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Abstract

While Large Language Models (LLMs) have demonstrated impressive performance
in various domains and tasks, concerns about their safety are becoming increas-
ingly severe. In particular, since models may store unsafe knowledge internally,
machine unlearning has emerged as a representative paradigm to ensure model
safety. Existing approaches employ various training techniques, such as gradient
ascent and negative preference optimization, in attempts to eliminate the influence
of undesired data on target models. However, these methods merely suppress
the activation of undesired data through parametric training without completely
eradicating its informational traces within the model. This fundamental limitation
makes it difficult to achieve effective continuous unlearning, rendering these meth-
ods vulnerable to relearning attacks. To overcome these challenges, we propose
a Metamorphosis Representation Projection (MRP) approach that pioneers the
application of irreversible projection properties to machine unlearning. By imple-
menting projective transformations in the hidden state space of specific network
layers, our method effectively eliminates harmful information while preserving
useful knowledge. Experimental results demonstrate that our approach enables
effective continuous unlearning and successfully defends against relearning attacks,
achieving state-of-the-art performance in unlearning effectiveness while preserving
natural performance. Our code will be available upon publication.

1 Introduction

Recently, with the increasing capacity of Large Language Models (LLMs) to learn from vast corpora,
growing concerns have emerged regarding their potential to generate private, harmful, or illegal
content [30, 29, 17]. In response, regulatory frameworks such as the EU’s General Data Protection
Regulation (GDPR) [35] and the California Consumer Privacy Act (CCPA) [4] have established the
“right to be forgotten”, mandating that applications must support the deletion of specific information
upon user request. This has spurred significant research interest in machine unlearning [5, 3, 15] to
address these challenges.

So far, existing LLM unlearning approaches primarily focus on parameter optimization. Some
methods formulate loss functions to achieve model unlearning [39, 9, 42, 18, 21], while others
modify model architectures by incorporating unlearning layers or classifiers to enhance unlearning
performance [6, 13]. However, recent research [24, 33] reveals that even when unlearning appears to
be successful, implicit knowledge may still persist within model parameters, showing the superficiality
of existing unlearning methods. In particular, attackers can intentionally recover sensitive information
through relearning or jailbreaking attacks. For instance, some adversaries employ adversarial attacks
like GCG [45] to enhance the prompts to elicit the model’s harmful content generation [26]. Others
fine-tune open-source models using benign data similar to the unlearned data [16, 27], effectively
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Figure 1: A brief overview of MRP. Our method consists of two key components: Projection Matrix
Initialization and Continual Unlearning Training Cycle. For each unlearn data, we first feed both
unlearn and retain inputs into the target LLM to extract their hidden state vectors as representations.
The unlearning representations are then projected onto the orthogonal complement space of the
retention representations. Through PCA, we derive the initial projection matrix, which is combined
with the previous projection matrix and integrated into the target LLM to form a hooked LLM.
Finally, we perform unlearning fine-tuning on the combined projection matrix using both unlearn and
retain data. The trained projection matrix updates the previous projection matrix iteratively, enabling
continuous unlearning through successive inputs of unlearn/retain data pairs.

recovering forgotten knowledge. The success of these attacks demonstrates that existing unlearning
methods struggle to completely eliminate knowledge-related information from models.

Furthermore, most current unlearning methods handle only a single unlearning request. In prac-
tice, however, unlearning requests are sequential [20, 32], as original training data may become
inaccessible over time due to expired access rights, privacy concerns, or intellectual property protec-
tion [24, 22]. However, existing unlearning methods suffer from catastrophic forgetting in continuous
unlearning scenarios [43]. Our experiments confirm this phenomenon and further provide an intu-
itive explanation: subsequent unlearn tasks may restore certain model parameters, reactivating their
forgotten knowledge.

