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ABSTRACT

Statistical modeling can uncover patterns in large datasets, but these patterns may
not be explainable or relevant to our specific interest. For example, Gaussian mix-
ture models are commonly used to explore text corpora, but it is hard to explain
what each cluster means or steer them to use specific attributes (e.g. cluster based
on style but not topic). To improve explainability and steerability, we introduce
models where parameters are represented as natural language strings. For ex-
ample, instead of using a Gaussian to represent a cluster, we represent it with a
natural language predicate such as “has a casual style”. By leveraging the de-
notational semantics of natural language, we interpret these predicates as binary
feature extractors and use them as building blocks for classical statistical models
such as clustering, topic modeling, and regression. Language semantics also lets
us specify constrains on the learned string parameters, such as “the parameters
should be style-related”. To learn in our framework, we propose an algorithm to
optimize the log-likelihood of these models, which iteratively optimizes continu-
ous relaxations of string parameters and then discretizes them by explaining the
continuous parameters with a language model. Evaluating our algorithm across
three real corpora and four statistical models, we find that both the continuous re-
laxation and iterative refinement to be crucial. Finally, we show proof-of-concept
applications in controllably generating explainable image clusters and describing
major topic variations across news from different months.

1 INTRODUCTION

To discover and explain patterns in a dataset with structured modalities such as texts or images,
researchers often first fit a statistical model on the dataset and then interpret the learned models.
For example, n-gram logistic regression (Wang & Manning, 2012) is frequently used to explain
differences between text distributions; and unsupervised models such as image clustering (Caron
et al., 2018) and topic modelling (Blei et al., 2003) are used to explore datasets in machine learning
(Sivic et al., 2005), social sciences (Nguyen et al., 2020), and bioinformatics (Liu et al., 2016).

However, these models are usually hard to explain and steer. Consider text clustering as an example,
where a data scientist has access to a corpus of social media posts and wishes to cluster them based
on style. A neural text clustering algorithm (Aharoni & Goldberg, 2020) might cluster them based on
topic information, since it cannot be steered by the specified constraint; it also outputs each cluster
as a Gaussian distribution over neural embeddings, which is not immediately explainable to humans.
More broadly, many statistical models in structured modalities lack explainability and steerability,
since they rely on high-dimensional parameters (e.g. neural embeddings or word vectors), which is
an inconvenient interface for humans to steer the models and for the models to explain to humans.

To improve explainability and steerability, we propose natural language as an alternative interface
between human practitioners and statistical models. We introduce a framework for defining mod-
els “with natural language constraints and parameters” (NLCP), where the models are explainable
because they learn natural language parameters and are steerable because we can constrain the pa-
rameters via natural language. Our core insight is that we can use the denotational semantics of a
natural language predicate to extract a 0/1 feature by checking whether it is true on a sample. For
instance, given the predicate ϕ = “has a casual style”, its denotation JϕK is a binary function that
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Figure 1: We illustrate four models under NLCP. (1) clustering: corpus is modelled as a mixture of
distributions, each parameterized with a natural language string “has a . . . style” satisfying the given
constraint. (2) topic model and (3) contrastive feature learning: the user provides a set of corpus, and
we model each corpus either as a mixture of text distributions or a single distribution parameterized
by multiple predicates. (4) regression: each provided sample (x) is associated with a real-valued
target (y) and our goal is to explain the target value with a few predicates and coefficients.

evaluates to 1 on texts x written in a causal style and 0 otherwise. For example,

J“has a casual style”K(“with more practice we’ve got a shot at the title.”) = 1. (1)

Similarly, denotational semantics allows us to check whether the parameters satisfy a constraint:

J“the parameter is style-related”K(“has a topic of sports”) = 0. (2)

By using natural language to extract 0/1 features from samples and checking the constraint on the
parameters, we extend a variety of classical statistical models, including clustering, topic-models,
and regression (Figure 1).

Fitting a model requires optimizing the log-likelihood, but this is challenging under NLCP because
natural language parameters are discrete and thus do not admit gradient-based optimization. To
address this, we present a general framework for optimizing NLCP models. Our framework uses
gradient descent to optimize a continuous relaxation of natural language parameters, where we sim-
ulate denotation as a dot product between a continuous predicate and some embedding of x. It then
discretizes the continuous predicate by prompting a language model to generate candidate language
predicates that explain the variation in the learned continuous predicate. We alternate between con-
tinuous optimization and discretization to iteratively refine the learned natural language parameters.

To evaluate our optimization algorithm, we create statistical modelling problems where the optimal
natural language parameters are known and can be used as references for the learned parameters.
We evaluated on four different statistical models (clustering, topic modelling, contrastive feature
learning, and regression) and used three different real datasets (NYT articles, AG-News, and DB-
Pedia (Sandhaus, 2008; Zhang et al., 2015)), where each text sample is annotated with a gold topic
or location description. We found that both continuous relaxation and iterative refinement improve
performance. Finally, we show proof-of-concept application in controllably generating explain-
able image clusters and describing major topic variations across months in detail, showing that our
framework could be potentially extended to other modalities and unlock new applications.

