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ABSTRACT

Agent-based models (ABMs) have long been employed to explore how individ-
ual behaviors aggregate into complex societal phenomena in urban space. Unlike
black-box predictive models, ABMs excel at explaining the micro-macro linkages
that drive such emergent behaviors. The recent rise of Large Language Models
(LLMs) has led to the development of LLM agents capable of simulating urban
activities with unprecedented realism. However, the extreme high computational
cost of LLMs presents significant challenges for scaling up the simulations of
LLM agents. To address this problem, we propose OpenCity, a scalable simu-
lation platform optimized for both system and prompt efficiencies. Specifically,
we propose a LLM request scheduler to reduce communication overhead by par-
allelizing requests through IO multiplexing. Besides, we deisgn a “group-and-
distill” prompt optimization strategy minimizes redundancy by clustering agents
with similar static attributes. Through experiments on six global cities, OpenCity
achieves a 600-fold acceleration in simulation time per agent, a 70% reduction
in LLM requests, and a 50% reduction in token usage. These improvements
enable the simulation of 10,000 agents’ daily activities in 1 hour on commod-
ity hardware. Besides, the substantial speedup of OpenCity allow we to estab-
lish a urban simulation benchmark for LLM agents for the first time, compar-
ing simulated urban activities with real-world data in 6 major cities around the
world. We believe our OpenCity platform provides a critical infrastructure to har-
ness the power of LLMs for interdisciplinary studies in urban space, fostering
the collective efforts of broader research communities. Code repo is available at
https://anonymous.4open.science/r/Anonymous-OpenCity-42BD.

1 INTRODUCTION

Agent-based models (ABMs) were first introduced to urban studies in the seminal work of Thomas
Schelling about 50 years ago Schelling (2006), which ingeniously explained how segregation can
emerge as the aggregation of individual choices. Compared to black-box predictive models, ABMs
offer the unique advantage of explaining the underlying mechanisms behind aggregated phenom-
ena, i.e., revealing the connections between “micro-motives” and “macro-behaviours.” As a result,
ABMs play an important role in many research areas, including computational social sciences, ur-
ban planning and public health. The recent advance of Large Language Models (LLMs) have driven
the rise of LLM agents Park et al. (2023); Xu et al. (2023), which leverage LLM’s remarkable capa-
bilities of commonsense reasoning and role-playing to simulate human behaviours. Unlike previous
rule-based agents, these emerging LLM agents generate far more realistic human behaviours Park
et al. (2023); Shao et al. (2024), and can also explain their inner motives via prompting techniques
like chain-of-thoughts Wei et al. (2022). Therefore, LLM agents hold great potential to harness the
power of language models in transforming urban studies.

Despite this promising outlook, LLM agents also face severe challenges of scaling up due to the high
computation time. In the pioneering work of Park et al. Park et al. (2023) only 15 LLM agents were
employed to simulate a small village. One main reason is the prohibitive simulation time, which
can be broken down into two parts: on one hand, LLMs are inherently slow due to their enormous
model sizes; on the other hand, powerful commercial LLMs are only accessible via APIs, which
introduces significant time delay due to network transmission, further slowing down simulation. To
make matters worse, the prompt design of urban LLM agents often involve dynamic elements, such
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as the changing memories and perceived environment Park et al. (2023); Shao et al. (2024). This
important feature prevents the straightforward reuse of simulated behaviors from a small sample of
the population Chopra et al. (2024), as LLM agents need to maintain independent memories and
experiences, which are essential for simulating a vibrant and diverse urban population.

In this paper, we present OpenCity, a scalable platform that introduces both system-level and
prompt-level optimizations to enable efficient LLM agent simulation in urban environments. Specif-
ically, we design an LLM request scheduler that leverages the scalable I/O event notification mech-
anism in operating system (e.g., epoll in Linux Bruguera i Moriscot (2019)) to minimize network
transmission delay. This design is based on our key observation that sending LLM requests and
receiving generated output account for only a small portion of total communication time, while the
rest are wasted on waiting for LLM responses and the repeatedly establishing TCP connections Pe-
terson & Davie (2007). To address this problem, the LLM request scheduler uses the scalable I/O
event notification mechanism to parallelize LLM requests by reusing the network I/O portal and
TCP connections while waiting for responses. Besides, LLM request scheduler also analyzes the
interdependencies of LLM requests and local computation tasks, e.g., updating agent’s memory and
retrieving nearby locations, ensuring local computation tasks are optimally distributed across mul-
tiple CPU cores. These system-level optimizations enable large-scale LLM agent simulations to
run on commodity hardware. As for the prompt-level optimization, OpenCity introduces a novel
“group-and-distill” prompt strategy to minimize the input token required by LLMs. The key idea
is to identify the clusters of LLM agents that share semantically similar static elements, e.g., age,
gender and income level, and use shared context in batch prompting Cheng et al. (2023) to reduce
token redundancy. Specifically, our “group-and-distill” strategy leverages the in-context learning
capabilities of LLMs to implement a prototype learning workflow that automatically discovers clus-
ters of LLM agents with semantically similar static elements for simulation. Agents within the same
clusters are grouped into a batch prompt, and we design a “prompt distillation” to extract shared
prefix for grouped agents. Finally, OpenCity also features an easy-to-use web portal that facilitates
code-less simulation configuration and result visualization. This design minimizes the program re-
quirement for running simulation with LLM agents, ensuring our OpenCity platform can benefit
researchers from all background.

