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Abstract

We introduce a new deep generative model use-
ful for uncertainty quantification: the Morse neu-
ral network, which generalizes the unnormal-
ized Gaussian densities to have modes of high-
dimensional submanifolds instead of just discrete
points. Fitting the Morse neural network via a KL-
divergence loss yields 1) a (unnormalized) gen-
erative density, 2) an OOD detector, 3) a calibra-
tion temperature, 4) a generative sampler, along
with in the supervised case 5) a distance aware-
classifier. The Morse network can be used on
top of a pre-trained network to bring distance-
aware calibration w.r.t the training data. Because
of its versatility, the Morse neural networks uni-
fies many techniques: e.g., the Entropic Out-of-
Distribution Detector of (Macédo et al., 2021) in
OOD detection, the one class Deep Support Vec-
tor Description method of (Ruff et al., 2018) in
anomaly detection, or the Contrastive One Class
classifier in continuous learning (Sun et al., 2021).
The Morse neural network has connections to sup-
port vector machines, kernel methods, and Morse
theory in topology.

1. Introduction

Neural networks are becoming prevalent in a large num-
ber of applications both in industry and research (Larson
et al.; Sharma et al., 2022; Jumper et al., 2021; Ren et al.,
2019; Han et al., 2021; Kivlichan et al., 2021). Because of
their impressive performances, these models are likely to
become increasingly trusted in a wider range of domains,
including sensitive applications like in the medical field
(Roy et al., 2021; Kivlichan et al., 2021; Jumper et al., 2021;
Han et al., 2021). This makes the ability to quantify when
the predictions of a neural network should be considered
uncertain a critical issue, especially since neural networks
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are known to deliver wrong predictions very confidently
(Nguyen et al., 2015; Goodfellow et al., 2015; Ovadia et al.,
2019; Guo et al., 2017; Hendrycks & Gimpel, 2017; Lak-
shminarayanan et al., 2017). As a result, the development
of methods to quantify neural network uncertainty is an
increasingly important subject in deep learning research
(Amodei et al., 2016). In particular, neural networks tend to
produce confidently wrong predictions when presented with
Out-Of-Distribution (OOD) inputs, that is, inputs that are
far away from the data distribution with which the model
was trained (Murphy, 2023; Nagarajan et al., 2021; Liu
et al., 2020; 2022). Detecting OOD inputs as well as de-
vising models that are aware of the distance from inputs
to the training distribution are becoming key challenges in
uncertainty quantification (Murphy, 2023).

One classical approach to detect OOD data is to fit a gener-
ative probability density to the In-Distribution data (IND)
(since OOD points are often rare) and use it to detect OOD
points as points with low probability (Murphy, 2023). This
works well for normal data with a single mode, but becomes
computationally prohibitive when the data has very complex
modes requiring fitting large mixtures of simpler paramet-
ric models. On the other hand, standard deep generative
models are easier to train and in theory able to express very
complex modes. However, they have been shown to have
some difficulty to distinguish IND from OOD even in the
simpler case of distinguishing between MNIST and Fash-
ionMNIST (Nalisnick et al., 2019). Non-generative deep
learning approaches like the one class deep Support Vector
Data Description (SVDD) of (Ruff et al., 2018) have yielded
better results on that front.

Another approach is to leverage the supervised information
from a classifier to obtain finer-grained OOD detectors. For
instance, (Lee et al., 2018; Ren et al., 2021) fit a multivariate
Gaussian to the classifier embeddings for each of the labels,
yielding a squared distance, the Mahalanobis distance, from
the Gaussian modes, creating a powerful OOD detector. The
Spectral Normalized Gaussian Process (SNGP) in (Liu et al.,
2020; 2022) on the other hand fits an approximate Gaussian
process to the classifier embeddings producing an input-
dependent temperature that is used to scale the classifier
logits so that it becomes distance-aware (i.e. its uncertainty
grows as we move away from the training set distribution).
Finally, the entropic OOD detector from (Macédo et al.,
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2021) learns a classifier whose logits are distance-aware by
construction and uses the entropy score of that classifier as
an OOD detector. For further reference, we refer the reader
to (Salehi et al., 2022; Bulusu et al., 2020; Ruff et al., 2018)
for comprehensive surveys of the literature.

