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Abstract

While Contrastive Learning (CL) achieves great success in many downstream tasks, its good
performance heavily relies on a large model capacity. As previous methods focus on scaling
dense models, training and inference costs increase rapidly with model sizes, leading to
large resource consumption. In this paper, we explore CL with an efficient scaling method,
Mixture of Experts (MoE), to obtain a large but sparse model. We start by plugging in the
state-of-the-art CL method to MoE. However, this naive combination fails to visibly improve
performance despite a much larger capacity. A closer look reveals that the naive MoE+CL
model has a strong tendency to route two augmented views of the same image token to
different subsets of experts: such “cross-view instability" breaks the weight-sharing nature
in CL and misleads the invariant feature learning. To address this issue, we introduce a new
regularization mechanism, by enforcing expert-routing similarity between different views of
the same image (or its overlapped patch tokens), while promoting expert-routing diversity
of patches from different images. The resultant method, called CR-MoE, improves by 1.7
points in terms of 1% semi-supervised learning accuracy on ImageNet, compared to the naive
combination baseline. It further surpasses the state-of-the-art CL methods on ImageNet pre-
training of Vision Transformer (ViT) by 2.8 points, at the same computational cost. Our
findings validate CR-MoE as an effective and efficient image representation learner. Code
is available at https://github.com/VITA-Group/CRMoE.

1 Introduction

Unsupervised contrastive Learning (CL) has been popularly explored as it demonstrate strong performance
on many downstream tasks, which could even beat its supervised counterpart (Chen et al., 2020c; Grill et al.,
2020; Caron et al., 2020; Chen et al., 2021b; Caron et al., 2021). However, the performance of CL heavily
relays on the large capacity of the employed model. For instance, in semi-supervised learning with few labels,
one important application of self-supervised learning (Tian et al., 2020b), SimCLR-v2 (Chen et al., 2020b)
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Figure 1: Routing comparison between the traditional dense network (left) and naive MoE+CL (right). In
contrastive learning of the dense network, two branches always share the same weights. However, naively
adopting MoE to CL can lead to different routing predictions for the same patch and break the weight-
sharing mechanism.

demonstrates that scaling model parameters from 24M to 795M brings a performance improvement by 17%.
However, scaling dense models significantly increases the training and inference cost. For instance, The
795M model would increase the training time by 41 times, and training to full performance (1000 epochs)
on ImageNet-1K (Deng et al., 2009) requires 7000 GPU (V100) days.

In this paper, we study employing an efficient scaling method, a sparse Mixture of Experts (MoE) (Shazeer
et al., 2017), for CL, without sacrificing training and inference efficiency. In contrast to dense models that
process each sample with all parameters, MoE leverages a dynamic sparse model: each sample is routed to
a small subset of experts. And each expert is a small Muti-Layer Perceptron (MLP) network. In this way,
a large candidate pools of experts can be built while only activating a small part for each sample, making
it possible to leverage large model capacity while maintaining small computational costs for training and
inference. MoE has been applied successfully in NLP applications (Lepikhin et al., 2020; Fedus et al., 2021)
and was recently introduced to vision tasks but only for supervised settings (Riquelme et al., 2021).

We start with directly applying CL on vision MoE models (e.g. Riquelme et al. (2021)). However, we find
this naive combination only yields marginal performance improvement compared to its dense counterpart
despite a much larger capacity. Looking closer, we observe that different augmented views of the same image
tokens are mostly routed to different subsets of experts (as illustrated in Figure 1), This essentially breaks
the conventional design of contrasting shared weight branches (Chen et al., 2020a; He et al., 2020; Grill
et al., 2020) and turns to contrasting independent branches, which we show hurts performance with
further empirical evaluations.

To enforce consistency in expert selections for augmented image views, a naive way is to always assign them
the same set of experts. However, this leaks the learning target of CL: the instance identity, causing the
model to overfit on such trivial nuisance without learning meaningful image representations (Chen et al.,
2021a). Instead, as shown in Figure 2, we propose a simple yet effective regularization mechanism to enforce
the consistency of expert selection based on visual overlapping. Specifically, first we pair all image tokens
based on the overlapping between patches. Then we pull the selection of experts of paired tokens to be
similar while differentiating that for tokens from different images through the proposed Overlapping-based
Gate Aligning Regularization (OGAR). The resulting method, termed CR-MoE, significantly improves the
consistency of the experts selection for different augments of the same image and the 1% semi-supervised
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performance by 1.7 points compared to the naive plugin, which is also 2.8 points higher than competing
state-of-the-art CL methods on ViT.

