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Abstract001

The deployment of large language models002
(LLMs) faces considerable challenges con-003
cerning resource constraints and inference ef-004
ficiency. Recent research has increasingly005
focused on smaller, task-specific models en-006
hanced by distilling knowledge from LLMs.007
However, prior studies have often overlooked008
the diversity and quality of knowledge, es-009
pecially the untapped potential of negative010
knowledge. Constructing effective negative011
knowledge remains severely understudied. In012
this paper, we introduce a novel framework013
called quality-guided contrastive rationale dis-014
tillation aimed at enhancing reasoning capabil-015
ities through contrastive knowledge learning.016
For positive knowledge, we enrich its diversity017
through temperature sampling and employ self-018
consistency for further denoising and refine-019
ment. For negative knowledge, we propose an020
innovative self-adversarial approach that gener-021
ates low-quality rationales by sampling previ-022
ous iterations of smaller language models, em-023
bracing the idea that one can learn from one’s024
own weaknesses. A contrastive loss is devel-025
oped to distill both positive and negative knowl-026
edge into smaller language models, where an027
online-updating discriminator is integrated to028
assess qualities of rationales and assign them029
appropriate weights, optimizing the training030
process. Through extensive experiments across031
multiple reasoning tasks, we demonstrate that032
our method consistently outperforms existing033
distillation techniques, yielding higher-quality034
rationales. Our codes will be released soon.035

1 Introduction036

The reasoning capabilities of large language mod-037

els (LLMs) have been observed to scale their model038

sizes, while necessitating substantial memory and039

computing resources (Chowdhery et al., 2023; Wei040

et al., 2022a). As such, efficient model compres-041

sion is crucial in the deployment of LLMs, espe-042

cially on resource-limited devices or platforms.043

Figure 1: Comparison between previous methods and
our proposed method, where circle points denote ra-
tionales, and colors of the circle points correspond to
rationale types, and shades of darker indicate higher
qualities. The "align" means minimizing the distance
between rationales, while the "repel" means maximizing
the distance.

Knowledge distillation from an LLM (teacher) 044

to a smaller, more manageable language model 045

(student) has recently emerged as a powerful and 046

promising technique for model compression (Hin- 047

ton et al., 2015; Phuong and Lampert, 2019). How- 048

ever, it is still open how to best reduce the perfor- 049

mance gap between the teacher and the student on 050

complex reasoning tasks (Zelikman et al., 2022). 051

In this regard, it has more recently been shown 052

that adding explanation-augmented prompts, espe- 053

cially, Chain-of-Thought (CoT) (Wei et al., 2022b), 054

can enable LLMs to generate reasonable explana- 055

tions (also referred to as rationales) to justify the 056

reasoning outcomes (Li et al., 2022). Distilling 057

these rationales into smaller language models has 058

been demonstrated to effectively improve the over- 059

all performance (Hsieh et al., 2023; Li et al., 2022). 060

For example, distilling Step-by-Step (DSS) (Hsieh 061

et al., 2023) was proposed as an innovative CoT dis- 062

tillation approach, which employed rationales from 063

an LLM to guide a smaller language model under 064

a multi-task learning setting. It involved training 065

the smaller language model simultaneously on both 066

label prediction and rationale generation tasks, ef- 067

fectively leveraging their mutual benefits. 068

The essence of such distilling rationales is to 069

guide the model in learning additional knowledge 070
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related to the labels. Knowledge can be generally071

