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ABSTRACT

Linear attention mechanisms have gained prominence in causal language models
due to their linear computational complexity and enhanced speed. However, the
inherent decay mechanism in linear attention presents challenges when applied to
multi-dimensional sequence modeling tasks, such as image processing and multi-
modal learning. In these scenarios, the utilization of sequential scanning to estab-
lish a global receptive field necessitates multiple scans for multi-dimensional data,
thereby leading to inefficiencies. This paper identifies the inefficiency caused by a
“multiplicative decay” linear recurrence and proposes an efficient alternative “addi-
tive decay” linear recurrence to avoid the issue, as it can handle multi-dimensional
data within a single scan. We further develop an efficient multi-dimensional sequen-
tial modeling framework called LightNet based on the new recurrence. Moreover,
we present two new multi-dimensional linear relative positional encoding methods,
MD-TPE and MD-LRPE to enhance the model’s ability to discern positional infor-
mation in multi-dimensional scenarios. Our empirical evaluations across various
tasks, including image classification, image generation, bidirectional language mod-
eling, and autoregressive language modeling, demonstrate the efficacy of LightNet,
showcasing its potential as a versatile and efficient solution for multi-dimensional
sequential modeling.

1 INTRODUCTION

Linear attention has emerged as an effective alternative to softmax attention due to its linear computa-
tional complexity and enhanced processing speed, especially in causal language models (Peng et al.,
2024; Qin et al., 2023a). The benefits of linear attention largely depend on its decay mechanism (Peng
et al., 2024; Qin et al., 2023a; Sun et al., 2023b), which prevents attention dilution (Qin et al., 2022)
and facilitates global interaction among tokens. However, the decay mechanism presents two primary
issues: First, the decay mechanism is not easily applicable to high-dimensional inputs due to the
need for multiple sequential scans to establish a global multi-dimensional receptive field, which
reduces computational efficiency (Duan et al., 2024; Zhu et al., 2024). Additionally, without the decay
mechanism, linear attention lacks positional awareness during computations, leading to decreased
performance (Qin et al., 2022). In light of these challenges, we are investigating the feasibility of
reducing sequential scans for multi-dimensional scenarios while preserving performance.

We first analyze the types of linear recurrence and divide them into two categories: multiplicative
and additive. In multiplicative recurrence, the decay rate is dependent only on the current moment,
making it impossible to obtain information about subsequent moments with a single scan. By taking
image processing as an example, using multiplicative decay recurrence will require at least two scans
to retrieve the global information (Duan et al., 2024; Zhu et al., 2024). Conversely, in additive decay
recurrence, the decay rate depends on all moments through the summation of the importance score of
each moment, enabling it to gather global information in a single scan.

It is important to note that in non-causal situations, additive recurrence is permutation-invariant,
which means it lacks local precedence and therefore diminishes the capture of positional infor-
mation. To overcome this limitation, we put forth a new approach to positional encoding called
Multi-Dimensional Toeplitz Positional Encoding (MD-TPE). This method utilizes the mathematical
properties of the Toeplitz matrix to embed relative positional information with linear time complexity,
thus ensuring efficiency in multi-dimensional scenarios. Additionally, we expand the Linearized
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Relative Positional Encoding (LRPE) (Qin et al., 2023b) to high-dimensional scenarios, resulting in
the creation of Multi-Dimensional Linearized Relative Positional Encoding (MD-LRPE).

We then present LightNet, a new multi-dimensional linear attention model built on additive decay
recurrence. LightNet features a pioneering decay mechanism, allowing for efficient single-scan
processing of high-dimensional sequential data. Furthermore, it integrates highly effective multi-
dimensional position encoding such as MD-TPE and MD-LRPE to precisely capture positional
information.

We conduct several evaluations of the performance of our proposed LightNet on a range of tasks,
including image generation, image classification, bidirectional language modeling, and autoregressive
language modeling. LightNet performs comparably or better than its competitors across all tasks.

We summarize our main contributions as follows:

• We analyze the types of linear recurrence, dividing them into two types: multiplicative and
additive, where the additive type can obtain global information in a single scan.

• We propose two multi-dimensional position encoding strategies, MD-TPE and MD-LRPE,
to effectively capture positional information in multi-dimensional scenarios.

• We propose LightNet, a new multi-dimensional linear attention model that can process
high-dimensional sequences in a single scan.

• We conduct thorough evaluations to assess the efficiency and efficacy of LightNet for multi-
dimensional sequential modeling tasks. The LightNet demonstrates competitive performance
in all scenarios.

2 PRELIMINARY

In this section, we provide preliminary knowledge about softmax attention (Vaswani et al., 2017),
linear attention (Katharopoulos et al., 2020), and linear attention with decay (Qin et al., 2021; 2024a).

Softmax attention operates on query Q, key K and value V matrices. Each of them is the image of
a linear projection taking input X ∈ Rn×d as input:

O = Softmax(QK⊤/
√
d)V,

with n the input length, d the hidden dimension. Computing Softmax(QK⊤/
√
d) needs O(n2) time

complexity, which makes Softmax attention very costly when processing long documents.

Linear attention removes the softmax function and uses a kernel function ϕ(.) (Katharopoulos et al.,
2020; Qin et al., 2021; Choromanski et al., 2020) to map queries and keys to hidden representations,
the formulation can be written as:

O = ∆−1ϕ(Q)[ϕ(K)⊤V],∆ = diag(ϕ(Q)[ϕ(K)⊤1n]).

