
Robust Sparsification via Sensitivity

Chansophea Wathanak In 1 Yi Li 1 2 David P. Woodruff 3 Xuan Wu 1

Abstract
Robustness to outliers is important in machine
learning. Many classical problems, including
subspace embedding, clustering, and low-rank
approximation, lack scalable, outlier-resilient al-
gorithms. This paper considers machine learn-
ing problems of the form minx∈Rd F (x), where
F (x) =

∑n
i=1 Fi(x), and their robust coun-

terparts minx∈Rd F (m)(x), where F (m)(x) de-
notes the sum of all but the m largest Fi(x) val-
ues. We develop a general framework for con-
structing ε-coresets for such robust problems,
where an ε-coreset is a weighted subset of func-
tions {F1(x), . . . , Fn(x)} that provides a (1+ ε)-
approximation to F (x). Specifically, if the origi-
nal problem F has total sensitivity T and admits
a vanilla ε-coreset of size S, our algorithm con-
structs an ε-coreset of size Õ(mT

ε) + S for the
robust objective F (m). This coreset size can be
shown to be near-tight for ℓ2 subspace embed-
dings. Our coreset algorithm has scalable running
time and, by employing a sensitivity flattening
argument, leads to new or improved algorithms
for robust optimization problems, including re-
gression and PCA. Finally, empirical evaluations
demonstrate that our coresets outperform uniform
sampling on real-world data sets.

1. Introduction
Outliers, which can occur frequently in real-world data, pose
significant challenges to many machine learning problems.
For instance, in the classic regression problem, a small num-
ber of contaminated data points can drastically skew the
solution. This issue has driven the development of robust

The authors are listed in alphabetical order. 1School of Physical
and Mathematical Sciences, Nanyang Technological University,
Singapore 2College of Computing and Data Sciences, Nanyang
Technological University, Singapore 3Department of Computer
Science, Carnegie Mellon University, USA. Correspondence to:
Yi Li <yili@ntu.edu.sg>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

regression methods since the 1960s (see, e.g., (Andersen,
2008) for a comprehensive survey), and it remains an active
area of research today. In this paper, we present a frame-
work to address the issue of outliers for a large family of
optimization problems, including regression, by reducing
their scale through the construction of coresets.

A natural and popular approach for handling outliers is to
consider robust versions of the original optimization for-
mulations. Specifically, consider an optimization problem
of the form minx∈Rd F (x), where F (x) =

∑n
i=1 Fi(x).

The robust version of F (x), denoted by F (m)(x), aggre-
gates all but the largest m values over Fi(x) (i = 1, . . . , n).
Formally, for each x ∈ Rd, the values F1(x), . . . , Fn(x)
are sorted in increasing order as Fi1(x) ≥ Fi2(x) ≥
· · · ≥ Fin(x), and F (m)(x) is then defined as F (m)(x) =∑n−m

j=1 Fij (x). This robust formulation coincides with the
least trimmed regression (Rousseeuw, 1985) and was first
considered in algorithmic machine learning by (Charikar
et al., 2001) in the context of facility location. More recently,
it has been studied in several important machine learning
problems, including PCA (Simonov et al., 2019) and cluster-
ing (Chen, 2008; Krishnaswamy et al., 2018). However, all
those algorithms have high-order polynomial running times,
making them neither scalable nor even practical.

In the case of no outliers (which will be referred to as the
vanilla case), a popular scalable solution is to sparsify the
input by constructing a coreset. A (strong) ε-coreset is a
weighted subset of the dataset such that the loss of every
candidate solution on this subset approximates the original
loss within a relative error of ε. In the past 20 years, core-
sets have been extensively studied for a variety of machine
learning problems (Har-Peled & Mazumdar, 2004; Feldman
& Langberg, 2011; Munteanu et al., 2018; Chhaya et al.,
2020; Jubran et al., 2021; Huang et al., 2021; Braverman
et al., 2022).

In the robust case, early coresets have either an exponential
size (Feldman & Schulman, 2012) or a weaker bi-criteria ap-
proximation guarantee (Feldman & Langberg, 2011; Huang
et al., 2018). Recently, in the context of clustering with
outliers, Huang et al. (Huang et al., 2023a) construct the
first strong coreset with a similar size to the vanilla case.
Inspired by their work, more strong robust coresets for clus-
tering have been developed (Huang et al., 2025; Jiang &

1

Robust Sparsification via Sensitivity

Lou, 2025). Beyond clustering, Wang et al. (Wang et al.,
2021) constructed local robust coresets for continuous and
bounded functions. These coresets preserve F (x) only for
x within a specific ball, which means that they do not satisfy
the requirements of a strong coreset. This naturally leads to
the following question.

Question 1.1. Consider an optimization problem of the
form minx∈Rd F (x), where F (x) = F1(x) + · · ·+ Fn(x).
Under what conditions can an efficient construction of a
strong ε-coreset of small size be achieved for the robust
version F (m)(x)?

Our answer to Question 1.1 is perhaps surprising. We show
that two simple conditions are sufficient for the existence of
a small coreset for F (m): F (x) has a small vanilla coreset
and has bounded total sensitivity. The first condition is
natural, as the robust coreset extends the concept of a vanilla
coreset. The second condition, based on the existence of
small vanilla coresets, is a mild condition, since a majority
of current vanilla coreset constructions rely on bounded total
sensitivity. We remark that the total sensitivity is a widely
used complexity measure in sparsification problems and has
been a crucial quantity in establishing theoretical guarantees
for coreset sizes across many classical machine learning
problems, including subspace embeddings, regression, PCA,
clustering, and projective clustering (Drineas et al., 2006;
Woodruff, 2014; Feldman & Langberg, 2011; Braverman
et al., 2021a; Woodruff & Yasuda, 2023).

1.1. Problem Definition

Suppose that F = {(f, ωf)} is a finite weighted set of
functions, where each f : Rd → R≥0 is associated with
a weight ωf ≥ 0. The loss function for F is L(F ;x) =∑

(f,ωf)∈F ωf ·f(x) and the robust version of the loss func-
tion with m outliers is defined as

L(m)(F ;x) = min
F ′⊆F

|F\F ′|≤m

∑
(f,ωf)∈F ′

ωf · f(x).

The associated optimization problem is to solve
minx∈Rd L(m)(F ;x).

When ωf = 1 for all f ∈ F , we also say that F is un-
weighted and write F = {f}.

Coresets Suppose that F̃ is a weighted (multi-) subset of
F ; that is, each function in F̃ is also in F and each function
f in F̃ is associated with a weight ωf ≥ 0 (for some f ∈ F ,
multiple f with different weights may appear in F̃).

We say F̃ is an (ε,m)-robust coreset (or simply, an (ε,m)-
coreset) of F if F̃ is a weighted subset of F and it holds for
every x ∈ Rd and every t = 0, 1, . . . ,m that

(1− ε)L(t)(F ;x) ≤ L(t)(F̃ ;x) ≤ (1 + ε)L(t)(F ;x).

An (ε, 0)-coreset is also referred to as a (vanilla) ε-coreset.

The typical way to reduce the scale of the problem is to
solve, instead of the original minx∈Rd L(m)(F ;x), the core-
set version minx∈Rd L(m)(F̃ ;x) if F̃ is an (ε,m)-coreset
of F . The following is a folklore result on the guarantee of
the optimal solution of the coreset version.

Lemma 1.2. Suppose that F̃ is an (ε,m)-robust coreset
of F and ε ∈ (0, 1). Let x̂ = argminx∈Rd L(m)(F̃ ;x)
and x∗ = argminx∈Rd L(m)(F ;x). It holds that
L(m)(F ; x̂) ≤ 1+ε

1−ε L
(m)(F ;x∗).

Below we describe how two classical problems, computing
a subspace embedding and computing a clustering, fit in our
framework.

Subspace Embedding Let p ≥ 1. For a matrix A ∈ Rn×d

(n ≫ d), we say a matrix B ∈ Rm×d with m ≪ n is an
ℓp-subspace embedding for A with distortion parameter ε
if (1− ε)∥Ax∥pp ≤ ∥Bx∥pp ≤ (1 + ε)∥Ax∥pp holds simulta-
neously for all x ∈ Rd. A typical construction of B is sam-
pling rows of A by Lewis weights and rescaling the samples.
This can be viewed within our sparsification framework by
defining fi(x) = |⟨ai, x⟩|p and F = {f1, . . . , fn}, where
ai denotes the i-th row of A, so that L(F ;x) = ∥Ax∥pp.
Suppose that F̃ = {(fij , wij)} is an ε-coreset of F , where
i1, . . . , im ∈ [n] denote the indices of sampled rows, then
one can take the j-th row of B to be bj = aij · w

1/p
ij

. Then
the ε-coreset property gives exactly that B is an ℓp-subspace
embedding for A with distortion parameter ε.

k-Median Coresets Suppose that X = {x1, . . . , xn} are
n points in Rd. Define a set of k centers C = {c1, . . . , ck},
where ci ∈ Rd. The clustering cost of X with respect to C
is defined to be

∑n
i=1 minℓ∥xi − cℓ∥2. The coreset for the

k-median problem is to find a subset X ′ = {xi1 , . . . , xim}
with weights w1, . . . , wm ≥ 0 such that the weighted clus-
tering cost of X ′ approximates the clustering cost of X
for every choice of C; that is,

∑m
j=1 wj minℓ∥xij − cℓ∥2 =

(1±ε)
∑n

i=1 minℓ∥xi−cℓ∥2 for all subsets of C ⊂ Rd with
|C| = k. This again can be viewed within our sparsification
framework by defining fi(c1, . . . , ck) = minj∥xi − cj∥2
and F = {f1, . . . , fn}. An ε-coreset of the k-median prob-
lem is exactly an ε-coreset of F .