We evaluate the efficiency and faithfulness of OpenCity in simulating the urban activities of 6 cities
around the world using the widely adopted Generative Agent workflow Park et al. (2023). Our ex-
periments show OpenCity achieves an average 635x acceleration in simulations with 10,000 LLM
agents. Besides, the number of requests and consumed tokens are reduced by 73.7% and 45.5%, re-
spectively. OpenCity also shows strong scalability, with the simulation time per agent reducing from
36.25 to 0.06 seconds as the simulation size increases from 1 to 10,000 agents, demonstrating that
larger simulations allow for more efficient LLM request scheduling and prompt distillation. More
importantly, OpenCity also maintains high faithfulness of the simulated behaviour. Specifically,
the Jensen–Shannon divergence and top-1 hit rates of our method are comparable to the standard
prompting technique of batch prompting Cheng et al. (2023), and substantially surpass straightfor-
ward reusing strategy Chopra et al. (2024). Besides, the top-1 hit rate can reaches up to 96% when
using powerful LLMs like GPT-4o.

The substantial simulation acceleration allows us to benchmark LLM agents’ ability to replicate
large-scale urban activities for the first time. We use classic evaluation measures such as the radius
of gyration Gonzalez et al. (2008), origin-destination matrix Jiang et al. (2016), and segregation
index Moro et al. (2021) to assess LLM agents’ simulations. These are the most widely adopted
metrics that characterize urban residents’ activities at both individual and group levels, and across
physical and social domains. Our experiments show that LLM agents perform comparably to, or
better than, traditional rule-based agents like EPR Song et al. (2010). Moreover, LLM agents enable
counterfactual analyses, such as evaluating experienced segregation in cities without residential seg-
regation Massey & Denton (1988). They also allow researchers to interrogate LLM agents’ motives
behind their behaviors, offering valuable insights for urban policy-making.

The contribution of this paper are three-folds:

• We design a high-performance platform OpenCity that introduces system-level LLM re-
quest scheduler and prompt-level “group-and-distill” strategy to reduce LLM agent simu-
lation time. OpenCity maintains high fidelity in simulated behaviors while achieving an
average 635x acceleration.
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• The substantial speedup allows us to benchmark LLM agents for reproducing urban activ-
ities for the first time.

• OpenCity provides a user friendly web portal, allowing researchers without programming
background to easily configure simulation and visualize the results.

2 RELATED WORKS

2.1 LLM AGENTS

With the widespread use of large language models (LLMs) in various applications, the limitations
of LLMs, e.g., unstable reasoning abilities, limited memory capacity, and lack of specialized exper-
tise, have been exposed to the public. As one of the potential solution, LLM agents are proposed
to overcome these limitations and promote the practical application of LLMs. AutoGPT Gravitas
(2023) as one of the most popular LLM autonomous agent explore the potential of applying LLM
to enable the autonomous planning and task-solving. After that, LLM agents Wang et al. (2024);
Xi et al. (2023) have made significant progress in two directions: task-oriented agents and simula-
tion agents. Following the first direction, researchers aim to improve LLM agent’s ability to solve
complex tasks. For example, lots of programming agents, such as ChatDev Qian et al. (2023),
SWEAgent Yang et al. (2024), and MetaGPT Hong et al. (2023), are designed to solve the complex
programming tasks. As for the second direction, generative agents Park et al. (2023) have demon-
strated the potential of large models in simulating human behavior, which has been further validated
in subsequent research. S3 Gao et al. (2023) explores the potential of using LLM agents to simulate
the social network. CoPB Shao et al. (2024) defines a agentic workflow to simulate the mobility
behaviors. RecAgent Wang et al. (2023) simulate the user behavior in the recommendation system.
While these works demonstrate the potential of LLM agents, the large scale efficient simulation of
generative agents becomes the critical bottleneck of further applications.