Since ϕ(K)⊤V is computed first, the time complexity isO(n). Qin et al. (2022) find the denominator
term ∆ makes the training unstable and replace it with an extra-normalization function, the normal-
ization can be layernorm (Ba et al., 2016), rmsnorm (Zhang & Sennrich, 2019), srmsnorm (Qin et al.,
2023a), and the formulation can be simplified as:

O = Norm
(
ϕ(Q)[ϕ(K)⊤V]

)
, (1)

In a causal scenario, such as in a language model, linear attention can be written in a recursive
form (Katharopoulos et al., 2020) (here we ignore normalization and kernel function ϕ):

kv0 = 0,kvt = kvt−1 + ktv
⊤
t ,o

⊤
t = q⊤t kvt, t = 1, . . . , n.

Linear attention with decay means that a decay term λt in the recursion (Qin et al., 2023a; 2024c;b):
kv0 = 0,kvt = λtkvt−1 + ktv

⊤
t ,o

⊤
t = q⊤t kvt, t = 1, . . . , n, 0 < λt ≤ 1. (2)

When the decay term λt is independent of the input (i.e., λt = λ), it is also known as data-independent
decay (Qin et al., 2023a; Sun et al., 2023b). When the term λt is related to the input, it is referred
to as data-dependent decay (Yang et al., 2023; Qin et al., 2024c;b; Gu & Dao, 2023). Note that the
decay term is essential for enhancing the performance of linear attention. Removing the decay term
results in a significant drop in performance. However, the decay term also presents a major challenge
when trying to effectively apply linear attention to multidimensional data as the “right product” trick
cannot be used in this scenario (Qin et al., 2023a; Yang et al., 2023).
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1 Scan 2 Scans Multiple Scans
Figure 1: Illustration of different scan numbers. Different from the methods that perform multiple
scans, our proposed method only performs “1 scan”, which sum all tokens together directly, as shown
in the figure on the left.

3 LINEAR RECURRENCE IN MULTI-DIMENSIONAL SPACE

In this section, we discuss the theoretical and practical computational complexity of linear recurrence
(with decay) when dealing with high-dimensional data, and then analyze the types of linear recurrence.
In subsequent discussions, we assume n is the sequence length, d is the embedding dimension, and
xt ∈ Rd is the transpose of the t-th row of matrix X ∈ Rn×d.

3.1 COMPUTATIONAL COMPLEXITY OF LINEAR RECURRENCE

Eq. 2 illustrates the linear recurrence in causal scenarios. When dealing with non-causal scenarios, a
common practice in the literature is to perform causal computation twice (Duan et al., 2024; Zhu
et al., 2024). We call this method “2 scan”:

→
kv0 = 0,

→
kvt = λt

→
kvt−1 + ktv

⊤
t ,
→
o
⊤
t = q⊤t

→
kvt,

←
kvn+1 = 0,

←
kvt = λt

←
kvt+1 + ktv

⊤
t ,
←
o
⊤
t = q⊤t

←
kvt,

ot =
→
o t +

←
o t.

When λt = 1, i.e. there is no decay, the right product trick (Katharopoulos et al., 2020) can be applied
in this case. We call this method “1 scan”, as shown in Fig. 1.

[KV] = K⊤V,O = Q[KV].

Although both of the above formulas have a time complexity of O(nd2), the “2 scan” version is
significantly slower than the “1 scan” version. This is because causal computation requires block-level
recursion (Qin et al., 2024a; Yang et al., 2023), whereas the second formula can be fully parallelized
due to matrix multiplication (Katharopoulos et al., 2020). We provide a speed comparison in Fig. 2,
where the “2 scan” is implemented with Lightning Attention (Qin et al., 2024a), the fastest linear
attention implementation so far. It can be seen that the “2 scan” is several times slower than the “1
scan” in both forward and backward passes.

It is apparent that the need for multiple scans is mainly due to the presence of decay λt. However,
directly removing λt would lead to degraded performance (Qin et al., 2022). A natural question
arises: can we retain λt while only performing a single scan? In the next section, we will discuss the
types of linear recurrence and answer the question.

3.2 TYPES OF LINEAR RECURRENCE

We first explore the representation range of linear recurrences by 1D linear recurrence, Here, we
assume at ≜ f(x1, . . . , xt), f : R → R is some function. It indicates that at is data-dependent, i.e.,
depending on the input tokens.1:

yt = atyt−1 + xt, y0 = 0. (3)
1This assumption is commonly adopted in the Linear Attention and RNN communities. (Yang et al., 2023;

Gu & Dao, 2023)
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Figure 2: Processing time of 1 Scan and 2 Scan in relation to sequence length. 1 Scan is
significantly faster than 2 Scan in both forward and backward passes. As the sequence length
increases, the advantage of 1 Scan becomes more substantial. Note that the x-axis scale follows a
logarithmic scale to enhance visualization clarity.

Unroll the recursion equation of Eq. 3, we obtain:

yt =

t∑
s=1

As

At
xs ≜

t∑
s=1

ctsxs, At =

(
t∏

s=1

as

)−1
. (4)

The detailed proof of the unrolling process can be found in Appendix A.1. Note that yt is a linear
combination of x1, . . . , xt. A natural question arises: Can every linear combination

∑t
s=1 ctsxs be

represented as a linear recursion? We now prove that a linear recursion representation is possible
only when the coefficients cts satisfy certain conditions.

Theorem 3.1. A linear recurrence yt = atyt−1 + xt, y0 = 0 is equivalent to a linear combination
yt =

∑t
s=1 ctsxs, iff cts = gs

gt
, where gt = g(x1, . . . , xt).

Proof of Theorem 3.1. ⇒

Given a linear recurrence, we multiply it by At =
(∏t

s=1 as

)−1
and following recurrence equation:

Atyt = Atatyt−1 +Atxt = At−1yt−1 +Atxt.

Unroll it, we get:
Atyt −At−1yt−1 = Atxt, . . . , A2y2 −A1y1 = A2x2. (5)

To derive an expression for yt, we sum the recursive equations and obtain:

Atyt −A1y1 =

t∑
s=2

Ascxs, ytAt =

t∑
s=1

Asxs, yt =

t∑
s=1

As

At
xs. (6)

By comparing the coefficients, we can obtain cts = As/At.