1.2. Related Works

Coresets for clustering have been a rich and extensively stud-
ied research area for over 20 years. Stemming from (Har-
Peled & Mazumdar, 2004; Har-Peled & Kushal, 2007), early
coreset algorithms rely on ad-hoc geometric constructions,
giving size bounds that are exponential in the dimension
d. Chen (2009); Langberg & Schulman (2010); Feldman &
Langberg (2011) initiated the use of sampling algorithms in
constructing coresets for clustering, achieving size bounds

2

Robust Sparsification via Sensitivity

polynomial in d. Recently, coresets with size independent
of d have been constructed by employing modern dimension
reduction techniques for clustering and new group sampling
methods (Feldman et al., 2020; Sohler & Woodruff, 2018;
Huang & Vishnoi, 2020; Cohen-Addad et al., 2021; 2022;
Cohen-Addad et al., 2022; Huang et al., 2024).

Beyond robustness, coresets have also been explored in var-
ious other settings to address new challenges in machine
learning. For instance, Bachem et al. (2018); Braverman
et al. (2019) give simultaneous coresets to handle multi-
ple objectives, Braverman et al. (2021b) design coresets
for datasets with missing values, Huang et al. (2021) con-
struct coresets for time series data, and Huang et al. (2019);
Bandyapadhyay et al. (2021); Braverman et al. (2022) con-
sider the setting with fairness constraints.

2. Preliminaries
Notation In this paper, we always assume that the function
set is finite. We use [n] to denote the set {1, . . . , n}. The
notations f ≲ g and f ≳ g indicate f ≤ Cg and f ≥ Cg,
respectively, for some constant C > 0.

For a matrix A, its Frobenius norm is denoted by
∥A∥F := (

∑
i,j a

2
ij)

1/2 and its operator norm by ∥A∥op :=
supx̸=0∥Ax∥2/∥x∥2.

For a random variable X , we write X ∼ D to indicate that
X follows the probability distribution D. For a finite set S,
we denote by Unif(S) the uniform distribution on S. We
denote by Geometric(p) the geometric distribution with
expected value 1/p.

Sensitivities For a weighted set F = {(f, wf)}, the sensi-
tivity of f ∈ F is defined as

σF (f) = sup
x∈Rd

wff(x)∑
(g,wg)∈F wgg(x)

.

The sensitivity of F is defined as

σF =
∑
f∈F

σF (f).

We say that F has total sensitivity T if σF ′ ≤ T for every
F ′ ⊆ F .

We note that it may be difficult to compute the precise
values of sensitivities σF (f). In fact, it suffices to com-
pute an upper bound σ̃F (f) ≥ σF (f) such that σ̃F =∑

f∈F σ̃F (f) = O(σF). To simplify the presentation, we
also refer to σ̃F (f) as sensitivities.

For ℓ2-subspace embeddings, the sensitivity is a classic
quantity called the leverage score. Constant-factor approx-
imation of the leverage scores of a matrix A ∈ Rn×d can
be found in time O(nd+poly(d)) (see, e.g., (Drineas et al.,
2006; Woodruff, 2014)).

3. Our Results and Technical Overview
Our main result is the following robust coreset construction
algorithm.

Theorem 3.1 (Informal statement of Theorem 4.1). There
exists an algorithm, for every loss function F (x) =∑

f∈F f(x) such thatF has total sensitivity T and admits a
vanilla coreset of size Q, constructs with probability at least
0.99 an (ε,m)-coreset for F with size O(Tm

ε · log
Tm
ε)+Q.

When applied to ℓ2 subspace embeddings, this theorem
gives a coreset size of Õ(md

ε log md
ε) + Q. We show in

Section D that a size of Ω(md
ε) is necessary for an (ε,m)-

coreset. Note that an (ε,m)-coreset must also be a vanilla
ε-coreset, which shows that Q is also necessary. Thus our
bound is nearly tight for ℓ2 subspace embeddings.

Building upon our coresets, we develop new algorithms for
robust optimization tasks. For example, we design algo-
rithms for robust regression (Theorem 5.1) and robust PCA
(Theorem 5.3) with a runtime of dO(m)eO(m/ε) + O(nd),
using a sensitivity flattening technique. Additionally, our
coresets can be used to improve existing algorithms, such as
(Simonov et al., 2019). Furthermore, Theorem 3.1 yields a
new coreset for robust k-median. Detailed discussions can
be found in Section 5. We remark that our coreset construc-
tion also extends to another popular setting that removes a
total weight of m instead of exactly m functions of F ; see
Appendix C.

In Section 6, we conduct experiments on real-word datasets
to demonstrate that our coreset constructions are effective
in approximating the loss function and considerably reduce
the running time for robust regression problems while main-
taining a good approximation of the objective function.

3.1. Technical Overview

Our coreset construction algorithm contains two stages. In
the first stage, we identify a small set S ⊂ F containing
“contributing” functions and include S in the coreset with
unit weights. In the second stage, we compute a vanilla core-
set for F \ S and apply a refinement process (Algorithm 2)
to adapt it for robust objectives.

We begin with the construction of S. A function f ∈ A
is called contributing if for some x ∈ Rd, f(x) ≥ ε

m ·
L(m)(A;x). Our goal is to include all contributing functions
in S, since this will ensure that removing any m functions
from F \ S incurs at most m · ε

m = ε relative error. To
do this, we sample each f ∈ F with probability 1

m and
then include in S the functions of Ω(ε) sensitivity within
the sample. We can repeat this procedure sufficiently many
times to ensure that all contributing functions are included.
We need to (i) show for one round that each contributing f
will, with a good probability, survive the sampling and have

3

Robust Sparsification via Sensitivity

Ω(ε) sensitivity within the sample; and (ii) bound the total
number of contributing functions.

We first establish (i). Consider an event E that f survives
the sampling while all outliers of L(m)(A;x) except f do
not. Then Pr(E) ≥ (1− 1

m)m · 1
m = Ω(1

m). By Markov’s
inequality, we know that conditioned on E , with constant
probability, the aggregation of the sample on x is at most
O(1

m)·L(m)(A;x), so the sensitivity of f within the sample
is at least ε

m/O(1
m) = Ω(ε). We have therefore established

(i) with the “good probability” being Ω(1
m).

Next we examine (ii). Since the total sensitivity of F is
at most T , there are O(Tε) functions with sensitivity at
least Ω(ε), which implies that each round returns O(Tε)
functions. If the number of contributing functions is N ,
then by a union bound, we need O(m logN) rounds of
sampling to ensure with constant probability that all con-
tributing functions are included. This implies that N ≤
|S| = O(Tm

ε logN). Solving this inequality for N gives
that N = O(Tm

ε log Tm
ε).

Now, consider the second stage. We begin by constructing
a vanilla ε-coreset D of F \ S, where |D| = Q. A potential
issue is that the weight of a function in D may be too large
and its removal could result in a violation of the coreset
property. To resolve this, we “split” functions in D into
multiple copies, each with a smaller weight. Specifically, we
split each f into ⌈mε · σD(f)⌉ functions. The resulting size
of the modified coreset is at most

∑
f∈D

m
ε · σD(f) + 1 ≤

Tm
ε +Q, which is still affordable. Moreover, by the property

of sensitivity and the guarantee of the first stage that S
contains all contributing functions, we know that removing
any m split functions will incur a total error at most m

m/ε ·
L(D;x) ≤ O(ε) · L(F \ S;x) ≤ O(ε) · L(m)(F ;x).

4. Coreset Construction
Our main result is the following theorem.

Theorem 4.1. Consider a sparsification problem for
F (x) =

∑
f∈F f(x) and ε ∈ (0, 1

2). Suppose that F
has total sensitivity T and there exists an algorithm that
computes a vanilla ε-coreset for F of size Q. Then, Al-
gorithm 3 computes an (ε,m)-robust coreset for F of
size O(Tm

ε · log
Tm
ε) + Q, with probability at least 0.99.

Moreover, if the vanilla coreset algorithm runs in time
t0(n, ε) on n input points and the sensitivity oracle com-
putes the sensitivities of n points in time t1(n), then Al-
gorithm 3, with probability at least 0.99, runs in time

O(t0(|F|, ε)) + t1(
n
m +O(

√
n
m log mT

ε)) ·m log(mT
ε).

Algorithm 1 Uniform(A, ε,m)

Input: A set A of functions, parameters ε and m
Output: A subset D ⊆ A

1: B ← ∅
2: for each f ∈ A, with probability 1

m , add f to B
3: for each f ∈ B, compute the sensitivity σB(f)
4: D ← {f ∈ B : σB(f) ≥ ε

4}
5: Return D

Algorithm 2 Refine(D, ε,m)

Input: A coreset D, parameters ε and m
Output: A refined subset D̃ adapted for the robust opti-

mization problem
1: D̃ ← ∅
2: for (f, ωf) ∈ D do
3: compute the sensitivity σD(f)
4: nf ← ⌈mε · σD(f)⌉
5: Add nf copies of (f, ωf

nf
) to D̃

6: end for
7: Return D̃

4.1. Analysis of Algorithm 3

Let A be a set of functions f : Rd → R≥0. We need the
following definition in our analysis.