Our contributions are summarized as follows:

• We propose CR-MoE, which efficiently scales Contrastive Learning (CL) with the sparse Mixture of
Experts, pushing the limit of CL towards large model capacity while maintaining similar computation
cost.

• We identify the problem of naively combining MoE and CL, which essentially routes semantically
similar images to different sets of experts thus hurting performance, and address it by proposing a
novel regularization loss.

• Extensive experiments verifies the effectiveness of the proposed regularization term. Compared to
competitive state-of-the-art CL methods on ViT, the proposed CR-MoE achieves an improvement
of 2.8 points at the same computational cost.

2 Related works

2.1 Self-supervised training

Inspired by the observation that conducting instance recognition could yield a good representation that
naturally clusters the same class images (Alexey et al., 2016; Wu et al., 2018), various works devote to
designing self-supervised learning through pulling the representations of the same images together while
pushing those of different images apart (Chen et al., 2020c;a; He et al., 2020; Tian et al., 2020a), also known
as contrastive learning. Some works also recognize that negative samples are not necessary (Grill et al., 2020;
Misra & Maaten, 2020; Chen & He, 2021; Zbontar et al., 2021). A trend was observed and verified by (Chen
et al., 2020a;b) that contrastive learning yields better performance with a longer training schedule and a
large backbone model. However, training large models with CL for a long schedule imposes significantly
high training costs. In this work, to scale CL we investigate an efficient scaling option based on Mixture-
of-Experts(MoE). While recent work (Meng et al., 2022) also starts to explore sparsifying the contrastive
learning with dynamic pruning strategies, MoE has its unique strength on memory efficiency and combining
it with contrastive learning is still not explored.

Other works on self-supervised learning focus on the handcrafted pretext tasks (Trinh et al., 2019) like
rotation prediction (Gidaris et al., 2018), jigsaw (Noroozi & Favaro, 2016; Carlucci et al., 2019) and col-
orization (Gidaris et al., 2018). Recent advances in transformer highlight the possibility of a new class of
self-supervised learning methods through masked image modeling (Bao et al., 2021; He et al., 2021b; Xie
et al., 2021). These conceptually different directions can also be combined with contrastive learning to fur-
ther boosting the performance (Dangovski et al., 2021; Zhou et al., 2021). In this work, we focus on studying
contrastive learning while leaving other directions as potential future work.

2.2 Sparse Mixture of Experts

The traditional Mixture of Experts Network is composed of multiple sub-models and conduct input con-
ditional computation (Jacobs et al., 1991; Jordan & Jacobs, 1994; Chen et al., 1999; Yuksel et al., 2012;
Roller et al., 2021). While contrastive learning can also be improved with the traditional MoE (Tsai et al.,
2020), it suffers from intensive computation since the model are dense and all experts are activated. Recent
work (Shazeer et al., 2017) proposes the Sparse Mixture of Experts Layer and demonstrates better results on
language modeling with lower computational cost. Following works devise methods to further address the
communication cost (Fedus et al., 2021; Lewis et al., 2021) and stability (Zoph et al., 2022) issues. GLaM (Du
et al., 2021) studies the MoE for language self-supervised task and achieve significant downstream few-shot
performance.

MoE is recently applied for computer vision tasks (Riquelme et al., 2021; Gross et al., 2017; Xue et al., 2021;
Wang et al., 2020; Tsai et al., 2018; Ahmed et al., 2016; Yang et al., 2019; Pavlitskaya et al., 2020). However,
most of these works focus only on supervised or weakly supervised learning. Recently, LIMoE (Mustafa et al.,
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2022) starts to explore applying MoE on self-supervised language-image pairing tasks, where they propose
a local and global entropy design to balance different modalities. In this work, we reveal and address the
challenge from inconsistent expert routing when applying MoE to self-supervised vision tasks.

