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A B S T R A C T   

Speech emotion recognition (SER) is a crucial and challenging task in affective computing due to the intricacy 
and variability inherent in speech. In this paper, a novel method (i.e., MPAF-CNN) combines a convolutional 
neural network (CNN)-based multiperspective aware module (MPAM) and a frame-level fine-grained fusion 
strategy (FFS) for SER by utilizing speech information. MPAM perceives the emotional information embedded in 
speech from three main perspectives: local, frame-level, and global. Specifically, this module introduces the 
multiscale idea of perceiving multi-granular emotional information under different local sensory fields from the 
local perspective; a novel frame-level aggregated attention is proposed in this paper, aiming to learn the intrinsic 
emotional associations of intermediate features from the frame-level perspective, enhance the model’s attention 
to emotionally informative frames, and improve the emotional expression of intermediate features; in the global 
perspective, multiple layers of global intermediate features are aggregated from the time domain, frequency 
domain, or channel to enhance the model’s ability to extract and express global feature information. A new 
frame-level fine-grained fusion strategy is proposed to employ an attention mechanism to model the interaction 
of emotional representations from different acoustic features at the frame level, capturing their underlying re
lationships and thus further improving the overall performance of the model. The experimental results show that 
our method has excellent performance in recognizing speech emotions, and MPAF-CNN obtains 72.19% and 
72.88% recognition accuracy on the IEMOCAP database.   

1. Introduction 

The field of affective computing [1,2] has garnered increasing in
terest from researchers with the continuous breakthroughs in computing 
software, hardware, and artificial intelligence. An important branch of 
affective computing is emotion recognition, which analyzes emotions 
from human biological features such as facial expressions, speech, 
physiological signals, and body movements [3]. Among all biometric 
features, speech is a particularly effective source of emotional infor
mation. Speech emotion recognition has a vast range of applications in 
human–computer interaction, such as medical assistance [4,5] and 
artificial customer service [6]. However, the variability and ambiguity 
of speech signals and the presence of noise and background interference 
pose significant obstacles to accurately recognizing emotions from 
speech [7]. 

To accurately recognize the emotional state of the speaker, appro
priate acoustic features from the speech must be extracted. Generally, 

there are two types of acoustic features in speech emotion recognition: 
frame-level features and segment-level features. Frame-level features 
refer to manually designed features on multiple short segments of a 
speech segment, such as energy, zero crossing rates, Mel-frequency 
cepstral coefficients (MFCCs) [8–10], etc. Segment-level features pro
vide a visual representation of the features of speech segments, such as 
speech spectrograms and log-mel spectrograms [11]. 

Hand-designed features are commonly used in speech emotion 
recognition, but obtaining accurate emotion states through direct clas
sification using these features is challenging. To address this issue, re
searchers have explored various algorithms aiming to extract high-level 
emotional embedding representations from these features, which can 
improve classification accuracy [12,13]. Before the emergence of neural 
networks, traditional algorithms such as the hidden Markov model 
(HMM) and Gaussian mixture model (GMM) were commonly used to 
identify emotions. HMM is a probabilistic model that can effectively 
model the temporal dynamics of emotions. Lin Y L. et al. applied HMM 
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to a Danish emotional speech database and achieved promising results. 
GMM is a specific type of continuous HMM [14]. Mishra H K. et al. 
proposed a variational Gaussian mixture model that was further 
improved based on GMM. The results demonstrated that the variational 
GMM outperformed GMM when using the same amount of data, 
achieving high accuracy in emotion recognition [15]. While traditional 
algorithms have made notable strides in improving emotion recognition 
accuracy, they still face certain limitations. The advent of neural net
works has opened new avenues for advancing emotion recognition, with 
researchers discovering that using neural network algorithms can lead to 
higher precision rates. Consequently, present-day SER research has 
prioritized enhancing and integrating diverse deep learning models 
[16]. For instance, in [17], deep belief networks (DBNs) were utilized to 
extract high-level representations of emotions from amplitude spectro
grams, demonstrating superior performance compared to traditional 
models. 