We propose a new deep generative model, the Morse net-
work, which unifies a number of the separate supervised
and unsupervised techniques mentioned. This model pro-
duces a join (unnormalized) density u(z,y) by taking the
kernel similarity K (¢g(x), T(y)) between the image of the
feature x and the one-hot-encoded 7'(y) version of the label
y, which we set to a fixed value a in the unsupervised case
(see sections 2 and 4 for details). The unsupervised for-
mulation comprises mixtures of (unnormalized) Gaussian
densities (and more generally exponential family densities)
along with more flexible densities whose modes are sub-
manifolds rather than discrete points. The unsupervised
Morse network with a Gaussian kernel degenerates to the
deep one class SVDD proposed in (Ruff et al., 2018), except
for a built-in regularizer in the loss somewhat reminiscent
of the mixup regularizer (Pinto et al., 2022). For the Cauchy
kernel, it has a temperature whose form coincides with that
of SNGP, except that the variance is learned and not com-
puted by large matrix inversion. The supervised Morse
network with a Laplace kernel produces a distance-aware
classifier that coincides with the entropy OOD classifier
from (Macédo et al., 2021). Although this is not the focus
of this work, we explain how the Morse network yields a
sample generator by following certain gradient flows from
random initial points, very much in the spirit of the Poisson
generative model (Xu et al., 2022).

The focus of this work is to expose this unifying idea, and
to explore the relationships with known approaches. Com-
prehensive evaluation of the approach and its extensions is
the topic of future work.

2. The Unsupervised Morse Neural Network

We now introduce the (unsupervised) Morse neural net-
works. These networks produce (unnormalized) genera-
tive densities jg(x) € [0,1] directly on a feature space
X = R? or on a space of embeddings 9(h(z)) € [0, 1] of
the original features obtained from a pre-trained network
h(x). Morse neural networks are very expressive in terms of
the modes they can produce (see examples below). Recall
that the modes of an (unormalized) density p : X — [0, 1]
is the subset modes(;) C X where the density achieves its
highest possible value, namely 1. This set can be reduced
to a single point (e.g., the mean of a Gaussian) or it can
be more complex such as a smooth subset of X of higher
dimension, like a curve, or a surface, or, more generally
a k-dimensional submanifold of X, as is the case for the
Morse neural network densities. Intuitively, these generative

densities are uniformly 1 on their mode submanifolds and
decrease to 0 as we move away from these modes at a speed
controlled by a special type of kernels, which we call Morse
kernels:

Definition 2.1. A Morse kernel K on a space Z = RF is
a positive kernel K (z1, z2) taking its values in the interval
[0, 1] and such that K'(z1, z2) = 1 if and only if z; = 2.

Many common kernels are Morse kernels. Namely, all
kernels of the form K (21, z2) = exp(—AD(z1, 22)) where
D is a divergence in the sense of Amari (2016) are Morse
kernels (since D(z1,22) = 0if and only if 2; = 25). The
Gaussian kernel and the Laplace Kernel are Morse Kernel,

as well as the Cauchy kernel K (21, 22) = 1572

We are now ready to define the Morse neural network:

Definition 2.2. A Morse neural network is defined by the
data of 1) a neural network ¢y : X — Z (with parameters
6) from the feature space X = R? to a space Z = R*, and
2) a Morse kernel K on Z. The (unnormalized) density of a
point x € X is given by

po(r) = K(pg(z),a) (1)

where a is treated as an hyper-parameter of the model.

From the properties of Morse kernels, it is easy to see that
1o () € [0, 1] and that the modes of py(x) (i.e., the points
where 19 () reaches 1, its highest possible value) coincide
with the level set of ¢y (Sec. A):

modes(ug) = {z € X : ¢g(x) = a}. (2)

Fitting the Morse network to a dataset so that its modes
approximate the modes of the data distribution is explained
in section 3. Applications of a fitted unsupervised Morse
network are detailed in section 2.1, which we briefly sum-
marize here:

First, the input dependent temperature Ty(x) = 1/pug(x),
which is 1 on the density modes and grows away from
them can be used to scale the logit of a classifier to make it
distance-aware in the spirit of (Liu et al., 2022). Second, the
classifier syp(x) = 1— pg(z) is a epistemic uncertainty score
measuring our uncertainty in whether the point z comes
from the training distribution. Hence it can be used as an
OOD detector. Third, the function Vy(z) = — log () is a
form of square distance from the density modes (see section
A for details and relationship with Morse-Bott theory). In
consequence, its negative gradient field flow —V,Vy(x)
converges to the mode submanifolds, giving us a way to
generate new samples from random initial points very much
in the spirit of the generative Poisson flow from (Xu et al.,
2022).