3 Method

3.1 Preliminaries

Contrastive learning Contrastive learning is a self-supervised method via maximizing instance discrimi-
nativeness. For example, it enforces the similarity of positive pairs while enlarging the distance of negative
pairs (Wu et al., 2018):

M(vi, v+
i , V −, τ) = − 1

N

N∑
i=1

log sτ (vi, v+
i )

sτ

(
vi, v+

i

)
+

∑
v−

i
∈V − sτ (vi, v−

i )
(1)

where v+
i is considered a positive sample of sample vi while the set V − consists of negative samples.

sτ (vi, v+
i ) = exp

(
vi · v+

i /τ
)

measures the similarity of positive pair (vi, v+
i ) while sτ

(
vi, v−

i

)
measure the

similarity of negative pair (vi, v−
i ). τ is the temperature controlling the magnitude of all terms.

MoCo-v3 (Chen et al., 2021b) is one of the state-of-the-art self-supervised methods devised for ViT (Doso-
vitskiy et al., 2020). It encodes two crops C1 and C2 for each image under random data augmentation. The
images are then encoded with network and its Exponential Moving Average (EMA). MoCo-v3 also introduce
random token projection to stabilize the learning process. The loss of MoCo-v3 is defined as

LCL = M(f1, f2, {f}−, τ) = − 1
N

N∑
i=1

log sτ (f1, f2)
sτ (f1, f2) +

∑
f−∈{f}− sτ (f1, f−) (2)

where the features (f1, f2) encoded from (C1, C2), respectively, are employed as positive samples while
negative set {f}− is composed by the features of views from other images.

Sparse Mixture of Experts MoE reduces the computational cost via activating a small subset of compu-
tational graph for each sample. The basic building block of MoE is the sparse MoE layers, which consists of
ne expert networks (E1,E2,· · · ,Ene

). Formally, a MoE layer is defined as

y =
ne∑

i=1
G(x)iEi(x) (3)

where x and y are the input and output, respectively. G is the gating function that outputs a vector
containing scores for each expert network Ei(x), typically instantiated with a Softmax. By picking the top-k
scored experts (k << ne), the model only activates a small subset of expert networks for each sample. For
G, we employ the noisy top-k gating design introduced in Riquelme et al. (2021) as

G(x) = TopK(Softmax(Wx + ϵ), k) (4)

where W is a learnable weight and ϵ denotes Gaussian noise sampled from N
(

0, 1
n2

e

)
. Wx controls the clean

score of the gating function while noise in ϵ benefits the load balancing between experts. The sum of the
score are then normalized with Softmax function and sparsified with TopK defined as

TopK(v, k)i =
{

vi if vi is in the top k elements of v

0 otherwise.
(5)

In this work, we focus on studying applying MoE for the ViT (Dosovitskiy et al., 2020) backbone. We follow
the strategy of Riquelme et al. (2021) to replace every other multi-layer perceptron (MLP) layers with sparse
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Figure 2: Pipeline of the proposed CR-MoE. It replaces every other block of ViT to sparse MoE layer.
Overlapping based gate aligning regularization is applied for training the proposed network.

MoE layers. Each expert network is of the same architecture: MLP(x) = W2σgelu (W1x), where W1 ∈ Rdm×df

and W2 ∈ Rdf ×dm are learanble weights while σgelu is the non-linear activation layer (Hendrycks & Gimpel,
2016). It is worth noting that MoE is applied to multiple visual tokens, where each token could have different
expert choice.

We also employ an auxiliary loss to encourage the load balancedness following Shazeer et al. (2017) termed
as Llb to prevent the over-selection of few experts.

3.2 Sparse Mixture of Experts for Contrastive Learning

To enforce the consistency of expert selection while not leaking image identity, we introduce a new regulariza-
tion term called Overlapping based Gate Aligning Regularization (OGAR). In ViT, MoE layer would choose
experts for each token. The token sequence includes one classification token and multiple patch tokens. We
then introduce how OGAR is applied for classification and patch tokens.