Researchers have developed numerous deep learning models to 
provide effective emotional representations. CNNs have gained signifi
cant popularity in SER due to their ability to process data with grid-like 
topologies, such as time series and image data [16,18]. Araño, K.A. 
acquired emotional representations by integrating MFCCs with image 
features extracted from spectrograms using pretrained CNNs [19]. These 
combined features were then fed into a classifier for emotion classifi
cation. Basic CNNs generally acquire feature information by learning 
fixed-scale features [20,21]. However, emotions are manifested through 
various scales of prosodic variations during speaker speech. To address 
these challenges, researchers have incorporated multiscale concepts into 
the SER field. For instance, a multiscale global awareness model was 
proposed in [22] to extract emotion information from various scales and 
subsequently utilized a global awareness module to integrate the 
emotion information from multiple scales. Although the incorporation 
of multiscale concepts enhances the diversity of affective information, it 
also results in an increased amount of redundant information, which 
complicates the differentiation between affective and nonaffective in
formation in speech. Consequently, devising methods to minimize 
redundant information while augmenting the diversity of affective in
formation remains a critical issue that warrants further investigation. 

It is important to note that most previously mentioned methods 

rarely consider the issue of losing emotional information embedded in 
intermediate features at various levels as the network model deepens, 
which causes interference in SER. A parallel network of ResNet-CNN- 
transformer encoders is proposed in [23] to solve the emotion infor
mation loss problem. X. Jiang et al. [24] improved resnet34 so that the 
network focuses on extracting local critical information and reduces the 
loss of affective information. Although resnet reduces the problem of the 
loss of intermediate features at each level, it only focuses on the previous 
intermediate features of the current layer, and there is still the problem 
of the loss of affective information in the intermediate features at each 
level as the network deepens. And the emotional signal in speech with 
context-sensitive dependences and the commonly employed base mod
ules, such as CNN and bidirectional long short-term memory (BiLSTM), 
in the SER domain focus on local feature learning, which makes it 
challenging to capture the global context information of the emotional 
signal in speech. 

We implemented fusion strategies on the segment-level and frame- 
level acoustic features to significantly enhance the SER classification 
performance. The fusion strategy plays a pivotal role in multifeature 
linguistic emotion recognition, and researchers have proposed various 
approaches to combine distinct types of features effectively. For 
instance, the study in [25] utilized a fully convolutional network (FCN) 
to extract spatial features and a BiLSTM to extract temporal features. 
These features were then concatenated and input into an attention 
mechanism, ultimately achieving speech emotion recognition through a 
fully connected layer. A confidence-based fusion strategy was developed 
in [26], which integrate the power of different classifiers in recognizing 
different emotional states. Most existing fusion schemes fuse multiple 
classifier results or directly splice and sum fusion of emotion represen
tations and have yet to consider the potential relationships between 
different emotion representations. There is variability in the emotion 
representations extracted from different acoustic features, and the 
emotion information expressed in each frame is not necessarily the 
same, thus necessitating fine-grained interaction, i.e., frame-frame 
modeling. 

The above analysis reveals that most models suffer from the problem 
of considering only a single perspective and not focusing on the potential 
relationships between different emotion representations. This paper 

Fig. 1. The overall architecture of the model presented in this paper. “MPAM”: multiperspective aware module, “FFS”: fine-grained fusion strategy, “BiLSTM”: 
bidirectional long short-term memory network layer, “FC”: fully connected layer, “+”: add. 
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proposes a novel MPAF-CNN framework to address these issues, and the 
framework contains two main modules, namely the multiperspective 
aware module and the frame-level fine-grained fusion strategy. MPAM 
aims to improve the model’s emotional representation from three per
spectives: local, frame-level, and global. Specifically: (1) From the local 
perspective, by introducing the idea of multiscale, we get multi- 
granularity emotional information from the different local receptive 
fields and increase the richness of emotional information. (2) In the 
frame-level perspective, this paper proposes a novel frame-level aggre
gated attention mechanism to learn the intrinsic emotion associations in 
intermediate features, focusing on frames in which intermediate fea
tures are relevant to affect and minimizing redundant information un
related to affect. (3) In the global perspective, the module obtains multi- 
layer global intermediate feature representations from the time domain, 
the frequency domain, or the channel, and learns the global represen
tations of the intermediate features while preventing the loss of emotion 
information embedded in the intermediate features at all levels. Finally, 
a novel frame-level fine-grained fusion strategy based on an attentional 
mechanism is proposed in this paper to infer potential relationships 
between emotion representations from different acoustic features and 
thus improve the overall performance of the model. 