2 RELATED WORK

Statistical Modelling in Text. Statistical models based on n-gram features or neural embeddings
are broadly used to analyze text datasets. For example, logistic regression or naive bayes models are
frequently used to explain differences between text distributions (Wang & Manning, 2012); Gaus-
sian mixture on pre-trained embeddings can create text clusters (Aharoni & Goldberg, 2020); topic
models can mine major topics across a large collection of documents (Blei et al., 2003) across time
(Blei & Lafferty, 2006). However, since these models usually rely on high-dimensional parameters,
they are difficult to explain (Chang et al., 2009) or steer (Aharoni & Goldberg, 2020).

2



Under review as a conference paper at ICLR 2024

To explain these models, Carmel et al. (2009); Treeratpituk & Callan (2006); Zhang et al. (2018)
propose to explain each topic or clusters by extracting candidate phrases either from the corpus
or from Wikipedia. To steer these models, Hu et al. (2014) allow users to shape the clusters by
specifying words that should co-occur in a topic. Our work proposes a complementary approach to
explain and steer models with natural language, which is potentially more flexible and convenient.

Modelling with Latent Interpretable Structures. Many prior works have tried to train models to
accomplish complex tasks with interpretable latent structures. For example, Neural Module Net-
works aim to decompose a problem into interpretable subparts and then solve them with individual
modules (Andreas et al., 2016; Subramanian et al., 2020); Concept Bottleneck Models (Koh et al.,
2020) aim to learn interpretable intermediate features. Conceptually closest to our work, Andreas
et al. (2018) learns discrete language parameters to improve generalization. Our modelling frame-
work focuses on explaining datasets rather than improving predictive performance, and we enforce
explainability by learning natural language parameters and a small set of real-valued real parameters.

LLM for Exploratory Analysis. Due to its code generation capability (Chen et al., 2021), large
language models have been used to automatically generate programs to analyze a dataset and gen-
erate reports from them (Ma et al., 2023; Hassan et al., 2023). In comparison, our work focuses on
generating natural language parameters to extract real-valued features from structured data.

Inductive Reasoning with Language Models. Prior works have prompted the language model with
raw data and ask it to perform inductive reasoning. For example, Zhong et al. (2022; 2023) explain
distributional differences, Singh et al. (2022) explains relation between tuples, Wang et al. (2023)
generates explainable clusters, Yang et al. (2022) extracts new knowledge by reasoning about hidden
assumptions, Tong et al. (2023) categorizes failure modes of a multi-modal model, Yang et al. (2023)
proposes hypotheses for open-ended scientific questions, and Singh et al. (2023); Bills et al. (2023)
explain neural network representations. Our work formalizes a framework to define more complex
models with natural language explanations by combining it with classical statistical models.

Discrete Prompt Optimization. Many prior works have tried to optimize discrete prompts to im-
prove the predictive performance of a model (Shin et al., 2020; Deng et al., 2022), and some recent
works demonstrated that language models can optimize prompts to reach state-of-the-art accuracy
(Zhou et al., 2022; Yang et al., 2023). In comparison, our work focuses on optimizing prompts to
explaining patterns unknown to the user.

3 MATHEMATICAL FORMULATION

We will define statistical models p as generative distributions over some space X (e.g. all images or
all text strings of a certain length). Our framework, NLCP, defines generative distributions in 3 sets
of parameters: natural language predicates ϕ, weights w on those predicates, and a base distribution
B(x). We will first show how to define a basic exponential family model using NLCP (Section 3.1),
then use this as a building block for more complex objectives such as clustering and topic modelling.

3.1 NOTATIONS

The fundamental building block of NLCP is a generative distribution p(x|w, ϕ⃗) over X . The distri-
bution p(x|w, ϕ⃗) is parameterized by three variables: ϕ⃗, a list of learned natural language predicates;
w, a learned real vector, which reweights and sums the feature values; and B, an implicit base dis-
tribution, which reweights the probability of a text sample.

The core idea in NLCP is a way of interpreting a natural language predicate ϕ as a logical predicate
JϕK : X → {0, 1}, via a “denotation operator” J·K. Given J·K, the generative distribution p is an
exponential family with base distribution B and feature function Jϕ⃗K:

p(x|w, ϕ⃗) ∝ B(x)ew
T Jϕ⃗K(x). (3)

We next explain ϕ⃗, J·K, p(x|w, ϕ⃗), and B in greater detail.