We highlight several examples to showcase the flexibility of
this model.
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Location/Scale densities: £ = d. All the standard loca-
tion/scale densities of the form f((z —u)TS ™1 (2 — p)) can
be recovered using a linear neural network with one layer
with invertible weight matrix. This encompasses the multi-
variate Gaussian, Student-t, Cauchy, and Laplace densities.
For all these densities we can take the same neural network
¢(x) = X2 (u— z) and a = 0, but we change the kernel:
The Gaussian kernel K (z,z') = exp(—3|lz — 2'||?) pro-
duces the (unnormalized) multivariate Gaussian; the Laplace
kernel K (z,2") = exp(—||x—1'||) produces the (unnormal-
ized) multivariate Laplace density; the Student- kernel with
v degrees of freedom K (z,2') = (1 + 1|z — x’||2)_dJ2rV
produces the multivariate (unnormalized) Student- density,
of which the Cauchy density is a particular case.

Distributions with mode submanifold: k£ < d. To show-
case that the Morse network can produce densities with
mode submanifolds, we device here an example where the
density modes consist in a sphere whose radius is con-
trolled by the hyper-parameter a. For that, consider the
map ¢(x) = ||z|| and the Gaussian kernel K, (z,2') =
exp(— 42z (2 — 2)?) on R with bandwidth o%. We obtain
the density ji, »2(z) = exp(— 52z (||z]| — @)?), which has
for modes the sphere of radius a. More generally, any regu-
lar value a € Z = R¥ of a differentiable map ¢ : RY — R¥
will produce a density with mode submanifold of dimension
d — k. In the kernel bandwidth limit 62 — 0, the resulting
limiting density is the uniform density on the level sets of ¢.

Mixture models: k£ > d We illustrate how the Morse
neural network can produce density mixtures. For instance,
a mixture of [ Gaussian densities on X is captured by taking
the neural network ¢ : X — X', where ¢;(z) = £~ 2 (; —
) is the map for the i*" multivariate Gaussian on X and
a is the zero vector. The kernel on Z = X! is given by
a convex sum of the Gaussian kernels on the components
of Z: K(z,7') = Zé=1 o exp(—3 |z — 2}||?), where
z = (x1,...,2;). Since in this case, the dimension of Z is
larger than that of X the pre-image of zero is the empty set.
However, the zero-level sets of the components of ¢ give
back the modes of the mixture of Gaussian densities. One
can obtain mixtures of different densities by changing the
component kernels.

Relation to divergences and the exponential family.
Given a divergence D(z, z') in the sense of Amari (2016),
then K(z,2') = e *P(*2) is a Morse kernel. A con-
vex function A on Z produces a Bregman divergence
Da(z,2") = A(z) + A*(') — zn’ where A* is the dual
convex function and ' = VA(2’) is the Legendre trans-
form (see Amari (2016) for details). The Morse network
for this kernel is then pig(z) = e¢o(z)a=A"(a)=A(do(2)))
which an unnormalized version of the exponential family
with canonical parameter a, cumulant generating function

A*, and dispersion A\, when ¢y (z) is the identity. One re-

covers the Gaussian case with A(z) = 322.

2
Relation to Energy-based models. Energy-based mod-
els (Goodfellow et al., 2016) have been commonly used in
generative modeling (Zhao et al., 2017; Gao et al., 2021; Ar-
bel et al., 2021; Che et al., 2020). In fact, the Morse neural
network can be rewritten as an unormalized energy-based
model as follows

po(z) = e~ Vo) (3)

where the model energy is parameterized using the Morse
kernel Vy(z) = —log K (¢¢(x), a). In section A, we show
that this positive function satisfies the Morse-Bott condition
on the density modes and thus can be interpreted as a sort
of squared distance from the modes. Note that normalized
energy models have been used in the context of uncertainty
quantification (Wang et al., 2021), where a classifier un-
certainty is added as extra dimension and learned as joint
energy model. Also note that the Morse neural network with
exponential family Morse kernel resembles the conjugate
energy models from Wu et al. (2021).

