a-bin-packing-problem-library
https://site.unibo.it/operations-research/en/research/bpplib-a-bin-packing-problem-library
https://site.unibo.it/operations-research/en/research/bpplib-a-bin-packing-problem-library
https://doi.org/10.1145/1476589.1476705
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2013.538
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2013.538

Under review as a conference paper at ICLR 2026

David Johnson. Near-optimal bin packing algorithms. 08 2010.

Elaine Kant. Understand and Automating Algorithm Design. In Transactions on Software Engineer-
ing. IEEE, 1985.

C.C.Lee and D. T. Lee. A simple on-line bin-packing algorithm. J. ACM, 32(3):562-572, July
1985. ISSN 0004-5411. doi: 10.1145/3828.3833. URL https://doi.org/10.1145/3828,
3833.

Li, Jinhong, Wang, Qiuping, Lee, Patrick P. C., Shi, and Chao. An In-Depth Analysis of Cloud Block
Storage Workloads in Large-Scale Production. In ZISWC. IEEE, 2020.

Chieh-Jan Mike Liang, Hui Xue, Mao Yang, Lidong Zhou, Lifei Zhu, Zhao Lucis Li, Zibo Wang,
Qi Chen, Quanlu Zhang, Chuanjie Liu, and Wenjun Dai. AutoSys: The Design and Operation of
Learning-Augmented Systems. In ATC. USENIX, 2020.

Di Liu, Meng Chen, Baotong Lu, Huiqiang Jiang, Zhenhua Han, Qianxi Zhang, Qi Chen, Chen-
gruidong Zhang, Bailu Ding, Kai Zhang, Chen Chen, Fan Yang, Yuqing Yang, and Lili Qiu.
Retrieval Attention: Accelerating Long-Context LLM Inference via Vector Retrieval. In NeurIPS
Workshop on Efficient Natural Language and Speech Processing, 2024a.

Fei Liu, Tong Xialiang, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using large language
model. In Forty-first International Conference on Machine Learning, 2024b. URL https
//openreview.net/forum?id=BwAkaxgiLB.

Yiren Liu, Pranav Sharma, Mehul Jitendra Oswal, Haijun Xia, and Yun Huang. PersonaFlow:
Boosting Research Ideation with LLM-Simulated Expert Personas, 2024c.

Megiddo, Nimrod, Modha, and Dharmendra S. ARC: A Self-Tuning and Low Overhead Replacement
Cache. In FAST. USENIX, 2003.

Pronita Mehrotra, Aishni Parab, and Sumit Gulwani. Enhancing creativity in large language mod-
els through associative thinking strategies, 2024. URL https://arxiv.org/abs/2405,
06715,

Michael Mitzenmacher, Andrea W. Richa, and Ramesh Sitaraman. The Power of Two Random
Choices: A Survey of Techniques and Results, 2001.

Alexander Novikov, Ngan Vu, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt Wag-
ner, Sergey Shirobokov, Borislav Kozlovskii, Francisco J. R. Ruiz, Abbas Mehrabian, M. Pawan
Kumar, Abigail See, Swarat Chaudhuri, George Holland, Alex Davies, Sebastian Nowozin, Push-
meet Kohli, and Matej Balog. AlphaEvolve: A coding agent for scientific and algorithmic discovery.
Technical report, DeepMind, 2025.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M. Pawan Kumar, Emilien Dupont, Francisco J. R. Ruiz, Jordan S. Ellenberg, Pengming Wang,
Omar Fawzi, Pushmeet Kohli, and Alhussein Fawzi. Mathematical Discoveries from Program
Search with Large Language Models. In Nature, 2024.

B. Sankar and Dibakar Sen. A Novel Mathematical Framework for Objective Characterization of
Ideas through Vector Embeddings in LLM, 2024.

Asankhaya Sharma. Openevolve: an open-source evolutionary coding agent, 2025. URL https:
//github.com/codelion/openevolve.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM Test-Time Compute
Optimally can be More Effective than Scaling Model Parameters, 2024.

Amos Tversky and Daniel Kahneman. Availability: A Heuristic for Judging Frequency and Probabil-
ity. Cognitive Psychology, 5(2), 1973.

Vaccaro, Michelle, Almaatouq, Abdullah, Malone, and Thomas. When Combinations of Humans
and Al are Useful: A Systematic Review and Meta-analysis. Nature Human Behaviour, 2024.

