
Neural network learns low-dimensional polynomials
with SGD near the information-theoretic limit

Jason D. Lee1, Kazusato Oko2,4, Taiji Suzuki3,4, Denny Wu5,6

1Princeton University, 2University of California, Berkeley, 3University of Tokyo
4RIKEN AIP, 5New York University, 6Flatiron Institute

jasonlee@princeton.edu, oko@berkeley.edu,
taiji@mist.i.u-tokyo.ac.jp, dennywu@nyu.edu

Abstract

We study the problem of gradient descent learning of a single-index target function
f∗(x) = σ∗(⟨x,θ⟩) under isotropic Gaussian data in Rd, where the unknown link
function σ∗ : R→ R has information exponent p (defined as the lowest degree in
the Hermite expansion). Prior works showed that gradient-based training of neural
networks can learn this target with n ≳ dΘ(p) samples, and such complexity is pre-
dicted to be necessary by the correlational statistical query lower bound. Surpris-
ingly, we prove that a two-layer neural network optimized by an SGD-based algo-
rithm (on the squared loss) learns f∗ with a complexity that is not governed by the
information exponent. Specifically, for arbitrary polynomial single-index mod-
els, we establish a sample and runtime complexity of n ≃ T = Θ(d ·polylogd),
where Θ(·) hides a constant only depending on the degree of σ∗; this dimension
dependence matches the information theoretic limit up to polylogarithmic factors.
More generally, we show that n ≳ d(p∗−1)∨1 samples are sufficient to achieve low
generalization error, where p∗ ≤ p is the generative exponent of the link function.
Core to our analysis is the reuse of minibatch in the gradient computation, which
gives rise to higher-order information beyond correlational queries.

1 Introduction

Single-index models are a classical class of functions that capture low-dimensional structure in the
learning problem. To efficiently estimate such functions, the learning algorithm should extract the
relevant (one-dimensional) subspace from high-dimensional observations; hence this problem set-
ting has been extensively studied in deep learning theory [BL20, BES+22, BBSS22, MHPG+23,
MZD+23, WWF24], to examine the adaptivity to low-dimensional targets and benefit of represen-
tation learning in neural networks (NNs) optimized by gradient descent (GD). In this work we study
the learning of a single-index target function under isotropic Gaussian data:

yi = f∗(xi) + ςi, f∗(xi) = σ∗(⟨xi,θ⟩), xi
i.i.d.∼ N (0, Id), (1.1)

where ςi is i.i.d. label noise, θ ∈ Rd is the direction of index features, and we assume the link
function σ∗ : R → R has information exponent p ∈ N+ defined as the index of the first non-zero
coefficient in the Hermite expansion (see Definition 1).
Equation (1.1) requires the estimation of the one-dimensional link function σ∗ and the relevant direc-
tion θ; it is known that learning is information theoretically possible with n ≳ d training examples
[DH24, DPVLB24]. Indeed, when σ∗ is polynomial, such statistical complexity can be achieved
up to logarithmic factors by a tailored algorithm that exploit the structure of low-dimensional target
[CM20]. On the other hand, for gradient-based training of two-layer NNs, existing works estab-
lished a sample complexity of n ≳ dΘ(p) [BAGJ21, BBSS22, DNGL23], which presents a gap

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

102 103

dimensionality d

104

105

sa
m

pl
e

siz
e

n

n d2

w, 2

0.02

0.04

0.06

0.08

(a) Online SGD (weak recovery).

102 103

dimensionality d

103

104

sa
m

pl
e

siz
e

n

n d

Err

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(b) Same-batch GD (generalization error).

Figure 1: We train a ReLU NN (3.1) with N = 1024 neurons using SGD (squared loss) with step size η = 1/d
to learn a single-index target f∗(x) = He3(⟨x,θ⟩); heatmaps are values averaged over 10 runs. (a) online
SGD with batch size B = 8; (b) GD on the same batch of size n for T = 214 steps. We only report weak
recovery (i.e., overlap between parameters w and target θ, averaged across neurons) for online SGD since the
test error does not drop.

between the information theoretic limit and what is computationally achievable by (S)GD. Such a
gap is also predicted by the correlational statistical query (CSQ) lower bound [DLS22, AAM23],
which roughly states that for a CSQ algorithm to learn (isotropic) Gaussian single-index models
using less than exponential compute, a sample size of n ≳ dp/2 is necessary.
Although CSQ lower bounds are frequently cited to imply a fundamental barrier of learning via SGD
(with the squared/correlation loss), strictly speaking, the CSQ model does not include empirical
risk minimization with gradient descent, due to the non-adversarial noise and existence of non-
correlational terms in the gradient computation. Very recently, [DTA+24] exploited higher-order
terms in the gradient update arising from the reuse of the same training data, and showed that for
certain link functions with high information exponent (p > 2), two-layer NNs may still achieve
weak recovery (i.e., nontrivial overlap with θ) after two GD steps with Θ(d) batch size. While this
presents evidence that GD-trained NNs can learn f∗ beyond the sample complexity suggested by
the CSQ lower bound, the weak recovery statement in [DTA+24] may not translate to statistical
guarantees; moreover, the class of functions where SGD can achieve vanishing generalization error
is not fully characterized, as only a few specific examples of link functions are discussed.

Given the existence of (non-NN) algorithms that learn any single-index polynomials in n = Õ(d)
samples [CM20] regardless of the information exponent p, and more generally, non-CSQ algo-
rithms with a sample complexity surpassing the CSQ lower bound [DPVLB24], it is natural to ask if
gradient-based training of NNs can achieve similar statistical efficiency for this function class. Mo-
tivated by observations in [DTA+24] that SGD with reused data may break the “curse of information
exponent”, we aim to address the question:

Can NN optimized by SGD with reused batch learn single-index f∗ beyond the CSQ lower bound?
And for polynomial σ∗, can learning succeed near the information-theoretic limit n ≃ d?

Empirically, the separation between one-pass (online) and multi-pass SGD is clearly observed in
Figure 1, where we trained the same two-layer ReLU neural network to learn a single-index poly-
nomial with information exponent p = 3. We see that SGD with reused data (Figure 1(b)) reaches
low test error using roughly n ≃ d samples, whereas online SGD fails to achieve even weak recov-
ery with much larger sample size n = Ω(d2). Our main contribution is to establish this improved
statistical complexity for two-layer NNs trained by a variant of SGD with reused training data.

1.1 Our Contributions

We answer the above question in the affirmative by showing that SGD training (with the squared
loss) on a natural class of shallow NNs can achieve small generalization error using polynomial
compute and a sample complexity that is not governed by the information exponent, if we employ
a layer-wise optimization procedure (analogous to that in [BES+22, DLS22, AAM23]) and reuse
of the same minibatch. The core insight is that SGD can implement a full statistical query (SQ)

2

Information
theoretic limit

SGD + batch reuse [This work]
SQ algorithm [CM20]

Smoothed SGD [DNGL23]
CSQ lower bound [DLS22]

One-pass SGD
[BAGJ21]

Kernel methods
[GMMM21]

d Θ̃(d) Θ̃(dp/2) Θ̃(dp−1) Θ(dq)

Figure 2: Complexity of learning single-index model where the link function σ∗ is a degree-q polynomial with
information exponent p. For the CSQ lower bound, we translate the tolerance to sample complexity using the
i.i.d. concentration heuristic τ ≈ n−1/2. We restrict ourselves to algorithms using polynomial compute; this
excludes the sphere-covering procedure in [DPVLB24] or exponential-width neural network in [Bac17, TS24].

algorithm that goes beyond CSQ, despite the correlational structure of the squared loss. Our main
finding is summarized by the following theorem.

Theorem (informal). A shallow NN with N = Õd(1) neurons can learn arbitrary single-index
models up to small population loss: Ex[(fΘ(x)− f∗(x))2] = od,P(1), if we employ an SGD-based
algorithm (with reused training data) to minimize the squared loss objective, with a sample and
runtime complexity of n, T = Õd(d

(p∗−1)∨1), where p∗ is the generative exponent of the link σ∗.

Note that the generative exponent [DPVLB24] is defined as the minimum information exponent of
the link function σ∗ after arbitrary L2 transformation, and hence by definition p∗ ≤ p (equality is
achieved by the identity transformation). We make the following remarks on our main result.

• We know that p∗ ≤ 2 for arbitrary polynomial link functions. Therefore, the theorem suggests that
NN + SGD with reused batch can learn single-index polynomials with a sample complexity n =
Õd(d) which is information theoretically optimal up to polylogarithmic factors, hence matching
the efficiency of SQ algorithms tailored for low-dimensional polynomial regression [CM20].

• For non-polynomial σ∗ with high generative exponent p∗ > 2, our sample complexity n ≳ dp∗−1

can be interpreted as an SQ version of the online SGD result in [BAGJ21]. Since the information
exponent p can be arbitrarily larger than the generative exponent p∗, our main theorem disproves
a conjecture in [AAM23] stating that n ≍ dp/2 is the optimal sample complexity for empirical
risk minimization with SGD on the squared loss / correlation loss.

• A key observation in our analysis is that with suitable activation function, SGD with reused batch
can go beyond correlational queries and implement (a subclass of) SQ algorithms. This enables
polynomial transformations to the labels that reduce the information exponent, and therefore op-
timization can escape the high-entropy “equator” at initialization in polylogarithmic time.

Upon completion of this work, we became aware of the preprint [ADK+24] showing weak recovery
(for polynomial targets with p∗ ≤ 2) with similar sample complexity, also by exploiting the reuse of
training data. Our work was conducted independently and simultaneously.

2 Problem Setting and Prior Works

Notations. ∥·∥ denotes the ℓ2 norm for vectors and the ℓ2 → ℓ2 operator norm for matrices. Od(·)
and od(·) stand for the big-O and little-o notations, where the subscript highlights the asymptotic
variable d and suppresses dependence on p, q; we write Õ(·) when (poly-)logarithmic factors are
ignored. Od,P(·) (resp. od,P(·)) represents big-O (resp. little-o) in probability as d→∞. Ω(·),Θ(·)
are defined analogously. γ is the standard Gaussian distribution in R. We denote the L2-norm of a
function f with respect to the data distribution (which will be specified) as ∥f∥L2 . For g : R → R,
we denote gi as its i-th exponentiation, and g(i) is the i-th derivative. We say an event happens with
high probability when the failure probability is bounded by exp(−C log d) for large constant C.

2.1 Complexity of Learning Single-index Models

We aim to learn a single-index model (1.1) where the link function σ∗ : R → R has information
exponent p defined as follows [DH18, BAGJ21].
Definition 1 (Information exponent). Let {Hej}∞j=0 denote the normalized Hermite polynomials.
The information exponent of g ∈ L2(γ), denoted by IE(g) := p ∈ N+, is the index of the first
non-zero Hermite coefficient of g, that is, given g(z) =

∑∞
i=0 αiHei(z), p := min{i>0 : αi ̸=0}.

3

By definition, when σ∗ is a degree-q polynomial, we always have p ≤ q. Note that f∗ contains
Θ(d) parameters to be estimated, and hence information theoretically n ≳ d samples are both suf-
ficient and necessary for learning [MM18, BKM+19, DPVLB24]; however, the sample complexity
achieved by different (polynomial time) algorithms depends on structure of the link function.

• Kernel Methods. Rotationally invariant kernels cannot adapt to the low-dimensional structure of
single-index f∗ and hence suffer from the curse of dimensionality [YS19, GMMM21, DWY21,
BES+22]. By a standard dimension argument [KMS20, HSSVG21, AAM22], we know that in
the isotropic data setting, kernel methods (including neural networks in the lazy regime [JGH18,
COB19]) require n ≳ dq samples to learn degree-q polynomials in Rd.

• Gradient-based Training of NNs. While NNs can easily approximate a single-index model
[Bac17], the sample complexity of gradient-based learning established in prior works typically
scales as n ≳ dΘ(p): in the well-specified setting, [BAGJ21] proved a sample complexity of n =

Θ̃(dp−1) for online SGD, which is later improved to Θ̃(dp/2) by a smoothed objective [DNGL23];
as for the misspecified setting, [BBSS22, DKL+23] showed that n ≳ dp samples suffice, and
in some cases a Θ̃(dp−1) complexity is achievable [AAM23, OSSW24]. Consequently, at the
information-theoretic limit (n ≍ d), existing results can only cover the learning of low information
exponent targets [AAM22, BMZ23, BES+23]. This exponential dependence on p also appears
in the CSQ lower bounds [DLS22, AAM22], which is often considered to be indicative of the
performance of SGD learning with the squared loss (see Section 2.2).

Statistical Query Learners. If we do not restrict ourselves to correlational queries, the sample
complexity of learning (1.1) can be drastically improved. Specifically, for polynomial σ∗, [CM20]
gave an SQ algorithm that achieves low generalization error in n = Õ(d) samples, which is near the
information-theoretic limit; the key ingredient is to construct nonlinear transformations to the labels
that lowers the information exponent to 2; similar preprocessing also appeared in context of phase
retrieval [MM18, BKM+19]. Such transformations do not belong to CSQ, but can be utilized by a
full SQ learner to enhance the statistical efficiency. Recently, [DPVLB24] introduced the generative
exponent which governs the complexity of SQ algorithms.
Definition 2 (Generative exponent). The generative exponent (GE) of g ∈ L2(γ) is defined as the
lowest information exponent (IE) after arbitrary L2 transformation, that is,

p∗ =: GE(g) = inf
T ∈L2(Py)

IE(T ◦ g).

The generative exponent is the smallest information exponent obtained by all possible label transfor-
mations. By definition we always have p∗ ≤ p, and the gap between the two indices can be arbitrarily
large; for example, for the Hermite polynomials we have IE(Hek) = k whereas GE(Hek) ≤ 2.

[DPVLB24] established a sample complexity lower bound of n = Ω(dp∗/2∨1) for full SQ learners
with polynomial compute, and obtained matching upper bounds by a tensor partial-trace algorithm.
The goal of our work is to show that SGD training of a two-layer neural network can also achieve a
sample and computational complexity that scales with n ≃ dΘ(p∗), where the dimension dependence
is governed by the generative exponent p∗ instead of the information exponent p.

2.2 Can Gradient Descent Go Beyond Correlational Queries?

Correlational statistical query. A statistical query (SQ) learner [Kea98, Rey20] accesses the tar-
get f∗ through noisy queries ϕ̃ with error tolerance τ : |ϕ̃ − Ex,y[ϕ(x, y)]| ≤ τ . Lower bound on
the performance of SQ algorithm is a classical measure of computational hardness. In the context
of gradient-based optimization, an often-studied subclass of SQ is the correlational statistical query
(CSQ) [BF02] where the query is restricted to (noisy version of) Ex,y[ϕ(x)y]. To see the connection
between CSQ and SGD, consider the gradient of expected squared loss for one neuron fw(x):

∇wEx,y(fw(x)− y)2 ∝ −Ex,y[y · ∇wfw(x)︸ ︷︷ ︸
correlational query

] + Ex[fw(x) · ∇wfw(x)︸ ︷︷ ︸
can be evaluated without y

].

One can see that information of the target function is encoded in the correlation term in the gradi-
ent. To infer the statistical efficiency of GD in the empirical risk minimization setting, we replace
the population gradient with the empirical average ∇w(1n

∑n
i=1(fw(xi) − yi)2), and heuristically

equate the CSQ tolerance τ with the scale of i.i.d. concentration error n−1/2.

4

For the Gaussian single-index model class with information exponent p, [DLS22] proved a lower
bound stating that a CSQ learner either has access to queries with tolerance τ ≲ d−p/4, or exponen-
tially many queries are needed to learn f∗ with small population loss. Using the heuristic τ ≈ n−1/2,
this suggests a sample complexity lower bound n ≳ dp/2 for polynomial time CSQ algorithm. This
lower bound can be achieved by a landscape smoothing procedure [DNGL23] (in the well-specified
setting), and is conjectured to be optimal for empirical risk minimization with SGD [AAM23].

SGD with reused data. As previously discussed, the gap between SQ and CSQ algorithms primar-
ily stems from the existence of label transformations that decrease the information exponent. While
such transformation cannot be utilized by a CSQ learner, [DTA+24] argued that they may arise from
two consecutive gradient updates using the same minibatch. For illustrative purposes, consider one
neuron fw(x) = σ(⟨x,w⟩) updated by two GD steps using the same data point (x, y), starting from
zero initialization w0 = 0 (we focus on the correlational term in the loss for simplicity):

w2 = w1 + η · yσ′(⟨x,w1⟩)x = ησ′(0) y · x︸︷︷︸
CSQ term

+ η yσ′(ησ′(0)∥x∥2 · y)x︸ ︷︷ ︸
non-CSQ term

. (2.1)

Under appropriate learning rate scaling η · ∥x∥2 = Θ(1), one can see that in the second gradient
step, the label y is transformed by the nonlinearity σ′, even though the loss function itself is not
modified. Based on this observation, [DTA+24] showed that if the non-CSQ term in (2.1) reduces
the information exponent to 1, then weak recovery (i.e., nontrivial overlap between the first-layer
parameters w and index features θ) can be achieved after two GD steps with n = Θ(d) samples.