concluded into two classes: positive and negative.072

Previous works on rationale distillation, although073

effective, still suffer from certain drawbacks. On074

the one hand, positive knowledge for distillation075

may be limited and noisy. Methods (Fu et al., 2023;076

Hsieh et al., 2023; Magister et al., 2022; Chen et al.,077

2024b) treated rationales generated by LLMs as078

golden answers and aimed to minimize the gap079

between these rationales and those generated by080

smaller language models. However, despite LLMs’081

powerful zero-shot/few-shot abilities, they may oc-082

casionally produce incorrect reasoning steps, lead-083

ing to erroneous rationales/answers. Such erro-084

neous rationales may degrade the reasoning perfor-085

mance of the distilled smaller language models. On086

the other hand, generating negative rationales and087

incorporating them into CoT distillation remain088

understudied, while negative knowledge has early089

proved constructive and effective for models.090

To this end, we propose a general method, named091

Quality-guided Contrastive Rationale Distillation092

(QCRD), to guide the knowledge distillation to093

smaller language models from a contrastive learn-094

ing perspective. The comparison between the previ-095

ous methods and our proposed QCRD is illustrated096

in Fig. 1. Specifically, the previous methods fo-097

cus on the alignment between the rationale of the098

student model and the corresponding one of the099

teacher model, while our proposed QCRD aligns100

the student’s distribution and contrastive knowl-101

edge distribution with various sampled rationales.102

The core design of QCRD is to generate a diverse103

set of contrastive rationales and efficiently distill104

them into student models. For the positive part, to105

ensure the quality and variety of positive rationales,106

we prompt the LLM and sample the output to gen-107

erate multi-round rationales for each input question.108

We then apply the self-consistency to denoise the109

rationale set and split it into positive rationales and110

negative rationales. For the negative part, we em-111

ploy a self-adversarial strategy inspired by (Silver112

et al., 2018) during training to generate low-quality113

rationales from previous iterations of smaller lan-114

guage models with a high sampling temperature115

and treat them as negative rationales. Finally, for116

better knowledge learning, we present a contrastive117

loss to distill both positive and negative rationales118

into smaller language models. A discriminator is119

adopted to assess the qualities of the rationales and120

assign them appropriate weights to optimize the121

training process across the datasets.122

To demonstrate the superiority of QCRD, we 123

conduct comprehensive experiments with two 124

smaller types of T5 models (Raffel et al., 2020), i.e., 125

T5-base (220M parameters) and T5-small (60M pa- 126

rameters), on four popular datasets, followed by 127

detailed analysis and discussion. Our main contri- 128

butions of this paper can be summarized below. 129

• We first develop a general CoT distillation ap- 130

proach (i.e., QCRD) from a contrastive learn- 131

ing perspective, aiming to guide the student 132

model to learn both positive and negative 133

knowledge from rationales. 134

• We explore a contrastive distillation loss to 135

facilitate effective distillation of the generated 136

positive and negative rationales, where the 137

qualities of the rationales judged by a discrim- 138

inator are considered to optimize the training 139

process across the whole datasets. 140

• Experimental results across multiple datasets 141

show that QCRD outperforms existing meth- 142

ods and can be widely applied, demonstrating 143

its efficiency in utilizing contrastive reasoning 144

knowledge for smaller language models. 145

2 Related Work 146

Knowledge distillation from LLMs. Knowledge 147

distillation (KD) is a highly effective technique for 148

transferring knowledge from larger teacher models 149

to smaller student models that are more suitable for 150

practical applications (Fu et al., 2023; Hsieh et al., 151

2023; Magister et al., 2022; Chen et al., 2024b; 152

Wang et al., 2023). The KD technique can be gen- 153

erally classified into two different categories: (1) 154

Black-box KD: only the teacher’s predictions are 155

accessible; (2) White-box KD: it provides access 156

to the teacher’s parameters. Both of them have 157

shown promising potential in fine-tuning smaller 158

models on the prompt response pairs generated by 159

LLMs (Zhu et al., 2023). In this paper, we hypoth- 160

esize that only the predictions (predict labels and 161

rationales) generated by LLMs are accessible. 162

Multi-task learning with LLM generated ra- 163

tionales. Current LLMs have already exhibited 164

their capabilities to generate high-quality reason- 165

ing steps, resulting in rationales of their predic- 166

tions (Kojima et al., 2022), and these rationales 167

have been found to be valuable additional knowl- 168

edge for fine-tuning smaller models (Hsieh et al., 169

2023). A multi-task learning framework is com- 170

monly employed that enforces smaller models to 171

output corresponding rationales, while maintain- 172
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Figure 2: Illustration of the proposed quality-guided contrastive rationale distillation for distilling contrastive
knowledge from teacher models into the student model. Fig.a represents our multi-task framework, i.e., the main
prediction label task and additional rationale task. Fig.b represents generation of contrastive rationales for distillation.
Fig.c represents details about the quality-guided contrastive rationale loss, and CE denotes the cross-entropy.