2.1. Applications and experimental results

OOD detection: Since pg(x) € [0,1] yields an density
which is 1 on the modes and goes to zero as the distance
from the mode increases, sp(z) := 1 — pg(x) provides
a measure of how uncertain we are about z being drawn
from the training distribution (epistemic uncertainty). Hence
sg(x) can be used as an OOD detector. Figure 1 (bottom
row, middle right) shows that sy () classifies points as OOD
(value 1) as the distance from the two-moons dataset in-
creases. As Table 1 shows, the unsupervised generative
Morse network produces a detector capable of distinguish-
ing MNIST images from the FashionMNIST training images
in contrast to other deep generative models (Nalisnick et al.,
2019). It is also able to distinguish between CIFAR10 and
CIFAR100 when trained on a vision transformer embed-
dings as reported in Table 1. Note that for the Gaussian
kernel, Vy(x) = —log pp(x) coincides with the anomaly
score introduced in (Ruff et al., 2018) and with the Ma-
halanobis distance when the network is further linear and
invertible.

Distance-aware calibration: We can use the Morse net-
work to calibrate a classifier f(z) = softmax(h(z)) trained
on a supervised dataset D = {(x;, y;)} so that it becomes
less confident on points far way from the data distribution
in the same spirit as SNGP (Liu et al., 2022). The idea
is to fit a Morse network on the input data. Then we can
scale the classifier logits h(x) by the inverse of the Morse
temperature Tp(x) := 1/ug(x). This produces a classi-
fier that becomes uncertain outside of the domain where



Morse Neural Networks for Uncertainty Quantification

: % !Qm .E !N j ' \
Figure 1. Top row (distance-aware calibration): Left: Proba-
bility output of a ResNet trained to separate the noisy two-moons
dataset. Middle and Right: Probability plots of the same ResNet
but with its logits calibrated using the unsupervised Gaussian
Morse temperature at decreasing kernel bandwidth. The classi-
fier becomes uncertain away from the training data. Bottom row
(noiseless two-moons): Left (density plot): The Morse density
concentrates on the two-moons modes. Middle Left (mode plot):
The modes learned by the Morse network approximate well the
two-moons modes. Middle Right (OOD detection): the Morse
detector classifies points away from the modes as OOD. Right

(sample generation): Random points following the Morse flow
converge to the modes. See Appendix B for experiment details.

it has been trained (the more so as the Kernel bandwidth
decreases), as demonstrated in Figure 1 (top row). Note that
when using the kernel K (z,2") = 1//(1 + Al|z — 2'||?),
the temperature becomes Typ(z) = /1 + AVy(z), where
Vo(x) = —logpe(x), which has the same form as the
SNGP temperature of (Liu et al., 2022; 2020), except that
the squared distance function Vp(x) replaces the SNGP ap-
proximate variance.

Sample generation: The Morse gradient field F'(z) =
—V.Vp(z) is attracted to the density modes, which are the
global minima (zeros) of the positive function Vp(x) =
—log K(¢g(x),a). If we follow its gradient flow from a
random point, we obtain a new sample close to the data
distribution mode. This approach resembles the Poisson
generative flow from (Xu et al., 2022), where the Vjy(z) is
called a potential and is derived by solving the Poisson PDE.
We illustrate this approach with the two-moons dataset in
Figure 1 (bottom, right) where random points following the
Morse flow converge toward the two-moons dataset modes
using gradient descent on V(X).

3. Fitting the Morse neural network

Consider a dataset D = {1, ..., z,} sampled from a data
distribution with density p(z). Theoretically, we want to
find the neural network parameters 6 that minimize the
KL divergence KL(p(x)|| g (z)) for unnormalized densi-
ties (i.e., positive measures; see (Amari, 2016)) between

IND/OOD Method AUROC
FashionMNIST / MNIST Morse 0.998
DOSEKDE 0.998
CIFAR10 / CIFAR100 Morse 0.955
DOSESVM 0.571

Table 1. OOD detection with unsupervised Morse: As a proof
of concept, we report unsupervised Morse AUROC along
with best baselines from (Morningstar et al., 2021). For CI-
FAR10/CIFAR100, we report Morse AUROC trained on embed-
dings from a pre-trained vision transformer to demonstrate the
benefit of this approach. If trained on CIFAR10 directly, Morse
AUROC is 0.569, corresponding to the second best performance
(DoSE k p ) from (Morningstar et al., 2021). (See Appendix B.)

the probability density p(x) generating the sample and the
Morse network density p9(x), that is,

