
Procedural Generation of Semantically Correct Levels in Video Games using Reward Shaping

Procedural Generation of Semantically Correct Levels
in Video Games using Reward Shaping

Luke Kerker1, Branden Ingram1, Pravesh Ranchod1

2460117@students.wits.ac.za, branden.ingram@wits.ac.za,
pravesh.ranchod@wits.ac.za

1School of Computer Science and Applied Mathematics, University of the Witwatersrand

Abstract
The generation of video game levels traditionally relies on manual efforts from skilled
professionals, resulting in significant expenses and time commitments. Procedural gen-
eration offers a solution by automating this process, reducing costs but potentially sac-
rificing designer control. The drawback of diminished control is that it has limited the
widespread adoption of procedural generation due to concerns about the quality of the
generated levels. Various approaches, including reinforcement learning and evolution-
ary algorithms, have been explored to address this limitation by improving how proce-
durally generated levels align with designer constraints. However, a key challenge re-
mains in designing reward schemes or evaluation functions that accurately capture these
constraints. To tackle this challenge, this paper proposes a system utilizing semantically
appropriate reward shaping in a reinforcement learning setting for procedural content
generation. By integrating an additional shaping function into the reward mechanism,
this system generates diverse video game levels in the Zelda Gym environment that
meet designers’ specific requirements and constraints.

1 Introduction

Generating video game levels is an expensive, time-consuming, and labour-intensive endeavour, as
many experienced and skilled professionals are required to manually generate high-quality content
such as environments, object models, and substantially more Hendrikx et al. (2013). Procedural
generation reduces the monetary, time, and labour costs of generating levels in video games by
substituting the manual process with an automatic process, albeit at the expense of diminishing
designer control over the automatically generated levels Van Der Linden et al. (2013); Togelius et al.
(2011). Consequently, this limitation, along with others, inhibits the widespread commercial use of
procedural generation for creating video game levels, as the reduced control designers have over the
generated levels often results in undesirable and unusable low-quality levels Van Der Linden et al.
(2013).

Procedural content generation algorithms are capable of producing playable and winnable levels
that aim to comply with designers’ overall goals through the use of reward schemes and evaluation
functions Khalifa et al. (2020). The challenge confronting procedural content generation algorithms
is designing reward schemes or evaluation functions that precisely capture the designers’ unique
constraints and requirements Khalifa et al. (2020).

To overcome this challenge, we propose a system capable of procedurally generating video game
levels that are both diverse and constraint-compliant. This is accomplished through the implemen-
tation of reward shaping in reinforcement learning for procedural content generation, which incor-
porates an additional shaping function to enrich the reward mechanism. We demonstrate the con-
trollability of the shaping function in the OpenAI Gym environment Brockman et al. (2016) against

Reinforcement Learning and Video Games Workshop 2025

standard procedural content generation through reinforcement learning. We successfully generated
levels with a comparable degree of diversity to the traditional Procedural Content Generation via
Reinforcement Learning baseline, while also achieving a higher level of constraint satisfaction than
the baseline.

2 Background

2.1 Procedural Content Generation

Procedural content generation refers to the algorithmic creation of content Van Der Linden et al.
(2013). The varying methods of procedural content generation are collected into the classes: Pseudo-
Random Number Generators Perlin (1985), Generative Grammars Müller et al. (2006), Image Filter-
ing Lefebvre & Neyret (2003), Spatial Algorithms Ebert et al. (2002), Modelling and Simulation of
Complex Systems Hendrikx et al. (2013) and Artificial Intelligence Mateas & Stern (2005); Nareyek
(2007); Skinner & Walmsley (2019). The methods in each class can be used to generate various
different types of content Hendrikx et al. (2013) such as for stories Riedl & León (2009), music
Plans & Morelli (2012), images Fadaeddini et al. (2018) and video game levels Nasir et al. (2024).
Procedural level generation is regarded as one of the most widely applicable forms of procedural
content generation as most video game genres can benefit from procedurally generated levels Liu
et al. (2021); Hendrikx et al. (2013). More complex approaches such as machine learning techniques
have also been applied to the problem of algorithmic content generation, such as supervised learn-
ing (PCGML) Summerville et al. (2018) and reinforcement learning (PCGRL) Khalifa et al. (2020).
Employing reinforcement learning for procedural content generation is a relatively recent develop-
ment Liu et al. (2021), with the major difficulty in its adoption being the existence of a training
environment as well as the difficulty in designing the appropriate reward function.

