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Abstract

While large language models (LLMs) surge with
the rise of generative AI, algorithms to explain
LLMs highly desire. Existing feature attribution
methods adequate for discriminative language
models like BERT often fail to deliver faithful ex-
planations for LLMs, primarily due to two issues:
(1) For every specific prediction, the LLM outputs
a probability distribution over the vocabulary–a
large number of tokens with unequal semantic dis-
tance; (2) As an autoregressive language model,
the LLM handles input tokens while generating
a sequence of probability distributions of various
tokens. To address above two challenges, this
work proposes GILOT that leverages Optimal
Transport approach to measure the distributional
change of all possible generated sequences upon
the absence of every input token, while taking into
account the tokens’ similarity, so as to faithfully
estimate feature attribution for LLMs. We have
carried out extensive experiments on top of Llama
families and their fine-tuned derivatives across
various scales to validate the effectiveness of
GILOT for estimating the input attributions. The
results show that GILOT outperforms existing so-
lutions on a number of faithfulness metrics under
fair comparison settings. Source code is publicly
available at https://github.com/holyseven/GiLOT.

1. Introduction
The burgeoning field of generative AI has witnessed a
remarkable upsurge in large language models (LLMs),
with advancement across dialogue assistant (Touvron et al.,
2023a;b), code generation (Lozhkov et al., 2024; Chai
et al., 2023; Peng et al., 2024), and multimodal compre-
hension (Achiam et al., 2023; Team et al., 2023). These
foundation models, capable of generating human-like text,
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Figure 1. Illustration of GILOT framework.

have spurred phenomenal applications across various do-
mains of human endeavor (Bubeck et al., 2023). Yet, as their
adoption grows, so does the imperative for interpretable
AI. Stakeholders, from developers to end-users, necessitate
methods that can elucidate the decision-making processes
of LLMs for content generation. Such transparency is cru-
cial, not only for enhancing trust and alignment with human
values but also for ensuring reliability and accountability in
automated decision-making (Wang et al., 2023).

A vital in this quest for comprehension lies in the feature
attribution methods that parse the contribution of each input
token to the output. For example, LIME (Ribeiro et al.,
2016) and its variants (Ahern et al., 2019; Zhou et al., 2021;
Slack et al., 2021; Li et al., 2023b) interpret the attribu-
tion of a feature as the change of prediction results through
perturbing the feature around a specific data point. In addi-
tion, to faithfully attribute a feature to the change of model
predictions, Shapley values have been introduced for fine es-
timation (Kumar et al., 2020; Sundararajan & Najmi, 2020;
Kwon & Zou, 2022). More specifically, to handle the large-
scale transformer models, attention-based methods (Chefer
et al., 2021; Chen et al., 2022; Xu et al., 2023) have been
recently proposed to track back the change of predictions to
the input features via attention flows. Recent surveys could
be found at Li et al. (2023a); Xiong et al. (2024).

While existing approaches sufficed for earlier models and
tasks, they might encounter two challenges when applied
to generative LLMs. Firstly, for every specific prediction,
LLMs output a probability distribution of all possible tokens
or words, wherein the semantic distances between tokens
are neither uniform nor trivially quantifiable (Deudon, 2018;
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Ippolito et al., 2019). For examples, when an LLM pre-
dicts the next word for the input sequence “drinking tea
is an old tradition of [token]”, the three words “Eng-
land”, “Britain” and “China” are all highly possible but
distinct. However, the words “England” and “Britain” are
much closer and the change of prediction from “England”
to “China” is more semantically significant. Secondly, these
models are prompted by the given input tokens to recur-
sively predict the next token’s probabilities and eventually
generate a sequence of output tokens by different decoding
strategies (Ippolito et al., 2019). In this way, to interpret
a specific prediction of an LLM, it is necessary to take (i)
tokens’ semantically distance, as well as (ii) all possible
sequences into the consideration.

To tackle above challenges, this work introduces GILOT,
a novel feature attribution approach derived from the opti-
mal transport (OT) theory (Villani, 2009), which is adept
at embedding the semantic distance measure between to-
kens/words (Deudon, 2018) into the distance measure be-
tween probability distributions over the token set. By uti-
lizing OT, GILOT quantifies the distributional changes in
LLM’s output as a function of the exclusion of any given
input token. Furthermore, GILOT adopts a decoding-free
scheme, theoretically calculates the conditional probability
distribution of predicted sequences, which can be efficiently
estimated, and measures the distance when excluding the
given input token. Figure 1 illustrates the overall pipeline of
our GILOT framework, which comprises three main stages:
(1) token masking, (2) forward and marginalization, and (3)
optimal transport. Detailed descriptions of these stages are
provided in Section 3.

Specifically, contributions of this work can be summarized
as follows:
1) In this work, we study the problem of feature attribution
for LLMs in generative tasks, where the feature attribution
is modeled as the change of probability distributions of
generated tokens upon the absence of an input token. To
best of our knowledge, this work is the first to address the
technical issues of estimating the input feature attributions
for generative LLMs.
2) We propose GILOT – an effective LLM explainer.
GILOT leverages Optimal Transport (OT) to measure the
distributional change of an LLM’s output sequences when
masking some input token, where the common semantic
distance measure is embedded into the OT modeling system
to approximate the measure of semantic shifts of all possible
generated sequences at distribution-level.
3) To thoroughly assess the effectiveness of GILOT using
Llama families and their fine-tuned derivatives, we have con-
ducted extensive experiments in comparisons with a number
of feature attribution explainers, including LIME, Bidirec-
tional Transformer Attribution (BTA), Integrated Gradients

(IG) and their variants. The results demonstrate that GILOT
stands out in generating more faithful and interpretable attri-
butions when compared to existing methods and measured
with three widely-used faithfulness metrics.