⇐:

Given the linear combination yt =
∑t

s=1 ctsxs and cts = gs
gt

, we define at ≜
gt−1

gt
. Then yt can be

expressed as:

yt =

t∑
s=1

ctsxs =

t−1∑
s=1

ctsxs + cttxt =

t−1∑
s=1

gs
gt
xs +

gt
gt
xt

=
gt−1
gt

t−1∑
s=1

gs
gt−1

xs + xt = at

t−1∑
s=1

ct−1,sxs + xt = atyt−1 + xt.
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Figure 3: The network structure of LightNet: each LightNet model is comprised of an Input
Embedding, MD-TPE, and a stack of multiple LightNet Layers. Each LightNet Layer consists of an
LNA and a GLU, with the computation of LNA illustrated in the figure on the right.

Based on the Theorem 3.1, for linear recurrence, we can directly discuss gt, as at can be obtained
through gt−1

gt
. Intuitively, gt can be interpreted as an importance score up to moment t, cts = gs

gt
can

be interpreted as the ratio of the score at moment s relative to moment t, and at can be interpreted as
the ratio of the previous moment’s score to moment t’s score.

Typically, to prevent numerical overflow, we assume 0 ≤ at =
gt−1

gt
≤ 1. To meet this condition, we

present the following two forms:

Proposition 3.2. For Linear Recurrence with 0 ≤ at ≤ 1, there exist two forms:
1. Multiplicative decay: log gt = log gt−1 + δt, at = exp(−δt);
2. Additive decay: gt = gt−1 + δt, at =

∑t−1
s=1 δs∑t
s=1 δs

;

where δt ≜ δ(xt) ≥ 0.

Proof of Proposition 3.2. The condition 0 ≤ gt−1

gt
≤ 1, is equivalent to δt = log gt − log gt−1 ≥ 0

or δt = gt − gt−1 ≥ 0. The former formula brings the multiplicative type, while the latter delivers
the additive type.

It can be observed that the typical linear attention with decay corresponds to the Multiplicative decay,
where δt is utilized as Softplus(·) (Yang et al., 2023; Gu & Dao, 2023), exp(·)) (Gu & Dao, 2023), or
a fixed value (Qin et al., 2023a; Sun et al., 2023c). Since the at in Multiplicative decay depends solely
on the input xt at the current timestep, a single scan cannot enable yt to capture the information from
x1, . . . , xn (n is the sequence length), i.e., the global context, when processing high-dimensional
data. However, for the Additive decay, since the computation decay is at =

∑t−1
s=1 δs∑t
s=1 δs

, by modifying

the denominator to ∆ =
∑n

s=1 δs, global information can be obtained through at =
∑t−1

s=1 δs
∆ .

4 LIGHTNET

Building upon the preceding analysis, we introduce a novel Linear Transformer architecture termed
LightNet, designed to handle multi-dimensional data efficiently in 1 scan. An overview of its
structure is depicted in Fig. 3. LightNet comprises an Input Embedding, MD-TPE module, and
several stacked LightNet Layers.

4.1 LIGHTNET LAYER

The LightNet Layer is composed of a LightNet Attention (LNA) and a Gated Linear Unit
(GLU) (Shazeer, 2020). Within the LNA, an additive decay is employed, with δ implemented
through the exponential function. Additionally, a parameter sharing strategy (Qin et al., 2024b) is

5
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utilized for both the key and decay, which has been empirically observed to enhance performance.
This empirical evidence is detailed in Table 4. Furthermore, the integration of a low-rank output gate
from TNL3 (Qin et al., 2023a) and a normalization after linear attention (Qin et al., 2022) has been
incorporated.

In causal settings, the LightNet Layer can be represented as follows:
st = st−1 + exp(kt), k̄t = exp(kt)/st,kvt = diag{1− k̄t}kvt−1 + k̄tv

⊤
t ,

o⊤t = Norm[kv⊤t ϕ(qt)]⊙ ψ(ut).
(7)

In non-causal settings, the expression becomes:

s =
∑
t

exp(kt),ot = Norm

[
ϕ(qt)

∑
t

(exp(kt)/s)
⊤vt

]
⊙ ψ(ut),

O = Norm
[
ϕ(Q)(f(K)⊤V)

]
⊙ ψ(U).

(8)

where X is the input of LNA, Wq,Wk,Wv are linear projection matrices and Wu1,Wu2 are low
rank projection of output gates:
Q = XWq,K = XWk,V = XWv,U = XWu1Wu2, ϕ = Swish, ψ = Sigmoid, f = Softmax. (9)

4.2 MULTI DIMENSION POSITION ENCODING

It is noted that additive decay recurrence does not have a locality prior like multiplicative decay recurrence and
is permutation invariant in non-causal scenarios, as shown in E.q 8. Therefore, it is necessary to introduce new
positional encoding. We choose to use relative positional encoding due to its superior performance compared
to absolute positional encoding (Shaw et al., 2018). However, existing relative positional encoding methods
for Transformers are incompatible with LightNet, as they either require direct manipulation of the attention
scores (Shaw et al., 2018) or fail to retain the benefits of relative positional information (Su et al., 2021). For
detailed discussions, see Appendix A.2. This necessitates designing a positional encoding scheme tailored for
LightNet. To tackle this challenge, we introduce two novel relative positional encoding methods, MD-TPE
(Multi-Dimensional Toeplitz Positional Encoding) and MD-LRPE (Multi-Dimensional Linearized Relative
Positional Encoding), which is the high-dimensional context expanding of the LRPE (Qin et al., 2023b). This
expanding of MD-LRPE enables the management of relative positional relationships in any dimension.