OGAR for classification tokens As the classification token is at the image level, enforcing consistency
can be easily realized by applying the similarity constraint among classification tokens for augments of the
same image. Formally, it is defined as

LG
[CLS] = M(G1

[CLS], G2
[CLS], {G[CLS]}−, τ)

= − 1
N

N∑
i=1

log
sτ (G1

[CLS], G2
[CLS])

sτ

(
G1

[CLS], G2
[CLS]

)
+

∑
G−

[CLS]∈{G[CLS]}− sτ (G1
[CLS], G−

[CLS])
(6)

where G1
[CLS] and G2

[CLS] denote the gating function output (G(x) in Equation 4) of classification tokens from
a pair of positive samples. {G[CLS]}− denotes those from negative samples. τ is the temperature, where we
use the same value as LCL. We employ the form of Moco V3 loss to enforce the consistency for preventing
all the gate functions collapse to always outputting the same prediction.
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OGAR for patch tokens Unlike classification tokens, different patches lack one-to-one correspondence as
the patches are randomly sampled from different regions of the original image. Hence matching the patches is
required before conducting the regularization. Previous studies reveal that the transformer can automatically
learn object segmentation that aligns well with input in terms of the spatial location (Caron et al., 2021),
which indicates the strong spatial correlation between input and features learned by CL. Inspired by this
observation, we design a matching method based on the spatial location of the patches. As shown in Figure 2,
each patch of one view is paired with the most overlapping patch from the other view. For one patch that
is not overlapped enough with any other patches (below a certain overlapping threshold λ), we leave it
unpaired. Only those paired patches are utilized for calculating the loss. Formally, the proposed loss on
patch pm is defined as

LG
pm

=

− 1
N

∑N
i=1 log sτ (Gm,Gn)

sτ (Gm,Gn)+
∑

G−∈{G}− sτ (Gm,G−)
if IoUmn > λ

0 otherwise.
, n = arg max

n′
IoUmn′ (7)

where pn denotes the patch that has the largest Intersection over Union (IoU) with pm. IoUmn represents
the IoU between patch m and n. Gm and Gn are gating function outputs for pm and pn, respectively.
{G}− denotes those from negative patch samples. When the IoUmn is less than threshold λ, the loss is 0.
Otherwise, the consistency loss between Gm and Gn would be employed. The overall gating loss is averaged
over all patches as

LG
p = 1

Np

Np∑
m=1

LG
pm

(8)

where Np is the number of patches.

Some previous works study a similar problem: enforcing the regional regularization of CL (Li et al., 2021;
Wang et al., 2021), which also requires matching the local features. They match the features across two views
based on the feature distance (e.g. cosine similarity). However, we empirically find this approach yield less
significant improvement in our case. The intuition behind this is that the paired features in inter-mediate
layers may lack strong feature similarity. The proposed matching method allows the existence of non-paired
patches while the design of (Wang et al., 2021) assumes all local features can be paired, which is prone to
noise in learned features and also in general does not hold in practice.

We balance the two regularization terms with a convex combination controlled with a weight α (0 < α < 1).
Formally, the resulting OGAR is

LG = (1 − α)LG
[CLS] + αLG

p (9)

The overall optimization target for CR-MoE To sum up, the overall loss is

L = LCL + wlbLlb + wGLG (10)

where wlb and wG are the scaling factor of the loading balancedness losses and OGAR, respectively. By
employing OGAR on naive MoE+CL, the resultant CR-MoE framework can efficiently scaling contrastive
learning with MoE.

4 Experiment

4.1 Settings

Pre-training Our pre-training experiments are conducted on ImageNet-1K (Deng et al., 2009) follow-
ing common practice (Chen et al., 2020a; He et al., 2020). For pre-training framework, we employ Moco
v3 (Chen et al., 2021b), and we follow the same settings as Moco v3 on data augmentations and learning
specification: 3-layer MLP projection head, temperature τ = 0.2, momentum m = 0.99, random patch
projection, cosine decay schedule (Loshchilov & Hutter, 2016), and 40-epoch warmup. For optimization, we
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employ AdamW (Loshchilov & Hutter, 2017) optimizer and a weight decay of 0.1. We employ linear scaling
rule (Goyal et al., 2017) and search for the best base learning rate (lr) on 100-epoch results with grid of
{1.5e−4, 3.0e−4, 5.0e−4, 1.0e−3}. The best searched lr is 5.0e−4 × BatchSize/256. For model ablations, we
employ a shorter schedule of 100 epochs with a relatively small batch size of 1024. When comparing with
state-of-the-art methods, we scale up and employ 300 epochs with a batch size of 3072.

Linear probing Linear probing measures the quality of learned representations from pre-training. After
self-supervised pre-training, we remove the MLP heads and train a classifier with the frozen backbone.
Following Moco V3, we employ the SGD optimizer with a batch size of 4096 and weight decay of 0 for 90
epochs, with only random resized cropping and flipping augmentation. The lr is swept following common
practice (Chen et al., 2021b; Zhou et al., 2021).