2. Related Works
Understanding the predictions of deep models is of-
ten achieved through feature attribution methods, which
have been broadly categorized into perturbation-based,
differentiation-based, activation-based and attention-based
approaches. Perturbation-based methods, such as those
demonstrated by LIME (Ribeiro et al., 2016) and its vari-
ants such as G-LIME (Li et al., 2023b), involve varying the
input features and observing the impact on the output, with
substantial changes indicating feature importance. However,
despite their utility, techniques like Feature Ablation (Mer-
rick, 2019; Ramaswamy & Harish, 2020) and Shapley value-
based methods including SHAP (Lundberg & Lee, 2017),
BSHAP (Sundararajan & Najmi, 2020), and Shapley-Taylor
indices (Sundararajan et al., 2020), suffer from computa-
tional intensity which poses practical challenges (Rozem-
berczki et al., 2022). Conversely, differentiation-based
techniques leverage the sensitivity of the outputs to the
inputs, as encapsulated by approaches like Integrated Gra-
dients (Qi et al., 2019; Lundstrom et al., 2022), Smooth-
Grad (Smilkov et al., 2017), and DeepLIFT (Shrikumar
et al., 2017). Further enhancements are seen in models
such as DeepSHAP (Fernando et al., 2019) and Grad-
SHAP (Lundberg & Lee, 2017), which integrate gradient
information with Shapley values for a more nuanced un-
derstanding of input contribution to predictions, thereby
advancing the interpretability of deep models.

In addition, techniques such as Class Activation Mapping
(CAM) (Zhou et al., 2016) and Gradient-weighted Class
Activation Mapping (Grad-CAM) (Selvaraju et al., 2017)
effectively spotlight decisive regions within convolutional
neural networks (CNNs) by employing activation and gradi-
ent information, respectively. Transformers benefit from
attention-based methods, with tools like Attention Roll-
out and Attention Flow (Abnar & Zuidema, 2020), Layer-
Wise Relevance Propagation (LRP) (Voita et al., 2019), and
more recent advancements including Bidirectional Atten-
tion Flow (Chen et al., 2022), Transformer Attribution (Hao
et al., 2021), and Attribution Rollout (Xu et al., 2023) that
elucidate feature significance by aggregating and backtrack-
ing attention scores. Such methods stand out in their ability
to illuminate how models process sequential data, attributing
relevance to inputs in a visually coherent manner.

While works exist for interpreting LLMs in different ways
(including OpenAI’s neuron explainer (Bills et al., 2023)
and LLM self-explainer, e.g., (Rajani et al., 2019)), our pro-
posed methodology is the first attempt to estimate the input
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feature attributions for general generative tasks. Specifi-
cally, our approach differs from previous works in two key
ways: (1) The GILOT models an LLM’s prediction as a
probability distribution of the generated tokens, utilizing
optimal transport with a semantic distance metric to mea-
sure distributional changes as feature importance, and (2)
benefiting from the beam-search results, GILOT selects the
most probable generated sequences of tokens to estimate
the sequence probability distributions.

3. GILOT: Feature Attributions for LLM with
Optimal Transport

In this section, we introduce the methodology of GILOT,
where we first present the notations used, then introduce
the main framework. Later, the two algorithms and their
efficient computation models are discussed.

3.1. Notations

We aim to explain a generative model of parameters θ. For
a language model, the vocabulary set is used to represent all
the words/tokens. Let V represent the vocabulary set and |V|
be the total number of tokens in V . Let {xi∈[1,m]} represent
the input sequence containing m tokens. The probability
distribution of the token at j-th position given the context
{xi∈[1,m]} is p(Yj |xi∈[1,m],θ). We note that one generated
sequence can be denoted as {yj∈[1,n]}, where yj is one
instance of Yj , with probability of p(Yj = yj).

We omit θ and input tokens in this section without loss of
generality. For example, p(Yj |xi∈[1,m],θ) is simplified to
pm(Yj). Note that pm(YJ) ∈ R|V|.

3.2. The Main Framework

For estimating the attributions of every input token to the
generated results, GILOT follows the previous works on
perturbation-based works (Ribeiro et al., 2016; Samek et al.,
2016; Petsiuk et al., 2018b), and adopts a straightforward
yet effective strategy here, i.e., masking one token and mea-
suring the difference.

Let assume pm(YJ) available to use, which will be derived
in Section 3.3, we can represent the probability distribution
of the J th output token when masking the input token at ath

position in the input sequence as pm/a(YJ), following the
same derivation as pm(YJ), as detailed in Section 3.3. Note
that the masking granularity can be modified from tokens to
words, entities and phrases. We continue discussing at the
token level without loss of generality.

With such notations, GILOT directly quantifies the ath

input token attribution by averaging the difference at all

positions in the generated sequence, such that

S(a)
def
=

1

J

J∑
j=1

L(pm(Yj), pm/a(Yj)) , (1)

where L(·, ·) refers to a measure of difference between two
probability distributions.

To implement the feature attribution of Eq. (1), in following
sections, we introduce key algorithms used in GILOT that
(i) efficiently estimates the probability distribution of to-
kens at the J th position in an output sequence, i.e., pm(YJ)
(respectively pm/a(YJ)), and (ii) models and measures the
distance between probability distributions of tokens, i.e.,
L(·, ·), taking the semantic distance between tokens into
consideration based on optimal transport.

3.3. The Efficient Estimator of pm(YJ)

To achieve the goal, GILOT adopts a straightforward mod-
elization that marginalizes out all the variables for the previ-
ous tokens already, i.e., {Y1, Y2, . . . , YJ−1}, and thus obtain
the probability distribution at the J th position.

3.3.1. THE CALCULATION OF pm(YJ)

For example, to compute the distribution for the 2nd output
token, we can simply take one step forward and require to
marginalize out the 1st token:

pm(Y2) = EY1∈V pm(Y2|Y1) . (2)

Recursively, the probability distribution at the J th position
is given by

pm(YJ) = EYj∈[1,J−1]∈VJ−1 pm(YJ |Yj∈[1,J−1]) . (3)

Similarly, we can derive pm/a(YJ) and obtain

pm/a(YJ) = EYj∈[1,J−1]∈VJ−1 pm/a(YJ |Yj∈[1,J−1]). (4)

Note that the permutation space of (J−1)-length sequences
of all possible generated tokens exponentially enlarges at
a scale of O(|V|J−1

), when the number output tokens J
increases with a vocabulary V .