MD-TPE. Given multi-dimension input xn1,...,nk , 1 ≤ ns ≤ Ns, s = 1, . . . k, we use the following
equation to capture relative positional information:

yn1,...,nk =
∑

mk≤nk

. . .
∑

m1≤n1

tn1−m1,...,nk−mkxm1,...,mk . (10)

However, the time complexity of implementing the aforementioned method is O(N logN),where N =∏k
s=1 ns, making it inefficient. To address this, we simplified the above formula by performing toeplitz

matrix production for each dimension separately and using SSM for parameterization (Qin & Zhong, 2023; Gu
et al., 2021; Ma et al., 2023; 2024), we denote e as the hidden dimension of SSM below:

yn1,...,nk =

k∑
s=1

ns∑
ms=1

tns−msxn1,...,ms,...,nk =

k∑
s=1

ns∑
ms=1

e∑
r=1

λns−ms
r xn1,...,ms,...,nk . (11)

Where λr is decay factor for t-th feature of SSM. By using a scan approach, the above calculation becomes linear
in complexity, O(Ne).

MD-LRPE. Given xt ∈ Rd,x ∈ {q,k}, LRPE transforms it through the matrix Wt to Wtxt,x ∈ {q,k},
and it holds that:

(Wsqs)
H(Wtkt) = qH

s W
H
s Wtkt = qH

s Wt−skt. (12)
We choose the complex version of LRPE, where:

Wt = diag{exp(itθ1), . . . , exp(itθd)}. (13)

To generalize to higher dimensions, i.e., given xn1,...,nk ∈ Rd,x ∈ {q,k}, we divide the d features into k
groups, each group has d/k features, with the s-th group’s features corresponding to dimension ns, s ∈ [1, k].
Specifically, we define:

Wn1,...,nk = diag{[Θ1, . . . ,Θk]},Θs = exp(inkθj), sd/k < j ≤ (s+ 1)d/k, θj = 10000−2j/d. (14)
Thus: WH

n1,...,nk
Wm1,...,mk = Wm1−n1,...,mk−nk

(15)

Then: (Wn1,...,nkqn1,...,nk )
H(Wm1,...,mkkm1,...,mk ) = qH

n1,...,nk
WH

s Wtkm1,...,mk

= qH
n1,...,nk

Wm1−n1,...,mk−nkkm1,...,mk .
(16)

6
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Table 1: Performance comparison for image classification task on ImageNet1k. “S.A.” represents
Softmax Attention, “M.S.” denotes multiple scans, and “O.S.” signifies one scan. The best result is
highlighted with bold and the second with underlined.

Model Category Tiny Small Base

Acc (%) ↑Params (M) Acc (%) ↑Params (M) Acc (%) ↑Params (M)

DeiT (Touvron et al., 2021) S.A. 72.20 5.7 79.90 22.00 81.80 86.00
Hgrn (Qin et al., 2024c) M.S. 74.40 6.1 80.09 23.70 - -
Vim (Zhu et al., 2024) M.S. 76.10 7.0 80.50 26.00 - -
V-RWKV (Duan et al., 2024) M.S. 75.10 6.2 80.10 23.80 82.00 93.70
Tnl (RetNet) (Qin et al., 2023a) M.S. 72.89 6.0 78.76 22.56 80.62 87.59
Hgrn2 (Qin et al., 2024b) M.S. 75.39 6.1 80.12 23.80 - -

LightNet O.S. 74.46 6.0 80.12 22.64 81.90 87.74
LightNet w/o TPE O.S. 73.97 6.0 79.65 22.54 81.45 87.54
LightNet w/o LRPE O.S. 74.02 6.0 79.54 22.63 81.72 87.69
LightNet w/o Decay O.S. 71.85 6.0 79.95 22.64 80.71 87.74

Table 2: Performance Scores on GLUE Benchmark. We utilize the Cramming-BERT 24-hour
training configuration and observe that LightNet outperforms Crammed BERT and achieves compa-
rable results to BERT-Base, which is trained with more GPU hours. The best result is highlighted
with bold and the second with underlined.

Model MNLI SST-2 STSB RTE QNLI QQP MRPC CoLA GLUE

BERT-Base (Fully trained) 83.2 / 83.4 91.9 86.7 59.2 90.6 87.7 89.3 56.5 80.9
BERT-Base (No Pretrain) 34.1 / 34.1 79.9 17.8 47.3 50.0 68.6 77.9 - 45.5

Crammed BERT 83.9 / 84.1 92.2 84.6 53.8 89.5 87.3 87.5 44.5 78.6

LightNet 83.3 / 83.5 92.9 86.3 55.6 89.1 87.7 88.5 52.6 79.9
LightNet w/o TPE 82.1 / 82.9 92.4 79.4 57.8 89.2 87.7 83.8 44.1 77.7
LightNet w/o LRPE 82.0 / 82.7 92.7 76.3 57.4 88.5 87.5 83.8 38.2 76.6

5 EXPERIMENTS

We comprehensively evaluate the substitutability of our LightNet in performance, scalability, flexibility, and
efficiency. We validate the effectiveness of our model on various multi-dimensional sequential modeling tasks.
We also test the proposed ability of LightNet to serve as a language model.

5.1 SETTING

Table 3: Performance comparison for image generation
task on ImageNet-1k. LightNet-XL/2 achieves state-
of-the-art FID with or without classifier-free guidance (-
G).The best result is highlighted with bold and the second
with underlined.
Model FID↓ sFID↓ IS↑ Precision↑Recall↑Params

CDM 4.88 - 158.71 - - -

LDM-8 15.51 - 79.03 0.65 0.63 395M
LDM-8-G 7.76 - 209.52 0.84 0.35 506M
LDM-4 10.56 - 103.49 0.71 0.62 400M
LDM-4-G 3.60 - 247.67 0.87 0.48 400M

DiT-XL/2 9.62 6.85 121.50 0.67 0.67 675M
DiT-XL/2-G 2.27 4.60 278.24 0.83 0.57 675M

LightNet-XL/2 5.35 5.93 171.18 0.73 0.65 672M
LightNet-XL/2-G 2.18 4.58 281.85 0.83 0.58 672M

Image Classification. We trained our
LightNet model for image classification on
the ImageNet-1K dataset (Deng et al., 2009).
Our approach modifies the network architec-
ture and training protocols of DeiT (Touvron
et al., 2021), substituting its Transformer Lay-
ers with our proprietary LightNet Layers.