2.2 LLM DEPLOYMENT OPTIMIZATION

To support the efficient inference of LLMs and LLM agents, enormous works and systems Miao
et al. (2023) are designed to optimize the inference efficiency of LLMs and further accelerate their
practical applications. For example, Flash-attention Dao et al. (2022) is an IO-aware exact attention
algorithm which uses tiling to reduce the number of memory reads/writes within GPU. AWQ Lin
et al. (2024) is an activation-aware weight quantization to compress and accelerate the LLM infer-
ence. vLLM Kwon et al. (2023) proposes pagedAttention mechanism to enable highly efficient KV
cache scheduler during the inference and becomes the most population open source LLM inference
engine. SGLang Zheng et al. (2023) provides a flexible frontend language to enable the efficient au-
tonomous optimization of LLM inference. While these systems are designed to process the general
LLM inference, specific characteristics of generative agents especially urban generative agents are
ignored which can be employed to further accelerate the inference and simulation. In this paper, we
explore the potential of this direction and design the OpenCity platform.

3 PRELIMINARIES

3.1 LLM AGENTS FOR URBAN ACTIVITIES

We focus on using LLM agents to reproduce urban dynamics characterized primarily by physi-
cal mobility. Consider an urban environment E containing N LLM agents. The state of agent i
at simulation time t, denoted as Si(t) = {si,mi(t)}, consists of both static properties si and dy-
namic properties mi(t). Static properties, like the agent’s demographics, remain constant throughout
the simulation, while dynamic properties, such as memory and perceived environment information,
change frequently and are hard to predict. We can represent the state update of agent i using a
function f :

mi(t+ 1) = f(si, E,mi(t);Si(t+ 1) = {si,mi(t+ 1)} (1)

Here, mi(t + 1) is the updated memory of agent i at time t + 1, and the function f models how
the agent updates its state by perceiving the urban environment E, reflecting on its memory mi(t),
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and interacting with the LLM. The individual trajectory of agent i, denoted as Ti, describes the
trajectory of the agent over time in the urban environment E. If the location of agent i at time t is
represented by Li(t), which depends on its state Si(t), then the individual trace can be expressed
as Ti = {Li(0), Li(1), Li(2), ..., Li(ts)}, where ts is the the total simulation time. Along with
individual mobility, we also examine the aggregated mobility features A = Φ(

∑
i ϕ(

∑
t Si(t))),

such as Original-Destination (OD) matrix and income segregation index, which reflects the urban
dynamics involving states of all agents.

To simulate LLM agents in the urban space, we set the initial state for the agents and environment
{Si(0)|i ∈ N} and then apply the Equation 1 for each agent at every simulation step. When the
number of agents increases, challenges arise mainly because of the LLM request process. LLMs
are inherently slow due to their parameter size, and when using commercial LLMs accessed via
APIs, response times can be further delayed, especially with poor network conditions. Some have
proposed reusing the LLM response for agents can improve the efficiency Chopra et al. (2024), but it
requires that the agents have the completely same state or have limit kinds of state that can be easily
predicted. What’s more, simply reusing the response would eliminate the independence of agents
and reduce the faithfulness of the simulation results. Urban agent i has dynamic memory mi(t)
that evolves during the simulation. This memory mi(t) depends not only on past memory mi(th)
but also on the current environment. Since decision-making and memory updates rely heavily on
the LLM, predicting an agent’s future state or finding an agent with an identical state to reuse an
LLM response is difficult. Therefore, to simulate the large-scale and reliable LLM agents for urban
dynamics, a simple response reuse strategy is insufficient.

3.2 TIME COST ANALYSIS

In light of the prevailing dominance of remote LLM service invocations in the current operational
landscape of LLM agents simulation, a decomposition of the time required for a single LLM request
can be undertaken, as illustrated in Fig.1(b). The first phase is the initialization and reception time for
the LLM request, the second is the TCP/IP connection and destruction time between the simulation
system and the LLM service provider, and the third is the data transmission and waiting time. For a
single LLM request, the overhead of the first and second phases is relatively low in comparison to
the third, and the core time consumption is derived from the data transmission and waiting.

The simulation of large-scale agents necessitates the issuance of a considerable number of LLM
requests, which, given the presence of waiting periods, impairs the overall efficiency of the simulator.
Furthermore, the system resources are not fully utilized. Consequently, the effective scheduling
of LLM requests is essential for enhancing the overall utilization of system resources, which in
turn improves the overall efficiency of the simulation. Furthermore, as the time required for LLM
inference is directly proportional to the number of tokens contained in an LLM request, it is also
important to reduce the number of tokens consumed per agent while compressing the number of
requests.