3.3.2. EFFICIENT COMPUTATION OF pm(YJ) WITH
BEAM SEARCH

To efficiently compute Eq. (3) in practice, we choose top-
b sequences that have the highest probabilities among all
possible sequences, through the beam search decoding strat-
egy (Wiseman & Rush, 2016). In this way, Eq. (3) is ap-
proximated by replacing the set VJ−1 of length |V|J−1 by
the set of B of length b, i.e.,

pm(YJ) ≈ EYj∈[1,J−1]∈B pm(YJ |Yj∈[1,J−1]) . (5)

The computational complexity has been reduced from an ex-
ponential to a linear scale, with a moderate approximation.
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3.4. The Efficient Estimator of L(·, ·)

Though various methods exist to measure the dissimilar-
ity or distance between distributions, we here particularly
focus on modeling and measuring the distributional differ-
ences of tokens/words, where semantic distance between
tokens/words would be critical.

3.4.1. THE KLD-BASED ESTIMATOR

KLD (Kullback–Leibler divergence) is a baseline measure
of the distance between two distributions p and q, such that

LKL(p, q) =
∑
i

pi log(pi/qi) . (6)

However, using KLD to compare distributions across a vo-
cabulary treats every word as equally distinct, which is not
suitable for natural language processing where some words
or tokens have similar meanings. A shift in the probability
distributions towards a synonymous term results in a signif-
icant increase in Kullback-Leibler divergence, yet it does
not substantially alter the underlying semantics.

3.4.2. THE OT-BASED ESTIMATOR

As was mentioned, to compare two probability distribu-
tions of tokens, there needs to consider both the divergence
between distributions as well as the semantic distances be-
tween any two tokens/words. Thus, GILOT leverages Op-
timal Transport (OT) which calculates the minimal cost
of transforming one distribution into another, where a pre-
defined cost matrix is requested to measure the transport
cost between every two individual data points (tokens in our
case) in distributions.

Specifically, GILOT adopts the following cost matrix to
model the semantic dissimilarity between tokens:

Cij = 1− cos(ei, ej) , (7)

where ei is the ith token’s embedding with respect to the
model θ and the function cos(·, ·) is the cosine similarity
between two vectors1. Then we can write down the optimal
transport measure for distances as

LOT (p, q) = min
P∈Π(p,q)

⟨P,C⟩F , (8)

where ⟨·, ·⟩F is the Frobenius product, and Π(p, q) = {P ∈
R|V|×|V| : P1|V| = p and PT

1|V| = q} is the set of all
admissible couplings between p and q.

1Though there is some discussion on the misuse of cosine
similarity in high-dimensional spaces (Steck et al., 2024), we have
validated its usage in our scenario and have found it suits well to
our method. See the discussions in Section C.

3.4.3. EFFICIENT COMPUTATION OF OT WITH DUAL
APPROXIMATION STRATEGIES

The OT is a well known linear programming problem, with
a computational complexity of O(|n|3 log(|n|)) for mea-
suring distances between distributions of n-elements. Par-
ticularly, in our settings, when handling two distributions
over the vocabulary set V with usually more than 10,000
tokens/words, the computational complexity becomes un-
acceptable, for making the cost matrix and optimal plan
extremely large and redundant. To lower the complexity,
GILOT adopts two approximation strategies as follows:

• Sinkhorn-Knopp Algorithm: Based on the iterative
Sinkhorn-Knopp algorithm, Cuturi (2013) proposed a fast
and parallelizable approximate solution to the OT prob-
lem. Integrated with the proximal point algorithm and
Sinkhorn-Knopp, IPOT (Xie et al., 2020) theoretically
converges to a more precise solution of the OT problem,
with comparable cost to (Cuturi, 2013). This solver is
highly parallelized and implemented on GPU, leading to
very small portion of time cost compared to the generation
part. See Section B for the detailed figures.

• Dynamic Vocabulary Compression: For most token
predictions, the top-100 tokens could achieves 95% cu-
mulative probability. In estimating the OT between distri-
butions p and q, GILOT identifies the top-k tokens from
each distribution, unions them, and then utilizes this union
subset to replace the vocabulary set V for computation.

In this way, GILOT calculates the OT distance based on
the iterative Sinkhorn-Knopp algorithm on the union set of
tokens only, reducing to the 2k tokens at maximum, where
k is set to 100 in most of our experiments.

4. Faithfulness Validation
In this section, we evaluate the faithfulness of our proposed
GILOT for feature attribution. Inspired by the perturbation
tests (Petsiuk et al., 2018a; Samek et al., 2017) in traditional
faithfulness evaluation for classification tasks, we propose
an evaluation setting for LLM generation tasks. Meanwhile,
we adapt the commonly-used feature attribution algorithms
into large language models and consider them as baselines
to validate GILOT.

4.1. Evaluation Setting

Perturbation-based tests evaluate different feature attribution
methods by masking input texts and evaluating the output
changes. In classification test, such output changes can be
easily valued with prediction accuracy and probability shifts
on “target” or “top-predicted” class. However, for general
generative tasks, there barely exist one target class. Similar
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<s> Below is an instruction that describes a task . Write a response that appropri ately comple tes the request . ### Inst ruction : Write a short story in third person narr ation about
a protagon ist who has to make an important career decision . ### Response : (LIME)
<s> Below is an instruction that describes a task . Write a response that appropri ately comple tes the request . ### Inst ruction : Write a short story in third person narr ation about
a protagon ist who has to make an important career decision . ### Response : (BTA-Avg)