2.3 Challenges in Establishing Statistical Guarantees

Importantly, the analysis in [DTA+24] does not lead to concrete learnability guarantees for the class
of single-index polynomials for the following reasons: (i) it is not clear if an appropriate nonlinear
transformation that lowers the information exponent can always be extracted from SGD with reused
data, and (ii) the weak recovery guarantee may not translate to a sample complexity for the trained
NN to achieve small generalization error. We elaborate these technical challenges below.

SGD decreases information exponent. To show weak recovery, [DTA+24, Definition 3.1] as-
sumed that the student activation σ can reduce the information exponent of the labels to 1; while a
few examples are given, the existence of such transformations in SGD is not guaranteed:

• The label transformation employed in prior SQ algorithms [CM20] is based on thresholding,
which reduces the information exponent to 2 for any polynomial σ∗; however, isolating such
function from SGD updates on the squared loss is challenging. Instead, we make use of monomial
transformation which can be extracted from SGD via Taylor expansion.

• If the link function satisfies p∗ ≥ 2, its information exponent after arbitrary nonlinear transforma-
tion is at least 2; such functions are predicted not be not learnable by SGD in the n ≍ d regime
[DTA+24]. To handle this setting, we analyze the SGD update up to poly(d) time, at which a non-
trivial overlap can be established by a Grönwall-type argument similar to [BAGJ21]. For p∗ = 2,
this recovers results on phase retrieval when σ∗(z) = z2 which requires n = Ω(d log d).

From weak recovery to sample complexity. Note that weak recovery (i.e., |⟨w,θ⟩| > ε for
some small constant ε > 0) is generally insufficient to establish low generalization error of the
trained NN. Therefore, we need to show that starting from a nontrivial overlap, subsequent gradient
steps can achieve strong recovery of the index features (i.e., |⟨w,θ⟩| > 1 − ε), despite the link
misspecification. After the first-layer parameters align with the target function, we can train the
second-layer parameters with SGD to learn the link function σ∗ with the aid of random bias units.

3 Learning Polynomial f∗ in Linear Sample Complexity

We first consider the setting where σ∗ is polynomial with degree q specified as follows.
Assumption 1. The target function is given as f∗(x) = σ∗(⟨x,θ⟩), where the link function σ∗ :
R→ R admits the Hermite decomposition σ∗(z) =

∑q
i=p αiHei(z).

For single-index polynomials, we do not expect a computational-to-statistical gap under the SQ class
[CM20] — indeed, we will establish learning guarantees near the information theoretic limit n ≍ d.

5

Algorithm 1: Gradient-based training of two-layer neural network
Input : Step sizes ηt; momentum parameters ξt; training time T1, T2; ℓ2 regularization λ.
Initialize w0

j ∼ Sd−1(1), aj ∼ Unif{±ca}.
Phase I: normalized SGD on first-layer parameters

for t = 0 to T1 do
if t is even then

Draw i.i.d. sample (x, y).
Interpolate wt

j ← wt
j − ξtj(wt

j −wt−2
j) (when t > 0).

Normalize wt
j ← wt

j/∥wt
j∥.

end
wt+1
j ← wt

j − ηt∇̃w(fΘ(x)− y)2, (j = 1, . . . , N).
end

Initialize bj ∼ Unif([−Cb, Cb]).
Phase II: SGD on second-layer parameters

â← argmina∈RN
1
T2

∑T2

i=1(fΘ(xi)− yi)2 + λ∥a∥2.
Output: Prediction function x 7→ fΘ̂(x) with Θ̂ = (âj ,w

T1
j , bj)

N
j=1.

3.1 Training Algorithm

We train the following two-layer network with N neurons using SGD to minimize the squared loss:

fΘ(x) =
1

N

N∑
j=1

ajσj(⟨x,wj⟩+ bj), (3.1)

where Θ = (wj , aj , bj)
N
j=1 are trainable parameters, and σj : R → R is the activation function

defined as the sum of Hermite polynomials up to degree Cσ: σj(z) :=
∑Cσ

i=0 βj,iHei(z), where Cσ
only depends on the degree of link function σ∗. Note that we allow each neuron to have a different
nonlinearity as indicated by the subscript in σj ; this subscript is omitted when we focus on the
dynamics of one single neuron. Our SGD training procedure is described in Algorithm 1, and below
we outline the key ingredients of the algorithm.

• Algorithm 1 employs a layer-wise training strategy common in the recent feature learning theory
literature [DLS22, BES+22, BBSS22, AAM23, MHWSE23], where in the first stage, we optimize
the first-layer parameters {wj}Nj=1 with normalized SGD to learn the low-dimensional latent rep-
resentation (index features θ), and in the second phase, we train the second-layer {aj}Nj=1 to fit
the unknown link function σ∗.

• The most crucial part in Phase I of Algorithm 1 is the reuse of the same minibatch in the gradient
computation. Specifically, we sample a fresh batch of training examples in every two GD steps;
this enables us to extract non-CSQ terms from two consecutive gradient updates outlined in (2.1).

• We introduce an interpolation step between the current and previous iterates with hyperparameter
ξ to stabilize the training dynamics; this resembles a negative momentum often seen in optimiza-
tion algorithms [AZ18, ZLBH19]; the role of this interpolation is discussed in Section 4.2. We use
a projected gradient update ∇̃wL(w) = (Id−w2tw2t⊤)∇wL(w) for steps 2t and 2t+1, where
∇w is the Euclidean gradient; similar use of projection also appeared in [DNGL23, AAM23].

3.2 Convergence and Sample Complexity

Weak Recovery Guarantee. We first consider the “search phase” of SGD, and show that after
running Phase I of Algorithm 1 for T = polylog(d) steps, a subset of parameters w achieve non-
trivial overlap with the target direction θ. We denoteH(g; j) as the j-th Hermite coefficient of some
g ∈ L2(γ). Our main theorems handle polynomial activations satisfying the following condition.

Assumption 2. We require the activation function to be a polynomial σ(z) =
∑Cσ

i=0 βiHei(z) and
its degree Cσ to be sufficiently large so that Cσ ≥ Cq holds (Cq is defined in Proposition 6). For all
2 ≤ ℓ ≤ Cσ and k = 0, 1, we assume that H

(
σ(ℓ)(σ(1))ℓ−1; k

)
> 0.

6

As discussed in Appendix B.1, a given σ∗, the above condition only needs to be met for one pair
of (k, ℓ). Also, Appendix B.1.3 states that H

(
σ(ℓ)(σ(1))ℓ−1; k

)
̸= 0 also works by choosing ξ

differently. We show that this condition is satisfied for a wide range of polynomials with degree Cσ .
Lemma 3. Given ℓ ≥ 2 and k ≥ 0. For Cσ ≥ 2ℓ+k−1

ℓ , if we choose {βi}Cσ
i=0 where βi is randomly

drawn from some non-empty interval [ai, bi] , then H(σ(ℓ)(σ(1))ℓ−1; k) ̸= 0 with probability 1.

The following theorem states that n = Θ̃(d) samples are sufficient to achieve weak recovery.

Theorem 1. Under Assumptions 1 and 2, for suitable choices of hyperparameters ηt = Õd(Nd
−1)

and 1 − ξt = od(1), there exists constant C(q) such that after Phase I of Algorithm 1 is run for
2T1,1 = C(q) · dpolylog(d) steps, with high probability, there exists a subset of neurons w2T1

j ∈ W
with |W| = Θ̃(N) such that

∣∣⟨w2T1
j ,θ⟩

∣∣ > c for some c ≳ 1/polylog(d).

Recall that at random initialization we have ⟨w,θ⟩ ≈ d−1/2 with high probability. The theorem
hence implies that SGD “escapes from mediocrity” after seeing n = Õ(d) samples, analogous to
the information exponent p = 2 setting studied in [BAGJ21]. We remark that due to the small
second-layer initialization, the squared loss is dominated by the correlation loss, which allows us
to track the evolution of each neuron independently; similar use of vanishing initialization also
appeared in [BES+22, AAM23]. This will be formally proved in Appendix B.4.

Strong recovery and sample complexity. After weak recovery is achieved, we continue Phase I
to amplify the alignment. Due to the nontrivial overlap between w and θ, the objective is no longer
dominated by the lowest degree in the Hermite expansion. Therefore, to establish strong recovery
(⟨w,θ⟩ > 1− ε), we place an additional assumption on the activation function.

Assumption 3. Given the Hermite expansions σ∗(z) =
∑q
i=p αiHei(z), σj(z) =

∑Cσ

i=0 βj,iHei(z),
we assume the coefficients satisfy αiβj,i ≥ 0 for p ≤ i ≤ q.

This assumption is easily verified in the well-specified setting σ∗ = σ [BAGJ21] since αi = βi, and
under link misspecification, it has been directly assumed in prior work [MHWSE23]. We follow
[OSSW24] and show that by randomizing the Hermite coefficients of the activation function, a
subset of neurons satisfy the above assumption for any degree-q polynomial link function σ∗.

Lemma 4. If we set σj(z) =
∑Cσ

i=0 βj,iHei(z), where for each neuron we sample βj,i
i.i.d.∼

Unif({±ri}) with appropriate constant ri, then Assumption 2 and 3 are satisfied in exp(−Θ(q))-
fraction of neurons.

Note that in our construction of activation functions for both assumptions, we do not exploit knowl-
edge of the link function σ∗ other than its degree q which decides the constantCσ . See Appendix B.1
for more discussion of Assumption 3 and Lemma 4. The next theorem shows that by running Phase I
for Θ̃(d) more steps, a subset of neurons can achieve almost perfect overlap with the index features.
Theorem 2. For student neurons with activation satisfying Assumptions 2 and 3 and parameter
wj starting from a nontrivial overlap c specified in Theorem 1, for suitable hyperparameters ηt =
Õd(Nd

−1ε) and ξt = 1, if we continue to run Phase I of Algorithm 1 for 2T1,2 = Θ̃d(dε
−2) steps,

then we achieve
〈
w

2(T1,1+T1,2)
j ,θ

〉
> 1− ε with high probability.

The following proposition shows that after strong recovery, training the second-layer parameters in
Phase II is sufficient for the NN model (3.1) to achieve small generalization error.
Proposition 5. After Phase I terminates, for suitable λ > 0, the output of Phase II satisfies

Ex[(fΘ̂(x)− f∗(x))2] ≲ ε2.

with probability 1 as d→∞, if we set T2 = C(q)N4polylog(d)ε−4, N = C(q)polylog(d)ε−1 for
some constant C(q) depending on the target degree q.

Putting things together. Combining the above theorems, we conclude that in order for two-layer
NN (3.1) trained by Algorithm 1 to achieve ε population squared loss, it is sufficient to set

n = T1 + T2 ≍ C(q) · (dε−2 ∨ ε−8)polylog(d), N ≍ C(q) · ε−1polylog(d),

where constant C(q) only depends on the target degree q (although exponentially). Hence we may
set ε−1 ≍ polylogd to conclude an almost-linear sample and computational complexity for learning
arbitrary single-index polynomials up to od(1) population error.

7

4 Proof Sketch

In this section we outline the high-level ideas and key steps in our derivation.

4.1 Monomial Transformation Reduces Information Exponent

To prove the main theorem, we first establish the existence of nonlinear label transformation that (i)
reduces the information exponent, and (ii) can be easily extracted from SGD updates. If we ignore
desideratum (ii), then for polynomial link functions, transformations that decrease the information
exponent to at most 2 have been constructed in [CM20, Section 2.1]. However, prior results are
based on the thresholding function, and it is not clear if such function naturally arises from SGD with
batch reuse. The following proposition shows that the effect of thresholding can also be achieved by
a simple monomial transformation where the required degree can be uniformly upper bounded.

Proposition 6. Let g : R→ R be any polynomial with degree up to p and ∥g∥2L2(γ) = 1, then

(i) There exists some i ≤ Cq ∈ N+ such that IE(gi) ≤ 2, where constant Cq only depends on q.

(ii) Let godd : R → R be the odd part of g with ∥godd∥2L2(γ) ≥ ρ > 0. Then there exists some
i ≤ Cq,ρ ∈ N+ such that IE(gi) = 1, where constant Cq,ρ only depends on q and ρ.

The proof can be found in Appendix A. We make the following remarks.

• The proposition implies that for any polynomial link function that is not even, there exists i ∈ N+

only depending on the degree of σ∗ such that raising the function to the i-the power reduces the
information exponent to 1. For even σ∗, the information exponent after arbitrary transformation
is at least 2, which can also be attained by monomial transformation. Furthermore, we provide a
uniform upper-bound on the required degree of transformation i via a compactness argument.

• The advantage of working with monomial transformations is that they can be obtained from two
GD steps on the same training example, by Taylor expanding the activation σ′. In Section 4.2,
we build upon this observation to show that Phase I of Algorithm 1 achieves weak recovery using
n ≳ dpolylog(d) samples.

Intuition behind the analysis. Our proof is inspired by [CM20] which introduced a (non-
polynomial) label transformation that reduces the information exponent of any degree-q polynomial
to at most 2. To prove the existence of monomial transformation for the same purpose, we first show
that for a fixed link function σ∗, there exists some i such that the i-th power of the link function has
information exponent 2, which mirrors the transformation used in [CM20]. Then, we make use of
the compactness of the space of link functions to define a test function and obtain a uniform bound
on i. As for the polynomial transformation for non-even functions, we exploit the asymmetry of σ∗
to further reduce the information exponent to 1.

4.2 SGD with Batch Reuse Implements Polynomial Transformation

Now we present a more formal discussion of (2.1) to illustrate how polynomial transformation can
be utilized in batch reuse SGD. We let ηt ≡ η. When one neuron fw(x) = σ(⟨x,w⟩) is updated by
two GD steps using the same sample (x, y), starting from w0 := ω, the alignment with θ becomes

⟨θ,w2⟩ =
〈
θ,
[
w1 + η · yσ′(⟨x,w1⟩)x

]〉
= ⟨θ,ω⟩+

η

[
yσ′(⟨ω,x⟩)⟨θ,x⟩+

∑Cσ−1
i=0 (η∥x∥2)iyi+1(i!)−1(σ′(⟨ω,x⟩))iσ(i+1)(⟨ω,x⟩)⟨θ,x⟩︸ ︷︷ ︸

=:ψi

]
.(4.1)

We take η ≤ cηd
−1 with a small constant cη so that η∥x∥2 ≪ 1 with high probability. Crucially,

the strength of each term in (4.1) can vary depending on properties of the unknown link function
σ∗. Hence a careful analysis is required to ensure that a suitable monomial transformation is always
singled out from the gradient. We establish the following lemma on the evolution of alignment.

Lemma 7. Under the assumptions per Theorem 1, the following holds for either p∗ = 1, 2:

⟨θ,w2(t+1)⟩ ≥ ⟨θ,w2t⟩+ cIηcξcσd
− p∗

2 ∨1(κ2t)p∗−1 + cηcξd
− p∗

2 ∨1ν2t.

8

See Lemma 16 for the formal version. For p∗ = 1, taking expectation immediately yields that weak
recovery within (η(1 − ξ)γ)−1 = O(d) steps. For p∗ = 2, ⟨θ,w2t

j ⟩ =: κt can be approximated
by a differential equation dκt

dt = η(1 − ξ)γκt. Solving this yields κt = κ0 exp(η(1 − ξ)γt) ≈
d−

1
2 exp(η(1− ξ)γt), and weak recovery is obtained within t ≲ (η(1− ξ)γ)−1 · log d = O(d log d)

steps, similar to the analysis in [BAGJ21].

Why interpolation is needed. In our setting, the signal strength may not dominate the error com-
ing from discarding the effect of normalization. Usually, given the gradient −g and projection
Pw = Id −ww⊤, the spherical gradient affects the alignment as ⟨θ,wt+1⟩ =

〈
θ, wt+ηPwg

∥wt+ηPwg∥
〉
≥

⟨θ,wt⟩ + η⟨θ, g⟩ − 1
2η

2∥g∥2⟨θ,wt⟩ + (negligible terms), see [BAGJ21, DNGL23]. Here η⟨θ, g⟩
corresponds to the signal, and − 1

2η
2∥g∥2⟨θ,wt⟩ comes from normalization. Thus, taking η suffi-

ciently small, the normalization error shrinks faster than the signal. However, in our case the signal
shrinks at the rate of cIη (recall that η = cηd

−1), and hence taking a smaller step may not improve the
signal-to-noise ratio. The interpolation step in Algorithm 1 allows us to reduce the effect of normal-
ization without shrinking the signal too much, by ensuring w2(t+1) stays close to w2t. In particular,
setting ξ = 1− η̃, we see that the signal is affected by a factors of η̃ whereas the normalization error
shrinks by η̃2; this allows us to boost the signal-to-noise ratio by taking η̃ sufficiently small.