From this vantage point, the present work puts forth an efficacious LLM request scheduler and a
prompt distillation method, which can markedly enhance the efficiency of large-scale LLM agents
simulation.

4 OPENCITY PLATFORM

We devise a scalable platform OpenCity to accelerate the simulation of urban LLM agents from
both system- and prompt-level. The OpenCity platform aims to substantially reduce the simulation
time per LLM agent while maintaining high simulation fidelity. Besides, OpenCity also provides a
user-friendly web interface to facilitate the easy access of researchers from diverse background. The
key designs are introduced as follows.

4.1 LLM REQUEST SCHEDULER

As shown in Fig.1(a), for a LLM agent, the dependency between its LLM requests—that is, the
necessity for the next LLM request to be initiated after the previous one is completed—results in
a constant waiting time under the condition of a fixed network environment and request content.
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In contrast, for a system comprising multiple agents, there is no dependency between their LLM
requests. In order to achieve asynchronous processing of multiple LLM requests, we have imple-
mented an IO multiplexing scheme (based on epoll in Linux) which eliminates waiting time in the
simulation system. This allows the operating system to manage IO waiting, thereby achieving the
desired ”zero-awareness” of data transmission in the simulation system. Consequently, the aver-
age time for a LLM request is reduced to the time required for the first and second phases (Time
saving#1 in Fig.1(c)).

Figure 1: The functionality of the proposed LLM Request Scheduler.

Furthermore, the considerable number of LLM calls necessitates the frequent establishment of con-
nections with the service provider, resulting in a considerable overhead in the establishment and
destruction of each connection. However, given that the content of LLM requests is inherently
linked to the corresponding agent, it is possible to leverage the same connection for multiple agents,
thereby reducing the overall performance overhead. To address this issue, a pool of reusable connec-
tions is maintained within the system. Upon initiation of an LLM request by an agent, the request
content is populated into an available connection, thus avoiding the establishment of a new con-
nection. This approach additionally reduces the mean time consumption of LLM requests (Time
saving#2 in Fig.1(c)).

For those agents with CPU tasks during the computation process, it is important to note that the
continued occupation of CPU resources by the computation load will inevitably result in a delay
in the sending of LLM requests from subsequent agents. To mitigate the adverse effects of this
issue on the system’s overall performance, we categorize the CPU task as ”local IO”, offload it to
available cores for computation through a multi-core parallel scheme, and then return the result to
the designated agent upon completion of the computation. This approach further ensures the stable
operation of asynchronous LLM requests (Time saving#3 in Fig.1(c)).

The proposed LLM request scheduler is designed to reduce the waiting time for a significant number
of LLM requests during the simulation runtime. Based on the supporting auxiliary scheme, it has
the potential to significantly enhance the efficiency of large-scale LLM agents.

4.2 GROUP-AND-DISTILL META-PROMPT OPTIMIZER

A further crucial method for enhancing the efficiency of the simulation is to reduce the number of
LLM requests issued by agents and the quantity of tokens consumed by said agents. A conventional
approach is to reuse the generated result of a single LLM request across multiple agents. However,
this approach presents two significant drawbacks: 1. In fine-grained urban LLM agent simulations,
each agent possesses its own dynamic properties. Consequently, the reuse scheme compromises
the independence of agents, which is antithetical to the objective of conducting urban simulations
through large-scale LLM agents. Furthermore, for agents with dynamic properties, it is inherently
impossible to share the result of a single LLM request, as shown in Fig.2(a).

To address this issue, we propose the Group-and-Distill Meta-Prompt Optimizer (depicted in Fig.2),
which employs group information in lieu of the static attributes of the agent. This approach aggre-
gates requests from multiple agents at runtime and realizes prompt by sharing group information and
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Figure 2: Overview of Group-and-Distill Meta-Prompt Optimizer.

context information while preserving the agent’s dynamic properties. The optimizer is comprised of
two distinct components. In-context prototype learning (IPL) and distill meta-prompt.

The inputs and outputs of IPL are defined as follow:

IPL({si},M, T ) −→ G,D (2)

in which, {si} is the collection of agent’s static properties; M controls the number of agents in initial
prototype learning; T is the threshold for decision making; G is the collection of agent groups; D is
the descriptions for each group of agents.

Input the static properties of a set of agents, IPL first groups the first M agents, providing both group
results and the corresponding description information. Subsequently, IPL classifies the remaining
agents by transmitting the static properties of the agent to LLM, which analyzes the likelihood of the
agent belonging to each group based on the group description and provides the quantization result.
By comparing the quantization result with T , when the result is greater than T , IPL assigns the agent
to the specified group. Otherwise, it constructs a new group and describes the characteristics of the
group. In comparison to conventional prototype learning methods that operate within a fixed param-
eter space, IPL exhibits enhanced generalization capabilities and a particular aptitude for leveraging
semantic-level knowledge in the prototyping process. The prototype information obtained by IPL is
employed to efficiently summarize the static attribute characteristics of the set of agents within the
specified group.