<s> Below is an instruction that describes a task . Write a response that appropri ately comple tes the request . ### Inst ruction : Write a short story in third person narr ation about
a protagon ist who has to make an important career decision . ### Response : (BTA)
<s> Below is an instruction that describes a task . Write a response that appropri ately comple tes the request . ### Inst ruction : Write a short story in third person narr ation about
a protagon ist who has to make an important career decision . ### Response : (IG-Avg)

<s> Below is an instruction that describes a task . Write a response that appropri ately comple tes the request . ### Inst ruction : Write a short story in third person narr ation about
a protagon ist who has to make an important career decision . ### Response : (IG)
<s> Below is an instruction that describes a task . Write a response that appropri ately comple tes the request . ### Inst ruction : Write a short story in third person narr ation about
a protagon ist who has to make an important career decision . ### Response : (Ours)

## Response:
John was at a crossroads in his life. He had just graduated from college and was now faced with the daunting task of choosing a career. He had always been interested in business, but he
was not sure if it was the right path for him. He knew that he had to make the right decision, as it could potentially affect the rest of his life. After much deliberation, he finally decided to
pursue a career in business and enrolled in an MBA program.

Figure 2. Visualization of baseline methods and ours with Stanford-Alpaca-7b, where the response is used only for baseline methods.
From the visualizations, we can see that (1) LIME is obviously shifted; (2) Two BTAs miss "Write", "short" and "third"; (3) IG misses
"short" and "third", IG-AVG thinks almost every words equally, with preference to "Write" and "important career decision"; (4) Ours do
not miss any of important tokens and interestingly marks "protagon-" as important. When "protagon-" is masked, then only "-ist" remains
there. In such case, "rationalist", "optimist" or "humanist" may be assumed by the model, which leads to very different outputs.

responses can have largely-shifted probability distributions.

In such case, we propose to gradually mask input tokens
(from 0% to 100%) according to the obtained token attribu-
tions, re-generate the response with masked inputs using the
greedy decoding strategy, calculate the discrepancy score
between the embeddings of original and re-generated re-
sponses, and measure area under the curve (AUC) for the
discrepancy score. The evaluation set is composed of 100
prompts from Alpaca (Taori et al., 2023) and ShareGPT2.
Following the previous faithfulness evaluation benchmark
M4 (Li et al., 2023a) for feature attribution methods, we
use the metrics of MoRF (masked from the most relevant
to the least), LeRF (from the least relevant to the least), and
ABPC (area between the two perturbation curves).

4.2. Baselines

We adapt the commonly-used feature attribution algorithms
for LLMs: LIME (Ribeiro et al., 2016), Integrated Gradient
(IG) (Sundararajan et al., 2017) and Bidirectional Trans-
former Attribution (BTA) (Chen et al., 2022). Following the
notations in Section 3.1, we use {xi∈[1,m]} to represent the
input tokens. Here we set the greedily generated T tokens
as the output sequence {yj∈[1,T ]}.

LIME fits a linear model to approximate the relation be-
tween perturbed inputs and corresponding outputs. The
challenge of LIME explaining LLMs is to define an appro-
priate score/loss. We trivially choose − log p(yj∈[1,T ]|x̃),
the negative log-likelihood as the loss, that is specifically

Lloss = −
T∑

j=1

log (p(yj | y1, . . . yj−1, x̃)) , (9)

where x̃ is the randomly masked inputs.

2https://sharegpt.com/ and https://
huggingface.co/datasets/RyokoAI/ShareGPT52K.

IG linearly interpolates an input sample from a chosen base-
line with small increments, and sums the gradients to the
embeddings e(x) as attributions. That is,

1

K

K∑
k=1

∑
de

∂Lloss(
k
K e(x))

∂e(x)
. (10)

We use the same loss function in Eq (9). Besides, we pro-
pose another version IG-AVG, which applies the loss func-
tion − log p(yj | y1, . . . yT−1,x) step by step and calculates
the average input token attributions across all steps, instead
of computing the loss of the whole output sequence.

BTA combines the forward attention-based attribution and
the backward gradient of last attention map with element-
wise product, i.e.,

P(L) ⊙ ReLU(
1

K

K∑
k=1

∂Lloss(
k
K e(x))

∂A(L)
) , (11)

where P(L) = (Ã(1) + I)(Ã(2) + I)...(Ã(L) + I). We
use the token-wise attention perception Ã

(l)
token. Similar to

IG-AVG, for the step-by-step loss, we consider BTA-AVG
as another baseline as well.

Note that all these baselines are adopted with given re-
sponses, different generation configuration can lead to other
responses and obtain different token attributions. Our
method is specifically designed for generation tasks, thus
not affected by the varying generation configurations.

4.3. Experimental Results

In this section, we first use a visualization to showcase
how feature attribution methods work on LLMs for a com-
mon generation task. Then, we use quantitative analysis
to demonstrate the performance advantages of GILOT in
faithfulness evaluation through comparisons.
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Table 1. Comprehensive performance comparison of Llama 2 and its RLHF-finetuned variants across varying mask rates ranging from 0%
to 100%. Values are averaged, with the highest performance highlighted in bold and the second highest underlined for clarity.

Model #Param Metric BTA BTA-Avg IG IG-Avg LIME GILOT

Llama2-7b 7B
MoRF⇑ 42.81 42.94 42.99 43.23 42.48 43.31
LeRF ⇓ 43.02 42.99 42.38 42.52 43.03 42.46
ABPC⇑ -0.22 -0.05 0.61 0.72 -0.55 0.85

Llama2-7b-chat 7B
MoRF⇑ 41.12 41.73 41.75 41.74 40.98 41.94
LeRF⇓ 41.05 41.01 40.35 40.54 41.81 40.78
ABPC⇑ 0.08 0.72 1.40 1.20 -0.83 1.17

Llama2-13b 13B
MoRF⇑ 44.03 43.94 43.86 43.65 43.51 44.12
LeRF⇓ 43.27 43.27 43.46 43.15 43.71 43.11
ABPC⇑ 0.76 0.67 0.41 0.49 -0.20 1.01