12

https://doi.org/10.1145/3828.3833
https://doi.org/10.1145/3828.3833
https://openreview.net/forum?id=BwAkaxqiLB
https://openreview.net/forum?id=BwAkaxqiLB
https://arxiv.org/abs/2405.06715
https://arxiv.org/abs/2405.06715
https://github.com/codelion/openevolve
https://github.com/codelion/openevolve

Under review as a conference paper at ICLR 2026

Wan, Qian, Hu, Siying, Zhang, Yu, Wang, Piaohong, Wen, Bo, Lu, and Zhicong. It Felt Like Having
a Second Mind: Investigating Human-AI Co-creativity in Prewriting with Large Language Models.
HCI, 2024.

Evan Z Wang, Federico Cassano, Catherine Wu, Yunfeng Bai, William Song, Vaskar Nath, Ziwen
Han, Sean M. Hendryx, Summer Yue, and Hugh Zhang. Planning in Natural Language Improves
LLM Search for Code Generation. In /CLR, 2025.

Qiuping Wang, Jinhong Li, Patrick P. C. Lee, Tao Ouyang, Chao Shi, and Lilong Huang. Separating
data via block invalidation time inference for write amplification reduction in Log-Structured
storage. In FAST. USENIX, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models,
2023.

Jie Yan, Yunlei Lu, Liting Chen, Si Qin, Yixin Fang, Qingwei Lin, Thomas Moscibroda, Saravan
Rajmohan, and Dongmei Zhang. Solving the Batch Stochastic Bin Packing Problem in Cloud: A
Chance-constrained Optimization Approach. In KDD. ACM, 2022.

Yang, Juncheng, Zhang, Yazhuo, Qiu, Ziyue, Yue, Yao, Vinayak, and Rashmi. FIFO queues are all
you need for cache eviction. In SOSP. ACM, 2023.

Juncheng Yang, Yao Yue, and K. V. Rashmi. A Large Scale Analysis of Hundreds of In-memory
Cache Clusters at Twitter. In OSDI. USENIX, 2020.

Andrew Chi-Chih Yao. New Algorithms for Bin Packing. Journal of ACM, 1980.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Federico Berto, Chuanbo Hua, Haeyeon Kim, Jinkyoo Park,
and Guojie Song. Reevo: Large language models as hyper-heuristics with reflective evolution. In
Advances in Neural Information Processing Systems, 2024. https://github.com/aidco/
reevo.

Yazhuo Zhang, Juncheng Yang, Yao Yue, Ymir Vigfusson, and K.V. Rashmi. SIEVE is simpler than
LRU: an efficient Turn-Key eviction algorithm for web caches. In NSDI. USENIX, 2024.

Yu Zhang, Ping Huang, Ke Zhou, Hua Wang, Jianying Hu, Yongguang Ji, and Bin Cheng. Tencent
block storage traces (SNIA IOTTA trace 27920). In Geoff Kuenning (ed.), SNIA IOTTA Trace
Repository. Storage Networking Industry Association, September 2018. URL http://iotta.
snia.org/traces/parallel/279172only=27920.

Yu Zhang, Ping Huang, Ke Zhou, Hua Wang, Jianying Hu, Yongguang Ji, and Bin Cheng. OSCA:
An Online-Model Based Cache Allocation Scheme in Cloud Block Storage Systems. In ATC.
USENIX, 2020.

Zhi Zheng, Zhuoliang Xie, Zhenkun Wang, and Bryan Hooi. Monte carlo tree search for com-
prehensive exploration in LLM-based automatic heuristic design. In Forty-second International
Conference on Machine Learning, 2025. URL https://openreview.net/forum?id=
DolOdZzYHr.

13

https://github.com/ai4co/reevo
https://github.com/ai4co/reevo
http://iotta.snia.org/traces/parallel/27917?only=27920
http://iotta.snia.org/traces/parallel/27917?only=27920
https://openreview.net/forum?id=Do1OdZzYHr
https://openreview.net/forum?id=Do1OdZzYHr

Under review as a conference paper at ICLR 2026

A LLM USAGE STATEMENT

LLMs did not play a significant role in research ideation and writing, and they are not regarded as
contributors.

B CACHE WORKLOAD TRACES

We detail the traces for evaluation on cache replacement in [Table T| (c.f. §4)). To show their access
patterns, we plot one trace from each data access scenario (Figure 7). The z-axis denotes a virtual
timestamp, which is the number of cache accesses thus far. The y-axis denotes the accessed objects.
Their IDs are sequentially assigned, following the chronological order of the time they appear for the
first time. The intervals between the gray vertical lines equal the cache capacity, which is set as 10%
of the trace footprint (i.e., the number of distinct object IDs).

scenario ra-fwe ra-multikey tencent-storage alibaba-storage
release year 2024 2024 2020 2024
avg #cache accesses 10598.42 27390.71 53503.79 7582.08
avg #distinct objects ~ 938.54 1092.29 225.125 4108.83

Table 1: The data access scenarios of cache replacement used in this work. Each scenario consists of
24 cache traces.

o

1

Object ID

fli

il

(b) ra-multikey

Object ID
Object ID

ime

(c) tencent-storage (d) alibaba-storage

Figure 7: The access pattern of one cache trace from each data access scenario.