2.2 Reinforcement Learning

Reinforcement learning, as described by Sutton et al. (1999), integrates concepts from psychology,
engineering, and learning theories to develop algorithms that enable computers to learn optimal
policies for maximizing long-term rewards Sutton et al. (1999). This framework centres on the
interaction between agents and their environment, incorporating essential components such as the
reward function, state-action space, and value function, which together guide agents in decision-
making Sutton et al. (1999).

Sutton et al. (1999) states that a policy specifies how an agent behaves in a given state by defining
the probability distribution over actions Sutton et al. (1999). The formulation for a deterministic
policy is as follows:

π(s) = a

The symbol π represents a policy that returns an action denoted by a when in some state denoted
by s. Mnih et al. (2013) define the optimal action-value function Q∗(s, a) as the highest expected
return attainable by following any policy, given a specific sequence s and subsequently selecting an
action a Mnih et al. (2013). The optimal-value function is formulated as:

Q∗(s, a) = maxπE[Rt|st = s, at = a, π]

Where the symbol Rt denotes the discounted reward at time-step t. In many reinforcement learning
algorithms, the core concept revolves around iteratively updating the action-value function based on
the Bellman equation to converge towards the optimal action-value function Sutton (2018). How-
ever, directly estimating the action-value function for each sequence lacks practicality due to the
absence of generalization. Hence, it’s common practice to use a function approximator to estimate
the action-value function instead Mnih et al. (2013).

Function approximators provide the ability to generalize across similar states and actions by learning
compact representations, allowing for efficient estimation and storage Sutton (2018). Reinforcement

Procedural Generation of Semantically Correct Levels in Video Games using Reward Shaping

learning leverages function approximation in algorithms like Proximal Policy Optimization to learn
policies within continuous action spaces by modelling them as parameterized distributions over
potential actions Schulman et al. (2017). This use of function approximation marks a significant
shift from traditional tabular methods, where every state-action pair requires explicit representation,
limiting scalability Sutton & Barto (2018).

3 Related Work

3.1 Objective function design

According to Togelius et al. (2012), precisely measuring complex video game characteristics such as
atmosphere and design cohesion to form accurate objective functions poses a significant challenge
in procedural content generation (PCG). To address this, they propose a hybrid PCG method that in-
tegrates complementary techniques, leveraging each method’s strengths and compensating for their
weaknesses.

Similarly, Ferreira et al. (2014) propose a multi-population genetic algorithm approach, indepen-
dently evolving user-selected game elements. Each element is assigned its own population, fitness
function, and genetic operators, with optimal solutions combined to produce high-quality game lev-
els. In both methods, multiple specialized fitness functions simultaneously evaluate distinct level
characteristics, enabling detailed and accurate quality assessments.

Togelius et al. (2010) highlight challenges associated with optimizing composite fitness functions
due to the difficulty in assigning appropriate weights to individual metrics without prior solution
distribution analysis. As an alternative, they recommend multi-objective evolutionary algorithms,
which explore Pareto fronts of non-dominated solutions—those that perform equally or better than
all others across conflicting fitness functions.

3.2 Reinforcement Learning

Designing reward functions for reinforcement learning models has similar challenges to designing
objective functions as Khalifa et al. (2020) state that reinforcement models can over-fit to generate
a single optimal video game level due to poor reward function definition within the model. Khalifa
et al. (2020) propose a parameter called the change percentage which defines what percentage of
the level the agent is allowed to alter. The change percentage defines the degree of greediness
that the agent can be when altering the video game level. Greedier agents make alterations that
yield greater short-term rewards which prevents the agent from converging to a single optimal level
design. Justesen et al. (2018) overcome the challenge of designing a reward function by using a deep
reinforcement learning agent to play and grade the levels generated by the reinforcement learning
agent. The level-generating agent generates levels based on difficulty, initially starting at difficulty 0.
The player agent plays the level generated by the level-generating agent and if the agent completes
the level then the player agent returns a positive reward to the level-generating agent, otherwise the
player agent returns a negative reward to the level-generating agent. Our research aims to utilize
the additional constraint methods proposed by Khalifa et al. (2020) and Justesen et al. (2018) to
procedurally generate semantically correct levels through reinforcement learning.