Explainable Feature Functions via Natural Language Parameters. A natural language predicate
ϕ is a string and its denotation JϕK maps samples x ∈ X to {0, 1}. For example, if ϕ = “has a
casual style”, then JϕK(“ we’ve got a shot.”)= 1. Since a models typically require multiple features
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to explain the data, we consider vectors ϕ⃗ of K predicates, where now Jϕ⃗K maps X to {0, 1}K :

Jϕ⃗K(x) :=
(
Jϕ1K(x), Jϕ2K(x), . . . , JϕKK(x)

)
(4)

To instantiate J·K computationally, we prompt a language model to ask whether ϕ is true of the input
x, following practice from prior works (Zhong et al., 2022; 2023). See prompt in Figure 3.

Modelling Text Distributions with Features. We provide a few simple examples of the generative
distribution p. First, we can create a uniform distribution over all sports-related texts in X by up-
weighting x based on ϕ = “has a topic of sports”. This can be used to represent a topic or a cluster
(see Section 3.2 for examples). Formally,

p(x|[τ ], [“has a topic of sports.”]) ∝ eτJ“has a topic of sports.”K(x), (5)

where w consists of a single temperature parameter τ that is usually taken to∞.

Beyond forming clusters, we can combine multiple predicates to model more complex distributions;
e.g. the following distribution places higher weight on non-formal sports-related texts:

p(x|w = [−5, 3], ϕ⃗ = [“has a formal style”,“has a topic of sports”]) (6)

Modelling Uninformative Nuisances with a Base Distribution. Suppose we are given a set of
news articles and want to model the distribution over its sports-related subset psports. We would ide-
ally like to model this with a single predicate “has a topic of sports” as in equation 5. However, this
distribution would contain all sports-related text (not just news articles), e.g. sports-related tweets
and conversations. In general, modelling psports requires additional predicates that capture its differ-
ence with a typical sample from X , which include many uninformative properties such as whether x
is grammatical or in English, distracting us from the true goal to explain that psports is sports-related.

Ideally, we would model these uniformative differences without using natural language predicates,
since we want the predicates to explain informative properties rather than background information.
To do this, we introduce a base distribution B over X to reweight each sample, so that ϕ⃗ can focus
on differences from the base distribution. B is closely related to the concept of “presupposition” in
linguistics, which incorporates the implicit assumptions of our model.

The background distribution B is thus important, but only for the purposes of selecting good w and
ϕ⃗. We therefore take a semiparametric approach: assuming we have samples from B (in the example
above, some background corpus of news articles), we approximate it by its empirical distribution B̂.

Steering ϕ⃗ with Natural Language Constraints. We often want to steer the predicates ϕ⃗ to focus
on aspects that are important for a given application. To do so, we include constraints c that should
hold for a predicate in ϕ. As with ϕ, each constraint c is a natural language predicate and its
denotation JcK maps predicates ϕ to {0, 1}. For example, if c =“the predicate should be style-
related”, then JcK(“has a topic of sports.”)= 0. Given a K-dimensional vector c⃗ of natural language
constraints, define Jc⃗K(ϕ⃗) = 1 if all constraints are satisfied, and 0 otherwise, i.e.

Jc⃗K(ϕ⃗) := ∀k, JckK(ϕk) = 1. (7)

We steer the learned variable ϕk to satisfy ck by following the practice of Zhong et al. (2023):
including ck in the prompt when asking an LM to generate candidate predicates for ϕk.

3.2 EXAMPLE STATISTICAL MODELS UNDER NLCP

We define four statistical models under the NLCP framework: contrastive feature learning, regres-
sion, topic modelling, and clustering. For each model, we explain its input, the learned parameters
ϕ⃗ and w, the formal log-likelihood loss function L, and its relation to classical models.

Contrastive Feature Learning (CFL). The input to this task is a set of N corpus X1...N . CFL
learns a small set of shared feature predicates ϕ⃗ along with corpus-specific weights wn, modeling
each corpus as an exponential family as in Section 3.1. Formally, we define the loss

L(ϕ⃗, w) := −
N∑

n=1

∑
x∈Xn

log pn(x); pn(x) := p(x|wn, ϕ⃗) ∝ B̂(x) exp(w⊤
n ϕ⃗(x)) (8)
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We take B̂ to be uniform over Xall = X1 ∪ · · · ∪XN . Therefore, the predicates ϕ⃗ should describe
how each Xn is different from Xall, which is why we call it contrastive feature learning.

Topic Model. In standard topic models (Blei et al., 2003), the input is N documents, where each
document is represented as a bag of words; it learns a set of topics, where each topic is represented
as a distribution over words, and each document is modelled as a probabilistic mixture over topics.
We can define an analogous model under NLCP: the input is N corpora, where each corpus is a
represented as a bag of samples x ∈ X ; we learn a set of K topics, where each topic is a distri-
bution over samples that satisfy a natural language predicate ϕk, and each corpus is modelled as a
probabilistic mixture wn over K topics. Formally, we define L by modelling pn as follows:

L(ϕ⃗, w) := −
N∑

n=1

∑
x∈Xn

log pn(x); pn(x) :=

K∑
k=1

wn(k)p(x|[τ ], [ϕk]); τ →∞ (9)

As in CFL, we set B to be uniform over the union of all corpora.