C PROMPTS

C.1 IDEATION PROMPTS

Repeated Sampling uses the following prompt for solution formulation, generating its natural language
description:

The Ideation Prompt for Repeated Sampling

You are an expert in computer systems. Your task is to create an innovative cache replacement
policy.
Provide your creative policy using the following JSON structure:

14

Under review as a conference paper at ICLR 2026

[" 6j SOn \
{
“metadata”: “use a few sentences to summarize the metadata specifically maintained by the
policy here”,

“evict”: “use a few sentences to summarize how the policy chooses the eviction victim here”,
“update_after_hit”: “use a few sentences to summarize how the policy updates **each** of
the metadata it maintains immediately after a cache hit here”,

“update_after_insert”: “use a few sentences to summarize how the policy updates **each**
of the metadata it maintains immediately after inserting a new object into the cache here”,

“update_after_evict”: “use a few sentences to summarize how the policy updates **each** of
the metadata it maintains immediately after evicting the victim here”

}

1113

Do not include any additional text or explanation in your response.

J

We use PlanSearch’s original prompts (Wang et al.,[2025) to generate observations. These observations
are then inserted into the placeholder [[hints]] of the following prompt for solution formulation:

The Ideation Prompt for PlanSearch

You are an expert in computer systems. Create an innovative cache replacement policy using
the following hints:

[[hints]]

Provide your creative policy using the following JSON structure:

el

json

{
“metadata”: “use a few sentences to summarize the metadata specifically maintained by the
policy here”,

99, <

“evict”: “use a few sentences to summarize how the policy chooses the eviction victim here”,

99,

“update_after_hit”: “use a few sentences to summarize how the policy updates **each** of
the metadata it maintains immediately after a cache hit here”,

“update_after_insert”: “use a few sentences to summarize how the policy updates **each**
of the metadata it maintains immediately after inserting a new object into the cache here”,
“update_after_evict”: “use a few sentences to summarize how the policy updates **each** of
the metadata it maintains immediately after evicting the victim here”

}

e

Do not include any additional text or explanation in your response.

J

MetaMuse uses the following prompt for property extraction and problem mapping. They are the
first two waypoints (c.f. §3.3).

The Waypoint Reasoning Prompt for MetaMuse

You are an expert in computer systems. Your task is to use the concepts inspired by the given
word or phrase to design creative ideas for cache replacement policies.

Answer in the following format:

<The given word or phrase> relates to the concept of <concept 1>.

<Concept 1> relates to <Concept 2>.

<Concept n-1> relates to <Concept n>

Inspired by <Concept n>, <your creative ideas for cache replacement policies in a few
sentences>.

**Example 1#%*:

The given word or phrase: angular momentum.

g J

Under review as a conference paper at ICLR 2026

~

Answer:

“Angular momentum” relates to the concept of “rotation”.

“Rotation” relates to “cycle”.

Inspired by “cycle”, a cyclic pointer can be maintained to track cached objects and determine
eviction victims.

**Example 2%%*:

The given word or phrase: zebra.

Answer:

“Zebra” relates to the concept of “stripe”.

“Stripe” relates to “segmentation”.

Inspired by “segmentation”, a cache can be divided into segments with different eviction
priorities, and each segment can use a distinct eviction policy.

The given word or phrase: [[word]]

Do not include any additional text or explanation in your answer.

J

For solution formulation, MetaMuse uses the same ideation prompt as PlanSearch. The placeholder
[[hints]] will be replaced with the observations derived from the first two waypoints.

C.2 CODING PROMPTS

All methods use the following prompt to implement a solution in Python.
The placeholders, [[metadatal], [[evict]], [[update_after_hit]],
[[update_after_insert]], and [[update_after_evict]], will be filled in
with the corresponding fields in the JSON-formatted output of the ideation prompts. [[design]]
will be filled with a concatenation of these fields.

The Coding Prompt

You are an expert in Python. Your task is to implement a deterministic cache replacement
policy in Python without any randomness. You can only reference the attributes provided
below. You have read-only access to these attributes and no access to any functions.