3.3 Designer control

Linden et al. (2013) propose that effective control over procedural content generation ensures align-
ment with designers’ envisioned qualities. They introduce a method for constraining procedurally
generated levels using a “gameplay grammar" that reflects expected gameplay. By translating de-
sign requirements (such as character moves and relationships) into this grammar, designers gen-
erate player action graphs, guiding the procedural creation of game levels. Similarly, Mawhorter
& Mateas (2010) propose an “occupancy-regulated extension" algorithm, which builds levels it-
eratively around designated “anchors" (potential player positions) to maintain designer-intended

Reinforcement Learning and Video Games Workshop 2025

Agent Training Level Generation

action (a) is selected
from observed state (s)

new state (s’)
and combined

reward (R = r+c)
is determined

Termination
Criteria

Checked

True: environment
is reset

False: new state
(s’) and combined

reward (R) is
fed to the agent

Policy update
based upon
state (s) and

combined
reward (R)

Randomly
initialised
2d array

Trained Agent

continue until termination criteria
is met

return
generated
valid level

Figure 1: High-Level Pipeline of Shped PCGRL. Agent training involves a reinforcement learning algorithm that predicts
actions from observed states, updates its policies based on a combined reward (R) incorporating both reward (r) and constraint
(c) values, and continues until a termination condition is reached. Level generation describes how the trained constrained
agent engages with the environment by sampling a random 2-dimensional array and performing actions over a set number of
steps until a valid, playable level is created and returned as the final output.

gameplay. These grammar- and occupancy-based approaches give designers more direct control.
However, a lack of understanding of fitness functions may reduce designers’ control over generated
content Van Der Linden et al. (2013).

4 Shaped Reinforcement Learning For Designer Constraint Compliance

We propose a shaped reinforcement learning approach that can be used to modify the environment’s
reward structure by integrating a shaping function. This modification has similarities with safety-
constrained reinforcement learning and reward shaping Junges et al. (2016). The shaping function
rewards the agent based on its compliance with predefined semantic constraints established by the
designer. This is a similar goal to Earle et al. (2021), however, they primarily look to manipulate the
path length based on designed goals. Our shaping function is integrated as follows:

R(s, a) = r(s, a) + c(s, a)

where c denotes the shaping function that will evaluate the agent’s action a at state s based on the
designer’s constraints, r represents the environment’s reward function, returning the reward for the
agent’s action a at state s. Figure 1 presents an overview of the training and inference pipeline for
a procedural content generation agent using shaped reinforcement learning. Unlike conventional
methods, this approach uses a combined reward, integrating both rewards for functionality (level
solvability) and constraints, to update the agent’s policies. The pipeline for level generation begins
by sampling a random two-dimensional array as a level, which the trained agent then modifies. After
a set number of modifications, the level is evaluated for validity and playability; if these checks fail,
a new sample is generated, otherwise, the level is returned to the user.

5 Experiments

5.1 Metrics

• Diversity: The Kullback-Leibler Divergence between the probability distributions of n × n tile
patterns within a level is calculated. Specifically, for a given level, we generate a probability
distribution encompassing all possible n×n patterns (where n is a hyperparameter). The distance

Procedural Generation of Semantically Correct Levels in Video Games using Reward Shaping

between the two levels is

d(A,B) =
1

2
(KL(A||B) +KL(B||A))

Given K levels, we compute the distance between each pair of levels and average these distances
to obtain an overall diversity score for a particular diversity.

• Action Variance: Quantifies the variation in patterns chosen and positioned within the level Beuk-
man et al. (2023). It involves determining the frequency of each pattern’s selection across K levels
and weighting it by the number of tiles comprising the pattern, considering that larger patterns
occupy more space. The computation concludes with deriving the standard deviation of these
weighted frequencies.