ing their original functionality. However, previous173

studies only focused on aligning the output of the174

smaller model with that of the LLM with a single175

loss form (Hsieh et al., 2023; Magister et al., 2022).176

Self-consistency of LLMs. The self-consistency177

of LLMs refers to the capacity to maintain coher-178

ent and rational reasoning during input processing.179

Based on the intuition that complex reasoning tasks180

typically admit multiple reasoning paths that reach181

a correct answer, the self-consistency can improve182

the LLMs’ reasoning performance by integratedly183

sampling CoT outputs several times and choosing184

the most consistent predict answer (Stanovich and185

West, 1991; Wang et al., 2022).186

Contrastive learning for LLMs. Contrastive187

learning has demonstrated its efficiency across di-188

verse domains, e.g., computer vision, natural lan-189

guage processing (Jaiswal et al., 2020; Le-Khac190

et al., 2020). Notably, the application of con-191

trastive learning to LLMs has recently emerged,192

highlighting the effectiveness of incorporating neg-193

ative knowledge implicitly in model’s inputs and194

showing promising outcomes (Li et al., 2024; Chen195

et al., 2024a). However, to the best of our knowl-196

edge, the application of contrastive learning in CoT197

rationale distillation has not been explored thus far.198

3 Methodology199

In this paper, we first propose a general contrastive200

CoT distillation approach, called quality-guided201

contrastive rationale distillation (QCRD), for train-202

ing smaller models by distilling contrastive knowl-203

edge from teacher models. As illustrated in Fig. 2, 204

our approach consists of the following three parts. 205

(1) Following the method developed in (Hsieh et al., 206

2023), we apply a multi-task learning framework 207

for the supervised training of the student model, 208

i.e., the main prediction label task and additional 209

rationale generation task; see Fig. 2a. (2) As dis- 210

played in Fig. 2b, we design a general approach 211

to generate contrastive knowledge from LLMs and 212

student model itself for rationale distillation. (3) 213

As shown in Fig. 2c, for better knowledge learning 214

from rationales, we design a quality-guided con- 215

trastive learning strategy, where a contrastive loss 216

is applied with the guidance of an online-updated 217

discriminator to distinguish between positive and 218

negative rationales and assign them quality scores. 219

3.1 Multi-task learning framework for the 220

student model 221

Previous works have already demonstrated the ad- 222

vantages of the multi-task learning framework (Fu 223

et al., 2023; Hsieh et al., 2023; Magister et al., 224

2022). Accordingly, as shown in Fig. 2a, we apply 225

the label prediction task and the rationale genera- 226

tion task to the training of smaller language models. 227

Specifically, we use different prefixes to enforce 228

smaller language models to generate different types 229

of output. Given an input question, for the label 230

prediction task, the smaller language model outputs 231

the prediction label with input prefix < Predict >, 232

while for the rationale generation task, it outputs 233

the corresponding explanation with input prefix 234
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< Explain >. These outputs are then aligned to235

the corresponding ground truth and rationales using236

autoregressive loss, respectively.237

3.2 Generation of contrastive knowledge238

We use CoT prompting (Wei et al., 2022b) to elicit239

and extract rationales from LLMs. As illustrated240

in Fig. 3, the LLM is provided with few examples241

to follow the output format. Instead of only gen-242

erating one output for each input, we replace the243

“greedy decode” in CoT prompting with sampling244

from the language model’s decoder to generate a245

diverse set of reasoning paths (Wang et al., 2022).246

We apply temperature sampling (Renze and Guven,247

2024) to the LLM K times, where a temperature248

value τ can control the diversity of the generated249

output. Therefore, for each input, there are K pairs250

of rationales and corresponding labels.251

Figure 3: A case of the prompt and rationale output.

3.2.1 Build positive and negative rationale sets252

Language models are not infallible reasoners; they253

can produce incorrect reasoning paths or mistakes254

in individual steps. Research indicates that correct255

reasoning processes, despite their diversity, gener-256

ally yield more consistent final answers than incor-257

rect ones (Wang et al., 2022). Thus, we select the258

rationales with the most consistent labels across all259

outputs of the LLM as positive rationales, while the260

remaining ones are classified as negative rationales.261

The number of sampling times primarily affects262

the ratio of positive to negative samples (with neg-263

ative samples typically being fewer, as detailed in264

Appendix A.1), as well as the associated time and265

storage costs. Moreover, negative rationales from266

LLMs are likely to be positive for smaller language267

models, which may limit their effectiveness.268

To deal with this issue, we conduct a self-269

adversarial mechanism that the student model gen-270

erates its own negative rationales by sampling from271

its previous iterations with a high temperature value272

during training (we illustrate its rationality in Sec-273

tion 5.3 and demonstrate its superiority in Ap- 274

pendix A.2), and we regard these low-quality ratio- 275

nales as negative ones based on the hypothesis that 276

the rationale quality of LLMs is higher than that of 277

smaller models. As a result, for each input question 278

x = [x1, x2, ..., xn], we collect a positive rationale 279

set Spos = {rpos1 , rpos2 , ..., rposm } and a negative ra- 280

tionale set Sneg = {rneg1 , rneg2 , ..., rnegk }. 281

3.3 Contrastive knowledge distillation 282

In this subsection, we present our designed quality- 283

guided contrastive rationale distillation for better 284

knowledge learning. 285

3.3.1 Train a discriminator to judge rationales 286

The quality of rationales for the same question still 287

differs. Moreover, as the training epoch increases, 288

the rationales generated by the above self-play may 289

become gradually closer to the positive rationales, 290

and then viewing them as negative ones is no longer 291

reasonable. Therefore, there is a need to train a 292

discriminator D that can effectively judge the posi- 293

tive and negative rationales and output a score that 294

represents the quality of each rationale. The in- 295

put of the discriminator D is the question and the 296

rationale, and we take an encoder architecture to 297

measure the score, i.e., 298

sposj = D
(
x, rposj

)
or sneg

j = D
(
x, rneg

j

)
. (1) 299

We pretrain the D with the positive and negative 300

rationales from the LLM, and during training, the 301

discriminator D is updated at regular epoch inter- 302

vals (details can be seen in Appendix A.3). The 303

loss function can be formulated as 304

LD = Ex

[
− log

∑m
j=1 exp(s

pos
j )∑k

j=1 exp(s
neg
j )