[Begin of accessible attributes]

An “object” represents the unit of a request, such as inserting an object into the cache or
retrieving an object from the cache. Each object ‘obj’ provides the following **read-only**
attributes that you can reference:

- ‘obj.key’ (str): A string that uniquely identifies the object.

- ‘obj.size’ (int): A positive integer representing the size of the object in bytes.

You can also reference the following **read-only** attributes provided by a cache snapshots
‘cache_snapshot’:

- ‘cache_snapshot.cache’ (dict): A dictionary containing the cached objects, where the keys
are the objects’ keys, and the values are the corresponding objects themselves.

- ‘cache_snapshot.size’ (int): A non-negative integer representing the current total size of the
cache in bytes.

- ‘cache_snapshot.capacity’ (int): A positive integer representing the maximum allowed size
of the cache in bytes.

- ‘cache_snapshot.access_count’ (int): The current total number of cache accesses. You can
also use this to represent current time.

- ‘cache_snapshot.hit_count’ (int): The current total number of cache hits.

- ‘cache_snapshot.miss_count’ (int): The current total number of cache misses.

[End of accessible attributes]

The cache replacement policy you need to implement is described below:

[Begin of cache replacement policy]

[[design]]

[End of cache replacement policy]

Implement this policy using the Python code framework below. Your implementation must
strictly follow the comments in this Python code framework.

g J

16

Under review as a conference paper at ICLR 2026

[Begin of Python code framework]

Import anything you need below. You must not use any randomness.
For example, you cannot ‘import random'‘'. Also, you cannot use
any function in ‘numpy‘' that uses randomness, such as the
functions in ‘numpy.random"‘.

Put tunable constant parameters below

Put the metadata specifically maintained by the policy below. [[
metadata]]

def evict (cache_snapshot, obj):

rrs

This function defines how the policy chooses the eviction victim

[[ev&ct]]

- Args:
— ‘cache_snapshot ‘: A snapshot of the current cache state.
- ‘obj': The new object that needs to be inserted into the
cache.
- Return:

— ‘candid_obj_key': The key of the cached object that will
be evicted to make room for ‘obj‘.

rr s

candid_obj_key = None

Your code below

return candid_obj_key

def update_after_hit (cache_snapshot, obj):

rrs

This function defines how the policy update the metadata it
maintains immediately after a cache hit.

[[update_after hit]]

- Args:

— ‘cache_snapshot ': A snapshot of the current cache state.
- ‘obj': The object accessed during the cache hit.

— Return: ‘None'

rrs

Your code below

def update_after_insert (cache_snapshot, obj):

This function defines how the policy updates the metadata it
maintains immediately after inserting a new object into the
cache.

[[update_after._insert]]

- Args:

— ‘cache_snapshot ': A snapshot of the current cache state.
- ‘obj': The object that was just inserted into the cache.

- Return: ‘None'

rrs

Your code below

def update_after_evict (cache_snapshot, obj, evicted_obj):

rrs

This function defines how the policy updates the metadata it
maintains immediately after evicting the victim.

[[update_after_evict]]

- Args:

— ‘cache_snapshot ‘: A snapshot of the current cache state.

- ‘obj': The object to be inserted into the cache.

- ‘evicted_obj'‘': The object that was just evicted from the
cache.

— Return: ‘None'

rrs

Your code below

[End of code framework]

17

Under review as a conference paper at ICLR 2026

You **must not** alter the provided code framework. Also, keep the two comments “# Put
tunable constant parameters below” and “# Put the metadata specifically maintained by the
policy below” unchanged. Wrap your code with “‘python and “‘ and include nothing else in
your answer.

D CASE STUDIES

D.1 METAMUSE-533

Import anything you need below. You must not use any randomness. For
example, you cannot ‘import random'. Also, you cannot use any
function in ‘numpy ‘' that uses randomness, such as the functions in
numpy.random".

Put tunable constant parameters below
MAX_PREDICTIVE_SCORE = 100

MAX_ENTROPY = 100

MAX_NEURAL_ALIGNMENT = 100
MAX_ACCESS_FREQUENCY 100

MAX_RECENCY = 100
MAX_DIFFERENTIAL_PRIVACY_NOISE = 100

Put the metadata specifically maintained by the policy below. The
policy maintains predictive likelihood scores, stochastic model
outputs, data entropy values, neural alignment scores, access
frequency, recency, differential privacy noise factors, quantum error

correction codes, and deep reinforcement learning model state-action

values.

metadata = {
"predictive_likelihood_scores’: {},
"stochastic_model_outputs’: {},
"data_entropy_values’: {},
"neural_alignment_scores’: {},
"access_frequency’: {},
"recency’: {},
"differential_privacy_noise_factors’: {},
"quantum_error_correction_codes’: {},

"deep_rl_state_action_values’: {}

def evict (cache_snapshot, obj):

rrs

This function defines how the policy chooses the eviction victim.