• Path Length: Assesses the level’s complexity by calculating the shortest path from the player to
the key objective, and then to the door objective, using Dijkstra’s algorithm.

5.2 Model Training

The standard PCGRL baseline is trained using Proximal Policy Optimization implemented by
Stable-Baselines 3. The implementation is directly adapted from Khalifa et al. (2020)’s GitHub
repository. The baseline is trained for one billion steps as specified in the repository. The baseline
reward function assigns a target range to each type of tile in the environment, defining ideal limits
for each element’s presence in a level. For instance, the target range for a player tile is set from 1 to
1, as a valid level requires exactly one player. In contrast, the range for enemy tiles might be from
4 to 8, as there is no strict requirement on the exact count of enemies. The reward function then as-
sesses each tile type’s current and previous counts relative to these target ranges, encouraging values
to stay within or move closer to their respective ranges. The reward function encourages values to
remain within or move closer to the target range, with specific rewards assigned based on the degree
and direction of alignment or deviation.

5.2.1 Shaped Agents

All shaped agents are trained using the Proximal Policy Optimization reinforcement learning algo-
rithm implemented by Stable-Baselines 3, with hyperparameters kept consistent with those of the
baseline agent to maintain comparability. All agents are trained for one billion steps within the en-
vironment to ensure a fair evaluation. All shaped agents utilize the baseline reward function in its
original form to facilitate the learning process for generating valid and playable levels. The shaping
function is designed similarly to the reward function, employing target ranges for various constraint
elements. Shaping functions can vary in complexity based on the requirements of the constraint
itself. For simple constraints, a function may use a single target range to evaluate a specific attribute
of the level. In contrast, more complex constraints may require multiple target ranges to assess and
enforce multiple attributes of the level, ensuring effective and comprehensive implementation.

5.3 Environment

Our experiments are conducted within the OpenAI Gym environment Brockman et al. (2016).
Specifically, we utilize the PCGRL OpenAI Gym Interface implementation by Khalifa et al. (2020),
an adaptation of the OpenAI Gym framework that focuses on procedural content generation through
reinforcement learning. The framework includes several video game environments where reinforce-
ment learning techniques can be applied, including Binary, Dangerous Dave, MiniDungeons 1,
Sokoban, Zelda, and Super Mario Bros. Our experiments are conducted within the Zelda environ-
ment, chosen specifically for its inclusion of enemies, which serves as a basis for certain constraint
functions in our study. Our implementation can be accessed at (Redacted for anonymity).

Reinforcement Learning and Video Games Workshop 2025

5.3.1 Observation Space

The observation space in the Zelda environment includes the entire level as a seven by eleven two-
dimensional array, with each element storing an integer from 0 to 7. Each integer corresponds to
a specific tile type within the level. Table 1 presents the meaning of each integer within the two-
dimensional matrix representing the level layout. Figure 2 presents an example of a two-dimensional
array observation, while Figure 3 depicts the corresponding level representation derived from this
array. Notably, Figure 3 reveals that the level is enclosed by a single layer of solid wall tiles, which
are not included in Figure 2 as these tiles are not part of the observation space.

5 1 1 0 0 0 1 3 0 1 0
0 0 0 6 1 1 1 0 1 0 0
1 0 1 0 0 0 0 0 6 0 1
0 0 0 0 1 0 0 1 6 0 1
1 1 5 5 7 0 6 0 0 0 0
4 0 1 0 1 0 0 0 1 0 5
2 0 0 0 0 0 0 7 7 1 0

Figure 2: 2-Dimensional
Array Level Representa-
tion

Table 1: Zelda Environment Tile Descriptions

Integer Tile Description
0 Empty (traversable)
1 Solid wall (non-traversable)
2 Player’s spawning position (traversable)
3 Key, required to open the door (traversable)
4 Door, objective unlocked by key (traversable)
5 Bat, enemy (traversable)
6 Scorpion, enemy (traversable)
7 Spider, enemy (traversable)

Figure 3: Level Repre-
sentation Rendered from
the 2-Dimensional Array
in Figure 2

5.3.2 Action Space

In the Zelda environment, the action space is represented by an integer. The first and second digits
correspond to the x and y coordinates, where the action will be applied. The x coordinate can range
from 0 to 11, and the y coordinate from 0 to 7. The third digit specifies the type of tile to place at
the designated x and y coordinate, limited to the values outlined in Table 1.