Clustering. The input is a corpus X and we set B to be uniform over X . Our model produces a set
of K clusters, each parameterized by a natural language predicate. As in K-means clustering, we
maximize the total log-probability after assigning each sample to its most likely cluster:

L(p⃗) = −
∑
x∈X

log(maxkpk(x)); pk(x) := p(x|[τ ], [ϕ⃗k]), τ →∞ (10)

Note that we did not marginalize the probability across all clusters as in a Gaussian mixture model:
a degenerated optimal solution would be K identical predicates that are always true on all samples.
Appendix D explains why such an issue occurs with natural language parameters in more detail.

Regression. The input to a regression model is a set of pairs of (xn=1...N , yn=1...N ), where x ∈ X
is the independent variable and y ∈ Rd is the dependent variable. We learn ϕ⃗ and a weight matrix
w ∈ Rd×K such that wT J̇ϕ⃗K(x) can predict the corresponding target y. Formally,

L(ϕ⃗, w) =
N∑

n=1

||wJϕ⃗K(x)− y||22, since y ∼ N (wJϕ⃗K(x), I); (11)

We do not need to set B in this model since it predicts real vectors rather than texts.

4 OPTIMIZATION ALGORITHM

For each model above, we have defined the loss function L with respect to the parameters ϕ⃗ ∈ ΦK

and w. To fit the model, we minimize the loss under the constraint c⃗. Formally,

w∗, ϕ⃗∗ = argminw,⃗c(ϕ⃗)=1L(ϕ⃗, w) (12)

However, such an optimization problem is challenging: since ϕ⃗ is a discrete vector that needs to
satisfy c⃗, it cannot be directly optimized by gradient-based methods. This section will present an al-
gorithmic framework that optimizes the loss function of a general model under NLCP with minimal
model-specific algorithmic design. Our algorithm relies on two core functions.

1. OptimizeWandPhi: a user-provided function that optimizes w and a continuous relax-
ation ϕ̃k for each predicate variable ϕk. This can typically be implemented by simple SGD.

2. Discretize: a function that is given the continuous predicate ϕ̃k and produces proposals
for discrete predicates ϕk. We provide a particular implementation below.

To make notations simpler, we omit the ·⃗ superscript.

OptimizeWandPhi. To make optimization more tractable, we first replace each discrete predicate
ϕk with a continuous unit vector ϕ̃k ∈ Rd. We define Jϕ̃kK as the function that maps x to ϕ̃⊤

k ex,
where ex is a feature embedding of the sample x (e.g. the last-layer activations of some neural
network). Thus for instance, in the exponential family model from Section 3.1, exp(w⊤Jϕ⃗K(x)) is
replaced by exp(w⊤Φ̃ex), where Φ̃ is a matrix with rows ϕ̃⊤

k . As a result, L becomes differentiable
with respect to ϕ̃k and can typically be optimized with gradient descent.1

1In the clustering and topic model we set τ to be a large value (e.g. 5) to make the loss still differentiable.
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Given this relaxation, we require OptimizeWandPhi to optimize w together with the ϕ̃k. In fact,
we require something slightly stronger: OptimizeWAndPhi can optimize any subset of the w and
ϕ̃k conditional on the values of the other variables. For example:

L̂, ŵ, ϕ̃ = OptimizeWandPhi(Empty Set); L̂, ŵ, ϕ̃k = OptimizeWandPhi(ϕ−k) (13)

OptimizeWandPhi is different for each model and hence needs to be provided by the user, but
this is straightforward in most cases. For example, under the regression loss in Equation 11, L is a
quadratic function of ϕ̃k and w and can thus be optimized by gradient descent.

L(ϕ̃k, w) =

N∑
n=1

||w·,−kϕ−k(x) + w·,kϕ̃k · ex||22. (14)

Finally, we discuss three different choices of the embedding ex. One naive approach is to use one-
hot embeddings, where the embedding of each sample is orthogonal to all the others. One can also
embed x with a pretrained model and then normalize it to create a unit vector. We can further
improve ex with “projection”: only maintain and embed the constraint-related information. For
example, if x = “we’ve got a shot” and the constraint c = “cluster based on style”, then we first use a
language model to extract the constraint-related information Ωc(x) = “casual; conversational” and
then embed Ωc(x) with a pre-trained model. Appendix Figure 3 shows our prompt for projection.

Discretize. We now convert the continuous representation ϕ̃k into a discrete predicate ϕk. Our
core intuition is to find a predicate h ∈ Φ such that its denotation is the most similar to the relaxed
denotation ϕ̃k · ex. Concretely, we draw samples x ∼ B(x) and sort them based on their dot product
ϕ̃k ·ex. We then prompt a language model to generate explanations of what types of samples achieve
higher dot product values than others, with the constraint that the explanations satisfy ck (Figure 3
“discretizer prompt”). We use these explanations as candidates for the predicate ϕk.