The policy chooses the eviction victim by combining predictive
likelihood scores, stochastic model outputs, data entropy values,

neural alignment scores, access frequency, recency, and

differential privacy noise factors, adjusted by the deep
reinforcement learning model’s recommendations to balance
performance, privacy, and future access predictions.

- Args:

— ‘cache_snapshot ': A snapshot of the current cache state.

- ‘obj': The new object that needs to be inserted into the cache.
- Return:

- ‘candid_obj_key': The key of the cached object that will be
evicted to make room for ‘obj’.
rrs
candid_obj_key = None
min_score = float (’inf’)

for key, cached_obj in cache_snapshot.cache.items () :

score = (
metadata[’predictive_likelihood_scores’].get (key, 0) +

18

Under review as a conference paper at ICLR 2026

metadatal[’stochastic_model_outputs’].get (key, 0) +
metadata[’data_entropy_values’].get (key, 0) +
metadata[’neural_alignment_scores’].get (key, 0) +
metadatal[’access_frequency’].get (key, 0) +

metadatal’ recency’].get (key, 0) +
metadatal[’differential_privacy_noise_factors’] .get (key, 0)

)

if score < min_score:
min_score = score
candid_obj_key = key

return candid_obj_key

def update_after_hit (cache_snapshot, obj):

rrs

This function defines how the policy updates the metadata it
maintains immediately after a cache hit.

After a cache hit, the policy increases the predictive likelihood
score, updates the stochastic model, recalculates data entropy,
adjusts the neural alignment score, updates access frequency and
recency, recalculates the differential privacy noise factor, and
updates the state-action values in the deep reinforcement
learning model.

- Args:

— ‘cache_snapshot ': A snapshot of the current cache state.
— ‘obj': The object accessed during the cache hit.

- Return: ‘None'

rrs

key = obj.key

metadata[’predictive_likelihood_scores’] [key] = min(metadatal’
predictive_likelihood_scores’].get (key, 0) + 1,
MAX_PREDICTIVE_SCORE)

metadata[’ stochastic_model_outputs’] [key] = min(metadatal’
stochastic_model_outputs’].get (key, 0) + 1, MAX_PREDICTIVE_SCORE)

metadata[’data_entropy_values’] [key] = min(metadatal’
data_entropy_values’].get (key, 0) + 1, MAX_ENTROPY)

metadata[’neural_alignment_scores’] [key] = min(metadatal’
neural_alignment_scores’].get (key, 0) + 1, MAX_NEURAL_ALIGNMENT)

metadatal[’access_frequency’] [key] = min(metadatal’access_frequency’].
get (key, 0) + 1, MAX_ACCESS_FREQUENCY)

metadatal[’ recency’] [key] = cache_snapshot.access_count

metadata[’differential_privacy_noise_factors’] [key] = min(metadatal’
differential_privacy_noise_factors’].get (key, 0) + 1,
MAX_DIFFERENTIAL_PRIVACY_NOISE)

metadata[’deep_rl_state_action_values’] [key] = min (metadatal’
deep_rl_state_action_values’].get (key, 0) + 1,
MAX_PREDICTIVE_SCORE)

def update_after_insert (cache_snapshot, obj):
This function defines how the policy updates the metadata it
maintains immediately after inserting a new object into the cache

After inserting a new object, the policy initializes the predictive
likelihood score, updates the stochastic model, calculates
initial data entropy, sets the neural alignment score,
initializes access frequency and recency, assigns a differential
privacy noise factor, generates quantum error correction codes,
and updates the deep reinforcement learning model to include the
new state.

- Args:

— ‘cache_snapshot ': A snapshot of the current cache state.
- ‘obj': The object that was just inserted into the cache.
— Return: ‘None'

19

Under review as a conference paper at ICLR 2026

def

rrs

key = obj.key

metadata[’predictive_likelihood_scores’] [key] = 1
metadata[’stochastic_model_outputs’] [key] =1
metadata[’data_entropy_values’] [key] =1
metadata[’neural_alignment_scores’] [key] =1
metadata[’access_frequency’] [key] =1

metadata[’ recency’] [key] = cache_snapshot.access_count
metadata[’differential_privacy_noise_factors’] [key] =1
metadata [’ quantum_error_correction_codes’] [key] =1
metadata[’deep_rl_state_action_values’] [key] = 1

update_after_evict (cache_snapshot, obj, evicted_obj):

rr s

This function defines how the policy updates the metadata it
maintains immediately after evicting the victim.

