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Abstract

In recent years, deep learning has made remark-
able progress in a wide range of domains, with a
particularly notable impact on natural language
processing tasks. One of the challenges associated
with training deep neural networks is the need
for large amounts of computational resources and
time. In this paper, we present Deep Fusion, an ef-
ficient approach to network training that leverages
pre-trained initializations of smaller networks.
We show that Deep Fusion accelerates the train-
ing process, reduces computational requirements,
and leads to improved generalization performance
on a variety of NLP tasks and T5 model sizes.
Our experiments demonstrate that Deep Fusion
is a practical and effective approach to reduce
the training time and resource consumption while
maintaining, or even surpassing, the performance
of traditional training methods.

1. Introduction

Large language models (LLMs) have significantly advanced
the state of the art in various natural language processing
(NLP) tasks, including text generation, translation, summa-
rization, and question answering. However, training these
models demands substantial amounts of data and compu-
tational resources. As a result, there has been a growing
interest in developing efficient training methods to address
the challenges associated with the high computational costs
and energy consumption during the training process (17).

While some studies (13; 22; 28) discuss that a balance
of data and model size is important, it’s undeniable that
larger models often yield better performance (3). Several
experiments and publications have demonstrated that as
model size increases, the performance on various natural
language processing tasks continues to improve (4; 18; 2).
This trend is evident in the progression of LLMs, such as
BERT, GPT-2, GPT-3, and PalLM where each successive
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generation is larger and achieves better results across a wide
range of benchmarks (10).

Advancements in large language model (LLM) efficiency
have been driven by a variety of innovative techniques that
enable faster training or inference without sacrificing per-
formance. One such approach is model compression, which
has been shown to reduce LLM size without significant loss
in accuracy (7; 27; 14). Similarly, adaptive computation
time methods have been proposed to dynamically allocate
computational resources during LLM training, leading to
improved efficiency (9). Techniques such as layer-wise
adaptive rate scaling (LARS) and layer-wise adaptive rate
control (LARC) have demonstrated accelerated convergence
in LLMs by adapting learning rates on a per-layer basis
(25; 24). Moreover, recent studies have explored the poten-
tial of mixed-precision training, where lower-precision com-
putation is employed during the training process to speed up
training and reduce memory requirements (15). On top of
that, efficient training distribution is a combination of data
and model parallelization. Data parallelization splits the
training batch across accelerators (e.g., GPUs), while model
parallelization splits the model operations across accelera-
tors so that each accelerator compute part of the model.

While data parallelism alone is typically the easiest to im-
plement, it is not well suited for very large models as it
needs the whole model to fit in a single accelerator. Model
parallelism can be efficient, but it can be more difficult to
implement as the dependency between accelerators input
and outputs can lead to degraded performance.

In our research, we emphasize training efficiency as a pri-
mary goal. Unlike the traditional approach concentrating
on discovering pruned networks (11; 5), our approach aims
to minimize training time by initializing large networks
from training smaller ones. We employ fusion operators
to combine these smaller networks, promoting wide over-
parameterization.

1.1. Contribution
As part of the deep fusion method, this paper proposes:
e A method that focuses on initializing large networks

from training smaller networks, and employing fusion
operators to combine them. This method promotes
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wide over-parameterization, which leads to improved
efficiency in network training.

e An effective framework for the utilization of data and
model parallelization techniques, as well as the strate-
gic use of accelerator devices to train models of smaller
size. This allows our approach to significantly reduce
training time while increasing the performance of the
resulting networks.

e A downstream task evaluation with LLMs, demonstrat-
ing its effectiveness and efficiency in various scenarios.

2. Related Work

In line with the lottery ticket hypothesis (5; 6), our work
shares the following belief: The most commonly used
initialization schemes, primarily discovered heuristically
(8; 12), are sub-optimal. While there’s some evidence that
over-parameterization may not be necessary during training
(16; 1), we still believe over-parameterization and a “good”
initialization can yield better performance. Thus, we aim to
actualize some of the potential that comes from finding a
more principled initialization scheme.

From a transfer learning perspective, progressive networks
(20) grow networks to address the problem of forgetting
previous tasks. Another approach, deep model consolidation
(26), uses a smaller pre-trained model to provide a better
initialization for a larger model, which is then fine-tuned on
a new task. Network morphism (23) is another approach
that aims to find a larger network by transforming a smaller,
pretrained network while preserving the network function
during the transformation. This is achieved by expanding
the original network with layer-wise operations that preserve
input-output behavior.