Eqnp(x) (log /Z(ZC)J +/ua($)d$—/P(3«")d$ 4)

which amounts to minimizing w.r.t. 6 the following quantity

Eonpa) (—10g K(¢9(2); @) + Egnuni (K(¢6(2), a))

The corresponding empirical loss is then

L) =~ Y log K(6s(a), )+~ > K(go(r)0)

zeD TE€ Duni

which can be optimized with any iterative gradient-based
optimizer. Note that D,y; are points uniformly sampled in
X = R%, and that the second term in the Morse loss can
be interpreted as a form of regularization in the spirit of
the mixup regularizer term (Pinto et al., 2022). For the
Gaussian kernel the first term of this loss (with an added 1.2
penalty) coincides with the one-class Deep SVDD objective
proposed in (Ruff et al., 2018) for anomaly detection as a
way to simplify the loss of a deep one-class SVM in the
case of normal data.

4. The supervised Morse neural network

The Morse neural network architecture offers a natural way
to incorporate supervised labels to obtain a finer grained
generative model. There are two ways to do it:

Separate Morse networks: For each label y €
{1,...,C}, we can fit a separate unsupervised Morse net-
work to the subset of the data with label y = ¢ produc-
ing a separate density p(x|i) = K;(¢g,(x),a;) for each
label. The overall density is then given by the average
w(x) = &3, wxli). The corresponding OOD detector
is s(z) = 1 — p(x). We can also create a classifier from

this data by interpreting V;(z) = — log u(x|¢) as a squared
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distance between x and the modes of the data with label 7;
the classifier simply associates to a point « the label ¢ which
has the smallest V;(z). When the kernels are taken to be all
Gaussian, the resulting classifier coincides with the ILOC
classifier (Sun et al., 2021) (except for the regularizing terms
in the loss) used in the context of continual learning to avoid
catastrophic forgetting since it allows to learn new tasks in
complete isolation from the previous ones. (See also (Hu
et al., 2021) for similar ideas in the same continual learning
context).

Shared Morse network: The previous approach can be
computationally intensive in the case of a large number of
labels. The Morse network offers us a more efficient way to
proceed by taking as model for the distribution join density

w(z,y) = K(po(z), T(y))- S))

where T'(y) is the one-hot-encoded version of the label y €
{1,...,C} and ¢ : X — R is a shared neural network
for all the labels. (For simplicity, we identify y and T'(y) and
will use at time e; to denote the 74" basis vector.) We can use
the same KL divergence minimization principle (between
unnormalized densities) as in the unsupervised case exposed
in section 3 but using now the joint density p(z, y) as the
density generating the data, yielding the following empirical
Loss for the supervised network:

L) = =5 S log K(du(@),p)+ Y Kloa(').y)

(z,y) (=’,y")

where (z,y) range over the supervised dataset, and the
(2’,y')’s are obtained by uniform sampling on the join fea-
ture and label space. In this case, the generative density can
be obtained by marginalization

M(.Z’) = ZK((ﬁg(CC),y), (6)

producing the OOD detector s(x) = 1 — u(x).

Experimental results: Using this supervised Morse de-
tector trained on the embeddings h(z) of a vision trans-
former fined-tuned to CIFAR10 we observe an improvement
in AUROC from 0.955 (for the unsupervised Morse detec-
tor) to 0.969 in the same setting for CIFAR100 detection.
Figure 2 also illustrates visually how the supervised Morse
network can learn disconnected mode submanifolds better
than the unsupervised version. (See section B for details).

Note that we also obtain a classifier that is distance-aware
in the sense of (Liu et al., 2022) by construction:

 K(¢e(x),y)  exp(=Vy(x))
M) = S R (@) ) S exp( V@)

In the case of the Laplace kernel, this classifier coincides
with the classifier used for entropic OOD detection (Macédo
et al., 2021) where the entropy value of the classifier output
is used as an OOD score. The main difference between
the Morse supervised classifier with Laplace kernel and the
entropic classifier from (Macédo et al., 2021) is that the y’s
are learned for each class and the maximum likelihoods loss
is used on p(y|x) rather than the Morse loss, making the
second term of both loss related but different.
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A. Morse-Bott condition and squared distances