The distill meta-prompts obtained through a systematic examination of the original prompts and the
CoT approach is employed to generate the prompts (details can be found in Fig.A1). To facilitate
the generation procedure, we have proposed a raw prompt design diagram, which divides the prompt
into three sections: the function section, the variable section, and the input section. The generation
process, which is initiated with a given raw prompt, comprises four steps: summarization, context
extraction, information sharing, and rewriting of the raw prompt into the distill meta-prompt. In the
operational phase, the requests from the agents in a group are aggregated into a single Distill request,
which has the effect of reducing the number of LLM requests and the consumption of tokens.

The proposed prompt optimizer enables further enhancement of simulation efficiency and reduction
of simulation cost while maintaining agent dynamic properties.

4.3 WEB PORTAL

A web portal has been designed for the utilisation of OpenCity, encompassing the frontend, backend,
and simulation system. This enables users to rapidly configure simulation conditions and visualise
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simulation results, as well as facilitating the storage of simulation data and urban infrastructure
information within a database. The fundamental concept underlying the design of this portal is user-
friendliness, particularly given the inherently interdisciplinary nature of urban research. We have
developed a rapid, code-free configuration approach tailored to the needs of researchers, thereby
facilitating the seamless engagement of experts from diverse fields with our simulation platform.

User-friendliness: In order to enhance the usability of the OpenCity platform, the Web Portal has
been augmented with the incorporation of the LLM agent blueprint construction function. Users
are able to drag and drop each basic function module in order to construct complex logic for LLM
agents. In order to meet a variety of needs, the blueprint function is based on the established LLM
agent development frameworks, such as Langchain Pandya & Holia (2023) and AutoGPT Yang et al.
(2023), and incorporates several fundamental modules oriented towards urban simulation, including
environmental and traffic sensing. The blueprint offers an efficient and agile development solution
for interdisciplinary researchers, facilitating the rapid iteration of simulation methods and theories.

Basic workflow: The primary process of urban LLM agent simulation on this web portal is com-
prised of three distinct phases: citizen profile configuration, deployment and simulation, and results
presentation. The configuration of the citizen profile is facilitated by the provision of a console
hub, which enables users to efficiently and transparently administer the simulation tasks they have
created on the platform, along with the agents within those simulations. The user is able to bind
the execution logic designed in the blueprint to different agents and to configure their profiles with
great rapidity via the web interface. This may entail selecting a city, selecting an existing profile,
or filling out a profile manually. Once the configuration process is complete, users can deploy and
initiate simulations on the platform with a single click, leveraging the backend system and simula-
tion system. The web portal also offers a monitor page, which enables users to observe the real-time
outcomes of ongoing simulations and assess the performance of their agents. Finally, after the sim-
ulation has concluded, users can access the portal to view macroscopic statistical results in a visual
format, such as Origin-Destination (OD) maps. An exemplar of the proposed web portal in operation
can be found in Figure A2.

5 BENCHMARK

5.1 DATASET AND SETUP

Dataset We collect urban mobility data in 6 major cities around world: Beijing, New York, San
Francisco, London, Paris, and Sydney. The data sources vary. Beijing’s data comes from a related
work Shao et al. (2024), which collected from social network platform. New York and San Francisco
source from Safegraph for aggregated population flow data. And the other three cities are from
Foursquare which consist of thousands of check-ins data. To make better use of these data, we have
done some preprocess method, such as trajectory filter, home extraction and profile sampling. More
details can be seen in Appendix A.

Architecture of LLM Agent The main agent used in OpenCity platform to simulate the urban
dynamic is the generative agent Park et al. (2023). Generative agents use a framework that involves
perception, planning, and reflection. A generative agent first creates a daily plan to ensure the
trajectory is reasonable. When the agent arrives at a POI, it makes decisions based on current
perceptions and memory. After taking action, the agent records the action and the POI into its
memory stream. Once the memory stream reaches a threshold, the agent reflects. The results show
that the generative agent to function well in the OpenCity platform.

We also have rule-based agent for comparison, such as the famous Explore and Preferential-Return
(EPR) model Song et al. (2010). This work make agent choose to explore a new location or return
to the visited location. Decisions are related to some parameters to compute the probability. In
this paper, we set the parameters as follows: exploration rate ρ = 0.6, exploration-return trade-off
parameter γ = 0.21, waiting time distribution parameters τ = 17, β = 0.8.