Language models can generate a large number of such explanations when prompted. For computa-
tional reasons we want to cheaply filter to a subset H of M candidates that are likely to have low
loss L. We generate H by selecting the top-M predicates h with the highest pearson-r correlations
between h(x) and ϕ̃k · ex on B. Formally,

H = Discretize(ϕ̃k, ck,M). (15)

Given OptimizeWandPhi and Discretize, our overall algorithm first initializes the pred-
icates and then refines them with coordinate descent. During initialization, we first use
OptimizeWandPhi to find a continuous representation ϕ̃k for all predicate variables and then
discretize each of them with Discretize. During refinement, we optimize individual predicates
and discretize them one at a time while fixing all others. Our full algorithm is in Algorithm 1.

Algorithm 1 Our algorithm based on OptimizeWandPhi and Discretize.

1: Arguments: T,M // # iterations, # predicate candidates
2: Output: var ϕ, ŵ // the current list of natural language predicates, other weights
3: // var ϕ maintains a list of natural language predicates to be optimized and returned.
4: L̂, ŵ, ϕ̃ = OptimizeWandPhi(Empty Set) // relax during initialization
5: for k = 0 to K − 1 do
6: ϕ̂k ← Discretize(ϕ̃k, ck,M)[0] // discretize during initialization
7: for t = 0 to T − 1 do
8: for k = 0 to K − 1 do // enumerate all K parameters for T rounds of coordinate descent
9: ϕ̃k ← OptimizeWandPhi(var ϕ−k) // relax during refinement

10: H ← Discretize(ϕ̃k, ck,M) // discretize during refinement
11: for h ∈ H do
12: if OptimizeWandPhi([var ϕ−k;h]).L̂ < OptimizeWandPhi(var ϕ).L̂ then
13: var ϕ[k]← h // Update the kth parameter to h if swapping it decreases the loss.
14: ŵ ← OptimizeWandPhi(ϕ).ŵ // fixing all ϕ and optimize w
15: return var ϕ, ŵ

6



Under review as a conference paper at ICLR 2024

5 EXPERIMENTS

We evaluate our algorithm on three datasets for each of the four statistical models from Section 3.2.
In each dataset, samples are paired with reference descriptions. We used these samples and descrip-
tions to generate modelling problems where recovering the reference descriptions leads to optimal
performance. This allows us to evaluate our algorithm by computing the similarity between the refer-
ence and the predicted predicates. Through extensive ablations, we found that continuous relaxation,
refinement, and steering with constraints are crucial to the performance. Finally, Section 5.4 presents
proof-of-concept applications of controllable and explainable image clustering and explaining major
topical variations across months, showing the potential versality of our NLCP framework.

5.1 DATASETS

We ran our experiments on three real datasets: New York Times (NYT) (Sandhaus, 2008), AG
News, and DBPedia (Zhang et al., 2015); due to space limit, our main paper focuses on the NYT
dataset and presents other results in Table 2. We chose these datasets because they all have annotated
reference label descriptions ϕ⃗∗ for each sample: In NYT, there are in total 9 topic labels, e.g. “has a
topic of estate” and 10 location labels, e.g. “has a location of Canada”, and each article is manually
annotated with one topic and location label. We use NYT articles to generate modelling problems
where recovering the reference ϕ⃗∗ and their correct denotations lead to optimal performance.

Contrastive Feature Learning. We created 50 groups of articles, where each group has on average
30 articles with the same topic and location label, e.g. one group only contains articles about estate
news in the U.S. Since there are in total 9 topics and 10 locations, we set the model parameter p⃗ to
have 9 + 10 dimensions; 9 have the constraint of “being about the topic of an article” (ctopic) and
10 have the constraint of “being about the location of an article” (clocation). The optimal parameters
would model each group as p(x|[∞,∞], [“has the topic of . . . ”,“has the location of . . . ”]).

Clustering. We sample 1,500 articles and cluster either based on ctopic or ctopic, and we set K = 10
under clocation and K = 9 under ctopic.

Appendix A presents details about our topic modelling and regression problems.

5.2 METRICS.

We evaluate our algorithm by comparing the estimated parameters ϕ̂ and the reference ϕ⃗∗. We
consider two types of similarity: surface similarity and denotation similarity.

Denotation Similarity. For each pair of predicate (ϕ1, ϕ2), we can quantify their denotation simi-
larity by computing the F1 score of using ϕ1(x) to predict ϕ2(x) on the training set B. To compute
the similarity between ϕ̂ and ϕ∗, for each dimension k in the reference, we find the most similar
predicate in the estimated parameter and compute its F1 score; we then report the average across
all k. Similar evaluation protocol is standard in the clustering literature when the ground truth is
available (Lange et al., 2004; Wang et al., 2023).