Llama2-13b-chat 13B
MoRF⇑ 40.98 41.46 41.61 41.05 40.36 41.88
LeRF⇓ 41.25 40.53 41.13 41.31 41.83 40.51
ABPC⇑ -0.26 0.93 0.48 -0.27 -1.47 1.38

CodeLlama-13b-python 13B
MoRF⇑ 28.63 29.98 29.03 28.74 24.28 30.35
LeRF⇓ 21.45 21.93 20.90 20.77 27.26 21.65
ABPC⇑ 7.18 8.05 8.12 7.96 -2.98 8.70

Visualization We visualize the token attributions using
baseline methods and our proposed approach. As illustrated
in Figure 2, we use Stanford-Alpaca-7b to generate response
for the instruction “Write a short story in third person nar-
ration about a protagonist who has to make an important
career decision.” and interpret such response with baselines
and our method. First, we notice that different methods do
have different interpretations to the same instance, indicat-
ing the necessity of testing faithfulness. Second, compared
to baselines, our method can capture the essential input
tokens, such as “third person” and “protagonist”, which fur-
ther demonstrates the effectiveness of our proposed method.

Faithfulness Evaluation Following the evaluation setting
in Section 4.1 and baseline algorithms in Section 4.2, we
conduct extensive experiments to validate our method.

Table 1 compares the faithfulness of different feature attribu-
tion methods, including BTA, BTA-Avg, IG, IG-Avg, LIME,
and GILOT, on Llama 2 (Touvron et al., 2023b) and its rein-
forcement learning from human feedback (RLHF) finetuned
variants under varying masking rates, where the faithfulness
is measured by the MoRF, LeRF, and ABPC metrics. Partic-
ularly, models with 7B and 13B parameters are evaluated,
including those specialized for chatting and Python coding.
Overall, the proposed method GILOT consistently shows
superior performance by obtaining the highest scores for
most metrics across the model variants, indicating that it
more effectively captures the influence of input tokens on
model outputs. The LIME method, in contrast, typically
underperforms, especially in estimating the area between
perturbation curves (ABPC).

We extend our evaluation onto two other language mod-
els, Alpaca-LoRA and Vicuna, each with two versions con-
taining 7B and 13B parameters, on sample data using a
variety of interpretability metrics. Table 2 show that the
GILOT method consistently delivers superior performance,
achieving the highest scores in most metrics, particularly
in the larger 13B parameter variants. While the IG and
BTA methods also lead in certain metrics like MoRF for
Vicuna-7B and ABPC for Alpaca-LoRA-7B respectively,
GILOT stands out as the most effective method overall for
obtaining feature attributions from RLHF fine-tuned models,
as indicated by its frequent appearance as the highest scorer.

Above experiments reveal that the GILOT method outper-
forms other feature attribution techniques such as BTA, IG,
and LIME across a variety of metrics like MoRF, LeRF, and
ABPC when applied to the Llama 2 model and its RLHF-
finetuned variants. This superior performance is consistent
across models geared for both conversational and Python
coding tasks, with a marked advantage in larger 13B pa-
rameter versions of the Alpaca-LoRA and Vicuna models.
Despite the occasional lead of IG and BTA in certain met-
rics, GILOT is generally the most reliable for assessing the
influence of input tokens on the model outputs, establishing
it as a prominent method for interpreting RLHF fine-tuned
language models.

4.4. Ablation Study

OT vs KLD As was discussed in Section 3.4, GILOT
could adopts KLD as an alternative for the measure of
the distance between two distributions (through applying
KLD to Equation (1)), where KLD however treats tokens
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Table 2. Comprehensive performance comparison of Llama and its finetuned variants across varying mask rates ranging from 0% to 100%.
Values are averaged, with the highest performance highlighted in bold and the second highest underlined for clarity.

Model #Param Metric BTA BTA-Avg IG IG-Avg LIME GILOT

Stanford-Alpaca-7B 7B
MoRF⇑ 30.56 31.50 31.11 31.39 29.86 30.84
LeRF ⇓ 29.97 29.74 29.97 28.53 31.34 27.49
ABPC⇑ 0.79 1.76 1.14 2.86 -1.54 3.35

Alpaca-LoRA-7B 7B
MoRF⇑ 38.10 38.25 38.17 37.99 37.26 38.60
LeRF⇓ 37.96 37.27 37.79 37.14 38.13 36.58
ABPC⇑ 0.14 0.98 0.38 0.85 -0.87 2.02

Vicuna-7B 7B
MoRF⇑ 32.30 33.41 32.20 33.55 31.87 33.10
LeRF⇓ 31.25 31.47 32.57 31.32 33.80 28.83
ABPC⇑ 1.05 1.94 -0.37 2.24 -1.93 4.27

Alpaca-LoRA-13B 13B
MoRF⇑ 31.25 29.85 31.36 31.49 30.07 32.22
LeRF⇓ 30.89 31.51 29.62 29.11 31.26 27.97
ABPC⇑ 0.36 -1.66 1.74 2.38 -1.18 4.24

Vicuna-13B 13B
MoRF⇑ 33.53 33.86 34.39 34.12 32.33 34.14
LeRF⇓ 31.44 30.31 32.07 29.56 34.18 27.92
ABPC⇑ 2.09 3.56 2.32 4.57 -1.85 6.23

Table 3. Further study of KL divergence compared to OT method.

Model Llama2-13B-Chat

Metric MoRF LeRF ABPC
Ours (KLD) 41.54 40.62 0.93
Ours (OT) 41.88 40.51 1.38

as equally distinct and ignores the distance between tokens
in semantics. We conduct the ablation study experiments
using Llama2-13b-chat with the same experimental setting
as previously. See the comparative results in Table 3 and
Table 1, where the results validate (1) OT is more effec-
tive than KLD in terms of faithfulness evaluation; (2) Ours
(KLD) is the second best across all methods comparing to
the other methods appeared in Table 1.