An important notion in uncertainty quantification is the notion of a squared distance from the training set. It can be used
to devise anomaly scores, OOD detectors, or distance-aware input-dependent calibration temperatures. For instance the
SNGP approximate variance from (Liu et al., 2020; 2022) can be thought of as such a squared distance. Similarly the
Mahalanobis distance is also a form of a squared distance from a point to the single mode of an underlying multivariate
Gaussian distribution (Lee et al., 2018; Ren et al., 2021). For densities that have modes that are no longer discrete sets but
rather submanifolds M C X in the feature (or embedding) space X, the corresponding notion is that of a minimal distance
between a point x € X and the mode submanifold M:

d(z) = Tineljr\b{d(az,m) :m € M}.
In (Basu & Prasad, 2021; Prasad, 2023), the authors show that such a function encodes important information about
the topology of the submanifold M. In particular, they show that the square V() = d(x)? of a distance function d(x)
from a point x in a Riemannian submanifold to submanifold M C X satisfies the Morse-Bott non-degeneracy condition
on M (Austin & Braam, 1995). Recall that a function (with a submanifold of critical points) satisfies the Morse-Bott
non-degeneracy condition at a critical point if its Hessian vanishes only in the directions tangent to the critical submanifold
at that point. The Morse-Bott condition is important for squared distances because when a positive function V' (x) satisfies it

on its set of global minima M = {z € X : V(z) = 0} the Morse-Bott Lemma (Banyaga & Hurtubise, 2004) tells us that
V() can be expressed locally as squared distance from M for a certain metric.

The theorem below shows that, for a kernels K satisfying the conditions stated in Definition A.1 (we call these kernels
Morse kernels), the negative logarithm of a Morse network

Vo(z) = —log K(¢p(z), a)

satisfies the Morse-Bott condition on its submanifold of zeros. Since this submanifold is the mode submanifold M of the
Morse density pg(x) = K(¢pg(z), a), and since V' is positive away from M for Morse kernels, the Morse-Bott lemma tells
us that V' (z) is locally a squared distance from the mode submanifold for a certain metric. (The characterization of this
metric is beyond the scope of this work.) This provides an intuitive formulation of the Morse network density as the negative
exponential of the distance from the mode submanifold

po(z) = e Vo),

Note that this formulation resembles an unnormalized Gibbs measure where Vy(x) plays the role of the configuration energy
with minimal energy located at the density modes.

We now give a precise definition of what a Morse kernel is before proving our theorem.

Definition A.1. A Morse kernel K on a space Z = RF is a positive (non-necessarily symmetric) kernel K (21, zo) taking
its values in the interval [0, 1] and such that K (21, z2) = 1 if and only if 21 = z5.

Note that all kernels of the form K (z1, z2) = exp(—AD(z1, 22)) where D is a divergence in the sense of Amari (Amari,
2016) are Morse kernels (since D(z1, z2) = 0 if and only if 21 = 2o, in particular, the Gaussian kernel is a Morse Kernel.

The Cauchy kernel K (z1, 22) = m is also an example of a Morse kernel.

Theorem A.2. Let pig(x) = K(¢po(x), a) be a Morse network with Morse kernel K. We denote by M, = {x : ¢g(x) = a}
the level set of ¢g(x) at level a. Then we have the following properties:

1. The Morse network pg(x) takes its values in [0, 1].
2. M, is the mode submanifold of 1o (x), that is, the locus of points in X where pg(x) reaches its highest value 1.
3. The function Vy(x) = — log pg(x) is positive with its locus of zeros coinciding with M,,.

4. Viy(z) satisfies the Morse-Bott condition on M,,.

Proof. Statement 1 derives from the fact that a Morse kernel takes its values in [0, 1] by definition.
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Statement 2 comes from that pg(x) = 1 happens if and only if K (¢¢(x),a) = 1, which happens if and only if ¢p(z) = a
(i.e., if and only if x € M,,) for a Morse kernel.

Statement 3 is obvious: The negative logarithm is positive on [0, 1] and vanishes when py(x) = 1, that is if and only if « is
a point in the mode submanifold M, .