Definition 4.2. A function f ∈ A is called contributing if
there exists x ∈ Rd such that f(x) ≥ ε

m · L
(m)(A;x).

The following lemma shows that a fixed contributing func-
tion will be added to D with probability Θ(1/m) in each
repetition of Algorithm 1.

Lemma 4.3. Assume that f is contributing, then with prob-
ability at least 1

5m , the set returned by Uniform(A, ε,m)
contains f .

Proof. By definition, there exists x ∈ Rd such that f(x) ≥
ε
m · L

(m)(A;x). Fix this x. Let L ⊂ A denote the set of
outliers excluded by L(m)(A;x); namely, L consists of the
m functions f in A with largest values of f(x).

Let L′ = L \ {f} so |L′| ≤ m. Consider the event E where
f ∈ B while L′ ∩B = ∅. Then Pr[E] = (1− 1

m)|L
′| · 1

m ≤
1
em . Observe that

E

[∑
h∈B

h(x)

∣∣∣∣∣E
]
= f(x) +

1

m

∑
h∈A\(L∪{f})

hh(x)

≤ f(x) +
1

m
· F (m)(x)

≤ (1 +
1

ε
) · f(x)

≤ 2

ε
· f(x).

4

Robust Sparsification via Sensitivity

Algorithm 3 Coreset(A, ε,m)

Input: A set A of functions, parameters ε and m, and an
algorithm Vanilla(A) to construct an ε-coreset for A

Output: An (ε,m)-robust coreset for A
1: S ← ∅
2: R← Θ(m log Tm

ε)
3: for i = 1, 2, · · · , R do
4: D ← Uniform(A, ε,m)
5: S ← S ∪D
6: end for
7: V ← Vanilla(A \ S)
8: S̃ ← {(f, 1) : f ∈ S}
9: Return S̃ ∪ Refine(V, ε,m).

By Markov’s inequality, with probability at least 1
2 ·

1
em ≥

1
5m , the event E happens and

∑
h∈B h(x) ≤ 4

ε · f(x). This
implies that σB(f) ≥ f(x)∑

h∈B h(x) ≥
ε
4 . Therefore, f is

added to D with probability at least 1
5m .

Lemma 4.4. The number of contributing functions in A is
O(Tm

ε · log
Tm
ε).

Proof. Define a sequence a0 = n, ai = 20Tm
ε · log(2ai−1)

for i ≥ 1. We prove by induction that the number of con-
tributing functions is upper bounded by ai for every i ≥ 0.

The statement is trivial for i = 0, since the total number of
functions is always bounded by n. Now, assume the number
of contributing functions is bounded by ai, we prove that
the number is also bounded by

ai+1 =
20Tm

ε
· log(2ai). (1)

To see this, we remark that for an contributing f ∈ A, a
single repetition of Algorithm 1 returns f with probability
at least 1

5m . Now consider 5m log(2ai) independent repeti-
tions of Uniform(F, ε,m). By a union bound, we see that
with probability

1− ai · (1−
1

5m
)5m log(2ai) ≥ 1− ai ·

1

2ai
=

1

2
,

all contributing functions will be found. Since the total
sensitivity is bounded by T , there are at most 4T

ε func-
tions added into D in each repetition, which implies that
the number of total contributing functions is bounded by
5m log(2ai) · 4Tε = 20Tm

ε · log(2ai). This establishes (1).

We may continue iterating as long as ai+1 ≤ ai; otherwise,
we have ai

log(2ai)
≤ 20Tm

ε and so ai = O(Tm
ε log Tm

ε) as
desired. If the process does not terminate, the sequence
{ai} is a monotone decreasing and positive sequence, thus
converging to a unique limit limi→∞ ai = a. Letting i →
∞ on both sides of (1), we obtain that a

log(2a) = 20Tm
ε ,

which also implies a = O(Tm
ε log Tm

ε), as desired.

We are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let P denote the return of
Coreset(A, ε,m). We first bound |P |. Since the total
sensitivity of F is at most T , at most 4T

ε functions in A
are added into S in each repetition of Algorithm 1. Thus,
|S| = O(Tm

ε log Tm
ε). It remains to bound the set returned

by Algorithm 2. Observe that

|D̃| ≤
∑

(f,ωf)∈D

nf =
∑

(f,ωf)∈D

⌈m
ε
· σD(f)

⌉
≤

∑
(f,ωf)∈D

(m
ε
· σD(f) + 1

)
≤ Tm

ε
+Q.

The coreset size is hence bounded by O(Tm
ε log Tm

ε) +Q.

Next, we prove that P is indeed an (ε,m)-coreset. We shall
show that for every x ∈ Rd and t = 0, . . . ,m, L(t)(P ;x) ∈
(1 ± Cε) · L(t)(F ;x) for some absolute constant C. The
proof will be completed by rescaling ε.

We first prove that L(t)(P ;x) ≤ (1 + Cε)L(t)(A;x). It
suffices to remove at most t items from P and show that
the weighted sum of the remaining items is at most (1 +

Cε)L(t)(A;x).

Let Lx denote the set of outliers excluded by L(t)(P ;x),
then |Lx| ≤ t ≤ m. By Lemma 4.3 and Lemma 4.4, we
know that with constant probability, every contributing Fj

has been added into S. Conditioning on this event,∑
f∈Lx\S

f(x) ≤ |Lx| ·
ε

m
· L(m)(A;x) ≤ ε · L(m)(P ;x)

≤ ε · L(t)(A;x).

Let L′
x = {(f, 1) | f ∈ Lx ∩ S} to be removed from P .

Clearly |L′
x| ≤ t. Since L′

x ⊆ S and Refine(V, F, ε,m)
returns an ε-coreset for A \ S, we have∑

(f,ωf)∈P\L′
x

ωf · f(x)

≤
∑

g∈S\Lx

g(x) + (1 + ε) ·
∑

g∈A\S

g(x)

≤ (1 + ε)
∑

g∈A\(Lx∩S)

g(x)

≤ (1 + ε)

 ∑
g∈A\Lx

g(x) +
∑

g∈Lx\L′
x

g(x)


≤ (1 + 2ε)L(t)(A;x).

We have estalished that L(t)(P ;x) ≤ (1 + Cε)L(t)(A;x).

It remains to prove that L(t)(P ;x) ≥ (1− Cε)L(t)(A;x).
It suffices to ensure that, after removing at most t items

5

Robust Sparsification via Sensitivity

from A, the sum of the remaining items is at most (1 +

Cε)L(t)(P ;x) (where C could be different).

Let Gx denote the set of outliers excluded by L(t)(P ;x).
Let G̃x = {f | (f, 1) ∈ S̃ ∩ Gx} to be removed from A.
Clearly |G̃x| ≤ t. We shall show that∑

f∈A\G̃x

f(x) ≤ (1 + Cε)L(t)(P ;x).

Note that

L(t)(P ;x) =
∑

(f,1)∈S̃\G̃x

f(x) +
∑

f∈P\(G̃x∪S̃)

ωf · f(x)

=
∑

f∈S\Gx

f(x) +
∑

(f,ωf)∈P\S̃

ωf · f(x)−
∑

(f,ωf)∈Gx\S̃

ωf · f(x)

≥
∑

f∈S\Gx

f(x) +
1

1−ε
∑

f∈A\S

f(x)−
∑

(f,ωf)∈Gx\S̃

ωf · f(x),

where we used the fact that P \ S is an ε-coreset of A \ S.
We need to upper bound

∑
(f,ωf)∈Gx\S̃ ωf · f(x). Suppose

that there are n′
f copies of the same f in Gx \ S̃. Then

∑
(f,ωf)∈Gx\S̃

ωf · f(x) =
∑

f∈Gx\S
(f,ωf)∈V

ωfn
′
f

⌈mε σA\S(f)⌉
f(x)

≤
∑

f∈Gx\S
(f,ωf)∈V

n′
fε

m
· ωf · f(x)
σA\S(f)

≤ ε

m
·

∑
f∈Gx\S
(f,ωf)∈V

n′
f ·

∑
(ωg,g)∈V

ωg · g(x)

≤ ε · (1 + ε)
∑

f∈A\S

f(x).

It follows that

L(t)(P ;x) ≥
∑

f∈S\Gx

f(x) +

(
1

1−ε
− ε(1+ε)

)∑
f∈A\S

f(x)

≥
∑

f∈S\Gx

f(x) +
∑

f∈A\S

f(x) ≥
∑

f∈A\G̃x

f(x).

We have completed the proof of the correctness of the core-
set. Next we analyse the runtime.

We begin by analyzing Algorithm 1. Line 1 can be im-
plemented by indexing functions f ∈ A as 1, 2, . . . , n =
|A|, generating independent Geometric(1/m) variables
Z1, Z2, . . . and selecting functions at indices Z1, Z1 + Z2,
Z1+Z2+Z3, and so on. Thus, Line 1 takes O(|B|) time, as-
suming O(1) time to generate a geometric random variable.
Lines 1 and 1 take t1(|B|) and O(|B|) time, respectively.

Hence, the overall runtime of Algorithm 1 is O(t1(|B|)).
By a Chernoff bound, we see that |B| ≤ n

m +O(
√

n
m log 1

δ)

with probability at least 1− δ.

Algorithm 2 runs in time O(
∑

(f,ωf)∈D nf + |D|) =

O(mT/ε+ |D|).