The Effect of Length J Knowing that the beam search’s
cost linearly increases with the length of output tokens, a
larger J in Equation (1) leads to higher computational time
in handling the generated sequences for interpretation. We
would like to find how J would affect the performance and
a reasonable setting of J that could obtain similar feature
attribution result as the larger one, e.g., J = 100. Figure 3
shows the correlation between the feature attribution results
between the settings of J = {1, 2, · · · , 100} and the setting
of J = 100. We can see that the correlation curve starts to
converge at J = 10 and adopt this setting in practice.

Sizes of Beam Search GILOT’s results are faithful as it
uses Beam search to obtain a diverse set of top generated
sequences when estimating the conditional probability distri-
bution of a LLM’s prediction. The ablation study here tests
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Figure 3. Spearman correlation between attributions for various
max lengths of OT tokens (J).

whether the inclusion of the diverse top sequences would
benefit to the overall performance. Again, we use GILOT
to work with Llama2-13b-chat-ABPC model under beam
search sizes. The results show that ABPC of GILOT would
improve from 1.12 to 1.38, with 23.2% enhancement, when
increasing b from 2 to 10.

5. Use Cases of Generation Attributions
Questions may arise how GILOT can benefit LLM re-
searchers or end users. In this section, we present two
possible use cases that analyze the LLM performance for
ICL and detect bias during generation, respectively.

5.1. LLMs under the Change of ICL Examples

Here, we look into the generation problem of LLMs un-
der the in-context learning (ICL) scenario. Previous stud-
ies (Zhao et al., 2021; Lu et al., 2022) demonstrate the sig-
nificant impact of the order of in-context examples. When
changing the order of in-context examples listed in the
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prompt, the LLM may generate completely different re-
sponses. In this section, we propose an attribution-guided
query weight derived from GILOT, which can quantify how
well the model learns from these in-context examples.

Attribution-guided Query Weight Supposing we have
the input tokens x1, x2, x3 . . . xN , these tokens can fit into
a prompt with the structure of [In-context Examples] and
[Query]. For example, we have an input sequence like
“Input: A Output: B Input: A′ Output:”. The tokens
in “Input: A Output: B” can be considered as the [In-
context Examples], while “Input: A′ Output:” is the [Query].
Assume x1, . . . xp are tokens for [In-context Examples]
and xp+1, . . . xN are for [Query]. By using our GILOT,
we can obtain attributions for every input token, such as
a1, a2, a3 . . . aN . We here define the attribution-guided
query weight (aqw) as

aqw(a) =
ap+1 + · · ·+ aN

a1 + a2 + · · ·+ aN
. (12)

From our metric design, it is obvious when a model focuses
on the context examples when responding a prompt, aqw
would become lower, as the proportion of feature attribu-
tions to the tokens in [In-context Examples] would decrease
in such case. Thus, we hypothesize that:

(H1.) If a model does ICL in a robust manner, it would be
able to generate consistent responses even under the change
of context examples in a prompt, suggesting possibly a
negative correlation between aqw and the variations in the
responses that it generates.

(H2.) If a model focuses more on the [Query] rather than the
[In-context Examples], it would be able to generate accurate
responses even under the change of context examples in a
prompt, suggesting a positive correlation between aqw and
the accuracy of responses.

0.20 0.25 0.30 0.35 0.40 0.45
attribution-guided query weight

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

 w
ith

 p
er

m
ut

at
io

n

0.20 0.25 0.30 0.35 0.40 0.45
attribution-guided query weight

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

or
de

r s
en

sit
iv

ity

Figure 4. Scatter plots with regression lines indicating significant
correlations between aqw and accuracy of the model and between
aqw and sensitivity of the model

Table 4. Correlation Analysis between Attribution-guided Query
Weight and the Model’s Performance.

Pearson Correlation p-Value

sensitivity versus aqw -0.7688 1.13e-11
accuracy versus aqw 0.7697 1.04e-11

Results and Findings To test above two hypotheses, we
conduct several experiments through correlation analysis
between aqw and the model’s performance. In our exper-
iment, we use the SST-2 dataset (Socher et al., 2013) and
LLaMA-13b (Touvron et al., 2023a) under the in-context
scenario for the binary sentiment classification task. Specif-
ically, for every original SST-2 prompt with a query and
a set of in-context examples in an appropriate order with
manually tuned for the query, we first try all permutations
of the examples through re-ordering, and form the permuted
prompts respectively. Then, we test the model with these
example-permuted prompts and collect the responses. Fur-
ther, we estimate the accuracy of the model’s response3

to these prompts and use the standard deviation of top-
predicted probabilities4 as the sensitivity under example
permutation.

We test with 9 different prompt templates and 7 sets of
in-context examples with different examples and number
of shots, thus forming in total 63 settings. Here we pri-
marily address the multi-shot in-context learning scenario,
where the number of demonstrations is larger than or equal
to 3. We test in each setting with 20 query samples and
report the averaged results. Figure 4 presents scatter plots
of the model’s sensitivity and accuracy versus the measured
aqw under permutation of context-examples, while Pear-
son correlations and p-values are estimated in Table 4. The
results indicate that the model’s accuracy moves in tandem
with the Attribution-guided Query Weight, improving as it
increases, whereas sensitivity declines. The significance
tests based on correlations and p-Values suggest both of
our hypotheses passed tests. More details can be found in
Appendix A.

5.2. Identifying the Bias during Generation

The issue of social biases in language models, partic-
ularly relevant to natural language generation, is well-
documented (Bolukbasi et al., 2016; Wan et al., 2023). To
investigate such biases in Large Language Models (LLMs),
we employ GILOT in an bias detection analysis.

We initiate an empirical study by prompting Alpaca-LoRA-
13B to generate narratives featuring a homemaker character,
a role that should not be gender-specific but stereotypically
associated with women in tradition. The underlying inquiry
is whether the LLM inherently leans towards representing
homemakers as female or male. To explore this, we instruct
the LLM to create stories centered on “male homemaker”
and “female homemaker”, and we deploy GILOT to ana-

3We consider a response of the model is corrected if the re-
sponse is exactly same as the ground truth provided by the dataset.