Similar to our method, staged training (21) also focuses
on network efficiency. This approach involves defining
a growth operator while preserving constraints associated
with loss and training dynamics. By gradually expanding
the model capacity staged training allows for more efficient
training. We argue that preserving training dynamics might
not be the most effective approach when it comes to fusion.
In fact, it could be counterproductive, and exploring high
learning rate cycles could offer a preferable alternative. Fur-
thermore, we enhance the fuse operator by developing a
more efficient initialization for cross-connections.

3. Fusion

We start by demonstrating our FUSION operator on two fully
connected layers before expanding to TS transformers.

A generic neural network is a function f: RY — R¥ defined
with L layers with weights in layer £ € [L] being wy, and

biases being by. That is, For each layer k we calculate
ar = hi(ax—1) = gr(ar—1wk + by), (1

where ag = =z is the input vector, and gy, is the kth activation
function. In what follows, we will omit a; when it is clear
from context.

The output of the neural network is defined as the composi-
tion of the L layers,

f(l‘):hLO...OhQOhl(l‘). (2)

Our FUSION operator F' takes two layers from two differ-
ent models and generates a new layer by composing their
weights and biases. The fused layer has two characteristics:

e Fusion rule: the fused layer maintains the same com-
position or architecture defined in Eq.1. That is, we
do not allow a change in the architecture, but rather a
change in the dimensionality of the operations.

e Fusion property: the fused layer calculates the con-
catenation of the the two original layers that are fused.

The FUSION operator is defined as follows. Given two
layers with d, d’ inputs and k, k" outputs,

Fy,: Rdxk % Rd'xk, N R(d+d/)><(k+k/) (3)

F,: R x RF — REFF), )
The FUSION of the weights performed by F,, results in
a new matrix where the weights of the layers of the two
models are located in the diagonal and the rest is set to
zero. Similarly, the new bias is simply the concatenation
of the bias of the two layers being fused. So the new fused

weight w(/) and new bias b(/) taking the weights of two
layers, w, w’, and bias b, I/, respectively is defined as,

w(f):(%f u(j')’ b = [b,¥], (5)

where 0 is the zero matrix. The output of the fused layer k
is defined as,

héf’ =F(hy, hy,) = gk(a;(gf_)lﬂu(wk,wfg) + Fy(by, b))

w 0
o (fwrai () + et

=gr(lak—1wk + bi, ar_ywy + b)) = [h, hi]-
This means that the result of the FUSION operator on two
layers is the concatenation of the outputs, that is [hy, hj].
3.1. Deep Fusion and Self Deep Fusion

For two neural networks f and f defined as in Eq. 2, the
deep fusion of the two models is defined as follows. Denote
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by7 L(f7 f/) = F(hLvh’lL) ©...0 F(hla hll)([l’,l‘}), And
by AVG(z,y) = (z + y)/2. The function that averages
two vectors of the same dimension, then the deep fusion is
defined as,

DF(f, ') = AVG(L(f, [)).

Intuitively, the deep fused model is maintaining a concate-
nation of the hidden representations from models f and f’
(fusion property) throughout the network, and taking the
average of their logits.

This means that after the deep fusion operation, the function
calculated by the model is equivalent to the function of av-
erage ensemble of the two models. However, if we continue
training the fused model, the extra parameters added by the
zero blocks in the example can start leveraging the hidden
representation from the cross model, and potentially lead to
better performance.

Deep fusion allows the models to be distributed across mul-
tiple GPUs while still taking advantage of the strengths of
both data parallelism and model parallelism.

Self deep fusion of a model f is defined as deep fusing the
model with itself (that is, DF'(f, f)). It can be thought of
as a growth operation that does not change the network’s
predictions to any given input.

3.2. Deep Fusing TS Transformers

This section describes how to deep fuse two (or more) TS
models (19), f and f’, discussing the particularities of each
layer type. Once the fusion is completed, the hidden repre-
sentation of the newly fused model should be a combination
of the two hidden representations from the original models,
aligned along the feature dimension axis.

Starting from the bottom layer, the fusion of the embedding
layer is trivial. Next, for the multi-head attention, if f has y
heads, and f” has 3 heads, then, the fused model will have
y + 3’ heads. All projections (query, key, value, attention
output) as well as the MLP blocks are treated to prevent
leaking information from the wrong hidden representation
at initialization.

Note that skip connections and activations are parameter free
and do not need further handling. Similarly, the element-
wise scaling operation holds a scaling parameter per element
in the hidden representation, and thus is trivial to fuse.

Lastly, the fusion of the normalization of the hidden repre-
sentation between attention and MLP layers proves to be
unfeasible. This is due to the fact that it’s not possible to
uphold the fusion rule and the fusion property simultane-
ously. For the normalization layer we either: 1) Preserve
the fusion property but break the fusion rule by normalizing
the hidden representations of the sub-models individually

and then concatenating them; or 2) keep the fusion rule
but violate the fusion property by treating the concatenated
hidden representation as a single vector for normalization.
It’s important to note that the first option requires additional
coding beyond parameter initialization, unlike the second
option. This dilemma doesn’t occur in self deep fusion.