Semi-supervised and transfer few-shot learning Learning with few labels is an important application
for contrastive learning, which pertains to both semi-supervised and transfer few-shot learning (Chen et al.,
2020b; Tian et al., 2020b;b; Islam et al., 2021). Specifically, for semi-supervised learning, we consider 1%
or 10% available labels (following the sampling in Chen et al. (2020b)) of ImageNet. For transfer few-shot
learning, we consider 4-shot and 10-shot settings for three datasets: CIFAR10 (Krizhevsky et al., 2009),
Pet37 (Parkhi et al., 2012) and Food101 (Bossard et al., 2014).

For these two applications, we consider a two steps paradigm: The model is first pre-trained on the pre-train
and then it is supervised fine-tune on the seed or few-shot dataset. For the supervised fine-tune step, we
employ different settings for different tasks. As suggested in Tian et al. (2020b); Zhou et al. (2021), we train
a linear classifier on frozen features for ImageNet 1% semi-supervised task and all transfer few-shot tasks.
We optimize for 800 epochs with batchsize of 256 while other settings keeps the same as linear probing.
For ImageNet 10% semi-supervised task, we follow Chen et al. (2020b); Zhou et al. (2021) fine-tuning from
the first layer of the MLP head. The epochs number is set as 200 while the lr are searched with grid of
{1e−5, 3e−5, 1e−4, 3e−4}.

Model Parameters FLOPs
ResNet50 25M 4.1G
ViT-S/16 22M 4.6G
VMoE-S/16 72M 4.6G
ViT-B/16 87M 17.6G

Table 1: Network architecture comparison
for four different architectures. CR-MoE
uses VMoE-S/16 as the backbone.

Hyper-parameters for Mixture-of-Experts Model and
loss For MoE network, we by default employ 16 expert candi-
dates (ne = 16) and always activate 2 of them (k = 2). For the
employed loss terms, we employ λ = 0.2, α = 0.3, wlb = 0.01
and wG = 0.001, which are searched on 100-epoch training.

For each expert network, we choose df = 2dm instead of
df = 4dm in Chen et al. (2021b) to keep the computational
cost of activating 2 experts the same as that in ViT. The em-
ployed model is VMoE-S/16, as shown in table 1, its FLOPs
are comparable to ViT-S/16. Moreover, we further compare
the training and inference computation costs in terms of GPU
time cost. For inference of a single image on one A6000 GPU,
the time costs are 1.25ms and 1.07ms for VMoE-S/16 and ViT/S-16, respectively. For training a batch
of 1024 images on 8 A6000 GPUs, the time costs are 1.579s and 1.425s for VMoE-S/16 and ViT/S-16,
respectively. VMoE-S/16 is only marginally slower than ViT-S/16 in both cases.

Computation Framework Our implementation is based on Pytorch (Paszke et al., 2019) and Fast-MoE (He
et al., 2021a) library. Models are pre-trained on 32 Nvidia V100 GPUs.

4.2 Naive Combination of MoE and CL Does Not Work

In this section, we look into the “cross-view instability” issue of directly plugging MoE to CL and show how
the proposed regularization address this problem.

The routing is inconsistent To check the consistency of the expert decision, as shown in Figure 3a, we
exclude random cropping and flipping from data augmentations to ensure we can locate the different views of
the same patches: they are always in the same position in this way. Further, we define these patches with the
same content as corresponding tokens while defining the tokens from other images as the non-corresponding
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Figure 3: (a) Illustration for the definition of corresponding and non-corresponding patches. The rest four
figures compare the average number of shared experts for G(x) between corresponding and non-corresponding
tokens. (b)(d) shows the number of shared experts for classification tokens while (c)(e) represents the number
of shared experts for patch tokens. All of them are measured across different layers. The “w/o regu” in
(b)(c) denotes they are from the naive combination CL and MoE model. In contrast, (d)(e) is from the
proposed CR-MoE. The x-axis of the last four figures is the index of the MoE layer in VMoE.

tokens. Then, we calculate the average number of shared experts (the number of experts selected by both
tokens in the pair) for corresponding tokens and non-corresponding tokens and make a comparison.