Back to Algorithm 3. By the analysis above, with prob-
ability at least 0.99, the invocation of Uniform in ev-
ery iteration of the for-loop generates a set B of size
|B| ≤ n

m + O(
√

n
m logR). In total, the for-loop runs

in time R · t1(n
m + O(

√
n
m logR)). Line 3 runs in time

t0(n, ε), Line 3 in time O(n) = O(t0(n, ε)) and Line 3
in time O(mT/ε + n). The overall runtime is therefore
O(t0(n, ε)) +R · t1(n

m +O(
√

n
m logR)).

5. Applications
Robust Regression The standard ℓ2-regression problem is
to solve minx∈Rd∥Ax− b∥2, for which a standard approach
to reduce the dimension is to solve instead minx∈Rd∥SAx−
Sb∥2, where S is an ℓ2-subspace embedding matrix for
the concatenated matrix

(
A b

)
. Regarding ℓ2-subspace

embeddings, the total sensitivity T = d and the vanilla
coreset size can be made Q = O(d

ε2) using a poly(n)

time algorithm (Batson et al., 2012) or Q = O(d log d
ε2)

using classical leverage score sampling that runs in time
O(nd+ poly(d) (see, e.g., (Drineas et al., 2006; Woodruff,
2014)). In the interest of runtime, we shall use leverage
score sampling and thus, by Theorem 4.1, the (ε,m)-coreset
size is O(md

ε · log
md
ε + d log d

ε2). Based on our coreset con-
struction, we present Algorithm 4 for robust ℓ2-regression
with m outliers, which is to solve minx∈Rd F (m)(Ax− b),
where F (m)(u) denotes the sum of u2

i except the m largest
coordinates (in absolute values).
Theorem 5.1. Suppose that ε ∈ (0, 1

4). Algorithm 4 returns
an x̃ which satisfies with probability at least 0.9 that

F (m)(Ax̃− b) ≤ (1 + 14ε) min
x∈Rd

F (m)(Ax− b)

The algorithm runs in time dO(m)eO(m/ε) +O(nd).

We need the following lemma, whose proof is deferred to
Appendix A.
Lemma 5.2. Suppose that A ∈ Rn×d and b ∈ Rn, where
the leverage scores of A are bounded by 1/r. Let S ∈
Rn×n be a random diagonal matrix, where Sii =

√
2 with

probability 1/2 and Sii = 0 with probability 1/2. Let x∗ =
argminx∈Rn∥Ax − b∥2 and x̃ = argminx∈Rn∥SAx −
Sb∥2. When r ≳ d log d+ 1/ε, it holds with probability at
least 0.98 that ∥Ax̃− b∥2 ≤ (1 + ε)∥Ax∗ − b∥2.

Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. Let x∗ = argminx∈Rd F (m)(Ax−

6

Robust Sparsification via Sensitivity

Algorithm 4 RobustRegression(A, b, ε,m)

Input: A ∈ Rn×d and b ∈ Rn, parameters ε and m
Output: (1 + ε)-approx. solution to minx F

(m)(Ax− b)
1: (D, {wi})← Coreset((A b), ε,m) {Each row Di,∗ ∈

Rd+1 is associated with weight wi}
2: Rescale each row of D as Di,∗ ←

√
wiDi,∗

3: r ← O(log d+ 1/ε)
4: Duplicate each row of D by r times and rescale by 1√

r
,

yielding D′ = (H ′ y′) {H ′ ∈ Rrn×d and y′ ∈ Rrn}
5: L← 2O(rm)

6: X ← ∅
7: for i = 1, 2, . . . , L do
8: Generate a diagonal matrix S with i.i.d. diagonal

entries Sii ∼ Unif({0,
√
2})

9: Compute x′ = argminx∈Rd ∥SH ′x− Sy′∥2
10: X ← X ∪ {x′}
11: end for
12: Compute x̃← argminx∈XF (rm)∥H ′x− y′∥2
13: Return x̃

b) and D = (H y) (after executing Line 2). Let J denote
the set of the indices of the largest m coordinates of Hx♯−y,
where x♯ = argminx∈Rd F (m)(Hx−y), and J ′ denote the
rm indices in H ′x♯ − y′ that correspond to the indices in J .

Consider the event E that SH ′ contains none of the rows of
indices in J . This event happens with probability 2−rm in
one trial of Line 4, hence it will happen in at least one trial
among L = 2O(rm) trials with probability at least 0.99.

Consider the trial in which E happens. In this case, let
(H ′′ y′′) be the rows of (H ′ y′) whose indices are outside
J ′. It is clear that the leverage scores of H ′′ are at most 1/r.
By Lemma 5.2 and our choice of r, we have with probability
at least 0.98 that

∥H ′′x′ − y′′∥22 ≤ (1 + ε)2 min
x∈Rd
∥H ′′x− y′′∥22

= (1+ε)2∥H ′′x♯−y′′∥22 = (1+ε)2F (rm)(H ′x♯−y′).

It follows that

F (m)(Hx̃−y) = F (rm)(H ′x̃−y′) ≤ F (rm)(H ′x′−y′)
≤ ∥H ′′x′ − y′′∥22 ≤ (1 + ε)2F (rm)(H ′x♯ − y′)

= (1 + ε)2F (m)(Hx♯ − y).

Using the coreset properties and Lemma 1.2, we then have

F (m)(Ax̃− b) ≤ 1

1− ε
F (m)(Hx̃− y)

≤ (1 + ε)2

1− ε
F (m)(Hx♯ − y)

≤ (1 + ε)3

1− ε
F (m)(Ax♯ − b)

≤ (1 + ε)3

1− ε
· 1 + ε

1− ε
F (m)(Ax∗ − b)

≤ (1 + 14ε)F (m)(Ax∗ − b).

This completes the proof of correctness. The overall failure
probability is 0.01 + 0.02 = 0.03, which come from the
event E and Lemma 5.2.

By Theorem 4.1, coreset D has size N = Õ(ε−1md) +
O(ε−2d log d) and thus D′ has size rN . Each iteration of
the for-loop from Line 4 to Line 4 takes time O((rN)3) =
O(poly(md/ε)). The whole for-loop takes the time L ·
poly(md/ε) = dO(m)2O(m/ε), which dominates the run-
time after Line 1. For Line 1, we have t0(n, ε) = O(nd+
poly(d/ε)) and t1(n) = O(nd+ poly(d)) and thus Line 1
takes time O(nd+n log md

ε +poly(md/ε)) with probability
at least 0.99. The claimed overall runtime follows.

Robust PCA Given A ∈ Rn×d, the rank-k PCA of A
is given by AUU⊤, where U ∈ Rd×k has the top-k right
singular vectors of A as columns. This U can also be viewed
as the minimizer to minU∈U∥A − AUU⊤∥F , where U =
{U ∈ Rn×k : U has orthonormal columns}. In the robust
setting, we let F (m)(X) to denote the sum of ∥xi∥22 (where
xi denotes the i-th row of X) except the m largest rows. The
task is to solve minU∈U F (m)(A−AUU⊤). Analogously
to Theorem 5.1, we have
Theorem 5.3. Suppose that ε ∈ (0, 1

4). There is an algo-
rithm with runtime dO(m)eO(m/ε) +O(nd) which outputs
an Ũ satisfying with probability at least 0.9 that

F (m)(AŨŨ⊤ −A) ≤ (1 + 14ε) min
U∈U

F (m)(AUU⊤ −A).

The proof is highly similar to that of Theorem 5.1 and is
therefore postponed to Appendix B.

A popular application of coreset is to be employed as a pre-
processing subroutine to accelerate the existing algorithm.
For example, Simonov et al. (2019) give an nO(d2) time
for PCA with m outliers for any m. For fixed m, we can
first run Algorithm 3 to construct an (ε,m)-coreset S for
robust PCA. So |S| = Õ(dmε−1 + dε−2). Then we run
the algorithm of (Simonov et al., 2019) on S to obtain a
(1 + ε)-approximation with running time (dmε−1)O(d2) +
Õ(nd log(mε−1)).

We remark that Simonov et al. (2019) also prove a lower
bound that rules out any constant-factor approximation in
time f(d)no(d), assuming the ETH. At first glance, this
appears to contradict the two algorithms given above. How-
ever, this lower bound assumes that m can be as large as
Θ(n), in which case our algorithms would also run in time
dn, consistent with the lower bound.

Robust k-median For the k-median problem, the total sen-
sitivity is O(k) (Langberg & Schulman, 2010; Feldman &

7

Robust Sparsification via Sensitivity

1400 1500 2000 2100

0.1

0.2

0.3
Energy dataset

coreset size

em
pi

ri
ca

l
di

st
or

tio
n

pa
ra

m
et

er

1400 1500 2000 2100
0.05

0.1

0.15

0.2 Emission dataset

coreset size

em
pi

ri
ca

l
di

st
or

tio
n

pa
ra

m
et

er

Figure 1: Results of subspace embedding coresets with
m = 10 and ε = 0.25. Blue plots correspond to our coreset
algorithm and the red plots to uniform sampling.

Langberg, 2011) and Q = O(k
ε2 ·min(k1/3, ε−1)) (Cohen-

Addad et al., 2022; Huang et al., 2024). Hence, the coreset
size is O

(
mk
ε · log

mk
ε + k

ε2 ·min(k1/3, ε−1)
)
. In Section C,

we compare our results with existing robust coresets for
clustering (Huang et al., 2023a; 2025).

6. Experiments
We conduct the experiment on two real-world datasets from
the UCI Machine Learning Repository: Appliances En-
ergy Prediction1 (referred to as Energy) and Gas Turbine
Emission2 (Emission). The Energy dataset has dimension
19735× 28 and the Emission dataset 36733× 11.