Image Generation. We build our model
upon the latent diffusion model (Rombach
et al., 2022; Peebles & Xie, 2023) and use our
proposed LightNet as the denoising network.
We adjust the model size across various con-
figurations (S, B, L, XL) and patch sizes (8, 4,
2), consistent with DiT (Peebles & Xie, 2023).
Experiments are conducted on the ImageNet
dataset (Deng et al., 2009) at a resolution of
256 × 256. We compare the performance
with typical methods for image generation,
CDM (Ho et al., 2022), LDM (Rombach et al., 2022), and DiT (Peebles & Xie, 2023). Each model is trained
over 0.4M steps with a batch size of 256 to assess scaling capabilities. For the largest model variant, training
is extended to 0.8M steps with a batch size of 1024, as opposed to the 7M steps in DiT, to enhance generative
performance.
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Table 4: Performance comparison on Wikitext-
103. ↓ means lower is better. We adopted the con-
figuration of HGRN for Wikitext-103, and we can
observe that LightNet significantly outperforms all
other methods. The best result is highlighted with
bold and the second with underlined.

Model PPL
(val) ↓

PPL
(test) ↓

Params
(M)

Attn-based
Transformer 24.40 24.78 44.65
FLASH 25.92 26.70 42.17
1+elu 27.44 28.05 44.65
Performer 62.50 63.16 44.65
cosFormer 26.53 27.06 44.65

RNN-based
S4 38.34 39.66 45.69
DSS 39.39 41.07 45.73
GSS 29.61 30.74 43.84
RWKV-4 24.31 25.07 46.23
LRU 29.86 31.12 46.24
HGRN 24.14 24.82 46.25

FFT-based
TNN 23.98 24.67 48.68

LightNet 23.09 23.75 45.07

Bidirectional Language Modeling. We utilize
Cramming-BERT (Geiping & Goldstein, 2022) as
our pipeline, employing a 24-hour training regime to
pre-train on the Pile dataset, subsequently finetuning
on the GLUE benchmark (Wang et al., 2018). Dur-
ing pre-training, we follow established guidelines by
setting a learning rate of 1e-3, a sequence length of
128, and a batch size of 8192. In the finetuning phase,
we experiment with learning rates from the set {5e-5,
4e-5, 3e-5, 2e-5} and determine the optimal outcome
by finetuning over 5 epochs.

Autoregressive Language Modeling. We eval-
uate two capabilities: perplexity (PPL) and zero-shot
reasoning ability. The perplexity of the 44M model
is assessed on the Wikitext-103 dataset (Merity et al.,
2016), and the 380M model’s perplexity is tested on
the Pile dataset, consuming 10 billion tokens . For
large language model experiments, we train Light-
Net models at scales of 1B, and 3B using 300 billion
tokens sampled from subsets of the Pile (Gao et al.,
2020). These models are then evaluated on common-
sense reasoning tasks using the lm-eval-harness (Gao
et al., 2021). Detailed training hyperparameters are
listed in Table 11.

5.2 RESULTS

Image Classification. As shown in Table 1, the
proposed LightNet shows competitive performance
on the ImageNet-1k dataset. It can be observed that using only a single sequential scan, LightNet can achieve
comparable performance to models with naive attention and multiple sequential scans.
Image Generation. The image generation results are presented in Table 3. Our proposed LightNet demon-
strates superior performance, achieving a lower Fréchet Inception Distance (FID) and a higher Inception Score
(IS) than DiT (Peebles & Xie, 2023) with fewer training steps (0.8M steps vs 7M steps). Additionally, LightNet
exhibits commendable scaling capabilities, as illustrated in Fig. 4.

Table 5: Performance comparison Pile for large-
scale language modeling. We trained under the
10 billion token subset of Pile, and it can be seen
that LightNet’s PPL is better than LLaMA’s. The
best result is highlighted with bold and the second
with underlined.

Model PPL ↓ Params

LLaMA 4.62 385M
TNL 4.62 379M
Mamba 4.59 385M
LightNet 4.59 379M

LightNet w/o TPE 4.69 379M
LightNet w/o LRPE 4.69 379M
LightNet no share 4.76 385M
LightNet w/o Decay 4.62 379M

Bidirectional Language Modeling. As shown
in Table 2, LightNet outperforms Crammed
Bert (Geiping & Goldstein, 2022) on the GLUE
dataset, demonstrating its superior capability in han-
dling natural language understanding tasks. Despite
BERT-Base (Devlin et al., 2019) achieving compara-
ble performance, it is noteworthy that LightNet does
so with a significantly lower computational cost, hav-
ing been trained on a single A100 for 24 hours.
Autoregressive Language Modeling. In the
Wikitext-103 dataset, as depicted in Table 4, Light-
Net surpasses all competitors on both the validation
and test datasets. Regarding large-scale datasets, as
illustrated in Table 5, LightNet exhibits superior per-
plexity (PPL) compared to LLaMA (Touvron et al.,
2023) and TNL (Qin et al., 2023a), and matches the
performance of Mamba (Gu & Dao, 2023). The abil-
ity of LightNet to achieve high performance with
reduced parameter complexity underscores its potential for scalability and broader application across various
large-scale data scenarios. For the results of the 1B and 3B models, please refer to Table 8. For the retrieval
results, please refer to Figure 5.

Table 6: Ablation studies on image classification task on normalization and low-rank output gate.