]
. (2) 305

3.3.2 Quality-guided contrastive distillation 306

As mentioned in sec. 3.2.1, there is a diverse set 307

of positive rationales. In addition, the negative ra- 308

tionales are of significance, which can enforce the 309

smaller model away from their distribution. Since 310

some of the negative samples are generated by 311

the previous-iteration smaller model, the smaller 312

model can further refine its reasoning capability 313

through playing against instances of itself and pro- 314

mote the generated rationales closer to golden ratio- 315

nales of the LLM. Therefore, we propose a many- 316

to-one contrastive distillation loss, while previous 317

studies typically utilize a single rationale for each 318

question and distill it into the smaller model, i.e., 319

Lcl =
1

N

N∑
i=1

[l(f(xi), S
i
pos)− β · l(f(xi), S

i
neg)], (3) 320
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where xi denotes the i-th question, Si
pos and Si

neg321

denote the corresponding positive and negative ra-322

tionale sets, respectively, N is the number of ques-323

tions, and β > 0 is a tunable hyper-parameter. The324

function l(·) denotes the cross-entropy loss and325

f(·) denotes the rationale generation for its given326

input. In (3),327

l(f(xi), S
i
pos) = min

r
pos,i
j ∈Si

pos

{
l
(
f(xi), r

pos,i
j

)}
, (4)328

329
l(f(xi), S

i
neg) = max

r
neg,i
j ∈Si

neg

{
l
(
f(xi), r

neg,i
j

)}
, (5)330

which are designed to learn both the most rele-331

vant positive knowledge and the least-disturbed332

negative knowledge from teacher models. More-333

over, we set a margin δ for the negative ratio-334

nales to filter out cases that are too simplistic, i.e.,335

l(f(x), rnegj ) = min(l(f(x), rnegj )− δ, 0) with re-336

spect to the j-th negative rationale for an input337

question x. Let us rethink the effectiveness of neg-338

ative rationales generated by the previous-iteration339

smaller model, which enforces the smaller model340

to break out of local optima and yield a golden341

rationale that is closer to the output of the LLM.342

However, when the smaller model comes to con-343

verging, the previous-iteration smaller model is344

likely to output the rationales that are similar to345

those of the LLM, and then regarding them as neg-346

ative samples is inaccurate. To address this issue,347

we introduce the quality-guided distillation to op-348

timize the training process and redefine the loss349

formulas in (4) and (5) as, respectively,350

l(f(xi), S
i
pos) = spos,i · min

r
pos,i
j ∈Si

pos

{
l
(
f(xi), r

pos,i
j

)}
,

(6)351352

l(f(xi), S
i
neg) = (1−sneg,i)· max

r
neg,i
j ∈Si

neg

{
l
(
f(xi), r

neg,i
j

)}
,

(7)353

where spos,i and sneg,i are the corresponding qual-354

ity scores obtained by the discriminator D. By355

(6) and (7), the positive rationales of higher qual-356

ity should have larger weights across the datasets,357

while for the negative rationales of higher quality,358

it is on the contradiction. In the latter sec. 5.1,359

we will further discuss different schemes for the360

many-to-one distillation.361

3.3.3 Training loss362

The final training loss is given by363

Ltotal = α1Lpred + α2Lcl + α3LD, (8)364

where {αi}3i=1 > 0 are tunable hyper-parameters,365

Lpred represents the cross entropy loss of the label366

prediction task, Lcl is the many-to-one contrastive 367

distillation loss in (3), and LD is the discriminator 368

loss in (2). 369

4 Experiments 370

4.1 Experimental setting 371

Datasets. We conducted extensive experiments on 372

four widely-used benchmark datasets (see details 373

in Appendix Table 1) across three different natural 374

language processing tasks, including SVAMP (Pa- 375

tel et al., 2021) for arithmetic word problem solv- 376

ing, CQA (Talmor et al., 2018) for commonsense 377

question answering, as well as e-SNLI (Camburu 378

et al., 2018) and ANLI (Nie et al., 2019) for natural 379

language inference. The rationales we used were 380

generated by GPT-3.5-turbo1 and an opened code 381

source by (Hsieh et al., 2023) was referred. 382

Implementation details. Following the properties 383

of CoT and the comparative experimental studies 384

in (Hsieh et al., 2023; Chen et al., 2024b), our 385

QCRD utilized T5-base (220M parameters) and 386

T5-small (60M parameters) as the student models 387

to ensure a fair comparison. α1, α2, α3 were set to 388

0.5 empirically. α3 was multiplied by 0.9 per itera- 389

tion. We set β = 0.2 and δ = 3. We sampled the 390

LLM’s output 5 times with the temperature being 391

0.7, and sampled 5-iteration-before models with 392

the temperature being 1.5. The batchsize was 8 393

and learning rate was 5e-5. We trained our models 394

with 10000 max steps on one A100-80G about 13 395

hours for T5-base and 8.5 hours for T5-small. The 396

reported metric was accuracy. 397

Baselines. Four methods in learning task-specific 398

models were compared, i.e., (1) Finetuning, which 399

is the standard finetuning with the prevailing 400

pretrain-then-finetune paradigm that finetunes a 401

model with ground-truth labels via standard label 402

supervision (Howard and Ruder, 2018); (2) Single- 403

Task, where student models are distilled to predict 404

labels with the teacher model’s predicted labels; (3) 405

DSS (Hsieh et al., 2023), where student models are 406