5.2 ACCELERATION PERFORMANCE

This section presents an evaluation of the performance of the OpenCity platform in conjunction with
the Generative Agent (Tested on Huawei ECS Cloud Server - Intel(R) Xeon(R) Platinum 8378C
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CPU @ 2.80GHz with 64 cores and 256 GB RAM). The performance of the platform was evaluated
in six major cities with 10,000 agents. The results are presented in Table.1, where the following
variables are defined: Speedup denotes the improvements in simulation time, Rr denotes the LLM
request number reduction rate, and Tr denotes the token number reduction rate.

The results demonstrate that OpenCity exhibits substantial acceleration in all test cities, with an
average runtime of 0.058s per LLM agent and an average speedup of 635.3x in simulation time.
Furthermore, the proposed acceleration scheme is capable of markedly reducing the number of LLM
requests and token consumption, with an average reduction of 73.7% and 45.5%, respectively.

To assess the scalability of OpenCity, we conducted a series of simulations to evaluate its accel-
eration performance under varying orders of magnitude of agents. The results of this analysis are
presented in Fig.3, in which the baseline represents the simulation time without optimization. The
results demonstrate that OpenCity’s acceleration capability is scalable, with a notable enhancement
in acceleration effect when the number of agents is increased from 10 to 10,000. This is due to
the fact that as the number of agents increases, the number of groups obtained based on IPL also
gradually increases. This, in turn, allows the advantages of the LLM request scheduler to be fully
realised, thereby ensuring a better utilisation of system resources.

Cities Time Speedup Rr Tr

Beijing 0.07s 521.7 73.2% 38.7%
New York 0.06s 624.7 67.3% 37.6%

San Francisco 0.07s 588.6 80.3% 51.3%
London 0.04s 792.5 74.6% 49.9%

Paris 0.06s 640.0 76.3% 48.6%
Sydney 0.05s 644.0 70.7% 46.6%
Average 0.058s 635.3 73.7% 45.5%

Table 1: Acceleration experiment results Figure 3: Scalability experiments

Furthermore, faithfulness experiments are conducted to demonstrate that the Group-and-Distill op-
timizer can effectively preserve the distinctive personality traits of the agents. The testbed for this
evaluation is location choice generation, which requires the combination of agent properties to select
the next location to visit. A comparison was conducted between the performance of four distinct
methods, including raw prompting (without any modification), batch prompting Cheng et al. (2023),
archetype prompting Chopra et al. (2024), and the proposed method. One hundred agents were
randomly selected and location selection was performed 100 times for each agent with the same
context. The effectiveness of the method was evaluated by counting the distribution of selections
(JSD) as well as the top-1 hit rate (T1). The results are shown in Table.2, where Inherent denotes
the bias present in LLM itself (raw prompt method).

Model and Cities Inherent Batch prompting Archetype prompting Ours
JSD T1 JSD T1 JSD T1 JSD T1

4o-mini

BJ 0.04 ± 0.02 90% 0.11 ± 0.05 76% 0.89 ± 0.04 8% 0.13 ± 0.02 74%
NY 0.02 ± 0.01 92% 0.07 ± 0.03 81% 0.84 ± 0.11 13% 0.06 ± 0.04 86%
SF 0.03 ± 0.02 88% 0.09 ± 0.04 77% 0.91 ± 0.03 11% 0.10 ± 0.03 85%
Lo 0.06 ± 0.04 89% 0.12 ± 0.07 79% 0.86 ± 0.06 9% 0.12 ± 0.04 78%
Pa 0.05 ± 0.02 86% 0.17 ± 0.11 69% 0.94 ± 0.03 4% 0.14 ± 0.04 71%
Sy 0.04 ± 0.03 85% 0.08 ± 0.03 75% 0.88 ± 0.05 5% 0.07 ± 0.04 75%

GPT-4o NY 0.003 ± 0.002 98% 0.012 ± 0.007 94% 0.89 ± 0.09 10% 0.009 ± 0.004 97%
Pa 0.004 ± 0.002 99% 0.021 ± 0.009 93% 0.91 ± 0.04 7% 0.010 ± 0.006 96%

Table 2: Faithfulness experiment results

As evidenced by the results, our method demonstrates the capacity to maintain a comparable level
of consistency to that observed in the batch prompting method, while exhibiting a reduction in
volatility and token consumption. However, the archetype prompting method performs poorly in
this evaluation, which further demonstrates the inability of the reuse-based method to accommodate
the dynamic properties of agents. Furthermore, given the considerable discrepancies observed in
the raw prompting method when evaluated using the GPT-4o-mini model, an additional assessment
was conducted on two cities, New York and Paris, utilising the GPT-4o model. The findings indi-
cate that our method is capable of approximating the execution of the raw prompting method to a
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significant degree. Additionally, the results indicate that there are notable discrepancies between dif-
ferent models in terms of environmental comprehension and the capacity to process lengthy textual
content. The consistency of LLM outcomes merits further examination.