Model Tiny Small Base

Acc (%) ↑ Params (M) Acc (%) ↑ Params (M) Acc (%) ↑ Params (M)

LightNet 74.46 6.00 80.12 22.64 81.90 87.74
LightNet w/o Norm 73.46 6.00 79.65 22.63 81.49 87.72
LightNet w full rank output gate 73.92 6.16 80.04 23.82 81.95 93.64
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Figure 4: Scaling up the LightNet enhances the FID during every stages of training. We present
the FID-50K across training iterations for twelve LightNet models. Enhancing the LightNet backbone
results in improved generative models for all sizes of models and patches.
Table 7: Ablation studies on image generation for LightNet-B/2 Configurations. We compare the
performance of FID under different training steps.

Model 50K 100K 150K 200K 250K 300K 350K 400K

LightNet-B/2 104.19 74.27 59.60 51.22 45.70 41.65 38.60 36.45
LightNet-B/2 w/o TPE 105.86 77.64 64.81 57.24 51.98 48.12 44.90 42.74
LightNet-B/2 w/o LRPE 132.17 82.99 67.79 59.02 52.88 48.41 44.94 42.37

5.3 ABLATION STUDIES

Effectiveness of Parameters Sharing. As discussed in Sec. 4.2, we employ a parameter sharing strategy
between decay and key, and the performance comparison is presented in Table 5. The results demonstrate
that employing independent parameters for decay and key leads to performance deterioration, highlighting the
significance of parameter sharing.

Effectiveness of MD-TPE. The proposed MD-TPE provides relative positional information under linear
complexity. We thus explore the effectiveness of the MD-TPE across all tasks, shown in Table 1,2,5,7. We can
observe that removing MD-TPE results in significant performance degradation, particularly for image generation,
which highly depends on the relative position of the image content. Similarly, performance comparison in
language modeling tasks also confirms the effectiveness of MD-TPE when reduced to a single dimension.

Effectiveness of MD-LRPE. LRPE has already proven its effectiveness in the field of language modeling.
Therefore, when faced with higher-dimensional inputs, the contributions of its extension, MD-LRPE should
be systematically validated. To this end, we conduct numerous ablation experiments, and the results, as shown
in Table 1,2,5,7, demonstrate the effectiveness of extending LRPE into a multi-dimensional space through
MD-LRPE operation.

Normalization and Low Rank output gate. As shown in Table 6, the performance of the low-rank output gate
we used in LightNet is comparable to that of the full-rank output gate, with approximately 5% fewer parameters.
Moreover, removing the extra-normalization in LightNet significantly decreases the model’s effectiveness.

Effectiveness of Additive Decay. We discuss the roles of Additive Decay in the causal setting and the non-causal
setting. In Table 1, 5, 8, "LightNet w/o Decay" refers to removing Additive Decay and using the "SiLU" activation
function.
For the causal setting, we evaluate the impact of removing Additive Decay in language models. The results, as
shown in Table 5, 8, reveal that removing Additive Decay decreases the perplexity (PPL) by 0.03. For 1B and 3B
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parameter language models, removing Additive Decay reduces accuracy on Commonsense Reasoning Tasks by
approximately 2%.
In the non-causal setting, we test classification performance on ImageNet. As shown in Table 1, removing the
Additive Decay (i.e., "Softmax" activation function is this scenery) leads to significant performance degradation
across all models. This demonstrates the critical role of the Softmax activation function in non-causal tasks.

Speed Test. The current linear complexity models employ multiplicative linear recurrence in sequence modeling
and necessitate at least two scans for multi-dimensional data, resulting in processing time denoted by the “2
Scan” in Fig. 2. In contrast, our LightNet requires only a single scan, leading to a processing time denoted by
the “1 Scan”. As evident from the figure, the advantage of the “1 Scan” becomes increasingly pronounced with
the growth of sequence length.

6 RELATED WORK

Linear Attention. The linear attention mechanism has greatly advanced deep learning, particularly in natural
language processing, by providing a scalable solution for long input sequences and reducing the computational
demands of traditional attention models (Choromanski et al., 2020; Katharopoulos et al., 2020; Qin et al., 2021).
However, despite its faster training speeds, the performance of linear attention still falls short of softmax attention
due to the attention dilution issue (Qin et al., 2022). The TNL/RetNet (Qin et al., 2022; 2023a) introduces a decay
mechanism to address this problem. Additionally, GLA (Yang et al., 2023) incorporating gating mechanisms
show the potential to enhance linear attention models.

State Space Model. State Space Models (SSMs) are increasingly crucial in sequence modeling due to their
structured approach to capturing temporal dynamics through latent variables. The S4 model (Gu et al., 2021)
enhances state space modeling for long sequences by leveraging structured spaces to improve computational
efficiency and tackle complex dynamics. With additional parameterizing and initializing diagonal state space
strategy (Gu et al., 2022), the SSMs can achieve comparable performance to naive transformers. Furthermore,
the Gated State Space (GSS) model (Mehta et al., 2023) introduces a gating mechanism to SSMs, which is
particularly effective for long-range language modeling by allowing nuanced control over information flow.
The S5 model (Smith et al., 2022) reduces complexity using “scan” while maintaining the capability to handle
intricate sequences. However, directly extending the SSM to multi-dimensional input usually requires multiple
sequential scans, which will reduce the computational efficiency (Zhu et al., 2024).

Linear RNN. Linear RNNs employ element-wise recursion for sequence modeling, and due to their linear
recursive form, they can be accelerated using parallel scans (Martin & Cundy, 2018). At their core is the decay
mechanism, where RWKV-4/LRU (Peng et al., 2024; Orvieto et al., 2023) utilizes data-independent decay.
HGRN (Qin et al., 2024c;b) leverage data-dependent decay to enhance performance. Linear RNNs have shown
considerable potential in language modeling and long-sequence modeling tasks.