distilled with both the predict labels and rationales 407

of the LLM; (4) Mutual information (MI) (Chen 408

et al., 2024b), which is based on DSS and applies 409

an additional task to maximizing the mutual infor- 410

mation between prediction labels and rationales. 411

4.2 Experimental results 412

Experiments across four benchmarks. We con- 413

ducted experiments across four benchmarks with 414

1https://platform.openai.com/docs/models
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Figure 4: Comparisons with varying sizes of training datasets on the T5-base model for four benchmarks.

two types of T5-model to evaluate the effectiveness415

of our proposed method. In the top of Table 1, we416

summarized the experimental results of the T5-base417

model distilled by our method and the baselines418

individually on all the four datasets. Of note, in419

Single-Task, the rationale and label were combined420

into a single sequence, which was then treated as421

the target during the training (Hsieh et al., 2023). It422

is clear that our method outperformed the baselines423

on most datasets, particularly when compared to424

the baseline DSS.425

Table 1: CoT distillation results on the T5-base model.

Model SVAMP CQA ANLI1 ESNLI
Finetuning 63.00 62.19 43.58 88.38
Single-Task 59.00 63.11 47.90 88.77

DSS 65.50 63.23 52.80 90.09
MI 67.50 63.50 54.20 90.15

Ours 69.00 63.64 54.00 90.26

In like manner, we performed our method and426

the baselines individually on the T5-small model,427

and their performance on all the four datasets was428

presented in Table 2. Our method consistently sur-429

passed the baselines on all the four datasets.430

Table 2: CoT distillation results on the T5-small model.

Model SVAMP CQA ANLI1 ESNLI
Finetuning 45.00 43.16 42.00 82.90
Single-Task 46.50 44.98 42.50 83.67

DSS 48.00 45.21 42.80 84.23
MI 47.00 45.49 42.10 83.55

Ours 50.50 46.11 44.10 85.30

Distillation with LLM labels. To evaluate the im-431

pact of label qualities on CoT distillation, without432

loss of generality, we conducted additional experi-433

ments on the three datasets (namely, CQA, ANLI1,434

and ESNLI) using the T5-base model distilled by435

our method and DSS. Instead of using ground truth436

labels, we employed the labels generated by GPT-437

3.5-turbo to distill student models. The results were438

presented in Table 3. On one hand, from the top of439

Table 3, it demonstrates the effectiveness of temper- 440

ature sampling and self-consistency (SC), which 441

help denoise rationales and their corresponding la- 442

bels. On the other hand, the results at the bottom of 443

Table 3 indicate that our method outperformed DSS 444

on CQA and ANLI1, even when utilizing labels 445

generated by the LLM. Furthermore, comparing 446

the results of the T5-base models in Table 1 with 447

those of GPT-3.5 in Table 3, we observe that even 448

with tiny parameters, these expert models achieve 449

comparable performance on CQA and improved 450

results on ESNLI. 451

Table 3: CoT distillation results on the T5-base model
using predicted labels (noisy labels) from the LLM.

Model CQA ANLI1 ESNLI
GPT-3.5 66.30 78.21 66.27

GPT-3.5 with SC 69.05 80.15 67.08
DSS 59.15 44.10 74.88
MI 59.22 45.90 74.67

Ours 59.80 46.70 74.88

Distillation with smaller datasets. In addition, 452

to demonstrate the superiority of our method on 453

smaller datasets, we compared the performance of 454

Finetuning and our method using T5-base models 455

across varying sizes of each of the four datasets. 456

Figure 4 illustrates that our method consistently 457

achieved better performance, indicating the robust- 458

ness and generality of QCRD. Notably, a more pro- 459

nounced performance gain was observed on CQA 460

when the number of training samples was limited. 461

Ablation study on QCRD. Compared to previ- 462

ous related methods, the contrastive distillation in 463

our QCRD introduces several key enhancements as 464

follow. (1) The extension and denoising for posi- 465

tive knowledge (ED): we sample the outputs of the 466

LLM and leverage the self-consistency to denoise 467

rationales. (2) The distillation for negative knowl- 468

edge (NK): we incorporate a self-supervised mech- 469

anism to generate low-quality rationales as negative 470

rationales. (3) The guidance of the Quality Judge 471
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(QJ): the use of discriminator helps assess ratio-472

nales and optimize the training process. Additional473

experiments were so conducted on SVAMP to eval-474

uate the effectiveness of each module, with the475

results being summarized in Table 4. The findings476

demonstrated that integrating more high-quality ra-477

tionales significantly improved performance, while478

the inclusion of negative rationales proved effective.479

The discriminator mechanism played a positive role480

by considering the quality of each rationale, and we481

further found that the results when using the Qual-482

ity Judge were more stable. We further conducted483

experiments to demonstrate the generalization ca-484

pability of QCRD by applying it to other baseline485

and larger models, as detailed in Appendix A.4.486

Table 4: Ablation study on T5-base model, where ED
denotes positive knowledge extension and denoising,
NK denotes negative knowledge, and QJ denotes using
of Quality Judge.