4.3 Analysis of Phase II and Statistical Guarantees

Once strong recovery is achieved for the first-layer parameters, we turn to Phase II and optimize
the second-layer with ℓ2 regularization. Since the objective is strongly convex, gradient-based op-
timization can efficiently minimize the empirical loss. In Appendix B.6, the learnability guarantee
follows from standard analysis analogous to that in [AAM22, DLS22, BES+22], where we construct
a “certificate” second-layer a∗ ∈ RN that achieves small loss and small norm:

Ex

(
f∗(x)− 1

N

∑N
j=1 a

∗
jσj
(
⟨wT1

j ,x⟩+ bj
))2
≤ ε∗, ∥a∗∥ ≲ r∗,

from which the population loss of the regularized empirical risk minimizer can be bounded via stan-
dard Rademacher complexity argument. To construct such a certificate, we make use of the random
bias units {bj}Nj=1 to approximate the link function σ∗ as done in [DLS22, BBSS22, OSSW24].

5 Beyond Polynomial Link Functions

Thus far we have shown that for polynomial single-index target functions (which satisfy p∗ ≤ 2),
SGD with data reuse can implement a polynomial transformation to the labels that reduces the
information exponent to at most 2; consequently, the trained two-layer neural network can achieve
small generalization error with n = dpolylog(d) samples. However, as shown in [DPVLB24], there
exists (non-polynomial) σ∗ with generative exponent p∗ > 2 (i.e., label transformations cannot lower
the information exponent to 2) and thus not learnable by SQ algorithms in linear sample complexity.
Nevertheless, for a single-index model with generative exponent p∗, we know there exists an “opti-
mal” label transformation that reduces the information exponent to p∗. If SGD can make use of such
transformation, then from the arguments in [BAGJ21], it is natural to conjecture that a sample size
of n ≃ dp∗−1 is sufficient. In this section we confirm this intuition by proving that SGD with batch
reuse (Algorithm 1) indeed matches this complexity. The following lemma is an analogue of Propo-
sition 6 stating that polynomial transformations are sufficient to lower the information exponent.
Lemma 8. Given link function σ∗ with generative exponent p∗ ∈ N+. Suppose we can take
an orthonormal polynomial basis {ϕk}k for the space L2(Py) with inner product ⟨f, g⟩ =
Ey=σ∗(z)[f(y)g(y)]. Then there exists some degree I ∈ N such that IE(σI∗) = p∗.

We outline the differences and additional technical challenges to handle the GE(σ∗) > 2 setting.

• For general L2 link functions σ∗, we can no longer make use of the compactness argument (see
proof of Proposition 6) to upper bound the degree of monomial transformation. Hence in Lemma 8
we do not state a uniform upper bound on the required degree I , unlike the polynomial setting.

• Any link function with p∗ > 2 cannot be polynomial, and hence we cannot achieve low gener-
alization error using a neural network with polynomial nonlinearity. We therefore need to use an
activation function with universal function approximation ability.

9

5.1 Sample Complexity for Weak Recovery

We first show that Algorithm 1 achieves weak recovery with a complexity governed by the generative
exponent of the link function p∗ = GE(σ∗). Similar to Section 3.2, we make use of randomized
activation functions to ensure the desired label transformation is encoded — we defer the conditions
on the student activation to Appendix B.1.2.
Proposition 9. Suppose the link function σ∗ has generative exponent p∗, and let I ∈ N+ be
the smallest degree of monomial transformation that lowers the information exponent to p∗ (i.e.,
IE(σI∗) = p). We can find a student activation function σ depending only on p, p∗ and I , such that
if we take η2t, η2t+1 = cηNd

−1, ξ2(t+1) = 1− cξd−(p∗−2)+/2 for small cη, cξ = od(1), and set

T1,1 ≃ c−1
ξ

d (if p∗ = 1)

d(log d) (if p∗ = 2)

dp∗−1 (if p∗ ≥ 3),

then if the initial alignment ⟨w0,θ⟩ ≥ 2c−1
η d−1/2, there exists τ∗ ≤ T1,1 such that for all τ ≥ τ∗,

⟨w2τ ,θ⟩ ≥ Θ̃(1), with probability 1− od(1).

Proposition 9 is a generalization of Theorem 1 beyond polynomial σ∗ (the proof of both results are
presented in Appendix B.3,B.4), and can be interpreted as an SQ counterpart to [BAGJ21]: we es-
tablish a sufficient sample size of n ≃ d(p∗−1)∨1 for Algorithm 1 to exit the search phase, which is
parallel to the n ≃ d(p−1)∨1 rate for one-pass SGD (note that our rates are slightly sharper due to
logarithmic factors removed, since c−1

ξ can grow arbitrarily slowly with d). For high generative ex-
ponent σ∗ with p∗ > 2, we no longer match the information theoretically optimal sample complexity
n ≍ d, which is consistent with the computational-to-statistical gap observed in [DPVLB24].

5.2 Generalization Error Guarantee

After Phase I of Algorithm 1, we learn the unknown link function σ∗ via training the second-layer.
To approximate non-polynomial functions, we introduce a ReLU component in the student nonlin-
earity σ (see Lemma 12 for discussions), and make use of the approximation result for the (uni-
variate) ReLU kernel in [BBSS22], which handles general σ∗ whose second derivative has bounded
4th moment. Combining the above, we arrive at the following end-to-end guarantee for learning
single-index models with arbitrary generative exponent using SGD training of neural network.
Proposition 10 (Informal). Suppose the link function σ∗ has generative exponent p∗ ∈ N∗ and
satisfies σ∗, σ′′

∗ ∈ L4(γ). For appropriately chosen activation function σ (see Appendix B.1.2),
the neural network (3.1) optimized by Algorithm 1 achieves small population loss Ex[(fΘ̂(x) −
f∗(x))

2] = od,P(1), with a sample complexity of n = Θ̃(d(p∗−1)∨1).

See Appendix B.6 for the full statement with ε dependence. This proposition confirms that weak
recovery (established in Proposition 9) is the bottleneck in learning single-index models, as the total
sample size required for Algorithm 1 to achieve vanishing test error also scales with d(p∗−1)∨1.

6 Conclusion and Future Directions

We showed that a two-layer neural network (3.1) trained by SGD with reused batch can learn single-
index model (with generative exponent p∗) using n ≃ d(p∗−1)∨1 samples and compute; in particular,
when the link function σ∗ is polynomial, we established a sample complexity of n = Õ(dε−2) to
achieve ε population loss, which is almost information theoretically optimal. Our analysis is based
on the observation that by reusing the same training data twice in the gradient computation, a non-
correlational term arises in the SGD update that transforms the labels (despite the loss function not
modified). We proved that monomial transformations that lower the information exponent of σ∗
can be extracted by Taylor-expanding the SGD update; then we showed via careful analysis of the
trajectory that strong recovery and low population loss is achieved under suitable activation function.
Interesting future directions include extension to multi-index models [BAGJ22, ABA22, BBPV23,
CWPPS23], hierarchical polynomials [AZL19, NDL23], and additive models [OSSW24]. Also, the
SGD algorithm that we employ requires a layer-wise training procedure and a specific batch reuse
schedule; one may therefore ask if standard multi-pass SGD training of all parameters simultane-
ously [Gla23] (as reported in Figure 1) also achieves the same statistical efficiency.

10

Acknowledgements

The authors thank Gerard Ben Arous, Joan Bruna, Alex Damian, Marco Mondelli, and Eshaan
Nichani for the discussions and feedback on the manuscript. JDL acknowledges support of the ARO
under MURI Award W911NF-11-1-0304, NSF CCF 2002272, NSF IIS 2107304, NSF CIF 2212262,
ONR Young Investigator Award, and NSF CAREER Award 2144994. KO was partially supported
by JST ACT-X (JPMJAX23C4). TS was partially supported by JSPS KAKENHI (24K02905) and
JST CREST (JPMJCR2015). This research is unrelated to DW’s work at xAI.

References
[AAM22] Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. The merged-

staircase property: a necessary and nearly sufficient condition for sgd learning of
sparse functions on two-layer neural networks. In Conference on Learning Theory,
pages 4782–4887. PMLR, 2022.

[AAM23] Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. SGD learning on
neural networks: leap complexity and saddle-to-saddle dynamics. In The Thirty Sixth
Annual Conference on Learning Theory, pages 2552–2623. PMLR, 2023.

[ABA22] Emmanuel Abbe and Enric Boix-Adsera. On the non-universality of deep learning:
quantifying the cost of symmetry. Advances in Neural Information Processing Sys-
tems, 35:17188–17201, 2022.

[ADK+24] Luca Arnaboldi, Yatin Dandi, Florent Krzakala, Luca Pesce, and Ludovic Stephan.
Repetita iuvant: Data repetition allows sgd to learn high-dimensional multi-index
functions. arXiv preprint arXiv:2405.15459, 2024.

[AZ18] Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient
methods. Journal of Machine Learning Research, 18(221):1–51, 2018.

[AZL19] Zeyuan Allen-Zhu and Yuanzhi Li. What can resnet learn efficiently, going beyond
kernels? Advances in Neural Information Processing Systems, 32, 2019.

[Bac17] Francis Bach. Breaking the curse of dimensionality with convex neural networks.
The Journal of Machine Learning Research, 18(1):629–681, 2017.

[BAGJ21] Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. Online stochastic gradi-
ent descent on non-convex losses from high-dimensional inference. The Journal of
Machine Learning Research, 22(1):4788–4838, 2021.

[BAGJ22] Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. High-dimensional limit
theorems for sgd: Effective dynamics and critical scaling. Advances in Neural Infor-
mation Processing Systems, 35:25349–25362, 2022.

[BBPV23] Alberto Bietti, Joan Bruna, and Loucas Pillaud-Vivien. On learning Gaussian multi-
index models with gradient flow. arXiv preprint arXiv:2310.19793, 2023.

[BBSS22] Alberto Bietti, Joan Bruna, Clayton Sanford, and Min Jae Song. Learning single-
index models with shallow neural networks. Advances in Neural Information Pro-
cessing Systems, 35:9768–9783, 2022.

[BES+22] Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, and Greg
Yang. High-dimensional asymptotics of feature learning: How one gradient step
improves the representation. Advances in Neural Information Processing Systems,
35:37932–37946, 2022.

[BES+23] Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, and Denny Wu. Learning
in the presence of low-dimensional structure: A spiked random matrix perspective.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

[BF02] Nader H Bshouty and Vitaly Feldman. On using extended statistical queries to avoid
membership queries. Journal of Machine Learning Research, 2(Feb):359–395, 2002.

11

[BKM+19] Jean Barbier, Florent Krzakala, Nicolas Macris, Léo Miolane, and Lenka Zdeborová.
Optimal errors and phase transitions in high-dimensional generalized linear models.
Proceedings of the National Academy of Sciences, 116(12):5451–5460, 2019.

[BL20] Yu Bai and Jason D. Lee. Beyond linearization: On quadratic and higher-order ap-
proximation of wide neural networks. In International Conference on Learning Rep-
resentations, 2020.

[BMZ23] Raphaël Berthier, Andrea Montanari, and Kangjie Zhou. Learning time-scales in
two-layers neural networks. arXiv preprint arXiv:2303.00055, 2023.

[CCM11] Seok-Ho Chang, Pamela C Cosman, and Laurence B Milstein. Chernoff-type
bounds for the Gaussian error function. IEEE Transactions on Communications,
59(11):2939–2944, 2011.

[CM20] Sitan Chen and Raghu Meka. Learning polynomials in few relevant dimensions. In
Conference on Learning Theory, pages 1161–1227. PMLR, 2020.

[COB19] Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable
programming. Advances in Neural Information Processing Systems, 32, 2019.

[CWPPS23] Elizabeth Collins-Woodfin, Courtney Paquette, Elliot Paquette, and Inbar Seroussi.
Hitting the high-dimensional notes: An ode for sgd learning dynamics on glms and
multi-index models. arXiv preprint arXiv:2308.08977, 2023.

[DH18] Rishabh Dudeja and Daniel Hsu. Learning single-index models in gaussian space. In
Conference On Learning Theory, pages 1887–1930. PMLR, 2018.

[DH24] Rishabh Dudeja and Daniel Hsu. Statistical-computational trade-offs in tensor pca
and related problems via communication complexity. The Annals of Statistics,
52(1):131–156, 2024.

[DKL+23] Yatin Dandi, Florent Krzakala, Bruno Loureiro, Luca Pesce, and Ludovic Stephan.
Learning two-layer neural networks, one (giant) step at a time. arXiv preprint
arXiv:2305.18270, 2023.

[DLS22] Alexandru Damian, Jason Lee, and Mahdi Soltanolkotabi. Neural networks can learn
representations with gradient descent. In Conference on Learning Theory, pages
5413–5452. PMLR, 2022.

[DNGL23] Alex Damian, Eshaan Nichani, Rong Ge, and Jason D. Lee. Smoothing the landscape
boosts the signal for SGD: Optimal sample complexity for learning single index mod-
els. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

[DPVLB24] Alex Damian, Loucas Pillaud-Vivien, Jason D Lee, and Joan Bruna. The com-
putational complexity of learning gaussian single-index models. arXiv preprint
arXiv:2403.05529, 2024.

[DTA+24] Yatin Dandi, Emanuele Troiani, Luca Arnaboldi, Luca Pesce, Lenka Zdeborová, and
Florent Krzakala. The benefits of reusing batches for gradient descent in two-layer
networks: Breaking the curse of information and leap exponents. arXiv preprint
arXiv:2402.03220, 2024.

[DWY21] Konstantin Donhauser, Mingqi Wu, and Fanny Yang. How rotational invariance of
common kernels prevents generalization in high dimensions. In International Con-
ference on Machine Learning, pages 2804–2814. PMLR, 2021.

[Gla23] Margalit Glasgow. Sgd finds then tunes features in two-layer neural networks with
near-optimal sample complexity: A case study in the xor problem. arXiv preprint
arXiv:2309.15111, 2023.

[GMMM21] Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Lin-
earized two-layers neural networks in high dimension. The Annals of Statistics,
49(2):1029–1054, 2021.

12

[HSSVG21] Daniel Hsu, Clayton H Sanford, Rocco Servedio, and Emmanouil Vasileios Vlatakis-
Gkaragkounis. On the approximation power of two-layer networks of random relus.
In Conference on Learning Theory, pages 2423–2461. PMLR, 2021.

[JGH18] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Con-
vergence and generalization in neural networks. In Advances in neural information
processing systems, pages 8571–8580, 2018.

[Kea98] Michael Kearns. Efficient noise-tolerant learning from statistical queries. Journal of
the ACM (JACM), 45(6):983–1006, 1998.

[KMS20] Pritish Kamath, Omar Montasser, and Nathan Srebro. Approximate is good enough:
Probabilistic variants of dimensional and margin complexity. In Conference on
Learning Theory, pages 2236–2262. PMLR, 2020.

[MHPG+23] Alireza Mousavi-Hosseini, Sejun Park, Manuela Girotti, Ioannis Mitliagkas, and Mu-
rat A Erdogdu. Neural networks efficiently learn low-dimensional representations
with SGD. In The Eleventh International Conference on Learning Representations,
2023.

[MHWSE23] Alireza Mousavi-Hosseini, Denny Wu, Taiji Suzuki, and Murat A. Erdogdu.
Gradient-based feature learning under structured data. In Thirty-seventh Conference
on Neural Information Processing Systems (NeurIPS 2023), 2023.

[MM18] Marco Mondelli and Andrea Montanari. Fundamental limits of weak recovery with
applications to phase retrieval. In Conference On Learning Theory, pages 1445–1450.
PMLR, 2018.

[MZD+23] Arvind Mahankali, Haochen Zhang, Kefan Dong, Margalit Glasgow, and Tengyu Ma.
Beyond ntk with vanilla gradient descent: A mean-field analysis of neural networks
with polynomial width, samples, and time. Advances in Neural Information Process-
ing Systems, 36, 2023.

[NDL23] Eshaan Nichani, Alex Damian, and Jason D Lee. Provable guarantees for nonlin-
ear feature learning in three-layer neural networks. Advances in Neural Information
Processing Systems, 36, 2023.

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.

[OSSW24] Kazusato Oko, Yujin Song, Taiji Suzuki, and Denny Wu. Learning sum of diverse
features: computational hardness and efficient gradient-based training for ridge com-
binations. In Conference on Learning Theory. PMLR, 2024.

[Rey20] Lev Reyzin. Statistical queries and statistical algorithms: Foundations and applica-
tions. arXiv preprint arXiv:2004.00557, 2020.

[Sch80] Jacob T Schwartz. Fast probabilistic algorithms for verification of polynomial iden-
tities. Journal of the ACM (JACM), 27(4):701–717, 1980.

[TS24] Shokichi Takakura and Taiji Suzuki. Mean-field analysis on two-layer neural net-
works from a kernel perspective. arXiv preprint arXiv:2403.14917, 2024.

[WWF24] Zhichao Wang, Denny Wu, and Zhou Fan. Nonlinear spiked covariance matrices
and signal propagation in deep neural networks. In Conference on Learning Theory.
PMLR, 2024.