After evicting a victim, the policy removes its metadata, updates the
stochastic model, recalculates data entropy for remaining
entries, adjusts neural alignment scores, adjusts differential
privacy noise factors, updates quantum error correction codes,
and retrains the deep reinforcement learning model to adapt to
the new cache state.

- Args:
— ‘cache_snapshot ': A snapshot of the current cache state.
- ‘obj': The object to be inserted into the cache.
- ‘evicted_obj‘': The object that was just evicted from the cache.

- Return: ‘None'

rrs

evicted_key = evicted_obj.key

if evicted_key in metadata[’predictive_likelihood_scores’]:
del metadata[’predictive_likelihood_scores’] [evicted_key]

if evicted_key in metadata[’stochastic_model_outputs’]:
del metadata[’stochastic_model_outputs’] [evicted_key]

if evicted_key in metadata[’data_entropy_values’]:

del metadata[’data_entropy_values’] [evicted_key]
if evicted_key in metadata[’neural_alignment_scores’]:
del metadata[’neural_alignment_scores’] [evicted_key]

if evicted_key in metadata[’access_frequency’]:
del metadata[’access_frequency’] [evicted_key]
if evicted_key in metadatal’recency’]:
del metadata[’recency’] [evicted_key]
if evicted_key in metadata[’differential_privacy_noise_factors’]:
del metadata[’differential_privacy_noise_factors’] [evicted_key]
if evicted_key in metadata[’quantum_error_correction_codes’]:
del metadata[’quantum_error_correction_codes’] [evicted_key]
if evicted_key in metadata[’deep_rl_state_action_values’]:
del metadata[’deep_rl_state_action_values’] [evicted_key]

Recalculate data entropy for remaining entries
for key in cache_snapshot.cache:
metadata[’data_entropy_values’] [key] = min(metadatal’
data_entropy_values’].get (key, 0) + 1, MAX_ENTROPY)

Adjust neural alignment scores
for key in cache_snapshot.cache:
metadata[’neural_alignment_scores’] [key] = min(metadatal’
neural_alignment_scores’].get (key, 0) + 1,
MAX_NEURAL_ALIGNMENT)

Adjust differential privacy noise factors
for key in cache_snapshot.cache:
metadata[’differential_privacy_noise_factors’] [key] = min(
metadata[’differential_privacy_noise_factors’].get (key, 0) +
1, MAX DIFFERENTIAIL PRIVACY NOISE)

20

Under review as a conference paper at ICLR 2026

Update quantum error correction codes
for key in cache_snapshot.cache:
metadata [’ quantum_error_correction_codes’] [key] = min (metadatal’
quantum_error_correction_codes’].get (key, 0) + 1,
MAX_PREDICTIVE_SCORE)

Retrain the deep reinforcement learning model
for key in cache_snapshot.cache:
metadata[’deep_rl_state_action_values’] [key] = min (metadatal’
deep_rl_state_action_values’].get (key, 0) + 1,
MAX_PREDICTIVE_SCORE)

D.2 METAMUSE-488

PARTITION_COUNT = 3 # Number of partitions based on usage patterns

INITIAL_PRIORITY = 1
INITIAL_RARITY = 1
metadata = {
"partitions’: [{} for _ in range (PARTITION_COUNT)], # List of

dictionaries for each partition
"priority_scores’: {}, # Dictionary mapping obj.key to priority
score
"rarity_scores’: {}, # Dictionary mapping obj.key to rarity score
"timestamps’: {}, # Dictionary mapping obj.key to access timestamps

def evict (cache_snapshot, obj):
candid_obj_key = None
for partition in metadata[’partitions’]:
Find the least priority and rarity score item in the partition
candidates = sorted(
partition.items (),
key=lambda item: (
metadata[’priority_scores’] [item[0]],
metadatal’ rarity_scores’] [item[0]],
metadata[’timestamps’] [item[0]]
)
)
if candidates:
candid_obj_key = candidates[0] [0]
break

return candid_obj_key

def update_after_hit (cache_snapshot, obj):

metadata[’timestamps’] [obj.key] = cache_snapshot.access_count

metadatal[’ rarity_scores’] [obj.key] += 1 # Increase rarity score
based on access frequency