4When the top-predicted class is different from the ground
truth, we multiple the probability with -1, reflecting both class and
probability variations in the top-prediction.
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lyze the attributions assigned to each token. Notably, as
highlighted in Figure 5, the model emphasizes on “male”
significantly in the male homemaker context, but not “fe-
male” in the alternative – compared to “John”, the story of
“Mary” would not significantly change even when masking
“female” – suggesting an implicit gender bias. These find-
ings offer a time-efficient alternative to extensive testing and
are further detailed with additional examples in Appendix A.

<s> Below is an instruction that describes a task . Write
a response that appropri ately comple tes the request .
### Inst ruction : Write a story about a female hom em
aker . ### Response :

Mary was a homemaker who lived in a small town. She had
been married for 10 years and had two children. She was a
devoted mother and wife, and she took pride in her role as
a homemaker...
### Inst ruction : Write a story about a male hom em
aker . ### Response :

John was a successful businessman who had everything he
could ever want. He had a beautiful house, a loving family,
and a great job. But one day, he decided to make a drastic
change in his life. He decided to become a stay-at-home
dad and take care of the house and his children.

Figure 5. Token attributions to identify the implicit gender bias.

6. Limitation and Discussion
We discuss here the limitations of GILOT.

Computation Cost. The computation for a single OT solver
run is minimal (refer to Section B for detailed figures), and
the primary time cost lies in the generation process. How-
ever, the OT solver must be applied to each input token.
When dealing with very long input tokens, given that the
maximum context length currently exceeds 128K tokens,
the computation with GILOT becomes unmanageable. For
future work, the gradient or attention can be involved to
have the direct attributions on the whole input; or exploit-
ing the random sampling strategy from LIME instead of
enumerating all input tokens.

Boundary Cases and Self-Confidence of GILOT. In most
cases, we use settings of b = 10 and J = 10, meaning
the top 10 nine-token sequences from beam search. These
sequences account for 89.82% of the total probability mass,
providing a reasonable approximation for pm(YJ) (Equa-
tion 5, see also Section D). However, when the large lan-
guage model generates highly diverse outputs, this approx-
imation may become inaccurate, causing GILOT to fail.
Interestingly, the probability mass of the top-b sequences
can serve as an indicator of GILOT’s confidence, which can
be assessed before conducting the faithfulness evaluation.

Faithfulness Evaluation Metrics. For classification tasks,
selecting faithfulness evaluation metrics is straightforward
since the output is a single scalar score. However, for gen-
eral generative tasks, the output is a sequence, complicating

the evaluation process. We propose comparing the embed-
dings of greedily generated responses, with these embed-
dings derived from the model being explained. For sentence
comparisons, there are potentially better options, such as
sentence BERT (Reimers & Gurevych, 2019). Despite this,
comparing greedily generated responses remains a tempo-
rary solution. Finding an appropriate evaluation metric
continues to be a significant challenge in XAI, particularly
for general generative tasks. We hope this work serves as an
initial step towards explaining generative models through
input attributions.

Inside Local Explanations. Local explanations, such as
those introduced by LIME (Ribeiro et al., 2016), attribute
importance to input features given a specific input, in con-
trast to global explanations, which do not require a specific
input. In the context of generative tasks, GILOT provides
explanations based on the most probable outputs. However,
it struggles with exclusive decisions because it merges dis-
tributions. Traditional local explanations can be applied
if an output sequence for the exclusive decision is given.
However, the probability of such an output is low, especially
when the sequence is long, resulting in changes to masked
input tokens that are rather perturbed and do not provide
meaningful insights.

7. Conclusion
In conclusion, this work presents GILOT, a novel feature
attribution method for Large Language Models (LLMs)
geared towards generative tasks. Specifically, compared to
existing methods, GILOT models an LLM’s predictions as a
probability distribution over the generated tokens. It utilizes
Optimal Transport with a semantic distance metric to mea-
sure the distributional changes and selects top candidates
from the most probable generated sequences of tokens to re-
fine the estimation of token prediction probabilities Our pro-
posal offers new insights into the interpretability of LLMs,
accommodating the semantic drift at distribution-level and
the diversity of possible generated sequences. Comparative
experiments demonstrate that GILOT provides attributions
that are more reliable with higher faithfulness in various
metrics than those yielded by existing approaches. Our
future work would explore the potential applications and
further enhancements of GILOT that represent a compelling
frontier for research in explainable AI.

Impact Statement
This paper presents work whose goal is to advance the field
of explainable AI, which is beneficial for community devel-
opment and can help eliminate the social impact of harmful
biases in AI tools. We feel that there is no negative potential
societal consequences of our work.
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A. Details of Use Cases

A.1. Use Case 1: LLMs under the Change of ICL Examples

We present in Table 5 the details of experiments in Section 5.1. It contains the 9 prompt templates we used for the foundation
model and their corresponding attribution-guided query weight (aqw), accuracy with permutation (acc), and the order
sensitivity (sen). As we can observe that for each template, the aqw values are well aligned with the acc and sen values,
indicating that our proposed attribution-guided query weight can also be served as a metric to select the best prompt
templates without testing case by case.

Table 5. Details of experiments in Section 5.1.

Prefix Suffix aqw acc sen

Review: Sentiment: 0.4547 0.9458 0.0116
The emotion of is 0.2806 0.6479 0.2336

shows 0.2858 0.6104 0.3064
The sentiment of is 0.2790 0.6604 0.2281

indicates 0.3164 0.6792 0.2350
Question: Answer: 0.4190 0.8021 0.0722

has a sentiment of 0.3932 0.7146 0.1860
sounds 0.3025 0.7104 0.1857

Input: Output: 0.4309 0.8313 0.0887

A.2. Use Case 2: Identifying the Bias during Generation

We adopt our tool GILOT in Figure 6 to analyse more examples about the existing bias between gender and certain
professions.