Multi-dimensional Tasks with Linear Complexity Model. The development of linear attention
in language models has led to its extension into multi-dimensional tasks. Building upon the cosFormer
framework (Qin et al., 2021), VVT (Sun et al., 2023a) explores a local prior of 2D linear attention and applies it
to image classification tasks. Vim (Zhu et al., 2024) and Vision-RWKV (Duan et al., 2024) utilize a sequential
scan mechanism to expand Mamba (Gu & Dao, 2023) and RWKV (Peng et al., 2023) for image classification.
Additionally, leveraging the benefits structure of the diffusion transformer (Peebles & Xie, 2023) in image
generation, several works have extended linear complexity models into 2D space (Fei et al., 2024a;b; Yan et al.,
2023; Hu et al., 2024) to replace the traditional transformer architecture, achieving efficient image generation.
However, some of these tasks encounter issues with inadequate performance. Moreover, frequent sequential
scans can compromise the efficiency of the model.

7 CONCLUSION

In this paper, we have addressed the inefficiency of "multiplicative decay" linear recurrence in multi-dimensional
sequence modeling by introducing a novel "additive decay" linear recurrence that handles multi-dimensional
data within a single scan. We developed LightNet, a new multi-dimensional linear attention model enhanced by
two new multi-dimensional linear relative positional encoding methods, MD-TPE and MD-LRPE. Empirical
evaluations across tasks like image classification, image generation, bidirectional language modeling, and
autoregressive language modeling demonstrate LightNet’s superior performance and versatility. LightNet offers
a significant advancement in efficiency and scalability, providing a promising pathway for future research and
applications in multi-dimensional sequence modeling.
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ETHICS STATEMENT

Our empirical evaluation of LightNet remains on a smaller scale compared to other large-scale models. Potentially
negative social consequences include the misuse of brain models for unsuitable purposes or applications, which
must be prohibited by appropriate rules. In the future, we can explore more application scenarios of LightNet to
provide more possibilities for the implementation of efficient large models.

REPRODUCIBILITY STATEMENT

This paper conducts extensive experiments on four different tasks to demonstrate the effectiveness of the
proposed LightNet. Specifically, we directly replace the Attention layers with the proposed LightNet layers. All
experiments follow the standard experimental procedures of their respective tasks, use standard datasets and fair
training hyperparameters to ensure the reproducibility of experimental results.
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A APPENDIX

A.1 PROOF OF EQ 4

Note that
Atyt = Atatyt−1 +Atxt = At−1yt−1 +Atxt,

Atyt −At−1yt−1 = Atxt,

. . . ,

A2y2 −A1y1 = A2x2.

By summing up, we can obtain:

Atyt −A1y1 =

t∑
s=2

Ascxs, ytAt =

t∑
s=1

Asxs, yt =

t∑
s=1

As

At
xs.

A.2 FURTHER DISCUSSIONS ON RELATIVE POSITIONAL ENCODING

In this section, we discuss why mainstream relative positional encodings (RPEs) are unsuitable for LightNet. We
categorize the main types of RPEs into Additive RPE and Multiplicative RPE (Qin et al., 2023b) (note that
these should not be confused with the "Additive decay" and "Multiplicative decay" linear recurrence discussed
in this paper).

Additive RPE Additive RPE (Shaw et al., 2018) is typically expressed in the following form. To simplify the
discussion, we omit the scaling factors. Here, wt−s ∈ R represents the relative positional encoding:

ats = q⊤
t ks + wt−s,ot =

∑
s

exp(ats)∑
s exp(ats)

vs.

As shown, Additive RPE requires computation of the attention scores, which is not allowed in LightNet due to
compute K⊤V first, (Katharopoulos et al., 2020).

Multiplicative RPE The representative work of Multiplicative RPE is RoPE (Su et al., 2021). Although
RoPE does not require direct computation of attention scores, it fails to preserve relative positional information
when applied to LightNet. Specifically:

o⊤
t =

∑
s≤t

q⊤
t W

⊤
t

(
Ws exp(ks)∑t
j=1 exp(kj)

)
v⊤
s

=
∑
s≤t

q⊤
t W

⊤
t diag

(
t∑

j=1

exp(kj)

)−1

(Ws exp(ks))v
⊤
s

̸=
∑
s≤t

q⊤
t W

⊤
t Wsdiag

(
t∑

j=1

exp(kj)

)−1

exp(ks)v
⊤
s

=
∑
s≤t

q⊤
t W

⊤
t−sdiag

(
t∑

j=1

exp(kj)

)−1

exp(ks)v
⊤
s .

Here, Wt represents the rotation matrix in RoPE. The inequality in the second-to-last step arises because
block-diagonal matrices (RoPE matrices) and diagonal matrices are non-commutative.

Why LRPE is Chosen The above issue does not arise in LRPE (Qin et al., 2023b), which is implemented
as:

flrpe(xt,Θ) = concat([x⊙ cos(tΘ),x⊙ sin(tΘ)],dim = −1).

Thus, the computation becomes:

o⊤
t =

∑
s≤t

[qt ⊙ cos(tΘ),qt ⊙ sin(tΘ)]⊤
[
exp(ks)⊙ cos(sΘ)∑t

j=1 exp(kj)
,
exp(ks)⊙ sin(sΘ)∑t

j=1 exp(kj)

]
v⊤
s

=
∑
s≤t

q⊤
t diag{cos((t− s)Θ)} exp(ks)∑t

j=1 exp(kj)
v⊤
s .
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This demonstrates that LRPE effectively captures relative positional information, making it suitable for LightNet.
Hence, we adopt LRPE in our design.

A.3 MORE EXPERIMENTS

In this section, we provide additional experimental results. In Table 8, we show the performance of LightNet
under the Commonsense Reasoning Tasks. In Table 9, we present the advantages of LightNet (1 scan) compared
to the 2-scan method. In Table 10, we present the effects of LightNet on image generation tasks across various
sizes. In Figure 5, we illustrate the retrieval advantages of LightNet compared to Mamba2.