To overcome these challenges, we propose a Metamorphosis Representation Projection (MRP)
method that applies projection operations to the model’s hidden state vectors. Specifically, we
introduce projection matrices after the MLP layers to erase forgotten information from hidden
states while ensuring minimal impact on other useful tasks, as illustrated in Figure 1. Experiments
demonstrate that our approach achieves strong unlearning effects with minimal parameter updates.
Due to the compatibility of projection operations, even if the already projected vector is projected
again, the forgotten information will not be restored, making our method particularly effective
in continuous unlearning scenarios. Remarkably, by training only 0.1M parameters, our method
maintains an unlearning performance score of 0.905 after completing four unlearn tasks, significantly
outperforming the best baseline score of 0.785. Moreover, the irreversible nature of projections
ensures that once hidden states are modified, unlearned information remains robust against relearning
attacks. This property enables our method to maintain an accuracy of 0.383 on unlearn tasks even
after five epochs of relearning attacks, while other baselines exhibit minimal accuracy increases to
0.506 on the same tasks.

Our key contributions are summarized as follows:

* We identify limitations in existing unlearning methods and empirically demonstrate that both
relearning attacks and continuous unlearning can lead to parameter recovery, reactivating
forgotten knowledge.

* We propose a hidden state projection approach, experimentally validating its effectiveness
and robustness in removing task-specific information from hidden states.
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* Our method achieves superior performance in continuous unlearning scenarios and provides
strong defense against relearning attacks, addressing a critical challenge in LLM unlearning.

2 Related Work

2.1 Machine Unlearning

Machine unlearning was first introduced by [5], with initial applications focusing on compliance
with regulatory “right to be forgotten” requirements and eliminating retained knowledge that models
should not possess [40, 41]. Significant progress has been made in unlearning across various domains,
including image classification [12, 10], text-to-image generation [12, 10], Healthcare Al [31, 19, 1],
blockchain [47, 23, 46], and graph neural networks [6, 7, 38].

2.2 Language Model Unlearning

Despite advances in unlearning techniques, unlearning in LLMs remains particularly challenging
due to their internal complex mechanisms. The enormous parameter space of LLMs makes the
precise targeting of unlearning objectives difficult. Existing representative approaches include
Gradient Ascent (GA) [39] fine-tunes models by performing gradient ascent on unlearn data while
applying gradient descent on retain data, Efficient Unlearning method for LLMs (EUL) [6] introduces
an additional unlearning layer after MLP blocks, Negative Preference Optimization (NPO) [42]
balances unlearning and retention through a tuning parameter /3, and Representation Misdirection
for Unlearning (RMU) [21] perturbs hidden states of unlearned data while preserving original
representations for retained data.

However, these methods exhibit two critical limitations: (1) They suffer from catastrophic forgetting
when handling sequential unlearning requests, compromising performance on earlier tasks, and
(2) They only superficially suppress model outputs without robustly erasing the internal unlearned
knowledge representations.

Recent work by [13] proposed the first systematic continuous unlearning framework using Orthogonal
Low-Rank Adaptation (O-LoRA) [37] to maintain task independence, combined with an Out-of-
Distribution (OOD) detection module to identify data requiring unlearning. While this approach
shows improved continuous unlearning performance, it introduces substantial computational overhead
for OOD training and suffers from false positives when processing data similar to unlearned examples.
Crucially, it still fails to completely eliminate internal knowledge, leaving models vulnerable to
relearning attacks.

2.3 Model Representation

Our work builds on model representation analysis [44]. In large language models, representations
refer to the distributed patterns of neuron activations that encode specific linguistic features or task
knowledge across network layers. These representations are typically extracted through forward
propagation of input data and analysis of hidden state vectors at targeted layers. Recent studies
demonstrate that task-specific representations in LLMs tend to be sparse and low-rank [8]. While
some unlearning methods leverage representation manipulation [21] by controlling post-unlearning
similarity to original representations, they underutilize these sparsity and low-rank properties.