Coreset Verification We verify that Algorithm 3 produces
an effective coreset for subspace embedding with p = 2.

Recall that for a matrix A ∈ Rn×d, the function set
F consists fi(x) = |⟨ai, x⟩|2, where ai is the i-th row
of A. Fixing parameters ε and m, we indepedently run
Algorithm 3 1000 times. Each run produces a coreset
Dj and we compute its empirical distortion parameter
ε̃j = maxx∈X |L(m)(Dj ;x)/L(m)(F ;x)− 1|, where X ⊂
Rd consists of 5000 samples drawn independently from
N(0, Id). The size ofDj is random and is rounded up to nj ,
the smallest integer multiple of 100, and report ε̃j as the dis-
tortion parameter for the specified coreset size nj (we could
pad Dj with arbitrary unselected f ∈ F to achieve size nj ,
which would only reduce distortion). Finally, we plot the
mean and standard deviation of the distortion parameter for

1https://archive.ics.uci.edu/dataset/374/
appliances+energy+prediction

2https://archive.ics.uci.edu/dataset/551/
gas+turbine+co+and+nox+emission+data+set

Table 1: Runtimes (in seconds) for robust regression on our
coresets and the whole dataset, with m = 10, for the Energy
dataset (top) and the Emission dataset (bottom).

Coreset size Mean Standard deviation
1400 1.542 0.207
1500 1.602 0.214
1600 1.625 0.237
1700 1.673 0.250
1800 1.699 0.225
1900 1.781 0.301
2000 1.805 0.307
2100 1.860 0.317

19734 (whole dataset) 13.981 0.249

Coreset size Mean Standard deviation
650 0.280 0.025
700 0.284 0.024
750 0.289 0.024
800 0.299 0.023
850 0.303 0.023
900 0.315 0.035
950 0.352 0.043
1000 0.396 0.022

36733 (whole dataset) 7.543 0.054

different coreset sizes using all (nj , ε̃j) pairs.

These results are compared with uniform sampling, which,
given a specified size n, uniformly sample n rows of A
to form a coreset B. For each n, we run 100 independent
trials, calculating the empirical distortion parameter ε̃ =
maxx∈X |∥Bx∥22/∥Ax∥22 − 1| as before. The mean and
standard deviation of ε̃ for each n are then plotted.

The results are shown in Figures 1. For the energy dataset,
our coresets consistently achieve a much smaller distortion
than the preset value of ε = 0.25. Additionally, the distor-
tion is significantly lower than that of uniform sampling,
with the mean approximately 40%–50% smaller and also
about one standard deviation smaller. About 10% of the
rows suffice to yield a subspace embedding with a distortion
parameter of at most 0.15. For the Emission dataset, we see
again that the distortion is much lower than the preset value
of ε = 0.25. The mean distortion is about one standard
deviation smaller than that of uniform sampling. About 5%
of the rows achieve a distortion parameter of at most 0.1.

Solving Optimization Problem Now we apply our coresets
to robust regression. Recall that, given A ∈ Rn×d and b ∈
Rn, robust regression seeks to solve minx∈Rd F (m)(Ax−
b), where F (u) is the sum of u2

i , excluding the m largest
coordinates (in absolute value).

To the best of our knowledge, the only algorithms for ro-

8

https://archive.ics.uci.edu/dataset/374/appliances+energy+prediction
https://archive.ics.uci.edu/dataset/374/appliances+energy+prediction
https://archive.ics.uci.edu/dataset/551/gas+turbine+co+and+nox+emission+data+set
https://archive.ics.uci.edu/dataset/551/gas+turbine+co+and+nox+emission+data+set

Robust Sparsification via Sensitivity

1400 2100

0.01

0.02

1400 2100

0.2

0.3

0.4

0.5

1400 2100

0.2

0.3

0.4

0.5

Figure 2: Robust regression on the Energy dataset with m = 10. Subplots show the relative error of the following quantities.
Left: robust loss function F (m), Middle: ℓ∞-norm, Right: ℓ2-norm.

650 1000

0.01
0.02
0.03
0.04
0.05

650 1000

0.01
0.02
0.03
0.04
0.05

650 1000

0.01
0.02
0.03
0.04
0.05

Figure 3: Robust regression on the Emission dataset with m = 10. Subplots show the relative error of the following
quantities. Left: robust loss function F (m), Middle: ℓ∞-norm, Right: ℓ2-norm.

bust ℓ2-regression with theoretical runtime guarantees that
are substantially better than

(
n
m

)
are that of Simonov et al.

(2019) and our Algorithm 4. However, both remain computa-
tionally expensive, with runtimes exponential in d2 and m/ε,
respectively. The robust ℓ2-regression problem, also known
as the least trimmed squares, has a long history of research.
A popular heuristic approach is FastLTS3 (Rousseeuw &
van Driessen, 2006), which, for example, is implemented in
Maple’s statistics package (MapleSoft). We use FastLTS in
our experiments.

We perform 1000 trials with different coresets, solving the
regression problem using FastLTS for each coreset, yielding
solutions x̃j for j = 1, . . . , 1000. We also solve the original
regression problem on the full data matrix using FastLTS to
obtain a solution x̂. Next, we evaluate the approximation of
the objective function |F (m)(Ax̃j − b)/F (m)(Ax̂− b)− 1|
as well as the approximation of the solution in ℓ2 and ℓ∞
norms: ∥x̃j− x̂∥2/∥x̂∥2 and ∥x̃j− x̂∥∞/∥x̂∥∞. Finally, we
plot these quantities against the size of the coresets (rounded
to the nearest multiple of 100 for the Energy dataset and the
nearest multiple of 50 for the Emission dataset) and compare
with the results using uniform sampling. We also report
the runtimes4 on our coresets of different sizes (including
computing the coresets) as well as for the entire dataset. The
runtime for the entire dataset is averaged over 10 trials.

The results for the Energy dataset are presented in Figure 2

3FastLTS is theoretically guaranteed to converge to the optimal
solution but the convergence rate not understood. In practice, the
parameters are chosen heuristically.

4All experiments were run on a machine with an Intel i5-
1165G7 @ 2.80GHz CPU and 16 GB memory using Python ver-
sion 3.12.8.

and Table 1. We observe that the runtimes on coresets
are substantially smaller. Additionally, our coresets signif-
icantly outperform uniform sampling in terms of the ob-
jective function, achieving lower mean relative errors and
smaller standard deviations. Our coresets achieve a mean
relative error of the objective function value in the range of
0.01 and 0.02 with coreset sizes of only 7.1% to 10.6% of
the full dataset, significantly outperforming uniform sam-
pling by at least one standard deviation. While the objective
function is well-approximated, the solution approximation
shows a larger relative error of approximately 0.25–0.3. We
hypothesize that this is partly due to the large condition
number of the data matrix (≈ 2878).

The results for robust regression on the Emission dataset
are presented in Figure 3 and Table 1. As with the Energy
dataset, we observe a substantial reduction in runtimes when
using coresets. Once again, our coresets significantly out-
perform uniform sampling in terms of the objective function.
The mean relative error of the objective function decreases
from 0.02 to 0.01 as the coreset size increases from 2%
to 2.7% of the data size. The solution error in both ℓ∞
and ℓ2 norms are similar for both our coresets and uniform
sampling, with mean relative errors around 0.03. We hy-
pothesize that this is partly due to x̂ having predominantly
small coordinates except for one, making it relatively easy
to approximate. However, small differences in the approxi-
mation can result in much larger differences in the objective
function value.

9

Robust Sparsification via Sensitivity

Acknowledgements
The authors would like to thank the anonymous reviewers
for their helpful suggestions, particularly regarding the ex-
panded discussion on related work. C.W. In is supported
by an NTU research scholarship. Y. Li is supported in
part by, and X. Xuan is supported by, Singapore Ministry
of Education AcRF Tier 2 grant MOE-T2EP20122-0001.
D.P. Woodruff is supported in part by a Simons Investigator
Award and Office of Naval Research (ONR) award number
N000142112647.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Andersen, R. Modern Methods for Robust Regression. Quan-

titative Applications in the Social Sciences. SAGE Publi-
cations, Inc., 2008.

Bachem, O., Lucic, M., and Lattanzi, S. One-shot coresets:
The case of k-clustering. In AISTATS, volume 84 of
Proceedings of Machine Learning Research, pp. 784–792.
PMLR, 2018.

Bandyapadhyay, S., Fomin, F. V., and Simonov, K. On
coresets for fair clustering in metric and euclidean spaces
and their applications. In ICALP, volume 198 of LIPIcs,
pp. 23:1–23:15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021.

Batson, J., Spielman, D. A., and Srivastava, N. Twice-
ramanujan sparsifiers. SIAM Journal on Computing, 41
(6):1704–1721, 2012. doi: 10.1137/090772873.

Braverman, V., Jiang, S. H., Krauthgamer, R., and Wu,
X. Coresets for ordered weighted clustering. In ICML,
volume 97 of Proceedings of Machine Learning Research,
pp. 744–753. PMLR, 2019.

Braverman, V., Feldman, D., Lang, H., Statman, A., and
Zhou, S. Efficient coreset constructions via sensitiv-
ity sampling. In Balasubramanian, V. N. and Tsang,
I. (eds.), Proceedings of The 13th Asian Conference
on Machine Learning, volume 157 of Proceedings of
Machine Learning Research, pp. 948–963. PMLR, 17–
19 Nov 2021a. URL https://proceedings.mlr.
press/v157/braverman21a.html.