As shown in Figure 3b, for classification tokens of the naive combination, the gating function always selects
the similar number of shared experts between corresponding and non-corresponding patches, which means
the difference between corresponding patches and non-corresponding patches can hardly be distinguished.
For the patch tokens, as presented in Figure 3c, the boundary between corresponding and non-corresponding
patches get blurred in the deep layers. This would change the standard contrasting shared weight backbone
fashion of CL to contrasting (partially) non-shared weight contrastive learning.1

Inconsistent routing leads performance dropping Unfortunately, the proof-of-concept experiments
verify that performance of (partially) non-shared weight contrastive learning can drop. Specifically, we

1Contrasting with a moving average network can be regarded as sharing weight as the moving average would converge to
the online value when training stabilizes.
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Table 2: Linear probing (denote as linear) and 1% imagenet semi-supervised (denote as 1%) performance
comparison for pre-training and evaluation on ImageNet. All the reported accuracy is top 1 accuracy (%).
expert 0/1 for sep-ViT-S denote the two different paths of sep-ViT-S.

Method Model Linear 1%
Moco v3 ViT-S/16 69.7 53.5
Moco v3 sep-ViT-S/16 (expert 0) 68.4 48.5
Moco v3 sep-ViT-S/16 (expert 1) 68.5 48.7
Moco v3 V-MoE-S/16 69.9 54.1
CR-MoE (Ours) V-MoE-S/16 70.7 55.8

Table 3: Comparison with State-of-The-Art methods in terms of linear probing (denote as Linear), 1% and
10% semi-supervised performance (denote as 1% and 10%, respectively). All the reported accuracy is top 1
accuracy (%). The SD denotes self-distillation.

Match method Model Linear 1% 10%
SimCLR v2 (Chen et al., 2020b) Resnet50 71.7 57.9 68.1
SimCLR v2 + SD (Chen et al., 2020b) Resnet50 71.7 60.0 70.5
Moco v3 (Chen et al., 2021b) ViT-S/16 73.4 59.4 72.2
CR-MoE (ours) V-MoE-S/16 74.1 62.2 73.0

designed a special network called sep-ViT, which has the same backbone architecture as MoE with 2 expert
candidates. For routing, we would activate different experts for different branches. In this way, these two
branches would not share weight in the expert network. The result is illustrated in Table 2, the sep-ViT-S
(expert 0) decrease the performance by 0.8% and 5% for linear probing and 1% semi-supervised performance
compared to the baseline, respectively, indicating that (partially) non-shared weight can hurt the performance
for CL (especially for the semi-supervised performance).

Table 4: Transfer few-shot performance comparison
across different datasets between MocoV3 and the
proposed CR-MoE with ViT-S/16 and V-MoE-S/16,
respectively. 4-shot and 10-shot denote 4 and 10 sam-
ples available for each class for downstream tasks, re-
spectively. All the reported accuracy is top 1 accu-
racy (%).

Dataset Method 4-shot 10-shot

CIFAR10 Moco V3 72.9 80.1
CR-MoE 74.4 80.7

Pet37 Moco V3 71.8 81.4
CR-MoE 74.4 84.3

Food101 Moco V3 35.2 48.8
CR-MoE 37.4 50.1

The proposed CR-MoE improves both consis-
tency and performance After employing the pro-
posed classification alignment and OGAR, as shown
in Figure 3d and 3e, the proposed CR-MoE suc-
cessfully increase the number of shared experts for
corresponding tokens while reducing or keeping the
number of the shared experts for non-corresponding
tokens. Also, as shown in Table 2, in contrast to
the naive combination of CL and MoE that only im-
proves the baseline Moco V3 by a small margin of
0.2% and 0.6% in terms of linear probing and 1%
semi-supervised performance, the proposed CR-MoE
increase this margin to 1.0% and 2.3%, demonstrat-
ing the effectiveness of the proposed method.

4.3 Comparison with State-of-The-Art Methods

In this section, we compare the proposed CR-MoE
with state-of-the-art methods. For a fair comparison,
we employ a longer training schedule of 300 epochs
following Chen et al. (2021b); Caron et al. (2021); Zhou et al. (2021).