Our key insight addresses this gap: By extracting orthogonal subspaces of model representations for
unlearned data and training projection matrices in these subspaces, we achieve precise elimination
of target representations. The inherent sparsity and low-rank structure ensure minimal impact on
other tasks’ performance while enabling continuous unlearning. Furthermore, the irreversible nature
of our projections provides robust defense against relearning attacks, offering a novel solution to
fundamental challenges in unlearning.

3 Motivation and Preliminaries

3.1 Motivation

Most existing model unlearning studies employ fine-tuning approaches that treat unlearning as a
learning task, where model parameters are adjusted using both unlearn and retain datasets. This
methodology, however, is prone to catastrophic forgetting. To substantiate this claim, we conducted



115
116
117

118
119
120
121

122

123
124

125
126

127
128
129
130
131
132

134
135
136
137
138
139
140
141
142

143

144
145
146
147

148
149
150

preliminary experiments using LLama2-7B [36] as our target model and selected three consecutive
unlearn tasks from the ScienceQA [25] dataset’s natural science module: biology (Task 1), chemistry
(Task 2), and physics (Task 3).

As shown in Table 1, when applying the traditional Gradient Ascent (GA) method to Task 1, we
observed satisfactory unlearning performance with the QA accuracy dropping from 0.640 to 0.363.
However, when proceeding to unlearn Tasks 2 and 3, the unlearning effectiveness on Task 1 deterio-
rated significantly, with QA accuracy rebounding to 0.411 and eventually 0.447.

To further investigate this phenomenon, we performed two gradient analysis experiments:

 For the model that has unlearned on Task 1, we extracted average layer-wise gradients
(Guniearn1s Gunlearnz) When processing Tasks 1 and 2, respectively;

!

* For the model that has unlearned on Tasks 1 and 2, we extracted gradients (G7,,,;..,n1>

Gluniearns) When processing Tasks 1 and 3.

As shown in Figure 2(a), most layers exhibit negative cosine similarity between G icqarn1 and
G uniearn2, indicating fundamental conflicts between Task 1 and Task 2 unlearn objectives. This
explains why unlearn Task 2 partially reverses Task 1’s unlearning effects.Figure 2(b) demonstrates
even stronger conflicts between G;nleaml and Gyniearns, With lower cosine similarity values. This
suggests that unlearning interference becomes more severe as the model undergoes consecutive

unlearning operations.

Unlearn progress Origin Task 1 Task2 Task3
QA Accuracy 0.640 0363 0411 0.447

Table 1: Performance of the model on Task 1 during the continuous unlearning process

Gradient cosine values of 32 layers in the model Gradient cosine values of 32 layers in the model

Cosine Value

1234567 8 91011121314151617181920212223242526272829303132 12345678 91011121314151617181920212223242526272829303132
Layer Index Layer Index

!

(a) The cosine similarity between Gypnicarn1  (b) The cosine similarity between G, .rn1

and GunlearnQ and GunlearnS

Figure 2: Layer-wise gradient cosine similarity during unlearning across two tasks

Motivated by observations above, we propose a method capable of completely unlearning Task A
while ensuring that the unlearning process for Task B does not interfere with the unlearning of Task
A. Instead of overwriting the parameters with a new set of fine-tuned parameters, we conceptualize
unlearn Task A as eliminating the information related to Task A from the parameters. To achieve
this, we only need to project the model parameters orthogonally to the subspace associated with
Task A, effectively removing the information pertaining to Task A from the parameters. Similarly,
even if a similar projection operation is performed for Task B, the projected model parameters will
remain orthogonal to Task A, thereby minimizing the impact on the unlearning performance for
Task A. Overall, this procedure can be viewed as a metamorphosis representation projection (MRP)
mechanism.

3.2 Preliminaries

Model architectures. We formulate the layer-wise components in LLMs as follows. Generally, a
(decoder-only) LLM can be formulated as fV = goly o---o0ly 0l o f, where blocks {li}iT:1
represent successive layers of the model, consisting of attention modules and MLP modules, f and g
denote the encoding and decoding operations respectively, W denotes all parameters of the model.