[YS19] Gilad Yehudai and Ohad Shamir. On the power and limitations of random features for
understanding neural networks. Advances in Neural Information Processing Systems,
32, 2019.

[ZLBH19] Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E Hinton. Lookahead op-
timizer: k steps forward, 1 step back. Advances in neural information processing
systems, 32, 2019.

13

Table of Contents

1 Introduction 1
1.1 Our Contributions . 2

2 Problem Setting and Prior Works 3
2.1 Complexity of Learning Single-index Models . 3
2.2 Can Gradient Descent Go Beyond Correlational Queries? 4
2.3 Challenges in Establishing Statistical Guarantees 5

3 Learning Polynomial f∗ in Linear Sample Complexity 5
3.1 Training Algorithm . 6
3.2 Convergence and Sample Complexity . 6

4 Proof Sketch 8
4.1 Monomial Transformation Reduces Information Exponent 8
4.2 SGD with Batch Reuse Implements Polynomial Transformation 8
4.3 Analysis of Phase II and Statistical Guarantees 9

5 Beyond Polynomial Link Functions 9
5.1 Sample Complexity for Weak Recovery . 10
5.2 Generalization Error Guarantee . 10

6 Conclusion and Future Directions 10

A Polynomial Transformation 15
A.1 Proof for Even Functions (i) . 15
A.2 Proof for Non-even Functions (ii) . 16
A.3 Proof for Non-Polynomial Functions . 17

B SGD with Reused Batch 17
B.1 Assumptions on Link Function . 18
B.2 Initialization . 22
B.3 Weak Recovery: Population Update . 22
B.4 Weak Recovery: Stochastic Update . 26
B.5 From Weak Recovery to Strong Recovery . 29
B.6 Second Layer Training . 31

14

A Polynomial Transformation

Proof of Proposition 6. We use a thresholding and compactness argument inspired by [CM20].

A.1 Proof for Even Functions (i)

We divide the analysis into the following steps.
(i-1): Monomials reducing the information exponent. Define τ(f) = max−2≤t≤2 |f(t)|. This
entails that if |f(t)| ≥ τ(f), then we have |t| > 2.
Consider the following expectation:

Et∼N (0,1)

[(
f(t)

2τ(f)

)i
(t2 − 1)

]
. (A.1)

We evaluate the case when i is even. (A.1) can be lower bounded as

(A.1) = Et∼N (0,1)

[
1[|f(t)| ≥ 2τ(f)]

(
f(t)

2τ(f)

)i
(t2 − 1)

]
+ Et∼N (0,1)

[
1[τ(f) ≤ |f(t)| < 2τ(f)]

(
f(t)

2τ(f)

)i
(t2 − 1)

]
+ Et∼N (0,1)

[
1[|f(t)| < τ(f)]

(
f(t)

2τ(f)

)i
(t2 − 1)

]
≥ Et∼N (0,1)

[
1[|f(t)| ≥ 2τ(f)]

(
2τ(f)

2τ(f)

)i
(22 − 1)

]
+ Et∼N (0,1)

[
1[τ(f) ≤ |f(t)| < 2τ(f)]

(
f(t)

2τ(f)

)i
(22 − 1)

]
+ Et∼N (0,1)

[
1[|f(t)| < τ(f)]

(
τ(f)

2τ(f)

)i
(02 − 1)

]
≥ 3Pt∼N (0,1)[|f(t)| ≥ 2τ(f)]− 2−i.

Note that P[|f(t)| ≥ 2τ(f)] is positive (since f is polynomial) and independent of i, while 2−i

decays to 0 as i increases. Therefore, for sufficiently large i ∈ N, (A.1) is positive and hence
IE(f i) ≤ 2. The subsequent analysis aims to provide an upper bound on i.
(i-2): Construction of test function. We introduce the notation H(·; j) which takes any function
(in L1) and returns its j-th Hermite coefficient. We consider the following test function:

H (f) :=

∞∑
i=2

(
H(f i; 2)

2
i
2 (2i− 1)

iq
2

)2

. (A.2)

(i-3): Lower bound of test function via compactness. Let Fq be a set of polynomials with degree
up to q with unit L2 norm. Because H (f) is positive for any f ∈ Fq , H(f i; 2) is continuous with
respect to f , and Fq is a compact set, inff∈Fq

H (f) admits a minimum value H0 which is positive.
(i-4): Conclusion via hypercontractivity. Because f is a polynomial with degree at most q, Gaus-
sian hypercontractivity [O’D14] yields that

2H(f i; 2)2 ≤ Et∼N (0,1)

[
(f(t))2i

]
≤ (2i− 1)iq

(
Et∼N (0,1)

[
f(t)2

])i
= (2i− 1)iq.

Therefore, for all polynomials in Fq , a partial sum of (A.2) is uniformly bounded by∣∣∣∣ ∞∑
i=j

(
H(f i; 2)

2
i
2 (2i− 1)

iq
2

)2∣∣∣∣ ≤ ∞∑
i=j

2−i−1 = 2−j → 0 (j →∞).

Combining this with the fact that H (f) ≥ H0 > 0, we know that there exists some Cq ≤ 1 +

log2(H
−1
0) such that

Cq∑
i=2

(
H(f i; 2)

2
i
2 (2i− 1)

iq
2

)2

>
1

2
H0 > 0,

for all polynomials in Fq . This means that there is at least one i ≤ Cq such that H(f i; 2) ̸= 0.

15

A.2 Proof for Non-even Functions (ii)

(ii-1): Monomials reducing the information exponent. We prove that some exponentiation of
g := f2 has non-zero first Hermite coefficient. Denote godd as the odd part of g, and similarly
geven. Let υ(g) ∈ R+ be the value at which the followings hold:

(a) godd(t) > 0 for all t ≥ υ(g) and godd(t) < 0 for all t ≤ −υ(g).
(b) geven(t) > |godd(t)| for all t ≥ υ(g) and t ≤ −υ(g).
(c) For for all t ≥ υ(g) and t ≤ −υ(g), g(s) = g(t) (as an equation of s) only has two real-valued

solutions with opposing signs.

Such threshold υ(g) exists because the tail of g = f2 is dominated by the highest degree which is
even. Then, we let τ(g) = max−υ(g)≤t≤υ(g) |g(t)|.
Consider the following expectation:

Et∼N (0,1)

[(
g(t)

2τ(g)

)i
t

]
. (A.3)

(A.3) is decomposed as

(A.3) = Et∼N (0,1)

[
1[|g(t)| ≥ 3τ(f)]

(
g(t)

3τ(g)

)i
t

]
+ Et∼N (0,1)

[
1[2τ(g) ≤ |g(t)| < 3τ(g)]

(
g(t)

3τ(f)

)i
t

]
+ Et∼N (0,1)

[
1[|g(t)| < 2τ(g)]

(
g(t)

3τ(g)

)i
t

]
. (A.4)

We first evaluate the first term. Because of (c), g(t) = 3τ(f) has two real-valued solutions α <
0 < β. Because of (a) and (b), g(β) = geven(β) + godd(β) = 3τ(f) > geven(−β) + godd(−β) =
godd(−β). Because limt→−∞ godd(t) = +∞, and α is the only solution in t < 0, we have α < −β.
Moreover, for all t > β, we have g(t) = geven(t) + godd(t) > geven(−t) + godd(−t) = godd(−t).
Combining the above, the first term of (A.4) is bounded as

Et∼N (0,1)

[
1[|g(t)| ≥ 3τ(f)]

(
g(t)

3τ(g)

)i
t

]
= Et∼N (0,1)

[
1[β ≤ t ≤ −α]

(
g(t)

3τ(g)

)i
t

]
+ Et∼N (0,1)

[
1[t ≥ −α]

(
g(t)

3τ(g)

)i
t

]
+ Et∼N (0,1)

[
1[t ≤ α]

(
g(t)

3τ(g)

)i
t

]
= Et∼N (0,1)

[
1[β ≤ t ≤ −α]t

]
+ Et∼N (0,1)

[
1[t ≥ −α]

((
g(t)

3τ(g)

)i
−
(
g(−t)
3τ(g)

)i)
t

]
> βPt∼N (0,1)

[
β ≤ t ≤ −α

]
.

Following the exact same reasoning, we know that the second term of (A.4) is positive. Finally, the
third term which is bounded by

Et∼N (0,1)

[
1[|g(t)| < 2τ(g)]

(
g(t)

3τ(g)

)i
t
]
≥ −Et∼N (0,1)

[
1[|g(t)| < 2τ(g)]|t|

](2

3

)i
.

Putting things together,

(A.4) > βPt∼N (0,1)

[
β ≤ t ≤ −α

]
− Et∼N (0,1)

[
1[|g(t)| < 2τ(g)]|t|

](2

3

)i
.

The first term is independent of i and positive, while the second term goes to zero as i grows.
Therefore, there exists some i such that IE(gi; 1) = 1.

16

(ii-2): Construction of test function. This time we consider the following function:

H (f) :=

∞∑
i=2

(
H(f i; 1)

2
i
2 (2i− 1)

iq
2

)2

.

(ii-3): Lower bound of test function via compactness. Let Fq be a set of unit L2-norm polynomi-
als with degree up to q and Et∼N (0,1)[f

odd(t)2] ≥ c. Since H (f) is always positive for Fq , H (f)
is continuous with respect to f , and Fq is a compact set, inff∈Fq H (f) has the minimum value H0

that is positive. Note that H (f) might depends on c.
(ii-4): Conclusion via hypercontractivity. Using the same argument as in (i), we conclude that
there exists some Cq,c such that

Cq∑
i=2

(
H(f i; 1)

2i(2i− 1)
iq
2

)2

>
1

2
H0 > 0.

Because H0 depends on c, Cq,c depends on c as well as q.

A.3 Proof for Non-Polynomial Functions

For non-polynomial link functions, we note that similar to [DPVLB24], the existence of polynomial
basis is needed to exclude extreme cases, and we cannot upper bound the required degree I because
general link functions are not included in a compact space.
Proof of Lemma 8. The derivation is analogous to [DPVLB24, Lemma F.14]. Let z ∼ N (0, 1)
and y = σ∗(z). We define ζp∗(y) = E[1√

p∗!
Hep∗(z)|y] and its basis expansion ζp∗(y) =∑∞

k=0 vkϕk. Let K be a smallest integer such that vk ̸= 0. Then, there exists an integer with
I ≤ K such that IE(yI) = p∗. Indeed,

E[ϕK(y)Hep∗(z)] = Ey[ΦK(y)Ez|y[Hep∗(z)|y]]

= Ey
[
ΦK(y)

K∑
k=0

vkϕk(y)

]
= vK ̸= 0,

which means that at least one of y, y2, · · · , yK yields a non-zero p∗-th Hermite coefficient.

B SGD with Reused Batch

In this section we show that Algorithm 1 learns single-index models in Õ(d1∨(p∗−1)) samples with
high probability. The algorithm trains the first layer for T1 SGD steps, where we sample a new data
point in every two steps. The first layer training is further divided into two phases: weak recovery
(w⊤θ ≳ 1) and strong recovery (∥w − θ∥ ≲ ε). Then, we learn the second layer parameters.
Specifically, Section B.2 shows that at initialization, a (nearly) constant fraction of neurons has
alignment w⊤θ beyond a certain threshold. We focus on such neurons in the first phase of train-
ing. Section B.3 lower bounds the expected update of alignment w⊤θ of two gradient steps, and
Section B.4 establishes that the neurons achieve weak recovery within 2T1,1 = Õ(d1∨(p∗−1)) steps.
Section B.5 discusses how to convert weak recovery to strong recovery using 2T1,2 = Õ(dε−2)
more steps. We let T1 = 2T1,1 + 2T1,2. Finally, Section B.6 analyzes second layer training and
concludes the proof.
In the following proofs, we use several constants, which depends on d at most at most polylogarith-
mically. Specifically, asymptotic strength of the constants is ordered as follows.

1 ≃ cσ ≃ C1 ≲

c−1
η ≃ C2 ≲ poly(c−1

η) ≲

{
c−1
1 ≃ C3

c−1
2

}
δ−1

 ≲

{
δ−1poly(c−1

η) ≲ c−1
ξ

poly(c−1
1) ≲ c̄−1

η

}
≲ polylog(d) = C4.

17

Here, cη and δ should satisfy limd→∞ cη = limd→∞ δ = 0, but the convergence can be arbitrarily
slow, (e.g., as slow as 1/ log log log · · · log d). This requirement comes from the fact that we do
not know the exact value of H(σI∗ ; p∗). To ensure that one signal term (from the Taylor series)
is isolated, taking η ≍ d−1 with a sufficiently small constant is insufficient but η ≍ cηd

−1 with
arbitrarily slow cη suffices. Also, to guarantee that the failure probability is od(1), we require δ to be
od(1). cξ can also decay arbitrarily slowly, as long as it satisfies cξ ≲ δpoly(c−1

η). C4 = polylog(d)
will be used to represent any polylogarithmic factor that comes from high probability bounds.
For the first-layer training, we can reduce the argument into training of one neuron using the corre-
lation loss as follows. At each step, the gradient update (Line 8 of Algorithm 1) is written as

wt+1
j ← wt

j − ηt∇̃w

(
(fΘ(x)− y)2

)
= wt

j − ηt∇̃w

(
1

N

N∑
j=1

ajσj(w
t
j
⊤
x)

)2

+ 2ηtj∇̃w

(
y
1

N

N∑
j=1

ajσj(w
t
j
⊤
x)

)

= wt
j −

2ηtc2a
N

(
1

N

N∑
j=1

σj(w
t
j
⊤
x)

)(
∇̃wσj(w

t
j
⊤
x)
)
+

2ηtca
N

y
(
∇̃wσj(w

t
j
⊤
x)
)
.(B.1)

While the second term scales with ηtc2aN
−1, the third term scales with ηtcaN−1. Thus, by setting

ca sufficiently small, we can ignore the interaction between neurons. We will show that the strength
of the signal in the direction of θ is at least (κtj)

p∗−1 ≳ d−
p∗−1

2 (up to a polylogarithmic factor, and

p∗ = GE(σ∗)). On the other hand, we can easily see that θ⊤(1
N

∑N
j=1 σj(w

t
j
⊤
x)
)(
∇̃wσj(w

t
j
⊤
x)
)

is bounded by Õ(1) with high probability. Therefore, by simply letting ca = Θ̃(d−
p∗−1

2), we can
ignore the effect of the second term in (B.1). Moreover, for simplicity, we will reparameterize 2ηtca

N

as ηt below. Consequently, we may analyze the following update

wt+1
j ← wt

j + ηt∇̃w

(
yσj(w

t
j
⊤
x)
)
,

instead of Line 8 of Algorithm 1. Since there is no interaction between neurons now, we omit the
subscript j when the context is clear.

B.1 Assumptions on Link Function

The analysis consists of three different phases: weak recovery and strong recovery of the first-layer
weights, and approximation of the link function (ridge regression of the second-layer). Each phase
requires different assumptions on the activation functions, depending on the link function. Before
starting the analysis, we decompose Assumptions 2 and 3 and clarify which conditions are needed
in each phase. We prove that instead of using a specific activation function tailored to different link
functions, a randomized activation function satisfies all required assumptions with probability Ω(1).
In the following, we write the student activation function as

σj(s) :=

∞∑
i=0

βj,iHei(s)

with coefficients {βj,i}Cσ
i=0 (sometimes the subscript j, which is the index of the neurons, is omitted).

B.1.1 For polynomial link functions

In the following, we summarize the precise conditions to be satisfied by the activation functions
(these conditions are weaker than Assumptions 2 and 3). For polynomial link functions, we focus on
polynomial activation functions (with bounded degree) for simplicity, but non-polynomial activation
functions would not change the proof significantly.
Let p and q be the minimum and maximum degree of non-zero Hermite coefficients of σ∗. Note that
GE(σ∗) = 1 or 2 holds (see Proposition 6). Let I ≤ Cq (according to Proposition 6) be the smallest
integer such that IE(σI∗) = GE(σ∗) = p∗ and Cσ be the degree of the activation function.

(I) If I = 1⇔ IE(σ∗) = GE(σ∗) = p∗.
Weak recovery: αp∗βp∗ > 0 (covered by Assumption 3).

18

Strong recovery:
∑q
j=p∗

j!αjβjs
j−1 > 0 for all s > 0 (covered by Assumption 2).

Approximation (ridge regression): βi ̸= 0 for some i ≥ q (covered by Assumption 3).
(II) If 2 ≤ I = {min i | IE(σI∗) = GE(σ∗) = p∗} ≤ Cσ .

Weak recovery: H((σ∗)
I ; p∗)H(σ(I)(σ(1))I−1; p∗−1) > 0 (covered by Assumption 3).

Strong recovery:
∑q
j=p∗+1 j!αjβjs

j−1 > 0 for all s > 0 (covered by Assumption 2).
Approximation: βi ̸= 0 for some i ≥ q (covered by Assumption 3).