w/o ED w/o NK w/o QJ SVAMP
% % % 65.5
! % % 67.0
! ! % 68.5
! ! ! 69.0

5 Discussion487

5.1 Different contrastive distillation schemes488

In sec. 3.3.2, We defined the many-to-one distilla-489

tion by taking the min loss for positive rationales490

and max loss for negative rationales (i.e., Min-491

Max), which imposes a relatively weak constraint492

on rationale alignment. We further discuss differ-493

ent schemes for the many-to-one distillation. (1)494

MaxMin: we compute the max loss for positive ra-495

tionales and min loss for negative rationales. This496

scheme enforces the smaller model to learn hard497

rationale examples. (2) Sampling: we randomly498

choose a positive rationale and a negative rationale499

for each input. (3) Mean: we average the loss for500

all rationales. (4) Weighted mean (W-mean): we501

weight the loss with quality scores and then average502

the loss. The results of the T5-base model distilled503

by our method on SVAMP were presented in Ta-504

ble 5 with respect to the above different schemes.505

One can clearly see that the MinMax achieved the506

best performance. Besides, the Mean scheme had a507

negative impact on the results. The reason may be508

that enforcing small models align with multi-target509

rationales of differences is not suitable, especially510

for positive knowledge.511

Table 5: Results of our method with different many-to-
one distillation schemes on SVAMP.

Model MinMax MaxMin Sampling Mean W-mean

T5-base 69.0 67.0 66.5 65.0 66.0

5.2 Influence of the sampling count 512

In the above experiments, we sampled the output 513

of the LLM five times and the output of iteration- 514

before model once. We further explore the influ- 515

ence of the sampling count. When fixing the sam- 516

pling counts for iteration-before models, results of 517

setting different sampling counts for the LLM on 518

SVAMP were displayed in the top of Table 6. More- 519

over, when fixing the sampling counts for the LLM, 520

results on SVAMP were displayed in the bottom 521

of Table 6 in terms of different numbers of gen- 522

erated negative samples. We found that sampling 523

many negative rationales had an adverse impact 524

on the performance, and the best performance was 525

achieved when k was 1. Note that when m = 1, 526

the performance of our method was still better than 527

that of other related methods, again indicating the 528

effectiveness of negative rationales. 529

Table 6: Results of our method on SVAMP with dif-
ferent sampling counts, i.e., the sampling count m for
positive rationales and k for negative rationales.

Positive sample m 1 5 10 20
T5-base 67.5 69.0 68.0 68.5

negative sample k 0 1 2 3
T5-base 67.0 69.0 68.5 66.0

5.3 Rationality for negative knowledge 530

Temperature sampling is a commonly used decod- 531

ing strategy for LLMs’ generation process. By 532

adjusting the temperature τ , we can modify the 533

probability distribution of each word before sam- 534

pling. The higher the temperature is, the smaller the 535

difference in the probability distribution of LLM’s 536

outputs becomes, increasing the chance of sam- 537

pling words with lower probabilities. In Fig 5, 538

we provided a case of output rationales from the 539

trained T5-base model with different temperature 540

settings for illustrative visualization. It validated 541

the rationality that we generated negative rationales 542

by sampling the iteration-before smaller models 543

with a high temperature value. We further explored 544

the influence of the negative sampling temperature 545

on model performance in Appendix A.5. 546
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Figure 5: A case study of output rationales from the
T5-base model on SVAMP at different temperatures,
with incorrect details highlighted in red.

5.4 Assessment for generated rationales547

We assessed the qualities of CoT examples using548

GPT-3.5-turbo. Inspired by the ranking model, we549

prompted GPT-3.5-turbo to rank the rationales gen-550

erated by both DSS and our QCRD, rather than551

providing scores based on the qualities of the ra-552

tionales. This is easier for the LLM and allows for553

a more straightforward comparison. The prompt554

fed to GPT-3.5-turbo was presented in Appendix555

Table 4. To evaluate the rationales, we randomly556

selected 50 examples from each of the four datasets557

and asked GPT-3.5-turbo to determine rationales of558

which our method was better. We then aggregated559

the counts of "DSS is better," "Both are good," and560

"QCRD is better," as shown in Table 7. From the561

results, we observed that on SVAMP, CQA, and562

ESNLI, the model trained using our method gen-563

erated better rationales than using DSS. However,564

on ANLI1, the model trained using DSS exhibited565

slightly better performance.566

Table 7: The quality assessment results on the T5-
base model for different sampling temperature settings,
where three numbers represent counts of "DSS is better",
"Both are good", and "QCRD is better", respectively.