Parameter Projection. To reduce computational resources while demonstrating the efficiency of
our approach, we selectively apply projection after certain MLP layers rather than all layers. Let H
denote the set of MLP layers that require projection. For layers not in H, we consider their projection
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transformation as an identity transformation, corresponding to an identity matrix as the projection
matrix.

Formally, let £V be the modified model after projection. Let Then:
fW’P:goPnolnoP”_loln_lo---oplollof @))

where for h ¢ H, P, = I (the identity matrix).

After obtaining the task specific representation, we need to find a projection transformation to

eliminate the information of the model on the task while not affecting its performance in the retain
task, we can achieve this by utilizing the following properties of the projection matrix.

lemma 3.1. Let P € R™*™ be a projection matrix. Then there exists an orthogonal matrix Q € RF*™
(with k < n) such that:P = I — QT Q.
lemma 3.2. Let P € R™™" be a projection matrix, Q is an orthogonal matrix Q € R¥*™ such

that:P = I — QT'Q, For any x € R", Pz is the orthogonal projection of x onto the complement of
the row space of ()

The detailed proofs of these two lemmas are provided in the Appendix A.

4 Proposed Method: Metamorphosis Representation Projection

4.1 Projection Matrix Training

From lemma 3.1, we can train a low-rank matrix () to achieve the effect of the projection matrix
P =1 — QTQ. For the training objective, we employ the standard cross-entropy loss L(W, D) to
measure the performance of model f*V with parameters W on dataset D. To simultaneously consider
both unlearning effectiveness and knowledge retention, we formulate the composite loss function as:

LW, Q) = —L(W, P, Duntearn) + o L(W, P, Dretain) s 2
where o > 1 is a hyperparameter balancing the trade-off (set to 1.2 as default in our experiments),
P=1-— QTQ is the projection matrix, Dypjearn @and Dierain denote the unlearn and retain datasets
respectively, then the optimization objective becomes:

argmin [—L(W, Py, Dugiearn) + & L(W, Pry Dyetain)] )
Qn(heH)

where P, = I — QT Q,, H represents the set of selected hidden layers for projection.

4.2 Orthogonal Initialization

To ensure effective initialization of (), we leverage lemma 3.2 which suggests that retention task
performance is preserved when the row vectors of ) are orthogonal to the retention task’s feature
space. Our initialization procedure comprises four steps:

1. Select K (K = 200) retain task data to extract hidden states {A}", ..., h'}}. In order to
facilitate the initialization of the projection matrix, we also need to use the QR algorithm [11]
calculate their orthogonal basis matrix: Qe = QR(AT, ..., h'F)

2. Project the unlearn task’s hidden states h¥™ onto the orthogonal complement space spanned
by {E, ., Bt B = (1 — QEQre 2™

nLp
3. Use PCA [14] to compute the top-k principal components of the projected hidden states to
initialize (Q’s row vectors:Qinit = PCA(RY"}, ..., h%" ) This initialization guarantees:

* Orthogonality to retain representation: Qinihi™ = 0 for all ¢ € [1, ..., K],
* Alignment with unlearn task: Q;,; approximates the most significant directions in the
unlearn task’s residual space.

4. Combine the initialized matrix Qjinic With previous matrix Qprey, and then use QR decom-
position again to calculate the orthogonal basis matrix of the matrix row vectors, obtain-
ing the updated initialized matrix (), Finally, obtain the initialized projection matrix P:

Q = QR(Qprevv Qinil)7 P=1- QTQ

The specific algorithm of our method is demonstrated in Appendix B
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5 Experiments

5.1 Experiment set-up

Datasets. For the unlearn and retain task, we selected the widely recognized and popular ScienceQA
dataset [25]. We collected pure text samples from this dataset to form a new dataset comprising
8,000 training samples and 2,000 test samples. Since the dataset primarily consists of three major
subjects - natural science, language science, and social science - we chose four topics from natural
science as continual unlearning requests: physics, chemistry, biology, and earth science. For the test
samples, we selected the language science and social science subjects as the retain dataset to evaluate
the model’s commonsense reasoning capabilities. To verify the universality of our method across
different data, we also conducted experiments using the WMDP dataset [21] as unlearning data. The
specific experiments are detailed in Appendix D.1.