CR-MoE yield better in-domain performance As shown in Table 3, the proposed CR-MoE achieves
highest performance in terms of Linear probing, 1% and 10% semi-supervised learning. Remarkably, com-
pared to Moco v3 on ViT-S/16, the proposed CR-MoE significantly improves the 1% semi-supervised per-
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(a) Expert 1 (Characters) (b) Expert 2 (Faces) (c) Expert 4 (Pool/Sea) (d) Expert 5 (Forest/Tree)

Figure 4: Visualization of the patch tokens routed to different experts in the 7th layer of CR-MoE on
ImageNet. The patches with different patterns are routed to different experts.

formance by 2.8%. Meanwhile, there is also a non-trivial improvement on linear evaluation and 10% semi-
supervised performance by 0.6% and 0.8%, respectively. Since the Moco V3 and CR-MoE share the same
CL framework, this demonstrate the effectiveness of MoE framework and the proposed regularization. The
large improvement on semi-supervised performance also matches the observation at Chen et al. (2020b) that
large capacity helps more for few-shot learning.

CR-MoE yields better transfer few-shot performance We then study if the strong in-domain few-
shot performance can transfer to downstream datasets. As demonstrated in Table 4, the proposed CR-MoE
also yields a consistent improvement of [1.5%,0.6%], [2.6%,2.9%] and [2.2%,1.3%] for CIFAR10, Pet37 and
Food101, respectively, in terms of [4-shot, 10-shot] performance, demonstrating the proposed CR-MoE can
also significantly improve the downstream few-shot performance.

4.4 Ablation Studies

Visualization of routing choices Following LIMoE (Mustafa et al., 2022), we visualize the routing distri-
bution of CR-MoE in Figure 4. Even though no semantic caption or labels are involved in the training, we
find that the patches routed to different tokens show distinct semantic patterns. For example, the patches
of [Characters, Faces, Pool/Sea, Forest/Tree] are routed to Expert [1, 2, 4, 5], respectively.

OGAR loss for patch tokens matters As shown in Table 5, when removing OGAR loss for patch tokens
by setting α = 0, the linear evaluation and 1% semi-supervised performance would drop by [0.1%, 0.4%],
which demonstrate the effectiveness of the proposed OGAR loss for patch tokens. Other hyper-parameter
changes like wG = 0.01 and λ = 0.1 only marginally change the performance.

Table 5: Comparison between different hyper-
parameters settings of the proposed CR-MoE. Lin-
ear probing (denote as linear) and 1% imagenet
semi-supervised (denote as 1%) performance are re-
ported. All the reported accuracy is top 1 accuracy
(%). The first row denotes the employed hyper-
parameter setting. Error bar is calculated by run-
ning 3 times with different random seeds.

wG α λ Linear 1%
0.001 0.3 0.2 70.7±0.07 55.8±0.25
0.001 0.0 0.2 70.6±0.13 55.4±0.14
0.01 0.3 0.2 70.5 55.8
0.001 0.3 0.1 70.6 55.9

Table 6: OGAR loss ablation regarding different
matching methods and whether to employ nega-
tive samples. FSM denotes the Feature Similarity-
based Matching method employed in Li et al.
(2021); Wang et al. (2021).

Matching
Method

Negative
samples

Linear 1%

FSM ✓ 70.5±0.07 55.6±0.37
Overlap 70.2 54.2
Overlap ✓ 70.7±0.07 55.8±0.25
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In Table 6, we ablation study the proposed OGAR loss. When discarding the negative samples for OGAR loss
and only enforcing consistency as in Grill et al. (2020), we observe the gating function tent to choose the same
experts for all samples even though we have employed the loading balance loss. Meanwhile, the performance
would largely decrease, showing that negative samples are necessary for OGAR. When switching from the
overlap-based matching method to the Feature Similarity-based Matching method (FSM), the linear probing
and 1% semi-supervised performance would both incur a drop of 0.2%. Moreover, we further compare with
FSM in terms of transfer few-shot learning and we find that FSM matching method achieves 68.5% and
80.2% in terms of 4-shot and 10-shot transfer few-shot accuracy on Pet37, respectively. In contrast, the
proposed overlapping-based matching method significantly improves 4-shot and 10-shot transfer few-shot
accuracy by 1.5% and 0.9%, respectively, demonstrating the effectiveness of the proposed matching method.