Note that it is difficult to construct a deterministic activation function that satisfies all of the as-
sumptions for any link function σ∗ (the simplest counterexample is to consider −σ∗ which flips
the Hermite coefficients). Instead, we show the existence of randomized construction of such an
activation function that satisfies all of the assumptions on the activation function simultaneously
with constant probability, which entails that a subset of neurons can achieve strong recovery. The
construction does not depend on properties of the link function itself except for its degree q.
Lemma 11. There exists a randomized activation function sampled from a discrete set such that the
above conditions hold with constant probability.

Proof. Let c be a sufficiently small constant only used in this proof and Cσ be the minimum odd
integer with Cσ ≥ max{Cq + 1, q + 2, 3}, where Cq was introduced in Proposition 6. With proba-
bility 1

2 , we let β1 ∼ Unif({±1}), and βj ∼ Unif({±c}) for 2 ≤ j ≤ Cσ . With probability 1
2 , we

let βj ∼ Unif({±c}) for 1 ≤ j ≤ Cσ − 2 and βCσ−1 = βCσ
∼ Unif({±1}).

We first consider (I). When β1 ∼ Unif({±1}), and βj ∼ Unif({±c}) for 2 ≤ j ≤ Cσ , it is easy to
see sign(αj) = sign(βj) for all j = 1, · · · , q hold with probability at least 2−q , which is sufficient
to satisfy (I).
We then consider (II). First focus on the case when p∗ = 1 and I is even. When β1 ∼ Unif({±1})
and βj ∼ Unif({±c}) for 2 ≤ j ≤ Cσ , by taking c sufficiently small, we have

H(σ(I)(σ(1))I−1; 0) = I!βI(β1)
I−1︸ ︷︷ ︸

≍ c

+O(c2). (B.2)

When I is even, by adjusting the sign of β1, H(σ(I)(σ(1))I−1; 0) is non-zero and has the same
sign as H((σ∗)

I ; 1) with probability 1
2 . Note that the sign of β1 is independent from whether∑q

j=2 j!αjβjs
j−1 > 0 for all s > 0 holds. This holds with probability at least 2−q+1. Thus

we verified (II) for p∗ = 1 and even I .
For p∗ = 1 and odd I , consider βj ∼ Unif({±c}) for 1 ≤ j ≤ Cσ − 2 and βCσ−1 = βCσ

∼
Unif({±1}). Note that

∑q
j=2 j!αjβjs

j−1 > 0 for all s > 0 (this is the condition for strong
recovery) and the condition for ridge regression also holds. Furthermore, the sign of H((HeCσ +
HeCσ−1)

(I)((HeCσ
+ HeCσ−1)

(1))I−1; 0) is ±1 with equiprobability, independent of β2, . . . , βq .
Therefore, by taking c sufficiently small, we can obtain the desired sign of H(σ(I)(σ(1))I−1; 0).
Thus we proved (II) for p∗ = 1 and odd I .
Regarding (II) for p∗ = 2 and even I , when β1 ∼ Unif({±1}) and βj ∼ Unif({±c}) for 2 ≤ j ≤
Cσ , we have

H(σ(I)(σ(1))I−1; 1) = (I + 1)!βI+1(β1)
I−1︸ ︷︷ ︸

≍ c

+O(c2).

Thus, similar to (II) with p∗ = 1 and even I , we get (II) for p∗ = 2 and even I .
Finally, consider (II) for p∗ = 2 and odd I . When βj ∼ Unif({±c}) for 1 ≤ j ≤ Cσ − 2 and
βCσ−1 = βCσ

∼ Unif({±1}), the sign of H((HeCσ
+HeCσ−1)

(I)((HeCσ
+HeCσ−1)

(1))I−1; 1) is
±1 with equiprobability when I is odd, and this term dominates the others in H(σ(I)(σ(1))I−1; 1).
Thus, (II) for p∗ = 2 and odd I holds similarly to (II) for p∗ = 1 and odd I .
Now we have obtained the assertion for all cases.

B.1.2 For general link functions

Now we consider non-polynomial link functions with potentially large generative exponent p∗ =
GE(σ∗) ≥ 2. For weak and strong recovery to succeed, the conditions on the activation function are
essentially the same as those for polynomial link functions:

19

(I) If I = 1⇔ IE(σ∗) = GE(σ∗) = p∗.
Weak recovery: αp∗βp∗ > 0.
Strong recovery:

∑∞
j=p∗

j!αjβjs
j−1 > 0 for all s > 0,

(II) If 2 ≤ I = {min i | IE(σI∗) = GE(σ∗) = p∗} ≤ Cσ .

Weak recovery: H((σ∗)
I ; p∗)H(σ(I)(σ(1))I−1; p∗ − 1) > 0,

Strong recovery:
∑∞
j=p∗+1 j!αjβjs

j−1 > 0 for all s > 0.

Due to the proof strategy (which uses Taylor expansion), we also require that all differentials and
sum of expectations appearing in the following proofs are well-defined and bounded.
To approximate a non-polynomial σ∗, we introduce the following condition on the activation func-
tion. We sample σj from a discrete set (with bounded cardinality). Let J be an index set such
that the coefficients of σj (j ∈ J) satisfy the conditions above. Because we are selecting σj from
a discrete set, |J | ≃ N holds. We introduce the following condition, which states that the target
single-index model can be well-approximated by a linear combination of student neurons.
Assumption 4. When bj ∼ Unif([−Cb, Cb]) where (Cb = polylog(d)) and x1, . . . ,xT2

∼
N (0, Id), there exists a set of coefficients a1, . . . , a|J| such that

1

T2

T2∑
i=1

(
1

|J |
∑
j∈J

ajσj(θ
⊤
j xi + bj)− σ∗(θ⊤xi)

)2

≲ ε2,

holds with coefficients of reasonable magnitudes
∑
j∈J a

2
j = Θ(|J |) with high probability (w.r.t.

the randomness of bj and xi). Moreover, Ex[σj(θ
⊤
j x + bj)

4] ≤ polylog(d) for all j with high
probability (w.r.t. the randomness of bj).

The following lemma states that we can design a randomized activation function that satisfies all of
the above assumptions with probability Ω(1), as long as the link function σ satisfies Assumption 4
for σ = ReLU. In other words, we are able to cover the class of link functions σ that can be
efficiently approximated by a two-layer ReLU network. Since the general link functions are not
included in a compact space, we do not have an upper bound of exponent to obtain IE(σI∗) =
GE(σ∗) as we had Cq in the polynomial case. Consequently, our student activation is not entirely
agnostic to the link function σ∗, as we require knowledge of p (information exponent), p∗ and I .
Lemma 12. Suppose that the target link function σ∗ satisfies Assumption 4 for σj = ReLU. There
exists a randomized activation function sampled from a discrete set such that the above conditions
hold with constant probability.

Before we sketch the design of activation function, we present the following approximation result
from [BBSS22], which establishes that Assumption 4 with σj = ReLU is satisfied for broad class of
functions, according to Lemma 4.4 and 4.5 of [BBSS22]. Specifically, taking τ = 1/2 and λ = N−1

yields that Ex[(
1
|J|
∑
j∈J ajσj(θ

⊤x + bj) − σ∗(θ⊤x))2] ≤ N− 2
7 . Although they sample bj from

the Gaussian N (0, 2), the result translates to uniform sampling of the bias units from [−Cb, Cb] by
introducing additional logarithmic factor.
Lemma 13 (Lemma 4.4, 4.5 of [BBSS22]). Suppose that Ez∼N (0,1)[σ∗(z)

4], Ez∼N (0,1)[σ
′′
∗ (z)

4] <

∞. Then, Assumption 4 with σj = ReLU holds with ε = N− 1
7 and Cb ≃

√
log d.

Proof of Lemma 12. We show the existence of suitable σ in two steps: first we construct a
randomized polynomial activation function that satisfies conditions (I)(II) with constant probability;
then we add a small ReLU perturbation so that the activation can approximate non-polynomial σ∗.
Recall p ∈ N+ is the information exponent of σ∗. We first show that there exists a randomized
polynomial activation that satisfies the conditions for weak and strong recovery with probability
Ω(1). Note that the issue of differentiability and bounded moment is avoided when we focus on the
polynomial activation functions. We specify the following two distributions. With probability 1

2 ,
let β1 ∼ Unif({−1, 1}), βj ∼ Unif({−c, c}) for j = 1, · · · , p∗ + I − 1 and βj = 0 otherwise,
where c > 0 is a sufficiently small constant. With probability 1

2 , let β1 = Unif({−1, 1}), β2 =

Unif({−c, c}), βj = Unif({−c2, c2}) for all 2 ≤ j ≤ (p∗ + I) ∨ p for a sufficiently small constant
c > 0, and βj = 0 otherwise.

20

Regarding (I), consider the case when the coefficients are sampled with the first distribution, and
|βj | ≪ 1 except for j = p∗. Then,

∑∞
j=p∗

j!αjβjs
j−1 ≈ p∗!αp∗βp∗s

p∗ . Choosing the sign of βp∗ ,
we have that the assumption holds with probability Ω(1).
Regarding (II) with even I , consider when the coefficients are sampled with the first distribution,
and Sign(βj) = Sign(αj) for j ≤ (p∗ + I − 1) ∨ p. Then,

∑∞
j=p∗+1 j!αjβjs

j−1 > 0 for all s > 0.
Also, similarly to (B.2), we have

H(σ(I)(σ(1))I−1; p∗ − 1) = i!βI+p∗−1(β1)
I−1︸ ︷︷ ︸

≍ c

+O(c2).

By flipping the sign of β1, we can change the sign of H(σ(I)(σ(1))I−1; p∗ − 1). Thus, (II) for even
I is satisfied by a randomized choice of β1.
For (II) with odd I , consider the case when the coefficients are sampled with the second distribution,
and Sign(βj) = Sign(αj) for j ≤ (p∗ + I) ∨ p. Then,

∑∞
j=p∗+1 j!αjβjs

j−1 > 0 for all s > 0.

H(σ(I)(σ(1))I−1; p∗ − 1) =
1

(p∗ − 1)!
E[σ(I)(σ(1))I−1Hep∗−1]

=
1

(p∗ − 1)!
E[(I − 1)(βp∗+IHep∗+I)

(I)(β2He2)
(1)(β1)

I−2Hep∗−1] +O(c4).

=
2(I − 1)βp∗+Iβ2(β1)

I−2(p∗ + I)!

(p∗ − 1)!︸ ︷︷ ︸
≍ c3

+O(c4).

By flipping the sign of β1, we can change the sign of H(σ(I)(σ(1))I−1; p∗ − 1). Thus, (II) for odd
I is satisfied by a randomized choice of β1.
Therefore, we have constructed a randomized polynomial activation σ that satisfies all of the con-
ditions for weak and strong recovery. Now we provide a sketch of reasoning that when the link
function σ∗ is well-approximated by ReLU as specified in Assumption 4, we can find some σ that
additionally satisfies Assumption 4 by introducing a small ReLU component. Specifically, we add
cR · ReLU to the activation function with probability 1

2 , with a sufficiently small cR = Ω̃(1), e.g.,
cR = (logd)−C for some C > 0. When a two-layer ReLU network approximates σ∗ that satisfies
Assumption 4, by using the neurons with added ReLU component, σ∗ can be approximated up to
some polynomial residual with degree (p∗+I)∨p. And by using the remaining polynomial neurons,
we can approximate the additional polynomial terms in σ∗ (see Lemmas 23 and 22). Subtracting the
latter from the former, we obtain the desired approximation result. When cR is sufficiently small,
this additional term does not impact the conditions for weak and strong recovery and the moment
calculations; similarly, since cR ≪ 1 we may discard this non-smooth term before Taylor expansion
without affecting the analysis of optimization dynamics. We remark that to avoid such unnatural de-
sign of activation function, we can also train the first-layer parameters using a polynomial activation
specified above, and then perturb it before the second-layer training to enhance the approximation
ability — such strategy has also been employed in prior layer-wise training analysis [AAM22].

B.1.3 More Discussion on Assumption 2

Assumption 2 requires H(σ(I)(σ(1))I−1; p∗ − 1) is not zero and has the same sign as H(σI∗ ; p∗).
We remark that if we allow a negative momentum parameter larger than 1, i.e., setting ξ2(t+1) =

1+cξd
− (p∗−2)+

2 , we can negate the opposite sign ofH(σ(I)(σ(1))I−1; p∗−1) (see Lemma 16), and
the subsequent analysis still holds. Therefore, what we essentially need is H(σ(i)(σ(1))i−1; k) ̸= 0.
Lemma 3 confirms that it is satisfied by almost all polynomials:

Proof of Lemma 3. We note that H(σ(i)(σ(1))i−1; k) = E[σ(i)(σ(1))i−1Hek] is a polynomial of
{βj}Cσ

j=0. This polynomial is not identically equal to zero. To confirm this, consider σ = xCσ +

xCσ−1. Because σ(i)(σ(1))i−1 is expanded as a sum of xl(i(Cσ − 3) ≤ l ≤ i(Cσ − 2) + 1 with
positive coefficients and each xl is a sum of Hel,Hel−2 · · · with positive coefficients, σ(i)(σ(1))i−1

has all positive Hermite coefficients for degree 0, 1, · · · , i(Cσ − 2) + 1. If k ≤ i(Cσ − 2) + 1,
this choice of σ yields H(σ(i)(σ(1))i−1; k) > 0, which confirms that H(σ(i)(σ(1))i−1; k) as a

21

polynomial of {βj}Cσ
j=0 is not identically equal to zero. Hence the assertion follows from so-called

Schwartz–Zippel Lemma [Sch80], or the fact that zeros of a non-zero polynomial form a measure-
zero set.

B.2 Initialization

We first consider the initial alignment. In the following sections, we focus on the neurons that
satisfy κ0j = θ⊤w0

j ≥ 2c−1
η d−

1
2 at the initialization. The following lemma states that roughly a

constant portion of the neurons satisfy the initial alignment condition upon random initialization. In
particular, if we take cη = Ω((log log d)−

1
2), the fraction of neurons that satisfy the initial alignment

condition is at least e−16c−2
η = Ω̃(1). Let us write C2 = c−1

η for simplicity in the following.

Lemma 14. At the time of initialization, κ0j = θ⊤w0 satisfies the following:

P[κ0j ≥ 2C2d
− 1

2] = P[κ0j ≤ −2C2d
− 1

2] ≳ e−16C2
2 = Ω̃(1).

We make use of the following lemma.
Lemma 15 (Theorem 2 of [CCM11]). For any β > 1 and s ∈ R, we have√

2e(β − 1)

2β
√
π

e−
βs2

2 ≤
∫ ∞

s

1√
2π
e−

t2

2 dt

Proof of Lemma 14. Because κ0 = v⊤w
d
=

e⊤
1 g
∥g∥ , where g ∼ N (0, Id),

P[κ0j ≥ 2C2d
− 1

2] = Pg∼N (0,Id)

[
e⊤1 g ≥ 4C2 ∧ ∥g∥ ≤ 2d

1
2

]
≥ Pg∼N (0,Id)

[
e⊤1 g ≥ 4C2

]
− Pg∼N (0,Id)

[
∥g∥ ≥ 2d

1
2

]
≳

√
2e(β − 1)

2β
√
π

e−8βC2
2 − e−Ω(d),

where we used Lemma 15 for the final inequality. By letting β = 2, we have that P[κ0j ≥ C2d
− 1

2] ≳

e−16C2
2 . Because of the symmetry, P[κ0j ≤ 2C2d

− 1
2] = P[κ0j ≥ 2C2d

− 1
2].

B.3 Weak Recovery: Population Update

We divide the first layer training into the first phase (weak recovery) and the second phase (strong
recovery). We first evaluate the expected update of two gradient steps with the same training exam-
ple.

Lemma 16. Let η2t, η2t+1 = η = cηd
−1, ξ2(t+1) = ξ = 1 − cξd−

(p∗−2)+
2 . Suppose that the link

function satisfies IE(σI∗) = GE(σ∗) = p∗ (we choose the smallest such I) and activation functions
satisfy all of the assumptions in Section B.1 for weak recovery. Then, for w2t with c−1

η d−
1
2 ≤

θ⊤w2t ≤ cIη , the alignment θ⊤w2(t+1) can be evaluated as,

θ⊤w2(t+1) ≥ θ⊤w2t + cIηcξcσd
− p∗

2 ∨1(κ2t)p∗−1 + cηcξd
− p∗

2 ∨1ν2t.

Here cσ = p∗!αp∗βp∗ (when IE(σ∗) = GE(σ∗)) or cσ =
p∗!H(σI

∗;p∗)H(σ(I)(σ(1))I−1;p∗−1)
2(I−1)! (other-

wise), and ν2t is a mean-zero sub-exponential random variable.