Reevaluate priority within the partition

Here we assume a simple priority adjustment based on access
frequency

metadata[’priority_scores’] [obj.key] = max(metadatal[’priority_scores’
] [obj.key], metadatal[’rarity_scores’][obj.key])

def update_after_insert (cache_snapshot, obj):
partition_index = hash(obj.key) % PARTITION_COUNT
metadata[’partitions’] [partition_index] [obj.key] = obj
metadatal[’priority_scores’][obj.key] = INITIAL_PRIORITY
metadata[’ rarity_scores’] [obj.key] = INITIAL_RARITY
metadata[’timestamps’] [obj.key] = cache_snapshot.access_count

def update_after_evict (cache_snapshot, obj, evicted_obj):
partition_index = hash(evicted_obj.key) % PARTITION_COUNT

21

Under review as a conference paper at ICLR 2026

if evicted_obj.key in metadatal[’partitions’] [partition_index]:
del metadata[’partitions’] [partition_index] [evicted_obj.key]
del metadata[’priority_scores’] [evicted_obj.key]
del metadata[’rarity_scores’] [evicted_obj.key]
del metadatal[’timestamps’] [evicted_obj.key]

Rebalance partitions based on current usage patterns
for partition in metadata[’partitions’]:
for key in partition:
Simplistic strategy to adjust priority and rarity scores
metadata[’priority_scores’] [key] = max(INITIAL_PRIORITY,
metadata[’priority_scores’] [key] - 1)
metadatal[’rarity_scores’] [key] = max(INITIAL_RARITY, metadata
["rarity_scores’] [key] - 1)

D.3 COMPARE RSDICT AND RSDICT-NOWR USING AN EXAMPLE

We compare RSDict and RSDict-noWR with a concrete example on cache replacement to illustrate
waypoint reasoning.

RSDict and RSDict-noWR both use the stimuli set {best, impose, extra, pale} to generate cache
replacement policies.

D.3.1 PROPERTY EXTRACTION
RSDict reasons about the problem-related property of each stimulus:

* best — comparison — ranking

* impose — authority — hierarchy
* extra — surplus — overflow

* pale — fading — decay

D.3.2 PROBLEM MAPPING
RSDict maps the extracted properties to the problem domain to generate observations:

* ranking — objects in the cache can be ranked based on access frequency or recency, with
the lowest-ranked objects being evicted first

* hierarchy — a hierarchical cache replacement policy can be developed where objects are
ranked based on importance, and lower-ranked objects are evicted first

» overflow — a cache replacement policy can focus on evicting the least valuable entries to
make room for critical ones that exceed the cache’s immediate capacity, essentially creating
a priority-based overflow management system

» decay — a cache replacement policy can use a decay function to gradually decrease the
priority of cache entries, selecting the least ‘bright’ or least relevant items for eviction

D.3.3 SOLUTION FORMULATION
RSDict designs a solution using the observations:

* metadata: The policy maintains metadata including access frequency, recency of access,
hierarchical importance, and a decay score for each cache entry. A dual ranking system
assigns a composite score based on these factors.

 update_after_hit: The policy calculates a composite score using access frequency, recency,
importance rank, and decay values to identify the lowest scored entries for eviction, priori-
tizing those near a threshold in the hierarchical cache structure.

 update_after_insert: After a cache hit, the access frequency and recency values are incre-
mented, the decay function is reset or slowed, and hierarchical importance may be updated
to reflect improved relevance.

22

Under review as a conference paper at ICLR 2026

 update_after_evict: Post eviction, the metadata recalibrates the hierarchical importance
thresholds, updates decay dynamics, and modifies frequency/recency metrics for remaining
entries to ensure balanced prioritization.

RSDict-noWR directly uses the given stimuli to generate a solution:

* metadata: The policy maintains metadata including a ‘Pale Access Frequency’ score for each
entry, representing its likelihood of future accesses, and an ‘Extra Usage Counter’ to track
rare intense usage patterns. Additionally, it includes ‘Best Recent Utilization’ timestamps,
recording the time since the last access.

* evict: The policy chooses the eviction victim by identifying the entry with the lowest ‘Pale
Access Frequency’ score, the lowest ‘Extra Usage Counter’, and the oldest ‘Best Recent
Utilization’ timestamp, focusing on entries least likely to be used in the near future.

* update_after_hit: Upon a cache hit, the policy increases the ‘Pale Access Frequency’ score
and ‘Extra Usage Counter’ for the accessed entry, boosting its likelihood to stay, and updates
the ‘Best Recent Utilization’ timestamp to the current time.