In general, OpenCity is capable of markedly enhancing the efficiency of large-scale urban LLM
agent simulations while concurrently preserving the distinctive characteristics of the agents them-
selves. This enables the cost of simulating populations exceeding 10,000 to be maintained at the
hourly level.

5.3 REPRODUCING URBAN DYNAMICS

The significant increase in simulation efficiency enables us to benchmark LLM agent’s ability to
reproduce large-scale urban dynamics for the first time. We use comprehensive metrics in three-
levels to evaluate the simulation performance, from individual- to group level, and also from physical
domain to social domain. At the individual level, we calculate the radius of gyration Gonzalez et al.
(2008) for each user. At the group level, we use the original-destination matrix Jiang et al. (2016). As
for the social domain, we focus on the income segregation index Moro et al. (2021). To evaluation
the simulation performance, we compute the MSE for these three metrics, which are denoted as
RMSE , ODMSE and SMSE . More details can be referred to Appendix B.

In this section, we analyze the performance of the Generative Agent and EPR Agent in reproducing
urban dynamics. We test both agents in 6 major cities using 1,000 agents. The results are shown
in Table 3. The results indicate that both the Generative Agent and EPR Agent successfully re-
produce urban dynamics with low MSE values. Additionally, the LLM Agent performs as well as
or better than the classical rule-based EPR Agent, highlighting the advantage of LLM’s semantic
understanding ability in urban simulations.

Cities GenerativeAgent EPR
RMSE ODMSE SMSE RMSE ODMSE SMSE

Beijing 19.5 3.88e-4 0.0312 29.8 4.26e-4 0.0630
New York - 5.95e-4 0.3521 - 3.70e-4 0.2319

San Francisco - 23.6e-4 0.1535 - 14.0e-4 0.0352
Paris 2.48 7.58e-4 0.1255 4.04 6.25e-4 0.1240

London 6.24 5.22e-4 0.1258 25.7 7.41e-4 0.1501
Sydney 15.1 4.71e-4 0.1118 54.2 7.63e-4 0.1265

Table 3: Urban dynamics reproduction results

6 CASE STUDY: EXPERIENCED URBAN SEGREGATION

With the ability to simulate large-scale urban LLM agents, we can conduct counterfactual exper-
iments to explore outcomes under different policies and design optimal strategies for the future.
Conventional rule-based models do not support this capability, as they are designed to simulate
real-world scenarios. Experienced urban segregation is a widely discussed issue with significant
impacts on social dynamics and the economy. It arises from both demographic differences in resi-
dential neighborhoods and the mobility patterns of urban residents Moro et al. (2021). This section
provides a case study: a counterfactual simulation is conducted in New York and San Francisco,
to observe how the simulation results change in different configurations, and try to summarize the
results with the LLM agents themselves.

Specifically, we construct the counterfactual scenario by evenly distributing LLM agents with dif-
ferent income levels across the city, that means we almost eliminate the residential segregation. The
results of the income segregation statistics with CBGs as the statistical granularity are shown in
Fig.4, where ‘Original’ samples the segregation results from the real census data, and ‘Even’ is the
result after uniform distribution of agents with different incomes.

From the results, it can be seen that the segregation of the two cities changed significantly after
the different income groups were evenly distributed in the cities. In New York City, the mean
segregation index decreases from 0.845 to 0.172, and in San Francisco, the mean segregation index
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Figure 4: The distribution of income segregation index for counterfactual experiment.

decreases from 0.665 to 0.232. As a result, we believe that differences between regions are the main
cause of segregation as opposed to segregation by choice of action. To extend, we can know that
with policies that promote more even income distribution among neighborhoods, urban segregation
and social inequality can be improved.

Figure 5: A detail case of interpreting simulation results through communication.

Furthermore, we use natural language to communicate with those involved agents to gain deeper
insights about urban segregation. One detailed case is shown in Fig.5. When we ask an agent about
its daily journey, it can accurately provide the time and locations it visited. This is because the agent
caches runtime information and uses the LLM’s ability to understand semantic details. When asked
about the people it met, the agent lists everyone it encountered at different locations and provides
their information. This is due to vectorized storage of the agent’s simulation results and the LLM’s
ability to retrieve that information. Collecting and observing fine-grained statistical information
through conversations with agents and even through LLM improves both the interpretability of the
simulation and our understanding of the simulation goals.