Statement 4 requires us to show that its Hessian V2Vp () vanishes only on the tangent space to M, at all points  in M,,.
For the sake of simplicity, let us prove this only in the case where ¢y (z) takes its values in Z = R. To begin with, let us
compute the gradient of Vp(x) (we remove in the computation below the dependence on 6 to simplify the notation):

-1 oK

VeV () = Ko, a) om0

(¢(x), )V (x) (8)

Then Hessian has then three terms:

:a% (;{1) %(¢(m),a)vx¢($)+

-1 0’K
K 32182’1

—10K

VaV(x) K(¢(2), a)Vad(@)" Vod(a) + 57 5-(6(2), ) V26(2)

Now by definition for € M, we have that ¢(z) = a. Since for each o’ € Z the function «’ — K (a’, a) reaches its global
maximal value 1 at ¢’ = a, we have that , we have that:

0K ’K
K =1, —— = d
(a,a) o (a,a) =0, an 92107,

Using this last relations when evaluating the Hessian of V' at a point € M,,, we obtain that all the terms except for the
middle one in the Hessian expression vanish, yielding:

0’K 0’K
021021 021021
where P(x) = V,¢(x)TV,¢(x) is the orthogonal projector onto the subspace spanned by the gradient V¢ () for all
x € M,. Thus, V2V (x)v = 0 happens if and only if P(z)v = 0, which is equivalent to v being orthogonal to the gradient

V2¢¢(x). In other words, V2V (z)v = 0 if and only if v is in the tangent space to M, at x (since the V ¢y () is orthogonal
to that space). O

(a,a) < 0. 9)

V2V (z) = (a, a)qub(x)TVw(ﬁ(x) = (a,a)P(x), (10)

Remark A.3. In the theorem above, the hyper-parameter a needs to be a regular value of the map ¢y (x) (i.e. a should not be
in the image of the critical points of ¢g(z)) in order for M, to be a submanifold (see (Hirsch, 1997) for details). Luckily,
Morse (1939) and Sard (1942) showed that the values a for which this is not the case (i.e., the image of the critical values)
has measure null in Z.

Remark A.4. Let us conclude this section by observing that Basu & Prasad (2021) and Prasad (2023) show that the square
of the distance function d(z) from a point z in a Riemannian submanifold X to submanifold M C X encodes important
topological information about the submanifold M. From that observation, we conjecture that the negative logarithm of a
fitted Morse network Vy(z) = — log 19 (x) also encodes important topological information about the mode submanifold of
the data distribution. We refer the reader to (Austin & Braam, 1995) for a detailed presentation of Morse-Bott theory in

topology.

B. Experiment details.

Figure 1, top row: We trained a ResNet with 6 ResNet blocks consisting in a dense layer with 128 neurons followed
by a dropout layer with dropout rate set to 0.1 and a skip connection to classify the two-moons dataset with the noise
parameter set to 0.2. The data was fitted with 100 epochs using Adam and a learning rate of 1e-4 on a batch size of 128.
The network outputs a logit vector with two components, one for each class. The decision boundary found by this model is
plotted on the leftmost plot on the top row. We see that the model is very confident once one moves away from the decision
boundary. The next 3 figures on this row use the same model, except that their logits are scaled by the Morse temperature
T(xz) = 1/pg(x) with decreasing kernel bandwidths : 1, 0.1, and 0.01. One observes that the scaled ResNet becomes
more uncertain away from the training data (rather than the decision boundary) and the more so as the kernel bandwidth
decreases. The Morse network whose temperature was used to scale the ResNet logits was trained independently directly on
the two-moons data in a fully unsupervised fashion. For the Morse network we used 5 dense ReLU layers each with 500
neurons followed by a ReLU output layer with one neuron (target space dimension set to 1) and we chose the Gaussian
kernel. The hyper-parameters a was set to 2. We trained for 2 epochs with full batch Adam and learning rate 1le-3.


https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
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Figure 1, bottom row: We trained an unsupervised Morse model on the noiseless two-moons dataset. The Morse network
had a Gaussian kernel, 4 dense ReLLU layers with 500 neurons each and a 1-dimensional output layer. The hyper-parameter
a was set to 2. We fitted the network with full-batch Adam with learning rate set to le-3.