Table 8: Performance Comparison on Commonsense Reasoning Tasks. PS, T, HS, WG stand for
parameter size (billion), tokens (billion), HellaSwag, and WinoGrande, respectively.

Model P T PIQA HS WG ARC-e ARC-c OBQA AVG

OPT 2.7 300 73.83 60.60 61.01 60.77 31.31 35.2.0 53.79
Pythia 2.8 300 74.10 59.31 59.91 64.14 33.02 35.60 54.35
BLOOM 3.0 350 70.57 54.53 58.48 59.43 30.38 32.20 50.93
RWKV-4 3.0 - 72.42 58.75 57.30 62.92 35.15 36.20 53.79
LightNet 3.0 300 75.14 60.00 59.75 65.99 33.87 35.80 55.09
LightNet w/o Decay 3.0 300 74.27 57.38 57.30 63.22 31.40 35.20 53.13
LightNet 1.0 300 71.06 47.27 51.30 56.31 27.56 33.00 47.75
LightNet w/o Decay 1.0 300 70.73 45.55 50.51 55.22 27.30 31.00 46.72

Table 9: Performance comparison for image generation task on ImageNet1k, where LightNet use 1
scan, Tnl/RetNet and Hgrn2 use 2 scan.

Model 50K 100K 150K 200K 250K 300K 350K 400K

LightNet-B/8 170.79 146.43 134.63 127.31 122.18 118.50 115.40 113.02
Tnl/RetNet-S/8 178.96 150.09 136.36 127.92 122.77 118.92 115.64 113.36
Hgrn2-S/8 182.75 152.13 140.94 133.95 129.14 125.78 123.27 121.08

Table 10: Performance Metrics Across Different LightNet Configurations

Model 50K 100K 150K 200K 250K 300K 350K 400K

LightNet-S/8 192.79 172.23 161.23 154.34 150.25 147.40 145.27 143.31
LightNet-S/4 167.33 132.89 118.77 110.88 105.15 101.25 97.56 94.90
LightNet-S/2 145.66 119.20 104.90 94.45 87.18 82.41 78.63 75.61
DiT-S/2 - - - - - - - 67.16

LightNet-B/8 170.79 146.43 134.63 127.31 122.18 118.50 115.40 113.02
LightNet-B/4 126.37 93.86 81.44 74.11 68.80 65.09 62.34 59.81
LightNet-B/2 104.19 74.27 59.60 51.22 45.70 41.65 38.60 36.45
DiT-B/2 - - - - - - - 42.76

LightNet-L/8 157.76 130.29 116.06 107.50 101.10 96.47 92.79 89.51
LightNet-L/4 104.18 77.02 64.55 56.16 49.99 45.58 41.91 37.54
LightNet-L/2 84.38 48.98 35.32 28.05 23.75 21.06 18.94 17.42
DiT-L/2 - - - - - - - 24.37

LightNet-XL/8 158.75 129.23 114.72 105.75 99.35 94.53 90.66 87.22
LightNet-XL/4 101.39 70.84 56.75 48.04 42.04 37.43 34.16 31.51
LightNet-XL/2 79.22 45.46 31.61 25.55 21.37 18.74 16.84 15.52
DiT-XL/2 - - - - - - - 19.20

A.4 CONFIGURATIONS

In this section, we provide training configurations for all experiments. The configuration for Bidirectional Lan-
guage Modeling is the same as (Geiping & Goldstein, 2022), while the configurations for the other experiments
are as shown in Table 11, 12, 13, 14. We use Pytorch (Paszke et al., 2019) and A100 for training.
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Figure 5: The Needle-in-the-Haystack results of LightNet and Mamba2, all outcomes were evaluated
using GPT, where higher scores indicate better performance. Following (Qin et al., 2024b), we used
the easy model, as it is more compatible with the base model. The results demonstrate that LightNet
outperforms Mamba2.

Table 11: Comprehensive Configurations of the Model and Training Procedures for LightNet
Experiments “Total batch size” means batch_per_gpu×update_freq×num_gpus; “ALM” stands
for Autoregressive Language Model; “IM” stands for Image Modeling, “IG“ stands for image
generation.

ALM IM IG

Dataset WikiText-103 ImageNet-1k ImageNet-1k
Tokenizer method BPE - -
Src Vocab size 50265 - -
Sequence length 512 - -
Total batch size 128 2048 256
Number of updates/epochs 50k updates 300 epochs 80 epochs
Warmup steps/epochs 4k steps 20 epochs -
Peak learning rate 5e-4 5e-4 1e-4
Learning rate scheduler Inverse sqrt Cosine -
Optimizer Adam Adamw Adamw
Adam ϵ 1e-8 1e-8 1e-8
Adam (β1, β2) (0.9, 0.999) (0.9, 0.98) (0.9, 0.98)
Weight decay 0.1 0.1 for Base, else 0.05 0
Gradient clipping - 5.0 -
GPUS 4 8 8

Table 12: Configurations for LLM
Params(B) Layers Hidden Dim L.R. Batch Size Per GPU SeqLen GPUs

1 18 2048 3.00E-04 10 2048 16
3 36 2560 3.00E-04 36 2048 48

Table 13: Model Configurations for Image Generation task.
Model Layers Hidden Dim Heads Params

LightNet-S 18 384 6 33M
LightNet-B 18 768 6 131M
LightNet-L 36 1024 16 470M

LightNet-XL 42 1152 16 680M

Table 14: Model Configurations for Image Classification task.
Model Layers Hidden size Heads Params

LightNet-T 12 192 6 6.0M
LightNet-S 12 384 16 22.6M
LightNet-B 12 768 16 87.7M
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