The main contributions of this paper are summarized as follows:  

(1) A novel multiperspective aware module is proposed to capture 
rich emotional information from local, frame-level, and global 
perspectives. 

(2) A novel frame-level fine-grained fusion strategy based on atten
tional mechanisms is proposed to capture the potential relation
ships between different emotional representations and explicitly 
model the interactions between different emotional representa
tions at the frame level.  

(3) Based on the experimental results, our approach achieved 
recognition accuracies of 72.19% and 72.88% on the IEMOCAP 
database. 

The rest of this paper is structured as follows. Section 2 describes the 
method presented in this article in detail. In Section 3, we set the pa
rameters for the experiment. In Section 4, we analyze the experimental 
results. Finally, conclusions and future work are presented in Section 5. 

2. Proposed method 

The proposed scheme is shown in Fig. 1. The model takes both frame- 
level low-level descriptors (LLDs) and segment-level Mel-spectrograms 
(MS) of the same utterance as input. The proposed scheme consists of an 
MPAM based on a 2DCNN for MS feature extraction and an MPAM based 
on a 1DCNN for LLD feature extraction. After extracting the features 
from two subnetworks, two feature vectors are fused using a fine- 
grained fusion strategy and fed to BILSTM to extract temporal fea
tures. Finally, the output is fed into the classifier to recognize emotions. 
The following sections describe each module in detail. 

2.1. Input feature maps 

The input acoustic embeddings are divided into segment-level fea
tures (i.e., MS) and frame-level features (i.e., LLDs) [11,27–29]. Spe
cifically, this paper first calculates the short-time zero crossing rate, log 
energy, short-time energy, and MFCC which consists of its static features 
and first- and second-order differentials for each LLD. Next, the MS is 
calculated to obtain the input segment-level features. 

The MS is a spectrogram using the Mel scale, a visual representation 
of the sound intensity or energy over time for all frequencies present in 
an audio signal. MS is good at analyzing a particular audio signal’s 
frequency components and intensities and simulates the human ear’s 
perception of speech at different frequencies. Furthermore, MFCC is a 
compressed representation of mel filter banks, containing information 
about the rate variation in different spectral bands and concisely de
scribes the shape of the spectral envelope. Furthermore, short-term en
ergy is derived by applying a linear filter to the squared speech signal, 
while log energy is obtained by taking the logarithm of the short-term 
energy. 

Short-term energy and log energy are temporal domain features, 
whereas MFCC parameters are perceptual features based on human 
auditory perception and belong to the frequency domain. In this study, 
the calculation of MFCC does not incorporate short-term energy; 
instead, only the MFCC coefficients are directly utilized. The limited 
correlation between these two features can be attributed to their rep
resentation of distinct characteristics within the audio signal. By 
combining these features, a more comprehensive and informative set of 
emotion-related information can be extracted [30,31]. 

2.2. MPAM 

A novel multiperspective awareness module for the extraction of 
emotional information is proposed in this paper. The module comprises 
three key components: a multiscale layer, an attention layer, and a 
global representation layer. The architecture of the module is shown in 
Fig. 2. 

Fig. 2. The overall architecture of MPAM.  
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2.2.1. Multiscale layer 
This paper proposes a multi-scale layer. And residual mapping and 

multi-scale convolution are used. Multi-scale convolution aims to 
extract multi-granularity emotion information under different feeling 
fields by introducing the multi-scale idea. Residual mapping is intro
duced to avoid the gradient vanishing problem. The convolutional 
kernel size is n,n ∈ {3, 5}. The rectified linear unit (RELU) activation 
function was selected for this paper, as it effectively addresses the issue 
of gradient vanishing. The batch normalization (BN) layer normalizes 
the activations of the convolutional layer at each batch and improves the 
performance and stability of deep networks. 

2.2.2. Attention layer 
The attention mechanism is utilized in the attention layer to focus on 

salient frames related to the emotional output of the multiscale layer. 
The goal is to learn the emotional associations of intermediate features 
and reduce redundant information. Specifically, attention is calculated 
as follows: 

X = AM (1)  

where M ∈ Rd×t represents the feature after passing through the multi
scale layer, A denotes the intrinsic emotional relevance, and X ∈ Rd×t 

represents the feature after the attention layer. Each parameter will be 
explained in detail below. 