Surface Similarity. For each reference predicate, we 1) find the predicate in the estimated parameter
with the highest denotation similarity, 2) ask GPT-4 to rate their similarity, and 3) report the average
of GPT-4 ratings. The similarity score is 100 if they have exactly the same meaning, 50 if they are
related, and 0 if unrelated. Figure 3 “similarity judgement prompt” shows our prompt for GPT-4.

5.3 RESULTS

We investigate the following questions through ablation studies:

1. Does “continuously relax + discretize” outputperform searching for random predicates?
2. What types of embedding ex leads to the best performance?
3. Does the model successfully make use of the constraint c⃗?
4. Does iterative refinement improve the performance?

To execute our experiments, we use google/flan-t5-xl (Chung et al., 2022) to compute ϕ⃗(x),
gpt-3.5-turbo (Ouyang et al., 2022) to extract constrain-relevant information Ωc(x) and pro-
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Method cluster loc cluster topic topic loc topic topic CFL regr
RANDOM 17/ 0 18/ 0 17/ 0 18/ 0 18/ 0 18/ 0
NOCONSTR 45/42 33/ 6 24/ 3 30/22 28/20 34/24
NOREFINE 33/39 44/34 45/16 53/18 28/36 29/29
RANDOM H 34/45 13/15 30/16 46/12 11/11 13/12
ONEHOTEMB 42/39 47/39 52/28 69/32 28/20 34/26
DIRECTEMB 63/67 63/53 72/40 76/34 52/52 40/40
PROJEMB 74/84 62/53 72/33 78/36 50/53 47/52

Table 1: Each value on the left/right of “/” means denotation/surface similarity. Each column is
named with “model name constraint-type” (if any). RANDOM refers to a random baseline that
computes the F1 similarity after shuffling the labels for each datapoint.

pose natural language predicates in Discretize, hku-nlp/instructor-large (Su et al.,
2022) to create the sample embeddings eΩc(x). We set M and T , the number of predicates per
Discretize call and the number of refinement iterations, to be 3. We report all experiment re-
sults in Table 1, where the last row PROJEMBED represents our full method. We now answer all
four questions listed above by comparing PROJEMBEDto other variants.

Our method outperforms randomly proposed predicates. We compare to a baseline, RAN-
DOM H, that uses a Discretize function that returns H by prompting the language model to
generate predicates based on random samples from B. Comparing RANDOM H and PROJEMBED
in Table 1, we find that the later is better in all cases, indicating that our procedure is better than
proposing predicates based on random samples randomly.

Embedding x with pretrained models improves the performance. We compare three types of em-
bddings mentioned in OptimizeWandPhi (Section 4): 1) ONEHOTEMBED embeds x with one-
hot encoding, 2) DIRECTEMBED embeds x with a pretrained model, and 3) PROJEMBED extracts
constraint-related information before embedding with a model. Table 1 shows that using pretrained
embeddings is always better; projecting x to extract constraint-relevant information sometimes leads
to the best performance, while always performing at least comparably to all other approaches.

The constraints steered the model learning process. We compare to a baseline, NOCONSTR,
where the Discretize oracle ignores the constraint ck and returns arbitrary predicates. Table 1
shows a performance decrease, so we conclude that steering with constraints is successful.

Refinement improves the performance. We consider a baseline, NOREFINE, which does not refine
the predicates initialized at t = 0. Table 1 shows that refined predicates are always better.

Appendix Table 2 shows that the above claims can be reproduced on two other datasets, AG News
and DBpedia (Zhang et al., 2015). Finally, our model-agnostic optimization framework still has a
large room of improvement and lags behind methods developed for specific models. Appendix Table
3 reports a direct comparison with a prior work that focuses on clustering with NLCP (Wang et al.,
2023), and we found that our method still significantly lags behind on DBPedia topic clustering.

5.4 PROOF-OF-CONCEPT NLCP APPLICATION.

We present two proof-of-concept applications: 1) controllable and explainable image clustering and
2) explaining topical variation across months. In contrast to the experiments above, these results are
cherry-picked to demonstrate the potential of our NLCP framework and not rigorously evaluated.

Image Clustering. Unsupervised image clustering is widely used to discover new objects (Sivic
et al., 2005) or explore datasets (Caron et al., 2018), but these methods might not be easily steerable
or explainable. In this section, we create image clusters with associated explanations and steer
them with natural language constraints. As shown in Figure 2 top-left, we perform clustering on a
synthetic image dataset sampled from DomainNet (Peng et al., 2019), where there are three styles
(painting, real, and sketch) and three objects (bird, flower, and bicycle), with 16 images for each
of the 3 × 3 combinations. The clustering constraint is either to “cluster by style” or “cluster by
object”. To optimize the loss of the clustering model, we use ViLT (Kim et al., 2021) to approximate
the denotation of a predicate on an image and propose predicates by prompting gpt-3.5-turbo
based on image captions generated by BLIP-2 (Li et al., 2023).
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“has a painting style” 

“has a style of real photos” 

“has a style of sketches” 

- has a topic of safety concerns or threats; specifically, the 
text discusses situations posing risk to public security. For 
example, ‘Beach goers warned of dangerous conditions.’