Proof. The expected alignment θ⊤w2(t+1) after two gradient steps from w2t = ω using the same
sample (x, y), step size η2t = η2t+1 = η = cηd

−1 and momentum parameter ξ2(t+1) = ξ =

1 − cξd−
(p∗−2)+

2 is evaluated as follows. With a projection matrix Pω = I − ωω⊤, the first step
updates the weight as

w2t+1 ← w2t + η∇̃wyσ(w
2t⊤x) = ω + ηyσ′(ω⊤x)Pωx, (B.3)

22

and the next gradient step with the same sample is computed as

∇̃wyσ(w
2t+1⊤x) = yσ′(w2t+1⊤x)x

= yσ′((ω + ηyσ′(ω⊤x)Pωx)
⊤x
)
Pωx

= yσ′(ω⊤x+ η∥x∥2Pω
σ′(ω⊤x)y

)
Pωx, (B.4)

here we used the notation ∥θ∥2A = θ⊤Aθ for a vector θ ∈ Rd and a positive symmetric matric
A ∈ Rd×d. From (B.3) and (B.4), the parameter after the two steps is obtained as

w2(t+1) ← w2t+1 + η∇̃wyσ(w
2t+1⊤x)

= ω + ηyσ′(ω⊤x)Pωx+ ηyσ′(ω⊤x+ η∥x∥2Pω
σ′(ω⊤x)y

)
Pωx.

= ω + ηg2t,

where

g2t = yσ′(ω⊤x)Pωx+ yσ′(ω⊤x+ η∥x∥2Pω
σ′(ω⊤x)y

)
Pωx.

Finally, the normalization step yields

w2(t+1) ← w2(t+1) − ξ2(t+1)(w2(t+1) −w2t)

∥w2(t+1) − ξ2(t+1)(w2(t+1) −w2t)∥
=

ω + ηξg2t

∥ω + ηξg2t∥
=

ω + cηcξd
− p∗

2 ∨1g2t

∥ω + cηcξd−
p∗
2 ∨1g2t∥

.

Therefore, by writing θ⊤w2t = κ2t, the update of the alignment is

κ2(t+1) = θ⊤w2(t+1)

=
κ2t + cηcξd

− p∗
2 ∨1θ⊤g2t

∥ω + cηcξd−
p∗
2 ∨1g2t∥

≥ κ2t + cηcξd
− p∗

2 ∨1θ⊤g2t − 1

2
κ2tc2ηc

2
ξd

−p∗∨2∥g2t∥2 − 1

2
c3ηc

3
ξd

− 3p∗
2 ∨3|θ⊤g2t|∥g2t∥2. (B.5)

We can easily see that E[∥g2t∥2] ≲ d and E[|θ⊤g2t|∥g2t∥2] ≲ d, which implies that the expec-
tation of the last two terms of (B.5) is bounded by ≲ κ2tc2ηc

2
ξd

−(p∗−1)∨1 ∨ c3ηc3ξd−(3p∗
2 −1)∨2 ≤

c2ηc
2
ξd

−(p∗−1)∨1κ2t.

Now we bound E[θ⊤g2t] by ≳ cI−1
η κp∗−1. Let Cσ be the maximum degree of the activation

function with non-zero coefficients of Hermite expansion, which may be infinity when we consider
general link functions, and there appear some infinite sums. For these cases we simply assume the
sums converge – we discuss the validity of this condition in Section B.1.2. We omit the subscript 2t
in the following for simplicity. We divide the analysis into the two cases.

(I) If I = 1⇔ IE(σ∗) = GE(σ∗) = p∗. For the first term of E[θ⊤g], we have

θ⊤E[yσ′(ω⊤x)Pωx] = θ⊤PωE
[(∞∑

j=p∗

αjHej(θ
⊤x)

)(Cσ∑
j=1

jβjHej−1

(
ω⊤x

))
x

]

= θ⊤Pω

∞∑
j=p∗

[
j!αjβj

(
θ⊤ω

)j−1
θ + (j + 2)!αjβj+2

(
θ⊤ω

)j
ω

]

=

Cσ∑
j=p∗

j!αjβj
(
θ⊤ω

)j−1
θ⊤Pωθ

= p∗!αp∗βp∗κ
p∗−1 +O(κp∗). (B.6)

For the second term of E[θ⊤g], the following decomposition can be made.

θ⊤E[yσ′(ω⊤x+ η∥x∥2Pω
σ′(ω⊤x)y

)
Pωx]

=

Cσ−1∑
i=1

(i!)−1θ⊤PωE
[
yσ(i+1)

(
ω⊤x

)(
η∥x∥2Pω

yσ(1)(ω⊤x)
)i
x

]
+ θ⊤E[yσ′(ω⊤x)Pωx]

23

=

Cσ−1∑
i=1

(i!)−1ηiθ⊤PωE
[
∥x∥2iPω

yi+1σ(i+1)
(
ω⊤x

)(
σ(1)(ω⊤x)

)i
x

]
(B.7)

+ p∗!αp∗βp∗κ
p∗−1 +O(κp∗). (B.8)

We evaluate each term in the summation. We need to show that although ∥x∥2Pω
is a function of

θ⊤x and ω⊤x, it is mostly independent from the two quantities. To verify this, let e = θ−(θ⊤ω)ω

∥θ−(θ⊤ω)ω∥
be the orthogonal component of θ to ω. Then, we have that

∥x∥2Pω
= x⊤(I − ωω⊤ − ee⊤)x+ (e⊤x)2

= x⊤(I − ωω⊤ − ee⊤)x︸ ︷︷ ︸
∼χ2

d−2, independent from ω⊤x and θ⊤x

+

(
θ⊤x− (θ⊤ω)ω⊤x

∥θ − (θ⊤ω)ω∥

)2

.

With Pω,θ = Id − ωω⊤ − ee⊤, (B.7) is expanded as

(B.7) =
Cσ−1∑
i=1

i∑
j=0

i+1∑
l=0

(
i
j

)(
i+1
l

)
ηi

i!∥θ − (θ⊤ω)ω∥2j

θ⊤PωE
[
(x⊤Pω,θx)

i−jςi+1−l(σ∗(θ
⊤x))l(θ⊤x− (θ⊤ω)ω⊤x)2jσ(i+1)

(
ω⊤x

)(
σ(1)(ω⊤x)

)i
x

]

=

Cσ−1∑
i=1

i∑
j=0

i+1∑
l=0

2j∑
k=0

(
i
j

)(
i+1
l

)(
2j
k

)
ηiκk(−1)kE[ςi+1−l]Ez∼χ2

d−2
[zi−j]

i!∥θ − (θ⊤ω)ω∥2j

E
[
(σ∗(θ

⊤x))l(θ⊤x)2j−k(ω⊤x)kσ(i+1)
(
ω⊤x

)(
σ(1)(ω⊤x)

)i
(θ⊤x− θ⊤ωω⊤x)

]
(B.9)

For a general differentiable function g(x), we have E[Het(x1)g(x)] = E[dt

dxt
1
g(x)]. If g(x) is a

polynomial (with a bounded coefficients) of x1 and u⊤x and its degree with respect to x1 is at most
s(≤ t), |E[Het(x1)g(x)]| ≲ |u1|t−s, because differentiation of g(x) = ḡ(x1,u

⊤x) is taken with
respect to the first variable at most s times. Each term of (B.9) is an expectation of (σ∗(θ⊤x))l,
multiplied by the polynomial of θ⊤x and ω⊤x, where its degree with respect to θ⊤x is at most
2j − k. Thus each term of (B.9) is evaluated as (here we omit the constants)

ηiκk(−1)kEz∼χ2
d−2

[zi−j]

i!∥θ − (θ⊤ω)ω∥2j
E
[
(σ∗(θ

⊤x))l︸ ︷︷ ︸
IE≥p∗

(θ⊤x)2j−k(ω⊤x)kσ(i+1)
(
ω⊤x

)(
σ(1)(ω⊤x)

)i
(θ⊤x− θ⊤ωω⊤x)︸ ︷︷ ︸

degree w.r.t. θ⊤x is at most 2j − k + 1

]

≲ ciηd
−idi−jκkκ((p∗−2j+k−1)∨0) ≲ cηd

−jκ((p∗−2j−1)∨0) ≤ cηκp∗−1(d/κ2)−j ≤ cηκp∗−1.

The lower bound follows in the same fashion. Therefore,

|(B.9)| ≲ cηκ
p∗−1.

Now, E[θ⊤g] can be evaluated as

E[θ⊤g] = (B.6) + (B.7) + (B.8) = 2p∗!αp∗βp∗κ
p∗−1 +O(cηκ

p∗−1 + κp∗).

(II) If I = {min i | IE(σi∗) = GE(σ∗) = p∗} ≥ 2. Note that αj = 0 for all j ≤ p∗ from the
assumption. Following (B.6), the first term of E[θ⊤g] is evaluated as

θ⊤E[yσ′(ω⊤x)Pωx] =

Cσ∑
j=p

j!αjβj
(
θ⊤ω

)j−1
θ⊤Pωθ = O(κp∗). (B.10)

For the second term of E[θ⊤g], similarly to (B.9), the following decomposition can be made.

θ⊤E[yσ′(ω⊤x+ η∥x∥2Pω
σ′(ω⊤x)y

)
Pωx]

24

=

Cσ−1∑
i=0

i∑
j=0

i+1∑
l=0

2j∑
k=0

(
i
j

)(
i+1
l

)(
2j
k

)
ηiκk(−1)kE[ςi+1−l]Ez∼χ2

d−2
[zi−j]

i!∥θ − (θ⊤ω)ω∥2j

E
[
(σ∗(θ

⊤x))l(θ⊤x)2j−k(ω⊤x)kσ(i+1)
(
ω⊤x

)(
σ(1)(ω⊤x)

)i
(θ⊤x− θ⊤ωω⊤x)

]
.(B.11)

Each term of (B.11) (omitting constants) is evaluated as

ηiκkEz∼χ2
d−2

[zi−j]E
[
(σ∗(θ

⊤x))l(θ⊤x)2j−k(ω⊤x)kσ(i+1)
(
ω⊤x

)(
σ(1)(ω⊤x)

)i
(θ⊤x− θ⊤ωω⊤x)

]

(B.12)

= ciηκ
kd−jE

[
(σ∗(θ

⊤x))l︸ ︷︷ ︸
IE≥

p∗ (l ≥ I)p∗ + 1 (l < I)

(θ⊤x)2j−k(ω⊤x)kσ(i+1)
(
ω⊤x

)(
σ(1)(ω⊤x)

)i
(θ⊤x− θ⊤ωω⊤x)︸ ︷︷ ︸

degree w.r.t. θ⊤x is at most 2j − k + 1

]

≲ ciηκ
kd−jκ(IE(σl

∗)−2j+k−1)∨0 (B.13)

When i ≤ I − 2 and η = cηd
−1, we have l ≤ i+ 1 < I and IE((σ∗(θ

⊤x))l) ≥ p∗ + 1. Thus

(B.13) ≲ κp∗

When i ≥ I , IE((σ∗(θ⊤x))l) ≥ p∗ and we get

(B.13) ≲ cIηκ
p∗−1.

Now the case of i = I − 1. When i = I − 1 and j ̸= 0, and using the assumption that κ ≤ cη ,

(B.13) ≲ cI−1
η κp∗−1(κ−2/d) ≤ cIηκp∗−1.

When i = I − 1, j = 0, and k ̸= 0,

(B.13) ≲ cI−1
η κp∗ .

When i = I − 1, j = 0, k = 0, and l ≤ I − 1,

(B.13) ≲ cI−1
η κp∗ .

Therefore, except for i = I − 1, j = 0, k = 0, and l ≤ I − 1, we can bound (B.13) by ≲
cIηκ

p∗−1 + κp∗ . The lower bound follows in the same way. Finally, consider the case of i = I − 1,
j = 0, k = 0, and l = I .

(B.12) = ηI−1Ez∼χ2
d−2

[zI−1]E
[
(σ∗(θ

⊤x))Iσ(I+1)
(
ω⊤x

)(
σ(1)(ω⊤x)

)I−1
(θ⊤x− θ⊤ωω⊤x)

]

= ηI−1Ez∼χ2
d−2

[zI−1]

CσI∑
m=p∗

m!H(σI∗ ;m)H(σ(I)(σ(1))I−1;m− 1)(1− κ2)κm−1

= cI−1
η p∗!d

−(I−1)Ez∼χ2
d−2

[zI−1]H(σI∗ ; p∗)H(σ(I)(σ(1))I−1; p∗ − 1)(1− κ2)κp∗−1 +O(cI−1
η κp∗).

Putting it all together (recovering the constants omitted in (B.12) again),

(B.11)

= cI−1
η

p∗!d
−(I−1)Ez∼χ2

d−2
[zI−1]

(I − 1)!
H(σI∗ ; p∗)H(σ(I)(σ(1))I−1; p∗ − 1)κp∗−1 +O(cIηκ

p∗−1 + κp∗),

25

and

E[θ⊤g] = (B.10) + (B.11)

= cI−1
η

p∗!d
−(I−1)Ez∼χ2

d−2
[zI−1]

(I − 1)!︸ ︷︷ ︸
=Θ(1)

H(σI∗ ; p∗)H(σ(I)(σ(1))I−1; p∗ − 1)κp∗−1 +O(cIηκ
p∗−1 + κp∗).

Combining (i) and (ii), we have

E[θ⊤g] ≥ 2cI−1
η cσκ

p∗−1 +O(cIηκ
p∗−1 + κp∗)

for a positive constant cσ = Θ(1). Here cσ > 0 satisfies 2cσ = 2p∗!αp∗βp∗ (for (i)) or

2cσ =
p∗!H(σI

∗;p∗)H(σ(I)(σ(1))I−1;p∗−1)
(I−1)! (for (ii)). Going back to (B.5), by setting ν2t = (θ⊤g2t −

E[θ⊤g2t]), we have

κ2(t+1) ≥ κ2t + 2cηcξd
− p∗

2 ∨1E[θ⊤g2t] + cηcξd
− p∗

2 ∨1(θ⊤g2t − E[θ⊤g2t]) +O(c2ηc
2
ξd

−(p∗−1)∨1κ2t)

= κ2t + 2cIηcξd
− p∗

2 ∨1cσ(κ
2t)p∗−1 + cηcξd

− p∗
2 ∨1ν2t

+O
(
c2ηc

2
ξd

−(p∗−1)∨1(κ2t)2t + cI+1
η cξd

− p∗
2 ∨1(κ2t)p∗−1 + cηcξd

− p∗
2 ∨1(κ2t)p∗

)
.

When cξ ≤ cIη and c−1
η d−

1
2 ≤ κ ≤ cIη , terms in the big-O notation is smaller than

cIηcξd
− p∗

2 ∨1cσ(κ
2t)p∗−1 and we have

κ2(t+1) ≥ κ2t + cIηcξcσd
− p∗

2 ∨1(κ2t)p∗−1 + cηcξd
− p∗

2 ∨1ν2t.

It is straightforward to check ν2t has sub-Weibull tail.

B.4 Weak Recovery: Stochastic Update

This subsection proves weak recovery using the results on population update from the previous
section. Specifically, from the previous section, we know that

θ⊤w2(t+1) ≥ θ⊤w2t + cIηcξcσd
− p∗

2 ∨1(κ2t)p∗−1 + cηcξd
− p∗

2 ∨1ν2t,

with the mean-zero sub-Weibull random variable ν2t and a positive cσ = Θ(1). For notational
simplicity we write cIηcσ = c1. The following lemma is a detailed version of Proposition 9.

Lemma 17. Take η2t, η2t+1 = η = cηd
−1, ξ2(t+1) = ξ = 1− cξd−

(p∗−2)+
2 . Suppose that the link

function satisfies IE(σI∗) = GE(σ∗) = p∗ (we choose the smallest such I) and activation functions
satisfy all of the assumptions in Section B.1 for weak recovery. Let

T1,1 = C3c
−1
ξ

d (if p∗ = GE(σ∗) = 1)

d(log d) (else if p∗ = GE(σ∗) = 2)

dp∗−1 (else p∗ = GE(σ∗) ≥ 3),

and take cξ ≲ δpoly(cη), c2 ≳ poly(cη), and C3 ≃ c−1
1 . If κ0 ≥ 2c−1

η d−
1
2 , there exists some

τ∗ ≤ T1,1 such that

κ2τ∗ ≥ 2c2,

with probability at least 1− δ, and κ2τ ≥ 2c2 for all τ∗ ≤ τ ≤ T1,1, with high probability.

We may take δ = od(1) with arbitrarily slow decay. The proof is adapted from [BAGJ21], but
our bound on T1,1 is slightly sharper (by a log d factor for p∗ = 2 and by a (log d)2 factor for
p∗ ≥ 3). For p∗ = 2, this is because of a trick that we carefully “restart” the dynamics, whose
failure probability exponentially decays.

26

Proof. We divide the proof into the following cases.
(i) When p∗ = 1. Note that {

∑τ
s=0 ν

2s}τ is Martingale with E[(ν2s)2] ≲ 1. By Doob’s maximal
inequality and Markov’s inequality, with probability 1− δ, we have

max
0≤τ≤T

∣∣∣∣ τ∑
s=0

ν2s
∣∣∣∣2 ≤ δ−1E[(

T∑
s=0

ν2s)2] ≤ δ−1
T∑
s=0

E[(ν2s)2] ≤ C1δ
−1(T + 1) (B.14)

for any fixed T ≥ 0, with a sufficiently large constant C1 = Θ(1). In the following we consider the
case when (B.14) holds for T = c−1

1 c−1
ξ d− 1.