We employ two distinct feature mapping functions to obtain Q and K 
from x. To learn the global features of each time unit and reduce the 
number of required training parameters, we compress the features of 
each time unit to a single vector of dimension one using a learnable 
mapping vector. The formula for this process is as follows: 

Q = MWQ (2)  

K = MWK (3)  

where WQ ∈ Rd×1 and WK ∈ Rd×1 is the learnable mapping vector. 
In this study, we utilize the product of Q and K as an intrinsic mea

sure of emotional relevance, and since the input dimensions for Q and K 
correspond to 1, the result of using the scale parameter remains 1. Hence 
it is not explicitly written in the formula. expressed by the following 
formula: 

A = softmax(QK) (4)  

where softmax is the aggregation function. 

2.2.3. Global representation layer 
The global representation layer comprises three components: time 

domain global representation (TDGR), frequency domain global repre
sentation (FDGR), and channel domain global representation (CDGR). 
TDGR is calculated using Q and K in b to obtain a global representation 
of each temporal unit. FDGR and CDGR represent the long-term time- 
varying features of the speech emotional signal. Specifically, FDGR is 
extracted from MS, while CDGR is extracted from LLDs. The imple
mentation formulas for each component are as follows: 

FTDGR = (Q + K)/2 (5)  

FFDGR = XWF (6)  

FCDGR = XWc (7)  

FTDGR ∈ Rt×1 is the time domain global representation, FFDGRRd1×1 is the 
frequency domain global representation, FCDGR ∈ Rd2×1 is the channel 
domain global representation, and WF ∈ Rt1×1,WC ∈ Rt2×1 is the train
able feature mapping vector. 

Fig. 3. The overall architecture of the fine-grained fusion strategy.  

Table 1 
The number of statements per emotion category of IEMOCAP.  

Emotion Angry Happy Sad Neutral Total 

Sample number 1103 1636 1084 1708 5531  

Fig. 4. The results of the model proposed in this paper are obtained at different 
batch sizes. 

Table 2 
Ablation study for the individual module on the IEMOCAP dataset. Note: Bold 
font is the model with the best results.   

Module WA(%) UA(%) ACC(%) 

M1 Ours  72.19  72.88  72.53 
M2 a subnetwork with MS as input  66.03  67.55  66.79 
M3 a subnetwork with LLDs as input  66.66  68.23  67.44 
M4 Ours without MPAM  69.80  70.47  70.13 
M5 Ours without muti-scale layer  70.56  72.05  71.30 
M6 Ours without attention layer  70.74  72.54  71.64 
M7 Ours without TDGR  68.29  69.34  68.81 
M8 Ours without FDGR and CDGR  71.37  72.08  71.72 
M9 Ours without fine-grained fusion strategy  70.92  71.41  71.16  
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2.3. Fine-grained fusion strategy 

This paper proposes a frame-level interactive attention fusion strat
egy to effectively fuse different types of features and capture the com
plementary information between different representations. The specific 
implementation steps are illustrated in Fig. 3. 

Let XMS = {x1
MS, x2

MS, ..., x
T2
MS} ∈ RT1×dXMS represent the features from 

MS, where T1 refers to the temporal dimension and dXMS represents the 

dimension of each temporal unit. Similarly, let Xllds = {x1
llds, x

2
llds, ..., x

T2
llds}

∈ RT2×dXllds denote the features from LLDs. 
We employ the summation fusion strategy to combine FTDGR. By 

doing so, we obtain FMS
TDGR and Fllds

TDGR. We then fuse Fall
TDGR with XMS and 

Xllds to obtain the new Xa and Xb. The formula for this process is shown 
below: 

Xa = concat
( [

XMS,FMS
TDGR

]
, dim = T1

)
(8) 

Fig. 5. Confusion matrix of classification results for six models. The diagonal line represents the number of correct emotion predictions for each category.  

G. Li et al.                                                                                                                                                                                                                                        



Applied Acoustics 214 (2023) 109658

6

Xb = concat
( [

Xllds,Fllds
TDGR

]
, dim = T2

)
(9)  

where Xa ∈ RT1×da (da = dXMS + 1),Xb ∈ RT2×db
(
db = dXllds + 1

)
. 