Braverman, V., Jiang, S., Krauthgamer, R., and Wu, X. Core-
sets for clustering with missing values. In Ranzato, M.,
Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan,

J. W. (eds.), Advances in Neural Information Processing
Systems, volume 34, pp. 17360–17372. Curran Asso-
ciates, Inc., 2021b. URL https://proceedings.
neurips.cc/paper/2021/file/
90fd4f88f588ae64038134f1eeaa023f-Paper.
pdf.

Braverman, V., Cohen-Addad, V., Jiang, S., Krauthgamer,
R., Schwiegelshohn, C., Toftrup, M. B., and Wu, X. The
power of uniform sampling for coresets. In 62nd IEEE
Annual Symposium on Foundations of Computer Science,
FOCS 2022. IEEE Computer Society, 2022.

Charikar, M., Khuller, S., Mount, D. M., and Narasimhan,
G. Algorithms for facility location problems with outliers.
In SODA, volume 1, pp. 642–651. Citeseer, 2001.

Chen, K. A constant factor approximation algorithm for
k-median clustering with outliers. In Proceedings of the
nineteenth annual ACM-SIAM symposium on Discrete
algorithms, pp. 826–835, 2008.

Chen, K. On coresets for k-median and k-means clustering
in metric and euclidean spaces and their applications.
SIAM Journal on Computing, 39(3):923–947, 2009.

Chhaya, R., Dasgupta, A., and Shit, S. On coresets for
regularized regression. In International conference on
machine learning, pp. 1866–1876. PMLR, 2020.

Cohen-Addad, V., Saulpic, D., and Schwiegelshohn, C. A
new coreset framework for clustering. In STOC, pp. 169–
182. ACM, 2021.

Cohen-Addad, V., Green Larsen, K., Saulpic, D.,
Schwiegelshohn, C., and Sheikh-Omar, O. A. Improved
coresets for Euclidean k-means. Advances in Neural
Information Processing Systems, 35:2679–2694, 2022.

Cohen-Addad, V., Larsen, K. G., Saulpic, D., and
Schwiegelshohn, C. Towards optimal lower bounds for
k-median and k-means coresets. In STOC, pp. 1038–1051.
ACM, 2022.

Drineas, P., Mahoney, M. W., and Muthukrishnan, S. Sam-
pling algorithms for l2 regression and applications. In Pro-
ceedings of the Seventeenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithm, SODA ’06, pp. 1127–1136,
USA, 2006. Society for Industrial and Applied Mathe-
matics. ISBN 0898716055.

Feldman, D. and Langberg, M. A unified framework
for approximating and clustering data. In STOC, pp.
569–578. ACM, 2011. https://arxiv.org/abs/
1106.1379.

10

https://proceedings.mlr.press/v157/braverman21a.html
https://proceedings.mlr.press/v157/braverman21a.html
https://proceedings.neurips.cc/paper/2021/file/90fd4f88f588ae64038134f1eeaa023f-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/90fd4f88f588ae64038134f1eeaa023f-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/90fd4f88f588ae64038134f1eeaa023f-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/90fd4f88f588ae64038134f1eeaa023f-Paper.pdf
https://arxiv.org/abs/1106.1379
https://arxiv.org/abs/1106.1379

Robust Sparsification via Sensitivity

Feldman, D. and Schulman, L. J. Data reduction for
weighted and outlier-resistant clustering. In Proceed-
ings of the twenty-third annual ACM-SIAM symposium
on Discrete Algorithms, pp. 1343–1354. SIAM, 2012.

Feldman, D., Schmidt, M., and Sohler, C. Turning big
data into tiny data: Constant-size coresets for k-means,
pca, and projective clustering. SIAM J. Comput., 49(3):
601–657, 2020.

Har-Peled, S. and Kushal, A. Smaller coresets for k-median
and k-means clustering. Discret. Comput. Geom., 37(1):
3–19, 2007.

Har-Peled, S. and Mazumdar, S. On coresets for k-means
and k-median clustering. In STOC, pp. 291–300. ACM,
2004. https://arxiv.org/abs/1810.12826.

Huang, L. and Vishnoi, N. K. Coresets for clustering in
Euclidean spaces: importance sampling is nearly optimal.
In STOC, pp. 1416–1429. ACM, 2020.

Huang, L., Jiang, S. H., Li, J., and Wu, X. Epsilon-coresets
for clustering (with outliers) in doubling metrics. In
FOCS, pp. 814–825. IEEE Computer Society, 2018.

Huang, L., Jiang, S. H., and Vishnoi, N. K. Coresets for
clustering with fairness constraints. In NeurIPS, pp. 7587–
7598, 2019.

Huang, L., Sudhir, K., and Vishnoi, N. Coresets for
time series clustering. In Ranzato, M., Beygelzimer,
A., Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems,
volume 34, pp. 22849–22862. Curran Associates,
Inc., 2021. URL https://proceedings.
neurips.cc/paper/2021/file/
c115ba9e04ab27fbbb664f932112246d-Paper.
pdf.

Huang, L., Jiang, S. H., Lou, J., and Wu, X. Near-optimal
coresets for robust clustering. ICLR, 2023a.

Huang, L., Jiang, S. H.-C., Lou, J., and Wu, X. Near-
optimal coresets for robust clustering. In The Eleventh
International Conference on Learning Representations,
2023b. URL https://openreview.net/forum?
id=Nc1ZkRW8Vde.

Huang, L., Li, J., and Wu, X. On optimal coreset construc-
tion for euclidean (k, z)-clustering. In Proceedings of the
56th Annual ACM Symposium on Theory of Computing,
pp. 1594–1604, 2024.

Huang, L., Li, J., Lu, P., and Wu, X. Coresets for constrained
clustering: General assignment constraints and improved
size bounds. In SODA, 2025.

Jiang, S. H.-C. and Lou, J. Coresets for robust clustering
via black-box reductions to vanilla case. ICALP, 2025.

Jubran, I., Sanches Shayda, E. E., Newman, I. I., and Feld-
man, D. Coresets for decision trees of signals. Advances
in Neural Information Processing Systems, 34:30352–
30364, 2021.

Krishnaswamy, R., Li, S., and Sandeep, S. Constant ap-
proximation for k-median and k-means with outliers via
iterative rounding. In Proceedings of the 50th annual
ACM SIGACT symposium on theory of computing, pp.
646–659, 2018.

Langberg, M. and Schulman, L. J. Universal epsilon-
approximators for integrals. In SODA, pp. 598–607.
SIAM, 2010.

MapleSoft. Least trimmed squares. https:
//www.maplesoft.com/support/help/
maple/view.aspx?path=Statistics%
2FLeastTrimmedSquares#references. Last
accessed: 25 Jan 2025.

Munteanu, A., Schwiegelshohn, C., Sohler, C., and
Woodruff, D. On coresets for logistic regression. Ad-
vances in Neural Information Processing Systems, 31,
2018.

Rousseeuw, P. J. Regression techniques with high break-
down point. In Mathematical Statistics and Applications,
pp. 283–297. Springer Dordrecht, 1985.

Rousseeuw, P. J. and van Driessen, K. Computing LTS
regression for large data sets. Data Min. Knowl. Discov.,
12(1):29–45, 2006. doi: 10.1007/S10618-005-0024-4.

Simonov, K., Fomin, F., Golovach, P., and Panolan, F.
Refined complexity of PCA with outliers. In Chaud-
huri, K. and Salakhutdinov, R. (eds.), Proceedings of
the 36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learning
Research, pp. 5818–5826. PMLR, 09–15 Jun 2019.
URL https://proceedings.mlr.press/v97/
simonov19a.html.

Sohler, C. and Woodruff, D. P. Strong coresets for k-median
and subspace approximation: Goodbye dimension. In
FOCS, pp. 802–813. IEEE Computer Society, 2018.

Wang, Z., Guo, Y., and Ding, H. Robust and fully-dynamic
coreset for continuous-and-bounded learning (with out-
liers) problems. Advances in Neural Information Process-
ing Systems, 34:14319–14331, 2021.

Woodruff, D. and Yasuda, T. Sharper bounds for ℓp sensi-
tivity sampling. In Krause, A., Brunskill, E., Cho, K.,

11

https://arxiv.org/abs/1810.12826
https://proceedings.neurips.cc/paper/2021/file/c115ba9e04ab27fbbb664f932112246d-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/c115ba9e04ab27fbbb664f932112246d-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/c115ba9e04ab27fbbb664f932112246d-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/c115ba9e04ab27fbbb664f932112246d-Paper.pdf
https://openreview.net/forum?id=Nc1ZkRW8Vde
https://openreview.net/forum?id=Nc1ZkRW8Vde
https://www.maplesoft.com/support/help/maple/view.aspx?path=Statistics%2FLeastTrimmedSquares#references
https://www.maplesoft.com/support/help/maple/view.aspx?path=Statistics%2FLeastTrimmedSquares#references
https://www.maplesoft.com/support/help/maple/view.aspx?path=Statistics%2FLeastTrimmedSquares#references
https://www.maplesoft.com/support/help/maple/view.aspx?path=Statistics%2FLeastTrimmedSquares#references
https://proceedings.mlr.press/v97/simonov19a.html
https://proceedings.mlr.press/v97/simonov19a.html

Robust Sparsification via Sensitivity

Engelhardt, B., Sabato, S., and Scarlett, J. (eds.), Pro-
ceedings of the 40th International Conference on Ma-
chine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 37238–37272. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/
v202/woodruff23a.html.