- has a topic of social incidents or accidents; specifically, the 
text discusses events such as fires, traffic accidents or 
crimes. For example, ‘boy escapes abduction attempt’

- …

Similarity (F1) Correct Style 
Clusters

Correct Object 
Clusters

Steered by “Style” 75 45

Steered by “Object” 39 81

Constraint = “I want to cluster based on style” 

Figure 2: Two proof of concept application of NLCP. Left: we generate explainable image clusters
based on natural language constraints. We found that when steered with the style/object constraint
(row), the generated clusters are more similar to the reference style/object clusters (column).Right:
we explain major variations across different months with detailed natural language predicates and
plot how often each predicate is true across different months.

Figure 2 bottom-left displays results when steering with the style or object constraint, respectively.
The predicted clusters are more similar to the reference style/object clusters, indicating that steering
with natural language constraint is useful. This demonstrates that NLCP can be applied to the image
modality, unlocking a wide range of image-based data analysis opportunities, e.g. explaining what
types of images different groups of users might share on social media.

Explaining Major News Topical Variations Across Months. Many applications could benefit
from explaining the differences between a large set of corpora in natural language, e.g. understand-
ing topical differences across many months of news titles, user preferences in their reviews across
thousands of different zip-code, etc. We provide one such example by explaining the major topical
variation across 48 months of news titles from Australia Broadcasting Corporation (ABC)2, using
the topic model (K = 8) under NLCP, and plotting how often various learned predicates are true for
each month (Figure 2). This demonstrates that NLCP could unlock new application opportunities.

6 CONCLUSION AND FUTURE WORK

We proposed a framework, NLCP, to improve the explainability and steerability of statistical models
(Section 3). To optimize the likelihood in NLCP, we introduced continuous relaxations and iterative
refinement (Section 4), and validated these ideas for several datasets and NLCP models (Section 5).

However, there is still significant room for improving NLCP models and methods. First, although
our paper proposes and validates a few effective model-agnostic optimization techniques, we still
underperform model-specific optimizers (Table 3). A competitive model-agnostic NLCP algorithm
would allow practitioners to explore new models without worrying about optimization details, sim-
ilar to how auto-diff libraries allow deep learning practitioners to explore new architectures.

Second, our work focused on the text domain, while language can also describe other modalities,
such as vision or sound; to extend NLCP to those modalities, we need stronger foundation models
to propose predicates and validate them on the modality of interest.

Finally, while we explored several statistical models, there is a large space left to explore. For
instance, we only used natural language parameters for one round of feature extractions, while one
can model hierarchical structures across natural language parameters (e.g. a taxonomy where each
node is represented by a predicate). By building NLCP models with richer structures, it is possible to
build more expressive models while still maintaining the intuitive natural language interface between
ML systems and humans, and thus minimize the performance gap between uninterpretable systems
vs. explainable and steerable systems.

2https://www.kaggle.com/datasets/therohk/million-headlines.
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A DATASETS FOR OTHER MODELLING TASKS

Topic Model. We create a separate test bed for modelling texts as a mixture of texts with the same
location (clocation) or a mixture of topics (ctopic). For each constraint, we generate 30 groups of arti-
cles; for each group n we sample a mixture probability distribution wn from a dirichlet distribution
with parameter = 1 over all labels under that constraint; then we sample 75 articles by first sample a
label l from wn and then uniformly sample an article conditioned on l. We set K = 10 under clocation
and K = 9 under ctopic. The optimal parameters would disentangle the mixtures and uncover the
latent “topics” represented by predicates.

Regression. We sample 1,500 articles xi and create a target vector yi for each of them. To do so,
we first associate each of the 19 location or topic labels with a 32 dimensional vector sampled from
N (0, I); then for each xi, we set yi to be sum of its location vector and the topic vector. We set
K = 19, where 9 constraints are ctopic and 10 are clocation.

B MORE EMPIRICAL RESULTS

In Table 2, we performed the same set of clustering and topic modelling experiments from Table 1
on AG News and DBpedia Zhang et al. (2015). We did not perform the low-rank factorization and
the regression experiments since they require more than one types of labels for each sample to be
meaningful, while AG News and DBpedia only contains topic labels.

cluster AG cluster DBpedia topic AG topic DBpedia
RANDOM 29/ 0 14/ 0 29/ 0 14/ 0
NOREFINE 69/72 26/20 67/75 39/34
RANDOM H 32/37 14/11 47/50 26/19
ONEHOTEMB 58/55 31/19 60/65 24/20
DIRECTEMB 80/72 36/33 81/89 38/37
PROJEMB 82/80 40/30 80/87 42/36

Table 2: Models’ performance on other datasets AG News and DBPedia (Zhang et al., 2015). We
observe a similar set of conclusions as in Section 5.3.