If c−1
η d−

1
2 ≤ κ2t ≤ cIη for all t = 0, 1, · · · , τ , we have

κ2(τ+1) ≥ κ2τ + c1cξd
−1 + cηcξd

−1ν2τ

≥ 2c−1
η d−

1
2 + c1cξ(τ + 1)d−1γ − cηcξd−1

∣∣∣∣ τ∑
s=0

ν2s
∣∣∣∣. (B.15)

Now, applying (B.14) to get

κ2(τ+1) ≥ (B.15) ≥ 2c−1
η d−

1
2 + c1cξ(τ + 1)d−1 − cηc

1
2

ξ c
− 1

2
1 C

1
2
1 δ

− 1
2 d−

1
2 ,

when τ ≤ c−1
1 c−1

ξ d − 1. By letting cξ ≤ c−4
η c1C

−1
1 δ, we have c−1

η d−
1
2 ≤ cηc

1
2

ξ c
− 1

2
1 C

1
2
1 δ

− 1
2 d−

1
2 ,

and

κ2(τ+1) ≥ c−1
η d−

1
2 + c1cξ(τ + 1)d−1,

which verifies c−1
η d−

1
2 ≤ κ2t for t = τ + 1. Thus, there exists some τ∗ ≤ c−1

1 c−1
ξ d such that

κ2τ∗ ≥ 4c2,

for c1 ≤ 1
4c
I
η , with probability 1− δ.

Now we prove that κ2t ≥ 2c2 holds for all τ∗ ≤ t ≤ T1,1 = C3c
−1
ξ d. Because ν2t are mean-zero

sub-Weibull random variables, we also have that |
∑τ+τ ′−1
s=τ ν2s| ≤ C4

√
τ ′ for all 0 ≤ τ, τ ′ ≤

T1,1 with high probability. Also, because ηt ≪ d−1 and |1 − ξt| ≪ 1, we can easily see that
|κ2(τ+1) − κ2τ | = Õ(d−1) for all τ = 0, 1, · · · , T1,1 − 1, with high probability. Thus, when there
exists τ ≥ τ∗ such that κ2(τ−1) ≥ 4c2 and κ2τ < 4c2, we have κ2τ ≥ 3c2 with high probability.
Moreover, following the above argument, we can inductively show that

κ2(τ+τ
′) ≥ 3c2 + c1cξτ

′d−1 − cηcξd−1C4

√
τ ′

≥ 3c2 + c1cξτ
′d−1 −

{
c2 (τ ′ ≤ c−2

η c−2
ξ C−2

4 c22d
2)

c1cξτ
′d−1 (τ ′ ≥ c2ηc−2

1 C2
4)

.

≥ 2c2,

for τ ′ ≤ T1,1 = C3c
−1
ξ d or until κ2(τ+τ

′) ≥ 4c2 holds again. By repeating this argument (if there
are multiple such τ), we see that κ2t ≥ 2c2 holds for all τ∗ ≤ t ≤ T1,1 = C3c

−1
ξ d with high

probability.
(ii) When p∗ = 2. We define ι0 = 0, ι1 = log(1+c1cξd−1)(4), ι2 = 2 log(1+c1cξd−1)(4), We
show that, for each i, if κ2ιi ≥ 2c−1

η d−
1
2 , we have κ2(ιi+1) ≥ 2κ2ιi , with probability at least

1− δ4−i, or there exists some t (ιi < t ≤ ιi+1) with κ2t > cIη .
Assume that the above statement holds until some i− 1 ≥ 0 (we do not need to assume anything for
i = 0). Then, we have κ2ιi ≥ 2iκ0 ≥ 2c−1

η d−
1
2 . Similarly to (B.15), if c−1

η d−
1
2 ≤ κ2t ≤ cIη for all

t = ιi, ιi + 1, · · · , τ , we have

κ2(τ+1) ≥ κ2ιi + c1cξd
−1

τ∑
s=ιi

κ2s − cηcξd−1

∣∣∣∣ τ∑
s=ιi

ν2s
∣∣∣∣.

27

Applying (B.14) with δ = δ/4i and T = 1
4c

−2
η c−2

ξ C−1(δ/4i)(κ2ιi)2d2 − 1 to get

κ2(τ+1) ≥ κ2ιi + c1cξd
−1

τ∑
s=ιi

κ2s − cηcξd−1C
1
2 δ−

1
2

√
τ + 1− ιi

≥ κ2ιi + c1cξd
−1

τ∑
s=ιi

κ2s − 1

2
κ2ιi

when τ ≤ ιi +
1
4c

−2
η c−2

ξ C−1(δ/4i)(κ2ιi)2d2 − 1, which verifies c−1
η d−

1
2 ≤ 1

2κ
2ιi ≤ κ2t for

t = τ + 1.
This implies that, with probability 1− δ/4i, we have

κ2(τ+1) ≥ 1

2
κ2ιi + c1cξd

−1
τ∑

s=ιi

κ2s

for all τ = 1
4c

−2
η c−2

ξ C−1(δ/4i)(κ2ιi)2d2 − 1, which is equivalent to

κ2τ ≥ (1 + c1cξd
−1)τ−ιi

1

2
κ2ιi

for all τ = ιi, ιi + 1, · · · , ιi + 1
4c

−2
η c−2

ξ C−1(δ/4i)(κ2ιi)2d2. By taking cξ ≪
c1c

−2
η C−1(δ/4i)(κ2ιi)2d, we have 1

4c
−2
η c−2

ξ C−1(δ/4i)(κ2ιi)2d2 ≥ log(1+c1cξd−1)(4), and we get

κ2ιi+1 ≥ 2κ2ιi

with probability 1− δ/4i (or there exists t ≤ ιi+1 such that κ2t > cIη).
Thus, by induction, for all i, we have that

κ2ιi ≥ 2iκ0, (B.16)

or that there exists some t ≤ ιi such that κ2t is larger than cIη , with probability 1− δ.

The LHS of (B.16) becomes larger than cIη for some i ≤ log d. Because ιi = Θ(ic−1
1 c−1

ξ d), within
O(c−1

1 cξd log d) steps, there exists at least one τ∗ = O(c−1
1 c−1

ξ d log d) such that κ2τ∗ ≥ 4c2 for
c2 ≤ 1

4c
I
η , with probability 1− δ.

Once such τ∗ is obtained, following the last paragraph of (i), we can see that κ2t ≥ 2c2 holds until
t = T1,1 with high probability.

(iii) When p∗ ≥ 3. We apply (B.14) with T = 1
p∗−2c

−1
1 c−1

ξ d
p∗
2 (κ0)−(p∗−2) to obtain that

cηcξd
− p∗

2

∣∣∣∣ τ∑
s=0

ν2s
∣∣∣∣ ≤ cηc 1

2

ξ c
− 1

2
1 C

1
2 δ−

1
2 d−

p∗
4 (κ0)−

p∗−2
2 (B.17)

for all τ = 0, 1, · · · , T − 1, with probability 1− δ.

We take cξ ≪ c−2
η c1C

−1δd
p∗
4 (κ0)

p∗
2 so that (B.17) is bounded by c−1

1 d−
1
2 . Then,

κ2(τ+1) ≥ κ0 + c1cξd
− p∗

2

τ∑
s=0

(κ2s)p∗−1 + cηcξd
− p∗

2

τ∑
s=0

ν2s

≥ c−1
η d−

1
2 + c1cξd

− p∗
2

τ∑
s=0

(κ2τ)p∗−1.

It is easy to see that κ2(τ+1) is lower bounded by aτ+1, where a0 = c−1
η d−

1
2 and aτ+1 = aτ +

c1cξd
− p∗

2 (aτ)p∗−1. By applying Lemma 18, we have

κ2τ ≥ κ0(
1− c1cξd−

p∗
2 (p∗ − 2)(κ0)(p∗−2)t

) 1
p∗−2

.

28

Thus, until τ ≤
(
c1cξd

− p∗
2 (p∗−2)(κ0)(p∗−2)

)−1 ≤ T +1≪ dp∗−1, with probability at least 1−δ,
there exists some τ∗ such that

κ2τ∗ ≥ 4c2 ≥ cIη

when c2 ≤ 1
4c
I
η .

Once such τ∗ is obtained, following the last paragraph of (i), we can see that κ2t ≥ 2c2 holds until
t = T1,1 with high probability.

In the above proof we used the (discrete version of) Bihari–LaSalle inequality from [BAGJ22].

Lemma 18. For p ≥ 3 and c > 0, consider a positive sequence (at)t≥0 such that

at+1 = at + c(at)p−1.

Then, we have

at ≥ a0(
1− c(p− 2)(a0)(p−2)t

) 1
p−2

.

Proof. From definition, we have

c =
at+1 − at

(at)p−1
≤
∫ at+1

t=at

1

xp−1
≤ 1

p− 2

[
1

(at)p−2
− 1

(at+1)p−2

]
.

Taking the summation and re-arranging the terms yield

(at)−(p−2) ≤ (a0)−(p−2) − c(p− 2)t,

∴ at ≥ a0(
1− c(p− 2)(a0)(p−2)t

) 1
p−2

,

which gives the lower bound.

B.5 From Weak Recovery to Strong Recovery

In the previous subsection, we proved that after t = 2T1,1 = Θ̃(d) steps, with probability Ω̃(1)

over the randomness of initialization, we obtain nontrivial alignment κ2T1,1

j ≥ 2c2. This subsection
discusses how to convert the weak recovery into the strong recovery.

Lemma 19. Suppose the neuron satisfies κ2T1,1 ≥ 2c2. Take η2t = η = c̄ηεd
−1, η2t+1 = 0,

ξ2(t+1) = 0 for all t ≥ T1,1, where c̄η ≲ poly(c1). If the activation functions satisfy all of the
assumptions in Section B.1 for strong recovery, then we have

θ⊤w2(T1,1+τ∗) ≥ 1− ε,

with high probability, where τ∗ ≤ T1,2 = C3dε
−2. Moreover, θ⊤w2(T1,1+t) ≥ 1 − ε for all

τ∗ ≤ t ≤ T1,2 = C3dε
−2, with high probability.

Proof. Consider the Hermite expansions of σ∗ and σ. Let p be the smallest degree that both σ∗ and
σ have non-zero coefficients. First we compute the population gradient (of the correlation term) as

E
[
∇̃wyσ(w

2t⊤x)
]
= E

[
∇̃w

(∞∑
j=p

αjHej(θ
⊤x)

)(∞∑
j=0

βjHej(w
2t⊤x)

)]

=

∞∑
j=p

[
j!αjβj(θ

⊤w2t)j−1θ + (j + 2)!αjβj+2(θ
⊤w2t)jw2t

]
. (B.18)

29

Applying Pw2t , we have

E
[
Pw2t∇̃wyσ(w

2t⊤x)
]
= (θ − (w2t⊤θ)w2t)

∞∑
j=p

j!αjβj(θ
⊤w2t)j−1. (B.19)

Thus, the update of the alignment κ2t = θ⊤w2t is

κ2(t+1) ≥ κ2t + ηθ⊤g − 1

2
η2κ2t∥g∥2 − 1

2
η3η̃3|θ⊤g|∥g∥2,

where

g = Pw2tyσ′(w2t⊤x)x.

From (B.18), the expectation of (B.19) is bounded by

E[κ2(t+1)] ≥ κ2t + η(1− (κ2t)2)

∞∑
j=p

j!αjβj(θ
⊤w2t)j−1 − η2C4d(κ

2t + η)

≥ κ2t + η(1− (κ2t)2)

∞∑
j=p

j!αjβj(κ
2t)p−1 − η2C4d(κ

2t + η).

By letting η ≤ cp−1
1 εd−1, when κ2t ≤ 1− ε, we have

E[κ2(t+1)] ≥ κ2t + 1

2
ηε

∞∑
j=p

j!αjβj(κ
2t)p−1 ≥ κ2t + ηεcp1.

It is easy to see that the noise ν2t has sub-Weibull tail and we obtain that

κ2(t+1) ≥ κ2t + 1

2
ηε

∞∑
j=p

j!αjβj(κ
2t)p−1 + ην2t ≥ κ2t + ηεcp1 + ην2t. (B.20)

Suppose that 2c2 ≤ κ2(T1,1+τ) ≤ 1 − ε for all t = 0, 1, . . . , τ − 1. By taking the summation of
(B.20), we have

κ2(T1,1+τ) ≥ κ2T1,1 + ηεtcp1 + η

T1,1+τ−1∑
s=T1,1

ν2t ≥ 2c2 + ηετcp1 − C4η
√
τ , (B.21)

with high probability. The third term is bounded by C4η
√
τ ≤ c2 when τ ≤ c22C

−2
4 η−2 =

c22C
−2
4 c̄−2

η ε−2d2 and by 1
2ηετc

p
1 when τ ≥ 4ε−2c−2p

1 C2
4 . Because c22C

−2
4 c̄−2

η ε−2d2 ≥
4ε−2c−2p

1 C2
4 , we can bound (B.21) by

κ2(T1,1+τ) ≥ c2 +
1

2
ηετcp1, (B.22)

which verifies 2c2 ≤ κ2(T1,1+τ).
Therefore, by induction, until κ2t ≥ 1 − ε, we have the lower bound (B.22), whose RHS exceeds
1 − ε when τ ≥ 2η−1ε−1c−p1 ≤ C3dε

−2. Thus, there exists τ∗ ≤ T1,2 = C3dε
−2 such that

κ2(T1,1+τ∗) ≥ 1− ε, with high probability.

Now, what remains is to prove that κ2(T1,1+τ) ≥ 1 − 3ε holds for all τ∗ ≤ t ≤ T1,2 = C3dε
−2.

Because ν2t are mean-zero sub-Weibull random variables, we have that |
∑τ+τ ′−1
s=τ ν2s| ≤ C4

√
τ ′

for all 0 ≤ τ, τ ′ ≤ T1,1 with high probability. Also, because ηt ≪ εd−1, we can easily see that
|κ2(τ+1) − κ2τ | = Õ(εd−1) for all τ = 0, 1, · · · , T1,1 − 1, with high probability. Thus, when there
exists τ ≥ τ∗ such that κ2(T1,1+τ−1) ≥ 1− ε and κ2(T1,1+τ) < 1− ε, we have κ2(T1,1+τ) ≥ 1− 2ε
with high probability. Moreover, following the above argument, we can inductively show that

κ2(T1,1+τ+τ ′) ≥ 1− 2ε+ ηετ ′cp1 − C4η
√
τ ′

30

≥ 1− 2ε+ ηετ ′cp1 −
{
ε (τ ′ ≤ c̄−2

η C−2
4 d2)

ηετ ′cp1 (τ ′ ≥ ε−2C2
4c

−2p
1)

.

≥ 1− 3ε,

for τ ′ ≤ T1,2 or until κ2(T1,1+τ+τ ′) ≥ 1− ε holds again. Note that the last inequality follows from
c̄−2
η C−2

4 d2 ≥ ε−2C2
4c

−2p
1 . By repeating this argument (if there are multiple such τ), we can see that

κ2(T1,1+t) ≥ 1− ε holds for all τ∗ ≤ t ≤ T1,2 = C3dε
−2 with high probability.

Adjusting hidden constants to remove a factor of 3 from 3ε yields the desired result.

B.6 Second Layer Training

From the previous analysis, we know that at least Ω(1) portion of the neurons will satisfy the weak
and strong recovery conditions (Appendix B.1), at least Ω̃(1) portion of the neurons (independent
from the choice of σj) satisfy initial alignment conditions (Appendix B.2), and at least 1 − o(1)
fraction of them achieves strong recovery.
This subsection proves a generalization error bound after second-layer training. Let fa(x) = fΘ(x)

for Θ = (ŵj , aj , b̂j)
N
j=1 where a ∈ RN and (ŵj , b̂j)

N
j=1 are the parameters trained in the first stage.

Let a∗ ∈ RN be the “certificate” with ∥a∗∥2 = Õ(N) that is shown to exist in Lemma 22.

Polynomial Link Functions. The following lemma is a complete version of Proposition 5.

Lemma 20. There exists a 4q-th order polynomial Q(Rw, b, q
′) of Rw = maxj∥wj∥, b = (bj)

N
j=1

such that, if we set λ = Θ
(√

2
T2δ0

N2Q(Rw, b, q′)
)

for some δ0 > 0, the ridge estimator â satisfies

∥fâ − f∗∥2L2(Px)
≲ (N−2 + ε2) +

1

T2λδ0

(
2N2Q(Rw, b, q

′) + Ex[(f∗)
4]
)
+

3λ

2
∥a∗∥2,(B.23)

with probability 1 − δ0. Therefore, by taking T2 = Θ̃((N4Q2(Rw, b, q
′) + E[f∗(x)4]2)ε−4) and

N = Θ̃(ε−1), we have
Ex[(fâ(x)− f∗(x))2] ≲ ε2.