Woodruff, D. P. Sketching as a tool for numerical linear
algebra. Foundations and Trends in Theoretical Computer
Science, 10(1–2):1–157, 2014.

12

https://proceedings.mlr.press/v202/woodruff23a.html
https://proceedings.mlr.press/v202/woodruff23a.html

Robust Sparsification via Sensitivity

A. Proof of Lemma 5.2
Without loss of generality, we may assume that A has orthonormal columns. By the stardard proof for approximate regression
such as that of Theorem 2.16 in (Woodruff, 2014), it suffices to assume that A has orthonormal columns and show that with
probability at least 0.98, (i) ∥A⊤S⊤SA− I∥op ≤ 1/2 and (ii) ∥A⊤S⊤Sv∥2 ≤

√
ε∥v∥2 for a specific vector v ∈ Rn such

that A⊤v = 0.

We first show (i). Let ai denote the i-th row of A (viewed as a column vector), then

A⊤S⊤SH − I = A⊤S⊤SH −A⊤A =

n∑
i=1

ξiaia
⊤
i ,

where ξi’s are i.i.d. Rademacher variables. We also have ∥aia⊤i ∥op = ∥ai∥22 ≤ 1/r and ∥
∑

i(aia
⊤
i)

2∥op =
∥
∑

i ai(a
⊤
i ai)a

⊤
i ∥op ≤ (1/r)∥

∑
i aia

⊤
i ∥op = (1/r)∥I∥op = 1/r. It follows from matrix Bernstein inequality that

Pr

{
∥A⊤S⊤SH − I∥op >

1

2

}
≤ 2de−cr ≤ 0.01

(where c > 0 is an absolute constant), provided that r ≳ log d.

Next we show (ii). Let {ηi} be i.i.d. uniform variables on {0, 1}. We can then write

∥A⊤S⊤Sv∥22 =

d∑
i=1

∑
j

2ηjajivj

2

= 4
∑
i

∑
j,ℓ

ηjηℓajiaℓivjvℓ

= 4
∑
j,ℓ

ηjηℓ⟨aj , aℓ⟩vjvℓ

= 4
∑
j,ℓ

ξj + 1

2
· ξℓ + 1

2
· ⟨aj , aℓ⟩vjvℓ

=
∑
j,ℓ

ξjξℓ⟨aj , aℓ⟩vjvℓ +
∑
j

ξj

〈
ajvj ,

∑
ℓ

aℓvℓ

〉

+
∑
ℓ

ξℓ

〈∑
j

ajvj , aℓvℓ

〉
+

〈∑
j

ajvj ,
∑
ℓ

aℓvℓ

〉
.

Since AT v = 0, we know that
∑

j ajvj = 0 and so

∥A⊤S⊤Sv∥22 =
∑
j,ℓ

ξjξℓ⟨aj , aℓ⟩vjvℓ,

which is a quadratic form w.r.t. Rademacher variables ξi and

E∥A⊤S⊤Sv∥22 =
∑
j,ℓ

E(ξjξℓ)⟨aj , aℓ⟩vjvℓ =
∑
j

⟨aj , aj⟩v2j ≤
∥v∥22
r

Let G be a matrix with Gj,ℓ = ⟨aj , aℓ⟩vjvℓ. We can calculate

∥G∥2F =
∑
j,ℓ

⟨aj , aℓ⟩2v2j v2ℓ ≤
∑
j,ℓ

∥aj∥2∥aℓ∥2v2j v2ℓ ≤
1

r2

∑
j

v2j

2

=
1

r2
∥v∥42

and

∥G∥op = ∥A⊤(diag(v))2A∥op = sup
∥x∥2=1

∥diag(v)Ax∥22

13

Robust Sparsification via Sensitivity

≤ ∥v∥22 sup
∥x∥2=1

max
i
⟨ai, x⟩2

≤ ∥v∥22 sup
∥x∥2=1

max
i
∥ai∥22∥x∥22

≤ 1

r
∥v∥22

It follows from Hanson-Wright inequality that

Pr
{∣∣∥A⊤S⊤Sv∥22 − E∥A⊤S⊤Sv∥22

∣∣ ≥ t
}
≤ 2 exp

(
−cmin

{
t2

∥v∥42/r2
,

t

∥v∥22/r

})
Setting t = C∥v∥22/r (where C is some absolute constant), we see that with probability at least 0.99,

∥A⊤S⊤Sv∥22 ≤
∥v∥22
r

+
C∥v∥22

r
≤ ε∥v∥22,

provided that r ≥ (C + 1)/ε, establishing (ii).

B. Proof of Theorem 5.3
We present the algorithm in Algorithm 5.

Algorithm 5 RobustPCA(A, ε,m)

Input: A ∈ Rn×d, parameters ε and m
Output: (1 + ε)-approx. solution to minU∈U F (m)(AUU⊤ −A)

1: (D, {wi})← Coreset(A, ε,m) {Each row Di,∗ ∈ Rd is associated with weight wi}
2: Rescale each row of D as Di,∗ ←

√
wiDi,∗ and set all weights to be 1

3: r ← O(log d+ 1/ε)
4: Duplicate each row of D by r times and rescale by 1√

r
, yielding D′

5: L← 2O(rm)

6: X ← ∅
7: for i = 1, 2, . . . , L do
8: S ← random diagonal matrix with i.i.d. diagonal elements such that Sii is uniform on {0,

√
2}

9: Compute U ′ = argminU∈U ∥SD′UU⊤ − SD′∥F
10: X ← X ∪ {U ′}
11: end for
12: Compute Ũ ← argminU∈X F (rm)(D′UU⊤ −D′)

13: Return Ũ

To begin, we can write ∥AX −A∥2F as

∥AX −A∥2F =

n∑
i=1

∥aiX − ai∥22 =:

n∑
i=1

fi(X)

where ai denotes the i-th row of A. We first show that the sensitivities for fi(X) is the i-th leverage score of A. Let
A = QR be the QR decomposition, where Q ∈ Rn×d has orthonormal columns and R is invertible, then

σfi = sup
X:AX ̸=0

∥e⊤i QRX∥22
∥QRX∥2F

= sup
X:QX ̸=0

∥e⊤i QX∥22
∥QX∥2F

.

Since Q has orthonormal columns, we know that ∥QX∥2F = ∥X∥2F . Also, ∥e⊤i QX∥22 ≤ ∥e⊤i Q∥22∥X∥22, thus

σfi ≤ ∥e⊤i Q∥22,

14

Robust Sparsification via Sensitivity

where the equality is attained when X =
(
Q⊤ei Q⊤ei · · · Q⊤ei

)
. Therefore, σfi = ∥e⊤i Q∥22, which is exactly the

i-th leverage score of A. This justifies Line 1 of the algorithm.

We also need to show an analogy of Lemma 5.2 for approximate PCA, which we state formally below.

Lemma B.1. Suppose that A ∈ Rn×d and its leverage scores are bounded by 1/r. Let S ∈ Rn×n be a random diagonal
matrix, where Sii =

√
2 with probability 1/2 and Sii = 0 with probability 1/2. Let U∗ = argminU∈U∥AUU⊤ − A∥F

and Ũ = argminU∈U∥SAUU⊤ − SU∥2.

When r ≳ d log d+ 1/ε, it holds with probability at least 0.98 that

∥AŨŨ⊤ −A∥F ≤ (1 + ε)∥AU∗(U∗)⊤ −A∥F .

Proof. The proof is nearly identical to that of Lemma 5.2 except that we need now to verify that ∥A⊤S⊤SV ∥F ≤
√
ε∥V ∥F

for a specific matrix V ∈ Rn×d such that A⊤V = 0. Write V =
(
v1 v2 · · · vd

)
, we have ∥A⊤S⊤SV ∥2F =∑d

i=1∥A⊤S⊤Svi∥22. It follows from the calculations in the proof of Lemma 5.2 that

∥A⊤S⊤SV ∥2F =
∑
j,ℓ

ξjξℓ⟨aj , aℓ⟩
∑
i

(vi)j(vi)ℓ.

Thus,

E∥A⊤S⊤SV ∥2F ≤
∑
i

∥vi∥22
r

=
∥V ∥2F
r

.

Now we can write G =
∑

i Gi, where (Gi)j,ℓ = ⟨aj , aℓ⟩(vi)j(vi)ℓ and so

∥G∥2F ≤
1

r2

∑
i

∑
j

(vi)
2
j

2

≤ 1

r2

∑
i

∑
j

(vi)
2
j

2

=
1

r2
∥V ∥4F

∥G∥op ≤
∑
i

∥Gi∥op ≤
1

r

∑
i

∥vi∥22 =
1

r
∥V ∥2F .

The desired result follows from Hanson-Wright inequality as in the proof of Lemma 5.2.

The remainder of the proof is nearly identical to that of Theorem 5.1, so we just give a sketch below. Let

U∗ = min
U∈U

F (m)(AUU⊤ −A), U ♯ = min
U∈U

F (m)(DUU⊤ −D).

Define J to be the set of indices of the largest m rows (in ℓ2 norm) of DUU⊤ − D and J ′ to be the rm indices in
D′UU⊤ −D′ that correspond to the indices in J .

Consider the event E that SD′ contains none of the rows of indices in J ′. With probability at least 0.99, this event happens
in at least one of the L trials.