SVAMP CQA ANLI1 ESNLI
τ = 0 21/0/29 19/6/25 26/1/23 17/11/22
τ = 0.7 22/0/28 20/6/24 25/1/24 14/3/33

5.5 Distribution of rationale quality scores567

The probability density estimation for the sampled568

rationale scores from the trained discriminator on569

the SVAMP test dataset is shown in Fig 6. Specifi-570

cally, we considered the quality scores of: (1) posi-571

tive and negative rationales from LLM’s sampled572

outputs (sampled 5 times); (2) negative rationales573

from sampling a trained T5-base model with tem-574

perature τ set to 1.5 and 2.0, respectively. It showed 575

that the trained discriminator can effectively score 576

different types of rationales. Scores of LLM’s pos- 577

itive rationales were around 0.95. For the trained 578

student model, scores of the sampled negative ra- 579

tionales sometimes exceeded 0.7 (see the orange 580

distribution), and it was necessary for the discrim- 581

inator to assign low weights to these rationales. 582

Furthermore, by comparing the orange distribution 583

and the red distribution, we can see that the sam- 584

pling temperature has a significant influence on the 585

qualities of the rationales. 586

Figure 6: The probability density estimation for sampled
rationale scores on the SVAMP test dataset, where ra-
tionales were from LLM’s and trained T5-base model’s
sampled outputs, and τ denotes sampling temperature.

6 Conclusion 587

The knowledge distillation of CoT rationales from 588

LLMs into smaller language models using a multi- 589

task learning framework has been empirically 590

shown to enhance performances of smaller lan- 591

guage models. Building upon the framework, we 592

introduces a general CoT distillation method, in- 593

corporating a contrastive learning perspective that 594

considers both positive and negative knowledge. To 595

generate positive and negative rationales, we pro- 596

pose an innovative approach that combines temper- 597

ature sampling, the self-consistency of LLMs, and 598

the self-adversarial of small language models them- 599

selves. Additionally, we develop a many-to-one 600

contrastive distillation loss for better knowledge 601

learning, where an online-update discriminator is 602

used to judge qualities of rationales and assign 603

them weights for optimizing the training process 604

across the whole datasets. Extensive experiments 605

conducted on multiple reasoning tasks demonstrate 606

the superiority of our method over previous ones. 607
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Limitations608

Our work serves as a distillation method for de-609

ployed smaller language models, paving the way610

for further improvements. On one hand, as illus-611

trated in Appendix A.6, it requires additional train-612

ing time due to the distillation of sampled positive613

and online-inferenced negative rationales. How-614

ever, our proposed method enhances model per-615

formance without incurring additional deployment616

costs and can be applied generally. On the other617

hand, the quality of knowledge for distillation is618

crucial. In this paper, we prompt the LLM to gen-619

erate chain-of-thought (CoT) rationales and fur-620

ther classify them into positive and negative cate-621

gories through self-consistency. Different types of622

prompts and decoding strategies can lead the LLM623

to produce various forms of positive CoT knowl-624

edge and more intuitive negative CoT knowledge,625

which may further improve the distillation effect.626
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A Appendix760

A.1 Details about Datasets761

Following the setting in (Hsieh et al., 2023), we762

provide detailed descriptions of the four benchmark763

datasets in Table 1. To illustrate the unbalanced764

proportion of positive and negative rationales from765

LLMs given the ground truth, we displayed the 766

statistical description of the generated rationale an- 767

notations on training datasets for four benchmarks 768

in Table 2. On the one hand, the number of positive 769

rationales was larger than that of negative rationales 770

(3.87:1.13). On the other hand, for many samples 771

in the training dataset (more than 50%), there were 772

only positive rationales. Therefore, there is a need 773

to generate effective negative rationales in other 774

ways. 775

Table 1: Descriptions of the four benchmark datasets.

Dataset Training Validation Test
SVAMP 720 80 200

CQA 8766 975 1221
ANLI1 16946 1000 1000
ESNLI 549367 9842 9824

Table 2: Statistical descriptions of the generated ratio-
nale annotations, where r denotes rationale, and positive
r achieves correct answers.

Dataset SVAMP CQA ANLI1 ESNLI
Average pos r (total 5) 3.87 3.89 3.93 3.31

Proportion with only pos r 0.55 0.68 0.66 0.50
Proportion with only neg r 0.08 0.13 0.11 0.20

A.2 Iteration-before-models for negative 776

rationale generators 777

In this paper, we dynamically generated negative ra- 778

tionales using iteration-before-models through on- 779

line temperature sampling. We took these iteration- 780

before-models as negative generators, and we sam- 781

pled them with a relatively high temperature value 782

to generate negative rationales for every batch 783

of datasets. As depicted in Fig. 1, to select a j- 784

iteration-before-model for the negative rationale 785

generator, we need to save a minimum of j check- 786

points for the model. This allows us to load the neg- 787

ative generator online and train the student model 788

end-to-end instead of using a multi-turn approach. 789

Additionally, as shown in Table 3, we found that the 790

performance of the student models was not sensi- 791

tive to the choice of j from {3, 5, 10}, all of which 792

outperformed the results obtained with a fixed neg- 793

ative generator (pretrained by DSS (Hsieh et al., 794

2023)) or by using negative rationales derived from 795

the self-consistency of the LLM. 796

A.3 Details about the Quality Judge 797

We incorporated a discriminator into our training 798

process to assess the quality of rationales and as- 799
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Table 3: Results on SVAMP with different negative
knowledge strategies, where the "Fixed" denotes fixing
negative generator with the pretrained model, "SC" de-
notes using negative rationales from self-consistency.