4. Experiments

We begin by training T5 language models on the C4 dataset.
The term ‘deep’ will be dropped when context allows.

4.1. Language Models

The aim of this experiment is to establish a better initial
checkpoint for a large T5 (19) transformer network, referred
to as T5-MEDIUM, by using two smaller TS models, de-
noted as T5-SMALL. We present two types of results: fusing
two unique small models and fusing one model with itself
(self fusion). We trained the following 4 experiments (see
dimensionalities in Table 6 in Appendix A):

1. baseline: T5-MEDIUM from random initialization.

2. fusion-rule: T5-MEDIUM trained from fusing the
two T5-SMALL models while maintaining the fusion
rule.

3. fusion-prop: TS-MEDIUM trained from fusing the
two T5-SMALL models while maintaining the fusion
property.

4. self-fusion: T5-MEDIUM trained from self fusing
a T5-SMALL model.

Zero matrices in Eq. 5 were substituted with blocks ini-
tialized randomly with a low variance. Final results are
displayed in Table 1 and Figure 1 shows the evaluation
metric curves throughout the training.

Model | Loss @M | Accuracy @IM
baseline 4.66e+4 66.65 + 0.01
fusion-rule 4.6le+4 66.88
fusion-prop 4.53e+4 67.25 + 0.03
self-fusion 4.55e+4 67.20 £ 0.05

Table 1. Performance of different T5-Medium fusion methods at 1
million steps, replicated three times for standard deviation.

The outcomes of our experiments indicate that while it re-
quires extra code changes to the T5 transformer, upholding
the fusion property results in superior performance com-
pared to adhering to the fusion rule. Furthermore, we dis-
covered that self fusion yields comparable performance to
standard fusion. Significantly, the baseline required an
additional 860K steps to achieve the performance level of
self fusion. When employing self fusion, training a T5-
MEDIUM resulted in an 18% reduction in computation time
compared to the baseline. !

'T5-SMALL model training time included.
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Figure 1. Accuracy and loss on validation data.
4.2. Fusion in Stages

We explored staged fusion using T5-S, T5-M, and T5-L ar-
chitectures (Table 7, Appendix B) and tested various fusion
settings depicted in Figure 2.

Figure 2. Settings for final T5-L fusion: yellow signifies fused
models, white indicates regular training, and links represent fusion
(double link signifies self fusion).

Every model (T5-S, T5-M, T5-L) is trained 1M steps. Ta-
ble 2 below present the performance of the various models.

Model | Loss @1M steps | Accuracy @1M steps

tasks that score between 0 and 100) of the various models.

Table 3 and Figure 3. The complete results for each task is

presented in Appendix C.
Model / step 0 250K 500K M
baseline 64.07 | 83.33 84.35 84.74+0.13
fusion-prop | 81.40 | 84.10 | 84.86+0.13 -
self-fusion | 81.01 | 83.71 | 84.94+0.2 -
T5-SMALL - - - 80.28

M F.0de+4 69.89
2) 3.93e+4 70.45
3) 3.9e+4 70.56
4) 3.87e+4 70.74
5) 3.91e+d 70.57
(©6) 3.91e+4 70.47

Table 2. Performance of the various ways of fusing T5-L.

The results show similar performance between fusion and
self fusion (settings (3) and (5)). However, repeated self
fusion reduces performance, while multiple regular fusions
enhance T5-L performance.

Training a model using a single application of self fusion,
setting (5), results in a 20% reduction in computation time
compared to the standard setting (1).

4.3. Fine Tuning for Down Stream Tasks

We fine-tuned high performing settings from the first ex-
periment together with a baseline on NLP tasks using the
GLUE benchmark. We trained two T5-SMALL models
for 500K steps before fusing and self fusing them to cre-
ate a T5-MEDIUM. We also trained a standalone T5-
MEDIUM. These models were fine-tuned at 0 (baseline
vs fusion without extra training), 250K, 500K, and 1M steps
(baseline only). The GLUE average results are shown in

Table 3. Performance (GLUE average) of the various models on
downstream tasks, replicated three times for standard deviation.

Our results indicate that enhancing a pretrained model’s
performance may simply require self-fusion before fine-
tuning, without further pretraining. For instance, a T5-
SMALL model, trained for 500K steps, when self-fused and
fine-tuned, outperforms the same model trained to 1M steps
before fine-tuning (81.01 vs 80.28). It’s evident that the
extra parameters from self-fusion benefit NLP tasks more
than extended pretraining.