5.4 Semantically correct level generation

This study proposes categorizing semantic correctness into three distinct types: quantity, locality,
and structure, each evaluated experimentally through constrained procedural content generation.

• For quantity-based correctness, an agent was trained to generate levels containing between eight
and eighteen enemies, thus increasing enemy encounter frequency and overall level difficulty.

• To evaluate the combined quantity and locality-based correctness, an agent was shaped to posi-
tion a specified number of enemies within four tiles of key objectives (keys and doors). Enemy
proximity to objectives was measured using Dijkstra’s algorithm, aiming to enhance difficulty by
clustering enemies near critical objectives.

• For structure-based correctness, an agent was constrained to maximize solid wall tiles while
ensuring levels consisted of a single contiguous traversable region. This constraint promotes nar-
row corridors and restricted movement areas, potentially heightening difficulty and encouraging
diverse player strategies due to limited traversal options.

6 Results and Discussion

In each experiment, we generate one hundred levels per agent and repeat the experiment five times.
For each set of one hundred levels, we calculate the action variance, level diversity, and path length,
then average these metrics across the five repetitions. The level with the best metrics across repeti-
tions is stored for qualitative analysis. A per-level analysis of the following results can be seen in
Figures 10, 11, 12 depicting the mean and variance scores for each of the evaluated metrics.

Procedural Generation of Semantically Correct Levels in Video Games using Reward Shaping

Figure 4: Baseline Agent -
Level with greatest Enemy
Count

Table 2: Metric Comparison Between Quantity Con-
strained and Baseline Agents

Metric Baseline Agent Quantity Constrained Agent
Avg. Number of enemies 4.442 7.362

Avg. Action Variance 1.143 1.851
Level Diversity 17.57 18.54

Avg. Path Length 22.88 14.428
Figure 5: Quantity Con-
strained Agent - Level
with greatest Enemy
Count

6.1 Semantically correct quantity generation

Figures 4, 5 and 10 present the outcomes of the agent shaped to be semantically correct in regards
to the quantity being evaluated against the baseline agent. Figure 4 shows the level with the highest
enemy count generated by the baseline agent, while Figure 5 depicts the level with the most enemies
generated by the shaped agent. Table 2 presents the evaluation results for both agents in relation to
the metrics, with the “Avg. Number of enemies" serves as the constraint compliance metric. Figure
10 illustrates the performance of both the baseline and shaped agents, with each metric—constraint
compliance, action variance, and path length—evaluated in its own sub-figure. These metrics are
averaged over five independent runs, each encompassing the generation of one hundred levels.

The shaped agent is able to procedurally generate levels with greater enemy counts than the baseline
agent, producing an average of three more enemies per level. By focusing on placing different
enemy types, the shaped agent also achieved a marginally higher action variance. Additionally, the
increased number of enemy tiles contributed to an average increase in level diversity. However, the
shaped agent generated levels with shorter path lengths compared to the baseline, likely due to an
imbalance in the reward-to-constraint function ratio, which prioritized enemy placement. This trade-
off between the objectives of the reward and shaping functions is observed across all experiments.

Figures 4, 5 and 10 indicate that the shaped agent adhered to the semantic quantity constraint by
generating levels with a significantly higher number of enemies. The shaped agent demonstrated
enhanced performance across most metrics relative to the baseline, underscoring the effectiveness
of shaping functions in achieving quantity-based semantic correctness.

6.2 Semantically correct quantity and locality generation

Figure 6: Baseline Agent
- Level with the greatest
number of Enemies Near
Objectives

Table 3: Metric Comparison Between Locality-Shaped
and Baseline Agents

Metric Baseline Agent Locality Shaped Agent
Avg. Enemies near objective 1.858 2.73

Avg. Action Variance 1.153 2.652
Level Diversity 17.57 18.371

Avg. Path Length 23.1 18.37
Figure 7: Locality Shaped
Agent - Level with the
greatest number of Ene-
mies Near Objectives

Figures 6, 7, and 11 compare a shaped agent against a baseline on semantic constraints related to
quantity and locality. The shaped agent consistently positioned, on average, one additional enemy
near objectives compared to the baseline, resulting in increased action variance and level diversity.
However, this focus also led to shorter player paths due to the shaping function prioritizing enemy
proximity to key objectives. These results, clearly reflected in Table 3 and the figures, demonstrate
the shaped agent’s superior performance in constraint compliance and highlight the efficacy of shap-
ing functions for semantically targeted procedural generation.