To establish the correlation between the different types of features, a 
linear rectification layer is employed to transform the feature sequences 
into two new sequences, one for query and the other for keys. This 
transformation is achieved through the following equation: 

Qa,Qb = XaWQ
a ,XbWQ

b (10)  

Ka,Kb = XaWK
a ,XbWK

b (11)  

where Qn,Kn ∈ RT×1(n ∈ {a, b},T ∈ {T1,T2} ) represent the query and 
key, respectively.WQ

m,WK
m ∈ Rd×1 (m ∈ {a, b}, d ∈ {da, db}) is the learn

able projection vector. 
In Eq. (10) and Eq. (11), a learnable mapping vector compresses the 

features of each time unit into one dimension, representing all features 
of each time unit. This process reduces the number of training param
eters while maintaining the integrity of the features. To obtain a new 
matrix, perform a matrix multiplication operation between Qb of Xb and 
the transpose of Ka of Xa. Each row element in the matrix represents the 
similarity between a single frame of Xa and all frames of Xb. Afterward, a 
set of weights A1 is obtained by performing a normalized aggregation 
using the softmax activation function. Similarly, A2 is obtained using the 
same operation. It is important to note that the dimensions used to 
normalize and aggregate A1 and A2 differ. Specifically, A1 is normalized 
in the T1 dimension, which allows us to determine the degree of influ
ence that Xa has on each time unit in Xb. Similarly, A2 is normalized in 
the T2 dimension, which enables us to determine the degree of influence 
that Xb has on each time unit in Xa. 

A1 = α
(
QbKT

a

)(
A1 ∈ RT1×T2

)
(12)  

A2 = α
(
QaKT

b

)(
A2 ∈ RT2×T1

)
(13)  

where α represent softmax activation function. 
The weights obtained for Xa and Xb are multiplied in matrix form to 

produce results reflecting fine-grained interactions between the two at 
the frame level. The final results are obtained through a combination of 
summation and fusion methods. The formula for this process is pre
sented below. 

Y1 = WY1 (A1Xb) + Xa
(
Y1 ∈ RT1×da

)
(14)  

Y2 = WY2 (A2Xa) + Xb
(
Y2 ∈ RT2×db

)
(15)  

where WY1 ∈ Rdb×da and WY2 ∈ Rda×db are learnable mapping matrices to 
the values mapped to the same dimensions as Xa and Xb, respectively. 

The proposed strategy emphasizes the fine-grained fusion of various 
features, thereby preventing the loss of complementary information 
across different feature types. This approach enhances the network’s 
ability to fuse features and improves the model’s robustness to noise. 

2.4. Classifiers 

The last step of classification for speech emotion recognition is to 
obtain the classification score of emotion by learning the obtained high- 
dimensional features through a fully connected layer. As shown in Fig. 1, 
we utilize summation fusion to fuse the FFDGR from MS and FCDGR from 
LLDs of each layer to obtain FMS

FDGR and Fllds
CDGR, sum FMS

FDGR and Fllds
CDGR, 

connect them with the emotional representation after BILSTM, and send 
them to the classifier to identify the current emotional state together. 
The summation operation aims to reduce the number of training pa
rameters. We choose the cross-entropy loss function during training. 

3. Experiments 

3.1. Dataset 

The Interactive Emotion Dyadic Motion Capture (IEMOCAP) dataset 
is used for the experiments in this paper [32]. The experiment in this 
paper uses the IEMOCAP dataset, the most widely used dataset in the 
SER field. This dataset contains 12 hours of emotional speech recorded 
by five men and five women in pairs from the University of Southern 
California Department of Drama. The dataset is divided into two parts, 
improvisation and script, and the recorded utterances are labeled with a 
total of nine emotions: anger, happiness, excitement, sadness, neutral, 
frustration, fear, surprise, and other. Because the amount of data for 
each emotion is different, to avoid the impact of unbalanced data dis
tribution, researchers often use five emotions: neutral, happiness, 
excitement, sadness, and anger. Among them, happiness and excitement 
have certain similarities, and researchers often combine the two emo
tions to increase the amount of data [33–35]. In this paper, 5531 ut
terances (1636 happy, 1103 angry, 1084 sad, and 1708 neutral) from the 
IEMOCAP dataset are used, where the dataset details are shown in 
Table 1. 