Next, the results above also suggest that deep fusion can lead
to faster training to better performance, when fine-tuning
on downstream NLP tasks. However, while in pretrain, the
training curves of fusion of self fusion look similar, we can
see that for downstream tasks, fusion maintain higher per-
formance throughout till convergence (in here, both models
converge to similar performance).

Model / time Fusion Post fusion | Time | GLUE
baseline 0 steps 1M steps | 39.2h | 84.74
Oh 39.2h
fusion-prop | 500k steps | 500k steps | 37.9h | 84.86
2x8h 21.%h
self-fusion | 500k steps | 500k steps | 29.9h | 84.94
8h 21.%h

Table 4. Compute time in hours (TPU V3 4x4 topology).

The total compute saving is about 24% TPU time for this
configuration as presented in Table 4. Even though we
trained for less time, the final performance was slightly
better than the baseline.
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5. Discussion and Conclusion

In this paper, we present a new technique for improving the
training process of large models. Our technique, called deep
fusion, combines multiple models into a single model that
can be trained more efficiently. We demonstrate how model
fusion can be used to reduce the restrictions of distributed
training, save on overall compute costs, and improve model
performance.

In our experiments we fused models that are trained on the
same data and have identical architectures. While fusion has
immediate training advantages, further research is needed
to understand the implications and possible applications
of fusing models trained on different sources and distinct
architectures.

For example, it would be interesting to explore if transfer
learning occurs when fusing models trained in different do-
mains. Additionally, it would be interesting to understand
the characteristics of models that are the fusion of models
that differ in dimensionality. For example, one model could
be attention-heavy, while another could be MLP-heavy. Fi-
nally, it would be interesting to explore model fusion when
the models are trained on different sequence lengths. This
could also lead to efficiency improvements, as lower-length
models train faster.

We believe that model fusion is a promising technique for
improving the training process of large models. We hope
that our work will inspire further research in this area.
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Model Glue avg COLA SST acc MRPC f1 MRPC STS-b STS-b qqp acc qqp f1 MNLI-m MNLI- QNLI RTE
Matthew’s acc pearson spearman mm
baseline 1m 84.74 54.18 94.38 93.17 90.69 89.83 89.75 91.94 89.13 86.77 86.6 92.13 78.34
baseline Im 84.45 52.95 93.92 93.12 90.44 89.49 89.35 91.94 89.14 86.94 86.58 92.26 77.98
baseline Im 84.69 53.15 93.81 92.15 88.97 89.06 88.93 92.04 89.24 86.55 86.21 91.69 82.31
Fusion 500k 84.98 53.97 94.27 92.91 90.2 89.68 89.49 92.04 89.36 86.6 86.43 92.39 80.87
Fusion 500k 84.68 54.46 93.81 91.8 88.97 89.44 89.28 91.95 89.13 86.67 86.65 92.11 80.14
Fusion 500k 84.92 53.94 94.5 92.73 89.71 90.62 90.44 92.01 89.23 86.64 86.45 91.56 80.51
Self fusion 500K | 84.69 54.58 93.12 92.03 89.22 89.23 89.16 91.81 89.01 86.64 86.68 92.11 80.87
Self fusion 500K | 85.19 55.82 93.69 93.1 90.44 89.9 89.73 92.04 89.34 86.8 86.31 9231 80.87
Self fusion 500K | 84.95 58 94.27 92.36 89.71 89.93 89.7 91.96 89.18 86.47 86.4 91.93 77.62

Table 5. Performance (Glue tasks) of the various models on downstream tasks.

Appendix A

In this appendix, we list the dimension of the T5 transform-
ers used in the first experiment.

Model Name T5-Small | T5-Medium
embedding dim 512 1024
number of heads 6 12
enc./dec. layers 8 8
head dim 64 64
mlp dimension 1024 2048
number of parameters 7™M 242M

Table 6. Dimensions of T5 Small and Medium.

Appendix B

In this appendix, we list the dimension of the TS transform-
ers used in the second experiment.

Model Name T5-S | T5-M | TS-L
embedding dim 512 | 1024 | 2048
number of heads 6 12 24
enc./dec. layers 8 8 8
head dim 128 128 128
mlp dimension 1024 | 2048 | 4096
number of parameters | 95M | 317M | 1.1B

Table 7. Dimensions of T5-S, T5-M and T5-L.

Appendix C

In this Appendix we list the full results (see Table 5) of the
downstream on various Glue tasks. The average is calcu-
lated over all tasks. For tasks with more than one metrics,
we average the metrics and then average over the tasks.