Reinforcement Learning and Video Games Workshop 2025

6.3 Semantically correct structure generation

Figures 8, 9, and 12 present an evaluation comparing the performance of a shaped agent against a
baseline agent using a structure-based constraint. Levels generated by both agents were assessed
based on the average number of solid wall tiles, action variance, and path length, as detailed in
Table 4. The shaped agent consistently produced levels containing, on average, twenty-seven more
solid wall tiles compared to the baseline, demonstrating strong adherence to the structural constraint.
However, this constraint prioritization negatively impacted action variance and level diversity, result-
ing in fewer diverse actions and shorter path lengths due to an imbalanced reward-to-constraint ratio.
Consequently, the shaped agent’s generated levels featured narrow corridors and reduced traversable
areas. These findings illustrate how stringent semantic constraints can adversely affect other perfor-
mance metrics, emphasizing the need for careful balance in shaped reinforcement learning strategies
for procedural content generation.

Figure 8: Baseline Agent
- Level with greatest Solid
Wall Count

Table 4: Metric Comparison Between Structure Shaped
and Baseline Agents

Metric Baseline Agent Structure Shaped Agent
Avg. Number of Wall tiles 17.25 44.21

Avg. Action Variance 1.135 0.82
Level Diversity 17.57 15.70

Avg. Path Length 22.88 14.812
Figure 9: Structure
Shaped Agent - Level
with greatest Solid Wall
Count

7 Conclusion

This study investigates the use of shaped reinforcement learning (RL) for procedural content gener-
ation (PCG), specifically targeting the automated creation of semantically correct video game levels
aligned with designer-specified criteria. Traditional PCG methods, although economical, typically
limit designer control, often compromising quality. The proposed approach integrates shaping func-
tions within the RL reward mechanism, enabling the generation of levels that adhere closely to
semantic dimensions—quantity, locality, and structure.

Results indicate that the shaped RL agents successfully generated levels meeting targeted design
parameters, significantly outperforming baseline methods. These agents created levels featuring
higher enemy density, strategically positioned enemies near critical objectives, and complex struc-
tural designs influencing player navigation and gameplay dynamics. However, there were observed
trade-offs: emphasizing certain level features occasionally reduced path length and level diversity
relative to the baseline, demonstrating a delicate balance between constraint adherence and overall
level performance.

The findings emphasize the effectiveness of constraint-based RL methods in aligning procedural
generation with intricate designer intentions. They also highlight the importance of future research
directions, including fine-tuning the balance between rewards and constraints and exploring dynamic
constraint adaptation during training.

References
Michael Beukman, Branden Ingram, Ireton Liu, and Benjamin Rosman. Hierarchical wavefunction

collapse. In Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, volume 19, pp. 23–33, 2023.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. https://arxiv.org/abs/1606.01540, 2016.
Available at: https://arxiv.org/abs/1606.01540.

https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1606.01540

Procedural Generation of Semantically Correct Levels in Video Games using Reward Shaping

Sam Earle, Maria Edwards, Ahmed Khalifa, Philip Bontrager, and Julian Togelius. Learning con-
trollable content generators. In 2021 IEEE Conference on Games (CoG), pp. 1–9. IEEE, 2021.

David S Ebert, F Kenton Musgrave, Darwyn Peachey, Ken Perlin, and Steve Worley. Texturing and
modeling: a procedural approach. Elsevier, 2002.

Amin Fadaeddini, Babak Majidi, and Mohammad Eshghi. A case study of generative adversarial
networks for procedural synthesis of original textures in video games. In 2018 2nd National and
1st International Digital Games Research Conference: Trends, Technologies, and Applications
(DGRC), pp. 118–122. IEEE, 2018.