Negative source j=3 j=5 j=10 Fixed SC
T5-base 68.0 69.0 68.5 66.5 64.5

Figure 1: A case of the j-iteration-before-model for the
negative rationale generator.

Table 4: The prompt for GPT-3.5-turbo to judge ratio-
nales.

The prompt for GPT-3.5-turbo

There is an input pair of a question and an answer of
a taskname task, and we provide you two explanations.
You need judge which explanation is better. The better
explanation should be more accurate and explain the
answer better.

sign corresponding weights to the losses. To con-800

struct the discriminator, we leveraged the encoder801

of the T5-base model along with one maxpooling802

layer and two linear layers to compute the quality803

score. Prior to training, the discriminator needs804

to be pretrained using the output rationales gener-805

ated by LLMs with applying data augmentations to806

the negative rationales. Specifically, we employed807

word mask and replacement with the assistance of808

StanfordNLP (Zeman et al., 2018) to balance the809

proportions of positive and negative rationales. The810

training objective is LD in (2). We pretrained the811

discriminator 500 max steps and we ensured scores812

for positive rationales close to 1 and scores for neg-813

ative rationales close to 0. The discriminator was814

further online-updated during training.815

A.4 Generalization Capability of QCRD816

Our proposed QCRD is a general method that can817

be applied to other methods or models. We further818

conducted experiments to validate it. Specifically,819

we applied our QCRD to the baseline MI (Chen820

et al., 2024b) and the larger T5 model (T5-large821

with 770M parameters) on the SVAMP and ANLI1822

benchmarks, which clearly demonstrate perfor-823

mance gains. As shown in Table 5, our QCRD824

effectively improves performance; for example, the825

accuracy increased by 2.5% for MI and by 2.0% 826

for T5-large on SVAMP. 827

Table 5: Results of our QCRD applied to the MI baseline
and T5-large models.

Benchmark Model Baseline
w/o QCRD

✕ ✓

SVAMP T5-base MI 67.5 70.0(+2.5)
ANLI1 T5-base MI 54.2 56.0(+1.8)
SVAMP T5-large DSS 78.0 80.0(+2.0)
ANLI1 T5-large DSS 53.2 55.1(+1.9)

A.5 Influence of negative sampling 828

temperature 829

The results of the T5-base model distilled by our 830

method on SVAMP were displayed in Table 6 in 831

terms of different negative sampling temperature 832

settings. It was observed that when no sampling 833

was performed (i.e., τ = 0) or a lower tempera- 834

ture value was used (i.e., τ = 0.7), the smaller 835

model exhibited relatively poorer performance and 836

showed larger fluctuations in accuracy. The best re- 837

sults were achieved when the temperature τ was set 838

to 1.5. The reason for this can be attributed to the 839

fact that when the model approaches convergence, 840

the output rationales with lower temperature values 841

tend to be similar to the golden ones. Considering 842

these similar outputs as negative samples can lead 843

to detrimental effects. 844

Table 6: Results of our method on SVAMP with differ-
ent sampling temperature τ .

Temperature τ 0 0.7 1.5 2
T5-base 65.0 64.5 69.0 67.5

Table 7: The comparison for training time on T5-base
and T5-small models, where D dnotes the Quality Judge.

Method Base/small training time (h)
Finetune 2.0 / 1.25

DSS 4.0 / 2.5
MI 4.2 / 2.6

QCRD 13.0 / 8.5
QCRD (w/o D) 12.0 / 7.5

A.6 Computational cost 845

The training times for the T5-base and T5-small 846

models using each method are presented in Table 7. 847

Specifically, we trained the models on a single 848

A100-80G GPU utilizing the SVAMP benchmark. 849
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Compared to DSS (Hsieh et al., 2023), our method850

requires an additional 9 hours for T5-base and 6851

hours for T5-small. This increase is attributed to852

each input necessitating 5 positive rationales and853

1 online-inferred negative rationale for contrastive854

rationale distillation. However, we emphasize the855

motivation behind our method: to enhance the per-856

formance of deployed small language models to857

the fullest extent, even surpassing general LLMs in858

specialized fields. Our proposed QCRD effectively859

improves model performance without incurring ad-860

ditional parameter storage during deployment and861

can be widely applied to other methods or models.862
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