Leftmost plot: We plot the values of the Morse network z9(z) € [0, 1] on a magma colormap. We observe that the network
has values close to 1 around the data modes (the two moons) although it experiences some difficulty with the leftmost edge
of the orange moon. We believe that the reason for this phenomenon is that the mode submanifold is disconnected and the
Morse network is trying to learn a connected submanifold. In Figure 2 below, we show that the supervised Morse network is
able to learn disconnected mode submanifolds with one connected piece per label. Middle left plot: We plot the values of
the Morse network restricted between 0.95 and 1, where they most strongly concentrate around the mode lines. We see that
the unsupervised Morse network modes approximate well the two-moons with a connected submanifold. Middle right plot:
We plot the Morse OOD detector associated with the Morse network sg(x) = 1 — ug(z). We see that the detector outputs a
probability superior to 0.5 (and rapidly reaches 1) as we depart from the modes. Rightmost plot: To visualize how the Morse
sample generator works we plot the flow lines of the differential equation & = —V ,Vy(x), where Vy(x) = —log pg(x)
from a number of initial points: [0.0, —2.0], [-2.0,2.0], [2.0, —2.0], [-2.0, 1.0], [-1.0, 2.0], [2.0, —2.0], To approximate
these flow lines we use gradient descent z,, 11 = x,, — hV, Vy(z) with a learning rate h = 0.001 for 1000 steps. The last
step of this procedure is the generated sample. We see that the flow lines converge rapidly to the learned modes, which is to
be expected as Vp is a form of squared distance from the learned modes.

Figure 2. Supervised Morse model: The supervised Morse model is able to learn disconnected mode submanifolds for each of the labels.
The model architecture and training setup is the same as the unsupervised case described above, except for the output layer that has a
dimension of 2 (one dimension per label).

Table 1: FashionMNIST: We trained an unsupervised Morse network fiy(x) directly on the FashionMNIST images,
which we flatten into 1-dimensional vectors. The Morse network processed these images through 5 dense ReLU layers
with 500 neurons each followed by an 1-dimensional output dense ReLU layer. We used the Gaussian kernel K(z,2') =
exp(—A||z — 2/||?) with A = 1 and the hyper-parameter a was set to 10. For the regularization term in the Morse loss, we
sampled uniformly over the hyper-cube with side [—5, 5]. To fit the Morse network we used Adam with a learning rate of
0.001 and a batch size of 1000 images over 4 epochs. We computed AUROC of the Morse OOD detector sg(x) = 1 — pp(z)
for MNIST. To compare our results with a baseline we used the best performance of the unsupervised OOD detectors in the
same setting presented in (Morningstar et al., 2021). The results are in Table 1. CIFAR10: We trained a Morse network
on the embeddings (penultimate layer) produced by a vision transformer, which was pre-trained on ImageNet-21k and
fine-tuned to classify the CIFAR10 images. We used 12 layers and 12 attention heads with no dropout. The patch size
was set to [16, 16], the hidden layers dimension to 768, the mlp dimension to 3072, with no dropout. We fine-tuned the
pre-trained vision transformer using momentum with learning rate 0.003, batch size of 512 for 10000 steps, gradient clipping
at 1.0, with a cosine decay schedule with 500 warm up steps. We tuned the Morse network for best AUROC on SVHN,
which was achieved after 14 steps: the tuned Morse network processed the vision transformer CIFAR10 embeddings through
5 dense leaky ReLU layers with 500 neurons each followed by an 1-dimensional output dense leaky ReLU layer. We used
the kernel K(z,2') = = with A = 0.1 and the hyper-parameter a was set to 10. For the regularization term in

1
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the Morse loss we sampled uniformly over the hyper-cube with side [—5, 5]. To fit the Morse network we used Adam with a
learning rate of 0.001 and a batch size of 1000 images. We then computed the AUROC of the tuned Morse OOD detector


https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
https://matplotlib.org/3.5.3/api/_as_gen/matplotlib.pyplot.magma.html
https://github.com/google-research/big_vision
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sg(x) = 1 — pg(z) for CIFAR100. The results are in Table 1. In the caption of Table 1, we report unsupervised Morse
AUROC trained on the CIFAR10 images directly rather than on the pre-trained embeddings of a vision transformer. In that
experiment, we re-used the exact same setup for the Morse network as in the case of FashionMNIST, described above.

Supervised Morse, section 4: We trained a supervised Morse network on the same CIFAR10 embeddings produced
by the vision transformer described in the unsupervised Morse experiment (see paragraph above) but with the additional
information of the image labels. The tuning was done to achieve best AUROC performance on SVHN, which was reached
after 9 steps. The tuned Morse network used a Cauchy kernel K (z,2') = m with A = 1. The hyper-parameter
a was set to 1. We used 3 dense leaky ReLU layers with 400 neurons without biases followed by a 10-dimensional (1
dimension per class) output leaky ReLU layer with bias. The uniform sampling for the regularization term in the Morse loss
was done in a hyper-cube of side [—3, 3]. We trained with Adam and a learning rate of 0.003 with batch size 1000. We then

computed the best AUROC for the tuned Morse network on CIFAR100.