3.2. Evaluation metrics 

This paper uses weighted accuracy (WA) and unweighted accuracy 
(UA) for evaluation, two evaluation criteria widely used in the SER field- 
related literature. WA and UA do not necessarily reach the maximum 
value simultaneously in the same model; therefore, the average of WA 
and UA represented using ACC is calculated as the final evaluation 
metric. WA, UA, and ACC detailed calculations: 

WA =

∑k
i=1N(i)

c

N
(16)  

UA =
1
k
∑k

i=1

N(i)
c

N(i)
o

(17)  

ACC =
WA + UA

2
(18)  

where N(i)
c denotes the number of samples correctly identified by class i, 

N(i)
o denotes the total number of samples of class i, and k represents the 

number of sample categories to be recognized. 

3.3. Experimental setup 

There is no uniform way to divide the dataset in the SER field. 
Therefore, this paper randomly split the dataset into a training set (80% 
of the data) and a test set (20% of the data). Each utterance was divided 
into 2-second segments with 1.6 s of overlap between segments. Since 
speech is utterance-level data and needs to be tested based on utterance, 
this paper takes the average of the prediction results of all speech seg
ments in the same utterance as the final prediction result of this utter
ance [36]. This paper uses cross-entropy as the final objective function, 

Table 3 
Classification performance of different advanced methods for emotion recog
nition using speech on IEMOCAP datasets. Note: Bold font is the model with the 
best results.  

Model WA(%) UA(%) 

(Li et al.) [18]  56.14  57.84 
(Yao et al.) [26]  57.10  58.30 
(Chen et al.) [36]  69.22  70.51 
(Chen et al.) [37]  68.73  70.56 
(Liu et al.) [38]  70.27  66.27 
Ours  72.19  72.88  

G. Li et al.                                                                                                                                                                                                                                        



Applied Acoustics 214 (2023) 109658

7

and the Adam algorithm with a learning rate of 0.0001 is used to opti
mize the model. In this paper, the model is trained with 50 epochs. 

4. Results and discussion 

4.1. Ablation study 

4.1.1. Impact of batch size on model performance 
In model construction and training, batch size setting is an essential 

factor that affects the model’s performance. In the experiments, it is easy 
to find that setting different batch sizes leads to different experimental 
results. As the testing results show in Fig. 4, the best choice of batch size 
for the IEMOCAP dataset with a large data volume is 16. Therefore, the 
batch size is set to 16 in this paper. 

4.1.2. Ablation experiments 
To evaluate the effectiveness of the proposed network in this paper, 

ablation experiments are performed in this section. A detailed analysis of 
the results is shown in Table 2 and Fig. 5.  

(1) Model 1 (M1): This is our proposed model.  
(2) Model 2 (M2): This is a subnetwork that extracts emotional 

embedding from MS.  
(3) Model 3 (M3): This is a subnetwork that extracts emotional 

embedding from LLDs.  
(4) Model 4 (M4): This comes from M1 but removes the MPAM.  
(5) Model 5 (M5): This comes from M1 but removes the multiscale 

layer.  
(6) Model 6 (M6): This comes from M1 but removes the attention 

layer.  
(7) Model 7 (M7): This comes from M1 but removes the TDGR.  
(8) Model 8 (M8): This comes from M1 but removes the FDGR and 

CDGR.  
(9) Model 9 (M9): This comes from M1 but removes the fine-grained 

fusion strategy. 

First, to verify the effectiveness of the combination of MS and LLDs, 
we compared the performance of M1, M2 and M3. M1 is the proposed 
framework MPAF-CNN, M2 only takes MS features as model input, and 
M3 only takes LLDs as model input. The results in Table 3 demonstrate a 
significant performance advantage of M1 over M2, with improvements 
of 6.16% and 5.33% on WA and UA, respectively. Similarly, M1 out
performs M3 with a large margin, showing improvements of 5.53% and 
4.65% on WA and UA, respectively. Compared with M2 and M3, the SER 
method that combines MS and LLDs as model inputs exhibits superior 
classification performance. 

Second, to verify the effectiveness of the MPAM, this study compares 
the proposed framework (M1) with the model obtained by removing 
MPAM from M1(i.e., M4). The experimental results in Table 3 show that 
M1 outperforms M4 with a large margin and improves by 2.39% and 
4.80% on WA and UA, respectively. MPAM significantly improves 
emotion recognition performance by extracting multiperspective speech 
emotion embedding. 