Table 3 reports a head-to-head comparison with prior state-of-the-art on explainable clustering
(Wang et al., 2023), which solves the same clustering task as ours but designs a task-specific op-
timization algorithm based on integer linear programming. Our algorithm is comparable to the
state-of-the-art method on some datasets (AG News, NYT topic) but still lags behind on others,
indicating a large room for future improvement for model-aganistic optimization methods. On the
other hand, it significantly outperforms LDA, and respects the constraint more than pure neural
embedding-based method (Instructor) when clustering based on locations.

Method NYT top (9) NYT loc (10) AG News (4) DBPedia (14)
LDA 51/ 0 40/ 0 53/ 0 51/ 0
INSTRUCTOR 69/ 0 56/ 0 84/ 0 82/ 0
PAS 70/67 76/100 87/88 71/54
OURS 61/53 66/ 84 82/80 51/30

Table 3: Each column corresponds to a clustering dataset, with “{dataset name} {constraint name}
(K)”, and the default is to cluster based on topic if the constraint is not provided. The methods
above the line (INSTRUCTOR (Su et al., 2022) and LDA (Blei et al., 2003)) do not provide natural
language explanations; PSA (Wang et al., 2023) solves the exact same clustering task as our method
but involves an optimization specifically designed for clustering. Our algorithm still lags behind
PAS, indicating that the optimization procedure still has a significant room for improvement; on the
other hand, our method significantly outperforms LDA in most cases and can respond to different
constraints (e.g. cluster by locations/topics).
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C PROMPTS

We show the prompts used in our experiments in Figure 3. The language model predicted outputs
are highlighted in light blue.

Samples 
from B

Discretizer prompt

Check whether the TEXT satisfies a PROPERTY. 
Respond with Yes or No. When uncertain, output No.  

Now complete the following example - 
input: PROPERTY: has a casual style 
TEXT: “see the player  last night?” 

output: yes

Denotation promptSimilarity judgement prompt

Is text_a and text_b similar in meaning? 
respond with yes, related, or no. 

Target: 
text_a: has a casual style 
text_b: is in an informal style 
output: yes

Project prompt
In this task the user wants to extract some key information from a text. Come up with a few 
key phrases (in English) based on the text based on the goal. 
  
constraint: We want cluster the text based on their topics. 

text: the musician resonated with profound emotional undertones 

keyinfo (in English): art, music, performance

Here is a corpus of text samples each associated with a score. The text samples are sorted from the 
lowest to the highest score. 

I want to understand what topic of text achieves a higher score. Your response should start with “has a 
location of” ....' 

1. “athlete demonstrated remarkable prowess.” (score: -0.2) 
2. “see the player last night?” (score: -0.3) 
3. “the musician resonated with profound emotional undertones” (score: 0.3) 
4. “Wonderful paining by ” (score: 0.4) 

We want to understand what kind of text samples achieve a higher score, so please suggest descriptions 
about the text samples that are more likely to achieve higher scores. 
 - "uses double negation" 
 - "has a conservative stance; specifically" 

Please generate the response based on the given datapoints as much as possible. We want the 
descriptions to be relatively objective and can be validated easily. For example… 
Your responses are: 
- "has a casual style"

Constraint

Language 
Model Outputs

Figure 3: We show the prompts used in our experiments. The language model predicted outputs are
highlighted in light blue.
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D DEGENERATED OPTIMAL SOLUTION OF MIXTURE MODEL

We consider a Gaussian Mixture Model for the clustering example, where we marginalize over all
clusters to obtain the probability for each datapoint x and compute the sum of their log probability.
When all clusters pk := B(x), a uniform distribution over all training samples, we achieve the
lowest negative log loss.

L(p⃗) = −
∑
x∈X

log(

K∑
k=1

pk(x)); pk(x) := p(x|[τ ], [ϕ⃗k]), τ →∞ (16)

Why did this not happen for Gaussian mixture models? Let’s consider a data distribution p generated
by a mixture of two different Gaussian variablesN (µ1, σ1) andN (µ1, σ2): to fit p with two gaussian
variables, the optimal solution is to indeed recover the two underlying gaussian variables in the
generative process, and fitting the mixture with one gaussian would lead to suboptimal solution.

However, since natural language predicate can easily express a union relation of two predicates, it
is often also optimal to fit the mixture of two predicate-parameterized distribution with one distri-
bution. For example, in the domain of articles that only have 2 different topics “sports” and “arts”,
the predicate of “True” or “articles” express the union over the two clusters and hence can perfectly
model the mixture distribution of two sub-clusters.
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