7 CONCLUSION

In this work, we introduced OpenCity, a scalable platform designed to address the computational
and communication challenges inherent to the deployment of large-scale LLM-based urban agents
in city simulations. By incorporating an LLM request scheduler and a novel ”group-and-distill”
prompt optimization strategy, we achieved a notable 600-fold increase in the efficiency of agent
simulations, with a substantial reduction in both LLM requests and token usage. The OpenCity plat-
form was evaluated through experiments conducted on six global cities. The results demonstrated
the platform’s capability to simulate the daily activities of 10,000 agents at an hourly level, while
also establishing a benchmark for generative agent performance in urban contexts. The platform’s
ability to compare simulated behaviors with real-world data highlights its potential for real-world
urban-scale applications, offering a robust tool for urban planners and researchers to explore and
understand complex societal phenomena.
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A URBAN MOBILITY DATASET

As shown in Table A1, we collect urban mobility data of 6 major cities around the world. The
data sources vary. In Beijing, the data is from a related work Shao et al. (2024), which gathered
through a social network platform and tracking users’ mobility trajectories. Additionally, users’
profiles, such as income level, gender, occupation, education level and age, are collected through
digital surveys. In New York and San Francisco, the data comes from Safegraph, which provides
aggregated population flow among Points of Interest(POIs) and Census Block Groups(CBGs). The
other three cities—London, Paris and Sydney—use data are from Foursquare. Foursquare data
consist of thousands of check-ins data of users and the corresponding venue position.

To make better use of the datasets, we apply several preprocessing methods. We firstly arrange the
trajectory points in time sequence, and divide the trajectory into units of one day. Then we filter out
trajectories with fewer than 4 points in a day, as they do not fully capture users’ mobility patterns.
For home extraction, we identify the most frequently visited location of the useres the home. Since
only the Tencent dataset includes user profiles, we make profile sampling for users of each city based
on local census data for the other two datasets. In the end, our dataset is optimized for easy use in
urban mobility simulations.
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Source City Users Trajectory Points Duration

Shao et al. (2024) Beijing 100000 297363263 Oct. 2019 - Dec. 2019

Safegraph
New york Aggregated 760493

May 2023 - July 2023San Francisco Aggregated 316732

Foursquare
London 9409 173268

Apr. 2012 - Sept. 2013Paris 5809 85679
Sydney 1720 54170

Table A1: Basic information about the dataset

B URBAN DYNAMIC METRICS

We use comprehensive metrics in three-levels to evaluate the simulation performance, from
individual-level to group level, and also from physical domain to social domain. These metrics
allows us to gain a full understanding of mobility patterns and their implications, and can also help
us evaluate the performance of the simulation by analysing the generated trajectory.

At the individual level, we calculate radius of gyration rg Gonzalez et al. (2008) for each user, which
is a measure of the spatial extent of their movements. The radius of gyration is defined as follows:

rαg =

√√√√ 1

Nα

Nα∑
i=1

(r⃗αi − r⃗αcm)2 (3)

where r⃗αi represents the i = 1, 2, ..., N positions recorded by user α, and rαcm = 1/Nα
∑Nα

i=1 (r⃗
α
i )

is the center of mass of the trajectory. The radius of gyration provides an indication of the size of
a user’s activity range. To assess the accuracy of our simulation data against real-world data for a
specific user, we calculate RMSE , the Mean Squared Error(MSE) of the radius of gyration.

To analyze movement patterns and other aggregated features, we define block areas as spatial units
within the city. For cities with Safegraph data, we use existing Census Block Group (CBG) areas.
For other cities, we divide the map area into evenly spaced grids, with each grid cell representing a
block area.

At the group level, we count the inflow and outflow of agents between block areas, calculate the
Origin-Destination (OD) matrix Jiang et al. (2016), and normalize it. To compare real data with sim-
ulation data, we calculate the MSE of the normalized OD matrix, denoted as ODMSE . A smaller
ODMSE value indicates greater similarity between the OD matrices, meaning the movement char-
acteristics of the simulated data closely match the real data.

At the social domain, we calculate the income segregation index Moro et al. (2021) for each block
area. The income segregation of a place α is defined as Sα = 5

8

∑
q |τqα − 1

5 |, where τqα is is the
proportion of visitors in each income quintile for place α. The Sα ranges from 0 to 1. A high Sα

indicates that the place α is predominantly visited by a single income group, suggesting a high level
of income segregation. We denote SMSE as the MSE between the real data and simulation data.

C IMAGE SUPPLEMENTS
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Figure A1: Distill meta-prompt generation through CoT inference.

(a) Agent Construction

(b) Profile Configuration

(c) Simulation Visualization (d) Result Visualization

Figure A2: Overview of OpenCity web portal.
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