Proof. Let PT2 be the empirical distribution of the second stage: PT2 := 1
T2

∑T2

i=1 δxi
. Let ψ(x) =

(σ(⟨x, ŵj)⟩+ bj))
N
j=1 so that fa(x) = ⟨a, ψ(x)⟩.

Part (1). Here, we first bound the second term ∥fâ − f∗∥L2(PT2
). Since L̂(fâ) + λ∥â∥2 ≤

L̂(fa∗) + λ∥a∗∥2, we have that

∥fâ − f∗∥2L2(PT2
) + λ∥â∥2 (B.24)

≤ ∥fa∗ − f∗∥2L2(PT2
) +

2

T2

T2∑
i=1

(fa∗(xi)− fâ(xi))εi + λ∥a∗∥2.

Now, by the Cauchy-Schwarz inequality, we have

2

T2

T2∑
i=1

(fa∗(xi)− fâ(xi))εi = (a∗ − â)⊤
2

T2

T2∑
i=1

ψ(xi)εi

≤ 2∥a∗ − â∥

√∑
i,j εiεjψ(xi)

⊤ψ(xj)

T 2
2

.

By applying Markov’s inequality to the right hand side, it can be further bounded by

∥a∗ − â∥

√
Ex[∥ψ(x)∥2]

T2δ1
≤ λ

2
∥â∥2 + λ

2
∥a∗∥2 + Ex[∥ψ(x)∥2]

T2δ1λ
,

31

with probability 1− δ1. Thus, by combining with (B.24), we arrive at

∥fâ − f∗∥2L2(PT2
) +

λ

2
∥â∥2 ≤ ∥fa∗ − f∗∥2L2(PT2

) +
Ex[∥ψ(x)∥2]

T2δ1λ
+

3λ

2
∥a∗∥2.

Here, by using the evaluation ∥fa∗ − f∗∥L2(PT2
) = Õ(N−1 + ε) in Lemma 22, the right hand side

can be further bounded by

∥fâ − f∗∥2L2(PT2
) +

λ

2
∥â∥2 ≤ Õ(N−2 + ε2) +

Ex[∥ψ(x)∥2]
T2δ1λ

+
3λ

2
∥a∗∥2.

Part (2). Next we lower bound ∥fâ − f∗∥2L2(PT2
) by noticing that

∥fâ − f∗∥2L2(PT2
)

= ∥fâ − f∗∥2L2(PT2
) − ∥fâ − f∗∥

2
L2(Px)

+ ∥fâ − f∗∥2L2(Px)

= ∥fâ∥2L2(PT2
) − ∥fâ∥

2
L2(Px)

− 2

(
1

T2

T2∑
i=1

fâ(xi)f∗(xi)− E[fâ(xi)f∗(xi)]

)
+ ∥f∗∥2L2(PT2

) − ∥f∗∥
2
L2(Px)

+ ∥fâ − f∗∥2L2(Px)
. (B.25)

The first two terms of Eq. (B.25) can be bounded by∣∣∣∥fâ∥2L2(PT2
) − ∥fâ∥

2
L2(Px)

∣∣∣ = ∣∣∣∣∣â⊤

(∑T2

i=1 ψ(xi)ψ(xi)
⊤

T2
− Ex[ψ(x)ψ(x)

⊤]

)
â

∣∣∣∣∣
≤ ∥â∥2 sup

a:∥a∥≤1

∣∣∣∥fa∥2L2(PT2
) − ∥fa∥

2
L2(Px)

∣∣∣.
The standard Rademacher complexity bound yields that

E
(xi)

T2
i=1

[
sup

a∈RN :∥a∥≤1

∣∣∣∥fa∥2L2(Px)
− ∥fa∥2L2(PT2

)

∣∣∣]

≤2E
(xi,σt)

T2
t=1

[
sup

a∈RN :∥a∥≤1

∣∣∣∣∣ 1T2
T2∑
t=1

σtfa(xi)
2

∣∣∣∣∣
]

≤2

√√√√E
(xi)

T2
i=1

[
sup

a∈RN :∥a∥≤1

1

T 2
2

T2∑
i=1

(a⊤ψ(xi))4

]

≤2

√√√√E
(xi)

T2
i=1

[
1

T 2
2

T2∑
i=1

∥ψ(xi)∥4
]

=2

√
1

T2
Ex[∥ψ(x)∥4],

where (σi)T2
i=1 is the i.i.d. Rademacher sequence which is independent of (xi)T2

i=1. Hence, Markov’s
inequality yields that∣∣∣∥fâ∥2L2(PT2

) − ∥fâ∥
2
L2(Px)

∣∣∣ = 2∥â∥2
√

1

T2δ2
Ex[∥ψ(x)∥4],

with probabilty 1− δ2.
The third term in Eq. (B.25) can be evaluated as

2

(
1

T2

T2∑
i=1

fâ(xi)f∗(xi)− Ex[fâ(x)f∗(x)]

)

= â⊤

(
1

T2

T2∑
i=1

(ψ(xi)f∗(xi)− Ex[ψ(x)f∗(x)])

)

32

≤ ∥â∥

√√√√ 1

T 2
2

T2∑
i=1

T2∑
j=1

(ψ(xi)f∗(xi)− Ex[ψ(x)f∗(x)])⊤(ψ(xj)f∗(xj)− Ex[ψ(x)f∗(x)])

≤ ∥â∥
√

1

T2δ3
Ex[∥ψ(x)f∗(x)− Ex[ψ(x)f∗(x)]∥2]

≤ ∥â∥
√

1

T2δ3
Ex[∥ψ(x)∥4 + ∥f∗(x)∥4]

≤ λ

4
∥â∥2 + 1

λT2δ3
Ex[∥ψ(x)∥4 + ∥f∗(x)∥4],

with probability 1− δ3 where we used Markov’s inequality again in the second inequality.
Finally, the fourth and fifth term in Eq. (B.25) can be bounded as∣∣∣∥f∗∥2L2(PT2

) − ∥f∗∥
2
L2(Px)

∣∣∣ =√(∥f∗∥2L2(PT2
) − ∥f∗∥

2
L2(Px)

)2
≤
√

1

T2δ4
Ex[(f∗(x)4 − ∥f∗∥2L2(Px)

)2]

≤
√

1

T2δ4
Ex[(f∗(x))4],

with probability 1− δ4 where we used Markov’s inequality in the last inequality.
Combining these inequalities, we finally arrive at

∥fâ − f∗∥2L2(Px)
+

(
λ

4
−
√

2

T2δ2
Ex[∥ψ(x)∥4]

)
∥â∥2

≤ Õ(N−2 + ε2) +
1

T2λ

(
Ex[∥ψ(x)∥2]

δ1
+

Ex[∥ψ(x)∥2]
δ3

+
Ex[(f

∗(x))4]

δ3

)
+

3λ

2
∥a∗∥2,

with probability 1−
∑4
j=1 δj . Hence, by setting λ ≥ 8

√
2

T2δ2
Ex[∥ψ(x)∥4], we have that

∥fâ − f∗∥2L2(Px)

≤ Õ(N−2 + ε2) +
1

T2λ

(
Ex[∥ψ(x)∥2]

δ1
+

Ex[∥ψ(x)∥4]
δ3

+
Ex[(f

∗(x))4]

δ3

)
+

3λ

2
∥a∗∥2.

When the activation function σ is a polynomial, then each ψj(x) = σ(⟨x,wj⟩ + bj) is an
order q-polynomial of a Gaussian random variable ⟨x,wj⟩ which has mean 0 and variance
E[⟨x,wj⟩2] = ∥wj∥2 = Õ(1). Then, if we let Rw := maxj ∥wj∥ = Õ(1), the term
maxj max{Ex[ψ(x)

2
j],Ex[ψ(x)

4
j]} can be bounded by a 4q-th order polynomial ofRw and b, which

can be denoted by Q(Rw, b, 4q).

Part (3). By combining evaluations of (1) and (2) together, if we let λ = 8
√

2
T2δ0

Ex[∥ψ(x)∥4]
for some δ0 > 0, (by ignoring polylogarithmic factors) we obtain that

∥fâ − f∗∥2L2(Px)
≲ (N−2 + ε2) +

1

T2λδ0

(
2N2Q(Rw, b, q

′) + Ex[(f∗(x))
4]
)
+

3λ

2
∥a∗∥2,

with probability 1 − 4δ0. Thus, since ∥a∗∥2 = Õ(N), by setting T2 = Θ̃((N4Q2(Rw, b, q
′) +

E[f∗(x)4]2)ε−4), and N = Θ̃(ε−1), we obtain that (B.23) ≲ ε2.

Higher Generative Exponent Functions. For general link functions, under Assumption 4 and
the bounded fourth moment of the link function, we have the following counterpart of Lemma 20,
which provides the formal statement of Proposition 10.

33

Lemma 21. Suppose that E[σ∗(θ⊤x)4] < ∞ and Assumption 4 hold. Then, by setting λ =

Θ̃
(√

N2

T2δ0

)
for some δ0 > 0, the ridge estimator â satisfies

∥fâ − f∗∥2L2(Px)
≲ ε2 +

1√
T2δ0

(
N2C4 + Ex[(f∗)

4]
)
+

1√
T2δ0

∥a∗∥2,

with probability 1− δ0. By taking T2 = Θ̃((N4 +N2)ε−4), we have

Ex[(fâ(x)− f∗(x))2] ≲ ε2.

Furthermore, applying Lemma 12 and 13 yields that, when σ∗ =
∑∞
j=0 αjHej satisfies∑∞

j=0 j
2j!α2

j and E[σ∗(θ⊤x)4] are bounded, with a properly designed randomized activation in
Lemma 12, by taking N = Θ̃(ε−7) and T2 = Θ̃(ε−32), Algorithm 1 yields

Ex[(fâ(x)− f∗(x))2] ≲ ε2

with probability 1− od(1).

Proof. The proof is identical to that of Lemma 20, with the difference being that we replace the
bounded moment assumptions with E[σ∗(θ⊤x)4] <∞ or Assumption 4.

Approximation Guarantee. Note that for non-polynomial link function with generative exponent
p∗ ≥ 3, the approximation error is already controlled in Assumption 4 (based on [BBSS22, Lemma
4.4, 4.5]). If σ∗ is a degree-q polynomial, we have the following characterization, which follows
Lemmas 29 and 30 of [OSSW24].

Lemma 22. Suppose that there exist at least N ′ = Θ̃(N) neurons that satisfy ∥w2T1
j − θ∥ ≤ ε and

σ is a polynomial link function with degree at least q. Let bj ∼ Unif([−Cb, Cb]) with Cb = Õ(1) ,
and consider approximation of a ridge function h(θ⊤x) with its degree at most q. Then, there exists
a1, . . . , aN such that∣∣∣∣∣∣ 1N

N∑
j=1

ajσj
(
w2T1
j

⊤
x+ bj

)
− h(θ⊤x)

∣∣∣∣∣∣ = Õ(N−1 + ε)

with high probability, where (x, y) is a random sample, and we omit dependence on the degree q in
the big-O notation. Moreover, we have

∑N
j=1 a

2
j = Õ(N).

To prove Lemma 22, we rely on the following result.

Lemma 23. Suppose that Cb ≥ q. For any polynomial h(s) with its degree at most q, there exists
v̄(b;h) with |v̄(b;h)| ≲ Cb such that for all s,

E[v̄(b;h)σ(δs+ b)] = h(s).

Proof. When gq(s) = σ(s) is a degree-q polynomial,

gq(s) =

∫ 0

b=−q
σ(s+ b)db

is also a degree-q polynomial. Let us repeatedly define

gq−i(s) := gq−(i−1)(s+ 1)− gq−(i−1)(s) (i = 1, 2, · · · , q),

and let (ci,j) be coefficients so that (s−1)i =
∑i
j=0 ci,js

j holds for all z. Then, by induction, gi(s)
is a degree-i polynomial. Moreover, we have

gq−i(s) =

i∑
j=0

ci,j

∫ 0

b=−q
σ(s+ b+ j)db

34

= 2CbEb∼Unif([−Cb,Cb])

[(i∑
j=0

ci,j1[j − q ≤ b ≤ j]
)
σ(s+ b)

]
,

when Cb ≥ q. Therefore, for any polynomial h(s) with its degree at most q, there exists v̄(b;h) with
|v̄(b;h)| ≲ Cb such that for all s,

E[v̄(b;h)σ(δs+ b)] = h(s).

Proof of Lemma 22. We now discretize Lemma 23. Although we may use randomized and
different σj , because we sample the activation function from the finite set, the discussion is reduced
to the case when the same σj is the same for all j. We focus onN ′ neurons that satisfy ∥w2T1

j −θ∥ ≤
ε (by letting aj = 0 otherwise). For A = Θ̃(N ′) = Θ̃(N) (with a small hidden constant), we
consider 2A intervals [−Cb, Cb(−1 + 1

A)), [Cb(−1 +
1
A), Cb(−1 +

2
A)), · · · , [Cb(1−

1
A), Cb]. By

taking the hidden constant sufficiently small, for each interval there exists at least one bj . Then, for

bj corresponding to [Cb(−1 + i
A), Cb(−1 + i+1

A)), we set aj = N
2

∫ Cb(−1+ i+1
A))

Cb(−1+ i
A)

v̄(b;h)db. Here

we note that |aj | = Õ(1) holds for all j. If each interval contains more than one bj , we ignore all
but one by letting aj = 0 except for the one. By (local) Lipschitzness of σ, we have∣∣∣∣∣∣ 1N

N∑
j=1

ajσ(s+ bj)− h(s)

∣∣∣∣∣∣ = Õ(N)

for all s = Õ(1). Because |θ⊤xt| = Õ(1) with high probability, we have∣∣∣∣∣∣ 1N
N∑
j=1

ajσ(θ
⊤x+ bj)− h(θ⊤x)

∣∣∣∣∣∣ = Õ(N−1) (B.26)

with high probability. Finally, because ∥w2T1
j − θ∥ ≤ ε, we have∣∣∣∣∣∣ 1N

N∑
j=1

ajσ
(
w2T1
j

⊤
x+ bj

)
− 1

N

N∑
j=1

ajσ(θ
⊤x+ bj)

∣∣∣∣∣∣ = Õ
(
(w2T1

j − θ)⊤x
)
= Õ(ε).(B.27)

Combining (B.26) and (B.27), we obtain the assertion.

35

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, ad-
dressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.
Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.
The reviewers of your paper will be asked to use the checklist as one of the factors in their evalu-
ation. While ”[Yes] ” is generally preferable to ”[No] ”, it is perfectly acceptable to answer ”[No]
” provided a proper justification is given (e.g., ”error bars are not reported because it would be too
computationally expensive” or ”we were unable to find the license for the dataset we used”). In
general, answering ”[No] ” or ”[NA] ” is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question,
in the justification please point to the section(s) where related material for the question can be found.
IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist”,

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper’s main contribution is studying the computational complexity of
learning single-index models with polynomial link functions by training neural networks
with stochastic gradient descent, which is what we claim in the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

36

Justification: We discussed the limitations of our results in Section 4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All assumptions required in our work are stated in Assumptions 1,2, and 3.
All proofs are presented in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: This paper is theoretical and experiments are only used for the purpose of
illustration in the Introduction.

37

Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: This paper is theoretical and experiments are only used for the purpose of
illustration in the Introduction.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

38

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: This is a theory paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [NA]

Justification: This is a theory paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: This is a theory paper.

Guidelines:

• The answer NA means that the paper does not include experiments.

39

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have read and followed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper carries out a theoretical study, and we believe our work does not
have specific societal impacts that require a discussion.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

40

https://neurips.cc/public/EthicsGuidelines

Justification: This paper is theoretical and the experiment is only about two-layer neural
network and synthetic data, which we do not have such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This paper is theoretical and does not use any assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: This paper is theoretical and does not introduce new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

41

paperswithcode.com/datasets

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: This paper is theoretical and does not include crowdsourcing experiments nor
research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper is theoretical and does not include crowdsourcing experiments nor
research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

42

	Introduction
	Our Contributions

	Problem Setting and Prior Works
	Complexity of Learning Single-index Models
	Can Gradient Descent Go Beyond Correlational Queries?
	Challenges in Establishing Statistical Guarantees

	Learning Polynomial f* in Linear Sample Complexity
	Training Algorithm
	Convergence and Sample Complexity

	Proof Sketch
	Monomial Transformation Reduces Information Exponent
	SGD with Batch Reuse Implements Polynomial Transformation
	Analysis of Phase II and Statistical Guarantees

	Beyond Polynomial Link Functions
	Sample Complexity for Weak Recovery
	Generalization Error Guarantee

	Conclusion and Future Directions
	Polynomial Transformation
	Proof for Even Functions (i)
	Proof for Non-even Functions (ii)
	Proof for Non-Polynomial Functions

	SGD with Reused Batch
	Assumptions on Link Function
	For polynomial link functions
	For general link functions
	More Discussion on Assumption 2

	Initialization
	Weak Recovery: Population Update
	Weak Recovery: Stochastic Update
	From Weak Recovery to Strong Recovery
	Second Layer Training