Lucas Ferreira, Leonardo Pereira, and Claudio Toledo. A multi-population genetic algorithm for
procedural generation of levels for platform games. In Proceedings of the Companion Publication
of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 45–46, 2014.

Mark Hendrikx, Sebastiaan Meijer, Joeri Van Der Velden, and Alexandru Iosup. Procedural content
generation for games: A survey. ACM Transactions on Multimedia Computing, Communications,
and Applications (TOMM), 9(1):1–22, 2013.

Sebastian Junges, Nils Jansen, Christian Dehnert, Ufuk Topcu, and Joost-Pieter Katoen. Safety-
constrained reinforcement learning for mdps. In International conference on tools and algorithms
for the construction and analysis of systems, pp. 130–146. Springer, 2016.

Niels Justesen, Ruben Rodriguez Torrado, Philip Bontrager, Ahmed Khalifa, Julian Togelius, and
Sebastian Risi. Illuminating generalization in deep reinforcement learning through procedural
level generation. 2018.

Ahmed Khalifa, Philip Bontrager, Sam Earle, and Julian Togelius. Pcgrl: Procedural content gener-
ation via reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, volume 16, pp. 95–101, 2020.

Sylvain Lefebvre and Fabrice Neyret. Pattern based procedural textures. In Proceedings of the 2003
symposium on Interactive 3D graphics, pp. 203–212, 2003.

Roland Linden, Ricardo Lopes, and Rafael Bidarra. Designing procedurally generated levels. In
Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertain-
ment, volume 9, pp. 41–47, 2013.

Jialin Liu, Sam Snodgrass, Ahmed Khalifa, Sebastian Risi, Georgios N Yannakakis, and Julian
Togelius. Deep learning for procedural content generation. Neural Computing and Applications,
33(1):19–37, 2021.

Michael Mateas and Andrew Stern. Procedural authorship: A case-study of the interactive drama
façade. Digital Arts and Culture (DAC), 61, 2005.

Peter Mawhorter and Michael Mateas. Procedural level generation using occupancy-regulated ex-
tension. In Proceedings of the 2010 IEEE Conference on Computational Intelligence and Games,
pp. 351–358. IEEE, 2010.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van Gool. Procedural mod-
eling of buildings. In ACM SIGGRAPH 2006 Papers, pp. 614–623. 2006.

Alexander Nareyek. Game ai is dead. long live game ai! IEEE intelligent Systems, 22(1):9–11,
2007.

Reinforcement Learning and Video Games Workshop 2025

Muhammad Umair Nasir, Steven James, and Julian Togelius. Gametraversalbenchmark: Evaluating
planning abilities of large language models through traversing 2d game maps. arXiv preprint
arXiv:2410.07765, 2024.

Ken Perlin. An image synthesizer. ACM Siggraph Computer Graphics, 19(3):287–296, 1985.

David Plans and Davide Morelli. Experience-driven procedural music generation for games. IEEE
Transactions on Computational Intelligence and AI in Games, 4(3):192–198, 2012.

Mark Riedl and Carlos León. Generating story analogues. In Proceedings of the AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment, volume 5, pp. 161–166, 2009.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Geoff Skinner and Toby Walmsley. Artificial intelligence and deep learning in video games a brief
review. In 2019 ieee 4th international conference on computer and communication systems (ic-
ccs), pp. 404–408. IEEE, 2019.

Adam Summerville, Sam Snodgrass, Matthew Guzdial, Christoffer Holmgård, Amy K Hoover,
Aaron Isaksen, Andy Nealen, and Julian Togelius. Procedural content generation via machine
learning (pcgml). IEEE Transactions on Games, 10(3):257–270, 2018.

Richard S Sutton. Reinforcement learning: An introduction. A Bradford Book, 2018.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning. Journal of Cognitive Neuro-
science, 11(1):126–134, 1999.

Julian Togelius, Mike Preuss, and Georgios N Yannakakis. Towards multiobjective procedural map
generation. In Proceedings of the 2010 workshop on procedural content generation in games, pp.
1–8, 2010.