Third, to verify the effectiveness of the three perspectives, we 
compared the performance of M1, M5, M6, M7 and M8. M5 is the model 
obtained by removing the local perspective from M1. M6 is the model 
obtained by eliminating the frame-level perspective from M1. M7 is the 
model obtained by removing TDGR. M8 is the model obtained by 
removing FDGR and CDGR. The results presented in Table 3 demon
strate that M1 outperforms M5, M6, and M7 by a significant margin, 
resulting in improvements of 1.63% and 0.83% in WA and UA of M1 
compared to M5, the effectiveness of the local perspective has been 
demonstrated; the WA and UA of M1 improved by 1.45% and 0.34%, 
respectively, compared to M6, the effectiveness of the frame-level 
perspective has been demonstrated; the WA and UA of M1 improved 
by 3.9% and 3.54%, respectively, compared to M7, Furthermore, M1 

also outperforms M8 with improvements of 0.82% and 0.80% in WA and 
UA, respectively. The global perspective’s effectiveness was validated by 
comparing M1, M7, and M8. 

Finally, to verify the effectiveness of the fine-grained fusion strategy, 
we compared the performance of M1 and M9. M9 is a model derived 
from M1 by removing the fine-grained fusion strategy. The experimental 
results in Table 3 show that M1 outperforms M9 with a large margin and 
improves by 1.27% and 1.47% on WA and UA, respectively, validating 
the proposed fine-grained fusion strategy. This strategy demonstrates 
the interaction by modeling different emotional representations and 
capturing their underlying relationships. It increases the amount of 
emotion-related information, thereby enhancing classification 
performance. 

Fig. 5 shows the confusion matrix of the model classification results, 
which shows the advantages of the proposed model in this paper. It can 
be found that the proposed model in this paper has a low recognition 
effect in the happy emotion, which only reaches 65.00%, and the best 
recognition effect in the sad emotion, which reaches 80%. It can be seen 
from Fig. 5 that on the IEMOCAP database, it is easy to misclassify anger 
and neutral emotions as neutral, and happiness and sadness emotions as 
happiness. This phenomenon contradicts the user’s emotional state and 
should not occur in human–machine interactions. 

4.2. Comparison with other approaches 

To verify the effectiveness of the proposed method, the model pre
sented in this paper is compared with some other advanced networks. In 
contrast to papers that use a combination of a convolutional neural 
network (CNN) and long short-term memory (LSTM), such as Li et al.’s 
BLSTM and CNN stacking architecture [18] and Liu et al.’s deep neural 
network consisting of CNN and ABLSTM [38], some papers propose 
different approaches for improving emotion recognition. Chen et al. 
proposed ANSNet, which uses multiscale ideas and attention mecha
nisms to improve performance [36]. Yao et al. proposed a framework 
that effectively integrates three distinctive classifiers to fuse multiple 
features for emotion recognition [26]. Chen et al. also proposed the dual 
attention-BLSTM, which combines attention mechanisms with BLSTM to 
improve performance [37]. 

The experimental results of different methods are shown in Table 3. 
The model in this paper improves the WAR by 1.85% and the UAR by 
2.32% compared with the best model in Table 3 [18,26,34–38], and 
these results prove that the model proposed in this paper has good 
classification performance. 

There are two main reasons for the method’s superiority in this 
paper. On the one hand, the multiperspective awareness module used in 
this paper can effectively improve the inadequacy of emotional repre
sentation extraction and provide rich emotional representation for the 
SER method. On the other hand, the fine-grained fusion of frame-level 
interactions enhances the effectiveness of fusion between different fea
tures, improving the whole model’s performance. 

5. Conclusion 

In this paper, we propose a deep learning model combined with a 
multiperspective awareness module and a fine-grained fusion strategy 
for SER. Our proposed method uses a multiperspective-aware module to 
obtain rich emotional information from speech. In addition, an attention 
mechanism is utilized to focus on the salient features, and a fine-grained 
fusion strategy is used to fuse the different features. The effectiveness of 
the proposed method has been verified under a series of comparative 
experiments and ablation studies on IEMOCAP. Comparing the models 
in Table 3, the WA and UA of the proposed method achieve 72.19% and 
72.88% with absolute increments of more than 1.85% and 1.68%, 
respectively. In the future, we will try to learn discriminative features 
and robust representations by using more feature information. 
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