B. Time cost
We compare the time cost across all methods, i.e., LIME (Ribeiro et al., 2016), BTA (Chen et al., 2022), BTA-AVG,
IG (Sundararajan et al., 2017), IG-AVG, KL and OT, and show in Table 6. We note that each solver using IPOT (Xie et al.,
2020) costs only around 0.1 second, while the solver will be required mJ times (the input token number and the considered
length of output tokens). Besides that, most of the cost time spends on the generation for our method. BTA-Avg and IG-Avg,
which are modified in this paper to be comparable to our method, take the similar order of time as ours because these
methods average the input token attributions across output tokens.

Table 6. Time cost comparison across various methods. Reported are averaged time cost (seconds per sample) across test sets.

Method BTA BTA-Avg IG IG-Avg LIME Ours (KLD) Ours (OT)

Time cost 7.01 64.04 7.70 105.47 23.83 108.29 127.47

C. Token Similarity
In optimal transport, the cost matrix defines the transport effort between two elements and can change a lot the OT distance.
We would like to incorporate the semantics when calculating the explanations. Therefore it is important to choose a good
metric for computing the cost matrix and the token (dis)similarity is a good choice.

We have conducted an additional analysis. Given any token, most tokens (usually more than 99%) have values between
[-0.1, 0.1] and the rest (less than 1%) get values between [0.1, 1.0], where we show five random tokens and their top-10
similar ones in Table 7. 1% (of total 32000 tokens from Llama-2 vocabulary) means 320 tokens, indicating that one token
has only a couple of hundreds or less tokens that are similar or synonyms to it. The small distinction from cosine similarity
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<s> Below is an instruction that describes a task . Write a response that appropri ately comple tes the request .
### Inst ruction : Write a story about a female nur se . ### Response :
Mary was a nurse who had been working in the hospital for years. She had seen it all, from the most joyous of births
to the most heartbreaking of deaths. She had a special gift for comforting her patients and their families, and she was
always willing to go the extra mile to make sure her patients were taken care of.
<s> Below is an instruction that describes a task . Write a response that appropri ately comple tes the request .
### Inst ruction : Write a story about a male nur se . ### Response :
John was a male nurse who had been working in the hospital for years. He was known for his kindness and compassion,
and he always went the extra mile to make sure his patients were comfortable. He was also known for his sense of
humor, and he often made the rounds with a smile on his face.

<s> Below is an instruction that describes a task . Write a response that appropri ately comple tes the request .
### Inst ruction : Write a story about a female reception ist . ### Response :
The receptionist was a woman in her early 30s, with a warm smile and a friendly demeanor. She had been working at
the company for over a year, and had quickly become a favorite among the staff. She was always willing to help out,
and was always the first to offer a kind word. She was a hard worker, and was always on time and prepared for her
shift. She was a great asset to the company, and everyone appreciated her.
<s> Below is an instruction that describes a task . Write a response that appropri ately comple tes the request .
### Inst ruction : Write a story about a male reception ist . ### Response :
John was a male receptionist at a small business. He was a friendly and helpful person, always willing to go the extra
mile to help customers. He was also a talented artist, and often drew pictures of the customers he met. He was a
great source of inspiration for the other employees, and they often looked to him for advice. He was a great asset to
the company, and everyone appreciated his hard work and dedication.

<s> Below is an instruction that describes a task . Write a response that appropri ately comple tes the request .
### Inst ruction : Write a story about a male ma estro . ### Response :
Once upon a time, there was a male maestro who was known for his incredible musical talent. He was a master of
many instruments, and his music was so beautiful that it could bring tears to the eyes of anyone who listened. He was
a kind and generous man, and he used his musical gifts to help others. He would often play for the sick and the poor,
bringing them comfort and joy. He was a true inspiration to all who knew him, and his music will live on forever.
<s> Below is an instruction that describes a task . Write a response that appropri ately comple tes the request .
### Inst ruction : Write a story about a female ma estro . ### Response :
Once upon a time, there was a young woman named Maria who had a passion for music. She was a talented pianist
and dreamed of becoming a maestro. She worked hard and eventually became a renowned maestro, traveling the
world and performing in concert halls. Maria was a true inspiration to all who heard her play, and her music touched
the hearts of many.

Figure 6. More examples of using GILOT to identify bias between gender and certain professions.
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tells OT that the cost of transport from some token to its similar ones is slightly less to most of the others, and that the cost
to one irrelevant token is no large difference to another irrelevant token. This is how we incorporate the semantics into
our method, reducing the cost between similar tokens while keeping irrelevant ones unchanged. The only issue is that the
antonyms are also considered as irrelevant. This may require more explorations.

In brief, though there is some discussion that the cosine similarity is not about similarity in high-dimensional spaces (Steck
et al., 2024) and tends to be uniform, we have validated its usage in our scenario and have found it suits well to our method.

Table 7. Random Tokens and Their Most Similar Tokens.
Random Token Most Similar Tokens

accept Accept, Accept, accept, accepted, acceptable, accepting, accepts, reason, expect
contro contre, contra, controvers, проти, against, control, контро, против, kont

response Response, responses, response, Response, respond, ponse, reaction, reply, puesta
Boot boot, Boot, boot, Root, oot, boat, Foot, Tool, Bot

JavaScript JavaScript, avascript, javascript, javascript, Javascript, Java, js, Python, js

D. Approximation Test for pm(YJ)

In most cases, we use settings of b = 10 and J = 10, meaning the top 10 nine-token sequences from beam search. For J=10
(or 20), i.e., max_dec_len=9 (or 19), their probabilities sum up to around 0.9 (or 0.7), making it a reasonable approximation
for pm(YJ) (Equation 5), see the Table 8.

Table 8. The probability mass of top 10 sequences, varying the output length.

max_dec_len Probability Sum (b = 10)

1 1.0000
2 0.9981
3 0.9934
4 0.9818
5 0.9643
6 0.9515
7 0.9359
8 0.9143
9 0.8982
10 0.8843
15 0.7912
19 0.6893
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