Julian Togelius, Georgios N Yannakakis, Kenneth O Stanley, and Cameron Browne. Search-based
procedural content generation: A taxonomy and survey. IEEE Transactions on Computational
Intelligence and AI in Games, 3(3):172–186, 2011.

Julian Togelius, Tróndur Justinussen, and Anders Hartzen. Compositional procedural content gen-
eration. In Proceedings of the The third workshop on Procedural Content Generation in Games,
pp. 1–4, 2012.

Roland Van Der Linden, Ricardo Lopes, and Rafael Bidarra. Procedural generation of dungeons.
IEEE Transactions on Computational Intelligence and AI in Games, 6(1):78–89, 2013.

Procedural Generation of Semantically Correct Levels in Video Games using Reward Shaping

Supplementary Materials
The following content was not necessarily subject to peer review.

Figures 10, 11, and 12 illustrate the performance of the shaped models relative to the baseline on
a per-level basis. The presented results reflect averages computed over 100 generated levels across
five training runs, displaying both the mean and variance for each metric. These metrics; constraint
compliance, action variance, and path length, align with the evaluation criteria previously discussed.

0 20 40 60 80 100
Level

2

4

6

8

10

12

Nu
m

be
r o

f E
ne

m
ie

s

Number of Enemies Comparison
Base agent +- 1 std
More enemies agent +- 1 std

(a) Mean Enemy Count per Level

0 20 40 60 80 100
Level

0.5

1.0

1.5

2.0

2.5

3.0

Ac
tio

n
Va

ria
nc

e

Action Variance Comparison
Base agent +- 1 std
More enemies agent +- 1 std

(b) Mean Action Variance per Level

0 20 40 60 80 100
Level

5

10

15

20

25

30

35

40

Pa
th

 L
en

gt
h

Path Length Comparison
Base agent +- 1 std
More enemies agent +- 1 std

(c) Mean Path Length per Level

Figure 10: Performance Metrics with ±1 Standard Deviation for Baseline and Quantity Shaped Agents, Av-
eraged Over Five Runs Across 100 Levels. (a) Represents the constraint compliance metric, (b) displays the
action variance, and (c) shows the path length.

Reinforcement Learning and Video Games Workshop 2025

0 20 40 60 80 100
Level

0

2

4

6

8

En
em

ie
s N

ea
r o

bj
ec

tiv
es

Enemies near Objective Comparison
Base agent +- 1 std
More enemies near objective agent +- 1 std

(a) Mean Enemy Count per Level

0 20 40 60 80 100
Level

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ac
tio

n
Va

ria
nc

e

Action Variance Comparison
Base agent +- 1 std
More enemies near objective agent +- 1 std

(b) Mean Action Variance per Level

0 20 40 60 80 100
Level

5

10

15

20

25

30

35

Pa
th

 L
en

gt
h

Path Length Comparison
Base agent +- 1 std
More enemies near objective agent +- 1 std

(c) Mean Path Length per Level

Figure 11: Performance Metrics with ±1 Standard Deviation for Baseline and Locality Shaped Agents, Av-
eraged Over Five Runs Across 100 Levels. (a) Represents the constraint compliance metric, (b) displays the
action variance, and (c) shows the path length.

0 20 40 60 80 100
Level

10

20

30

40

50

60

W
al

ls
in

 a
 le

ve
l

Walls Comparison
Base agent +- 1 std
More Walls agent +- 1 std

(a) Mean Wall Count per Level

0 20 40 60 80 100
Level

0.0

0.5

1.0

1.5

2.0

Ac
tio

n
Va

ria
nc

e

Action Variance Comparison
Base agent +- 1 std
More enemies near objective agent +- 1 std

(b) Mean Action Variance per Level

0 20 40 60 80 100
Level

0

5

10

15

20

25

30

35

Pa
th

 L
en

gt
h

Path Length Comparison
Base agent +- 1 std
More walls agent +- 1 std

(c) Mean Path Length per Level

Figure 12: Performance Metrics with ±1 Standard Deviation for Baseline and Structure Shaped Agents, Av-
eraged Over Five Runs Across 100 Levels. (a) Represents the constraint compliance metric, (b) displays the
action variance, and (c) shows the path length.