Consider the trial in which E happens. Let D′′ be the resulting matrix from D′ after removing rows of indices in J ′. By the
preceding lemma and our choice of r, it holds with probability at least 0.98 that

∥D′′U ′(U ′)⊤ −D′′∥2F ≤ (1 + ε)2F (rm)(D′U ♯(U ♯)⊤ −D′).

It follows that

F (m)(DŨŨ⊤ −D) = F (rm)(D′Ũ Ũ⊤ −D′) ≤ (1 + ε)2F (rm)(D′U ♯(U ♯)⊤ −D′) = (1 + ε)2F (m)(DU ♯(U ♯)⊤ −D).

Using the coreset properties, we have

F (m)(AŨŨ⊤ −A) ≤ 1

1− ε
F (m)(DŨŨ⊤ −D) ≤ (1 + ε)2

1− ε
F (m)(DU ♯(U ♯)⊤ −D)

≤ (1 + ε)2

1− ε
F (m)(DU∗(U∗)⊤ −D)

15

Robust Sparsification via Sensitivity

≤ (1 + ε)3

1− ε
F (m)(AU∗(U∗)⊤ −A)

≤ (1 + 7ε)F (m)(AU∗(U∗)⊤ −A)

This completes the proof of correctness.

The analysis of the failure probability and the runtime is identical to the proof of Theorem 5.1, where we compute the SVD
of SD′ to find U ′.

C. Partial Removal Model
In our definition, the robust loss function removes m functions regardless of their weights, which we will refer to as
the full removal model. In clustering (Huang et al., 2023b; 2025), an alternative definition has been used, which allows
partial removal. Instead of removing exactly m functions, this definition removes a total weight of m. Formally, let
F = {(fi, ωi) | i ∈ [n]} be a weighted set of functions. The robust loss function is then defined as

L(m)(F ;x) = min
w′:

0≤w′≤w,
∥w−w′∥1≤m

n∑
i=1

w′
ifi(x).

Here, we write w′ ≤ w for two vectors w,w′ ∈ Rn to mean w′
i ≤ wi for every i ∈ [n].

Our main result is the following theorem, which shows that our coreset algorithm also works under this partial removal
model.

Theorem C.1. For every ε ∈ (0, 1
4) and m ∈ [n], the output of Algorithm 3 is also an (ε,m)-coreset for F under partial

removal model with constant probability.

Proof. As in the proof of Theorem 4.1, we condition on the event that all contributing functions are in S, which happens
with constant probability.

Let P denote the output of Coreset(F, ε,m). We shall show that P is an (ε,m)-coreset under the partial removal model;
that is, for every x ∈ Rd and t ∈ {0, · · · ,m}, it holds that L(t)(P ;x) ∈ (1± Cε) · L(t)(A;x) for some absolute constant
C > 0.

We first prove that L(t)(P ;x) ≤ (1 + Cε) · L(t)(A;x). Let Lx denote the set of outliers5 excluded by L(t)(A;x), then
|Lx| ≤ t. Let L̃x = {(f, 1) | f ∈ Lx}. We claim that it suffices to prove that∑

(f,1)∈S̃\L̃x

f(x) +
∑

(f,ωf)∈P\S̃

ωf · f(x) ≤ (1 + 3ε)L(t)(A;x). (2)

To see this, notice that the total weight of L̃x is at most 1 · |Lx| ≤ t, thus the left-hand-side of (2) is at least L(t)(P ;x).

To prove (2), we begin by noting that ∑
(f,1)∈S̃\L̃x

f(x) =
∑

f∈S\Lx

f(x). (3)

Next, it remains to show that ∑
(f,ωf)∈P\S̃

ωf · f(x) ≤ (1 + ε)
∑

f∈(A\S)\Lx

f(x) + 2εL(t)(A;x), (4)

which, when combined with (3), will give exactly (2).

To prove (4), we note that P \ S̃ is an ε-coreset of A \ S by construction, so∑
(f,ωf)∈P\S̃

ωf · f(x)

5Since all functions in A have unit weights, we can assume without loss of generality that no outlier is partially removed.

16

Robust Sparsification via Sensitivity

≤ (1 + ε)
∑

f∈A\S

f(x) (5)

= (1 + ε)
∑

f∈(A\S)\Lx

f(x) + (1 + ε)
∑

f∈Lx∩(A\S)

f(x) (6)

≤ (1 + ε)
∑

f∈(A\S)\Lx

f(x) + (1 + ε) · t · ε
m
L(t)(A;x) (7)

≤ (1 + ε)
∑

f∈(A\S)\Lx

f(x) + 2εL(t)(A;x). (8)

Here, (5) follows from the coreset property, (6) from the relationship of sets, (7) from the definition of interesting functions
and the conditioning on the event that all contributing functions have been added into S, and (8) from the fact that ε ≤ 1

4 < 1.

It remains to prove that L(t)(A;x) ≤ (1 + Cε) · L(t)(P ;x) for some absolute constant C > 0. Let ω′ ∈ R|P | denote the
weight vector induced by L(t)(P ;x), namely L(t)(P ;x) =

∑
(f,ω′

f)∈P ω′
f · f , 0 ≤ ω′ ≤ ω, and ∥ω − ω′∥1 ≤ t.

Let ω′′
f = ω′

f for each f ∈ S and ω′′
f = 1 for each f ∈ A\S. We note that 0 ≤ ω′′ ≤ 1 and ∥1−ω′′∥1 =

∑
f∈S(1−ω′

f) ≤
∥ω − ω′∥1 ≤ t. This means that ω′′ is a valid weight vector for L(t)(A;x) and we can proceed as

L(t)(A;x) ≤
∑
f∈A

ω′′
f · f(x)

=
∑
f∈S

ω′′
f · f(x) +

∑
f∈A\S

ω′′
f · f(x)

≤
∑

(f,1)∈S̃

ω′
f · f(x) +

∑
f∈A\S

f(x)

≤
∑

(f,1)∈S̃

ω′
f · f(x) + (1 + 2ε)

∑
(f,ωf)∈P\S̃

ωf · f(x).

We claim that ∑
(f,ωf)∈P\S̃

ωf · f(x) ≤
∑

(f,ωf)∈P\S̃

ω′
f · f(x) + εL(t)(A;x). (9)

It then follows that
L(t)(A;x) ≤ (1 + 2ε)

∑
(f,ωf)∈P

ω′
f · f(x) + ε(1 + 2ε)L(t)(A;x),

which implies that (recalling that ε ∈ (0, 1/4))

L(t)(A;x) ≤ 1 + 2ε

1− ε(1 + 2ε)
L(t)(P ;x)

≤ (1 + 6ε)L(t)(P ;x).

Now we prove our claim (9). We have that∑
(f,ωf)∈P\S̃

ωf · f(x)

≤
∑

(f,ωf)∈P\S̃

ω′
f · f(x) + ∥ω − ω′∥1 · sup

(f,ωf)∈P\S̃
f(x)

≤
∑

(f,ωf)∈P\S̃

ω′
f · f(x) + t · ε

m
· L(t)(A;x)

≤
∑

(f,ωf)∈P\S̃

ω′
f · f(x) + ε · L(t)(A;x).

The proof is now complete.

17

Robust Sparsification via Sensitivity

As a corollary of the theorem, we obtain an improved coreset size for robust k-median under the partial removal model when
the number of outliers is small. The current state-of-the-art (ε,m)-coreset under this model has size m+ Õ(k2ε−4) (Huang
et al., 2025). In the preceding section, we demonstrated that for robust k-median a coreset size under the full removal model,
the coreset size is O

(
mk
ε log mk

ε + k
ε2 ·min(k1/3, ε−1)

)
. By Theorem C.1, this result also holds for the partial removal

model. This improves upon the result in (Huang et al., 2025) when m = o(kε−3).

D. Lower Bound for Subspace Embedding
We prove a lower bound on the size of the robust coreset for subspace embedding. Let t = ⌊mε ⌋. We define a(k−1)d+i = ei
for every k ∈ [t] and i ∈ [d]. Suppose that the matrix A has rows a1, a2, . . . , atd and we let Fi(x) = |⟨ai, x⟩|2. Our main
result is the following theorem.

Theorem D.1. Any (ε,m)-coreset for F (x) =
∑td

i=1 Fi(x) has size at least md
4ε .

Proof. Let D be an (ε,m)-coreset for F . Define Di = {(ωf , f) ∈ D | f(x) = |⟨ei, x⟩|2}, i ∈ [d]. So D =
⋃d

i=1 Di. Let
F̃ (x) =

∑
(ωf ,f)∈D ωf · f(x).

Since F (ei) = t and
∑

(ωf ,f)∈D f(ei) =
∑

(ωf ,f)∈Di
ωf , by the coreset property F̃ (x) ≤ (1 + ε) · F (x), we have that,∑

(ωf ,f)∈Di

ωf ≤ (1 + ε) · t.

If |Di| ≤ m
4ε , we know that

F̃ (m)(ei) ≤ |D| −m

|D|
·

∑
(ωf ,f)∈Di

ωf

≤
m
4ε −m

m
4ε

· (1 + ε) · t

≤ (1− 3ε) · t

= (1− 3ε) · t

t−m
· (t−m)

≤ (1− 3ε) ·
m
ε

m
ε −m

· (t−m)

=
1− 3ε

1− ε
· F (m)(ei)

≤ (1− 2ε) · F (m)(ei).

But the coreset property asserts that F̃ (m)(ei) ≥ (1 − ε) · F (m)(ei), which is a contradiction. So |Di| > m
4ε and

|D| =
∑d

i=1 |Di| ≥ md
4ε .

18