Table 7: Comparison between different numbers of
experts ne for the proposed CR-MoE. Linear probing
(denoted as linear) and 1% imagenet semi-supervised
(denoted as 1%) performance are reported. All the
reported accuracy is top 1 accuracy (%).

ne Linear 1%
2 69.4 50.2
4 70.2 53.1
8 70.6 55.3
16 70.7 55.8

The number of experts matters We conducted
an ablation study concerning the number of experts
ne, as detailed in Table 7. Our findings suggest that
increasing the number of experts can lead to an in-
crease in both linear evaluation performance and 1%
few-shot performance. For instance, by increasing the
experts’ number from 2 to 16, the linear evaluation
and 1% few-shot performance significantly increase
by 1.3% and 5.6%, respectively.

5 Conclusion

In this work, we study an efficient way of scaling con-
trastive learning with sparse Mixture of Experts. We
start from naively plugging in the MoE to CL and
observe that the naive combination tends to route
different views of the same image to different subsets of experts, thus breaking invariant feature learning
and hurting the performance of downstream tasks. To tackle this problem, we propose a novel regulariza-
tion framework to promote consistency of experts selection on the same (or overlapped) image tokens while
encouraging diversity of the experts selection for different images. Extensive evaluations on multiple down-
stream tasks demonstrate the proposed framework, CR-MoE, effectively improves the routing consistency
and the overall performance of downstream tasks without increasing the computation cost.

Broader Impact and Limitation The proposed CR-MoE show the possibility of scaling Contrastive
Learning with a large sparse neural network, which greatly reduces the training and inference time and
energy consumption while achieving state-of-the-art performance. They can serve the goal of GreenAI for
self-supervised learning. On the other hand, in this work, we mostly focus on academic datasets. However,
in practice, unlabeled datasets in the wild may come with imbalances and adversarial samples, which could
lead to performance or fairness issues. One of the future directions is to extend CR-MoE to such imbalance
or adversarial settings.
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A Appendix

A.1 With Other Backbones

Table 8: Illustration of the performance in terms of linear probing (denote as Linear), 1% semi-supervised
performance (denote as 1%). Pet37@4-shot and Pet37@10-shot represent the transfer few-shot learning
performance on Pet37 when 4 and 10 samples are available for each class, respectively. All the reported
accuracy is top 1 accuracy (%).

Match method Model Linear 1% Pet37@4-shot Pet37@10-shot
Moco v3 Chen et al. (2021b) ViT-B/16 76.7 63.9 74.2 84.5
CR-MoE (ours) V-MoE-B/16 76.3 64.9 76.7 85.0

In this section, we explore the performance of the proposed method on a different backbone. As shown
in Table 8, CR-MoE with V-MoE-B/16 surpasses the Moco V3 with ViT-B/16 by 1% in terms of the 1%
few-shot performance while leading to a small drop of 0.4% on linear evaluation performance. Moreover,
it improves the transfer few-shot learning performance on Pet37 by 2.5% and 0.5% for 4-shot and 10-shot
performance, respectively.

(a) Expert 0 (b) Expert 1 (c) Expert 2 (d) Expert 4

Figure 5: Visualization of the patch tokens routed to different experts in the 1st layer of CR-MoE on
ImageNet. The patches with different patterns are routed to different experts.
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(a) Expert 3 (b) Expert 4 (c) Expert 6 (d) Expert 13

Figure 6: Visualization of the patch tokens routed to different experts in the 11th layer of CR-MoE on
ImageNet. The patches with different patterns are routed to different experts.

A.2 Visualizing experts routing of more layers

We further analyze the routing pattern of 1st and 11th layers for CR-MoE, which correspond to the first and
last MoE layers in the network, respectively. As shown in Figure 5 and Figure 6, similar patches would also
be routed to the same experts on these layers. Moreover, we find that the patches with the same low-level
pattern (e.g. edges) are often routed to the same expert in the shallow layer (e.g. the 1st layer). Meanwhile,
the patches with similar semantic information are often routed to the same expert in the deep layer (e.g.
the 7th and 11th layers).

16


	Introduction
	Related works
	Self-supervised training
	Sparse Mixture of Experts

	Method
	Preliminaries
	Sparse Mixture of Experts for Contrastive Learning

	Experiment
	Settings
	Naive Combination of MoE and CL Does Not Work
	Comparison with State-of-The-Art Methods
	Ablation Studies

	Conclusion
	Appendix
	With Other Backbones
	Visualizing experts routing of more layers