* update_after_insert: After inserting a new object, the policy initializes its ‘Pale Access
Frequency’ score and ‘Extra Usage Counter’ to default low values, indicating an unbiased
entry yet to prove its importance, and sets the *Best Recent Utilization’ timestamp to the
current time.

» update_after_evict: Upon eviction, the policy resets the metadata for the evicted entry,
ensuring that new insertions don’t inherit old, irrelevant frequencies or utilization timestamps,
and recalibrates other entries to maintain consistent scoring dynamics.

This example shows that without waypoint reasoning, LLMs tend to use the given stimuli in a
superficial way. In RSDict-noWR, LLMs uses the stimulus “pale” to name a metadata “Pale Access
Frequency”, which is identical to a standard frequency counter. In RSDict, LLMs first derive the
concept of “decay” from “pale”, then maps it to observation “decay function”, which is more difficult
to come up with compared with frequency counting in cache replacement.

D.3.4 DIVERSITY EVALUATION

After calculating the feedback embeddings of the two solutions, we find that RSDict-noWR’s solution
is identical to LFU, while RSDict’s solution is different from any human heuristic.

E IMPACTS OF USING TASK-RELATED STIMULI

§3.2)mentions that stimuli can be unbiased to the problem, forcing LLMs to associate with knowledge
that seems probabilistically irrelevant. And, one domain-agnostic instantiation of stimuli is keywords
from an English dictionary. However, MetaMuse can also accommodate task-related stimuli. To this
end, this section presents empirical results on the impacts of using task-related stimuli.

Our experiments are based on designing cache replacement policies with GPT-40. We start by
prompting GPT-40 to output a list of cache-related stimuli, and GPT-40 generates 78 keywords:
lfru, consistency, ghost, clock, cache, optimal, associativity, s3-fifo, benchmark, bélddy, policy, hit,
temporal, memory, slru, queues, queue, arc, static, replacement, coherence, algorithms, access,
plru, miss, brrip, probabilistic, caching, storage, sieve, prefetching, tree, lirs, analysis, timestamp,
lifo, latency, policies, dynamic, recency, algorithm, reinsertion, performance, tlru, flash, clock-pro,
ratio, discard, binary, fifo, filo, expiration, mq, hawkeye, distance, srrip, pollution, ssds, locality,
lfuda, eviction, reuse, drrip, mru, lfu, prediction, pointers, lru, inter-reference, rrip, approximation,
distributed, throughput, data, aging, survival, metadata, streaming. Then, we feed these stimuli
to MetaMuse, and generate 350 cache replacement algorithm designs. Empirical results show that
task-related stimuli reduce the number of distinct solutions by 11.

Figure 8|compares top solutions, as selected by the average cache miss ratio over all 96 workload
traces. Box plots show their miss ratio reduction, with respect to FIFO heuristics.

At the 90*"-percentile trace, MetaMuse using stimuli from an English dictionary achieves 3.24%
lower miss ratio than MetaMuse using cache-related stimuli. At the 75!"-percentile trace, MetaMuse

23

Under review as a conference paper at ICLR 2026

w B
o o

from FIFO (%)
5 8

Miss Ratio Reduction

MetaMuse MetaMuse
(cache-reletad stimuli)

Figure 8: Comparisons of top cache solutions generated by MetaMuse using stimuli from an English
dictionary and MetaMuse using cache-related stimuli. Each box plot represents the best solution from
each model, and shows the miss ratio reduction (with respect to FIFO heuristics) achieved over 96
traces. Using stimuli from an English dictionary has higher reduction across nearly all percentiles.

using stimuli from an English dictionary achieves 6.99% lower miss ratio than MetaMuse using
cache-related stimuli.

24

	Introduction
	Background and Motivation
	System Algorithm Design
	Creative Ideation
	LLM Limitations in Creative Ideation
	Related Work

	MetaMuse
	Evaluating Diversity
	Steering with External Stimuli
	Stimuli Selection Strategies

	Developing Stimuli into Executable Solutions

	Empirical Results
	MetaMuse Generates High-performing Solutions
	MetaMuse Generates the Most Diverse Set of Solutions
	MetaMuse Has a Low Per-solution Cost
	Surprising Designs from MetaMuse
	Ablation Study

	Discussion
	Conclusion
	Reproducibility Statement
	Ethics Statement
	LLM Usage Statement
	Cache Workload Traces
	Prompts
	Ideation Prompts
	Coding Prompts

	Case Studies
	MetaMuse-533
	MetaMuse-488
	Compare RSDict and RSDict-noWR Using an Example
	Property Extraction
	Problem Mapping
	Solution Formulation
	Diversity Evaluation

	Impacts of Using Task-related Stimuli