For robustness testing, we designed the following scenario: The attacker cannot obtain direct data
related to the forgotten tasks but may access similar data for relearning attacks [16]. Specifically,
we selected the Genes to traits category from the biology topic as the unlearn task, while using the
Classification and Heredity categories from the same biology topic as similar data available to the
attacker for relearning through fine-tuning.

Metrics. To evaluate the effectiveness of unlearning, we assessed model performance under the
following conditions: For test tasks (all multiple-choice questions with varying options), we simulated
complete unlearning by randomly guessing the answer and calculating the QA Accuracy as lower-
bound accuracy ACC}°*. The original model’s performance served as the upper-bound accuracy
ACC{™. The final score for task ¢ was calculated as: S; = (ACC;—ACC!") /(ACC{? — ACClo™)
In continual unlearning experiments, after unlearning step n, we computed: (1)The average score
across all unlearned tasks: Syy = 13" | Si.. (2)The average score across two retain tasks:

Sret = .%(Srlet +.Sr26t). The final score was calcul.ated as:Sret — Suni- This score captures both
unlearning effectiveness and model utility preservation.

In addition to continuous unlearning scenarios, we evaluated all methods under a non-sequential
unlearning setting. This simulates the case where model trainers have access to all unlearn data
simultaneously and perform a single unlearning fine-tuning operation on the combined dataset. We
measured the performance of this approach using score Scoreg = % (SL + S2,) — S, where S
represents all the unlearn data.

For robustness testing, after task unlearning and relearning, we directly measure the QA Accuracy of
the model on the unlearn and retain datasets as our evaluation metric.

Compared Baselines. To demonstrate our method’s advantages, we selected several established base-
lines from machine unlearning literature, including both classical approaches and recent state-of-the-
art methods. Specifically, we compared against GA [39], EUL [6], NPO [42], and RMU [21],03 [13]
with appropriate adaptations for the continual unsupervised learning scenario.

Implementation Details. Following Tofu [28] and O3 [13], we used LLaMA2-7B as our target
model, Another popular model Qwen-7B [2] is also used in our experiment. All experiments are
run repeatedly with three random cases, including random projected layers and random continual
unlearning order, All experimental results were computed with the mean and 0.5x standard deviation
to better evaluate the stability of different methods. We use the AdamW optimizer with 2e-4 as the
learning rate and 5 as the batch size for both the unlearn and retain datasets. The default epochs are 2,
and the LoRA rank for all experiments is 8. In each unlearning session, we select 200 unlearned and
retain data to initialize the projection matrix. For each unlearning task, the dimension of the Q matrix
in the projection matrix increases by 2. More details can be found in the Appendix C.

5.2 Overall Results

Comparison with non-sequential unlearning When comparing with Score,; (the model perfor-
mance after unified unlearning of all four tasks simultaneously), we find that most baselines show
similar performance between Score; (single-task unlearning) and Score,;. This suggests that uni-
fied unlearning can indeed produce satisfactory results. However, their Score4 scores (after four
sequential unlearning operations) degrade dramatically, indicating these baseline methods funda-
mentally struggle with continual unlearning. Our method achieves an Scorey score that differs by
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Method \ Scorey Scores Scores Scorey Scorea

GA 0.585+£0.078 0.603 £0.072 0.529 £0.063 0.387 £0.209 0.675 £ 0.086
EUL 0.577 £0.065 0.428 £0.061 0.418 +£0.049 0.208 +0.075 0.634 +0.070
NPO 0.982 £ 0.075 0.327 £0.035 0.204£0.047 0.172+£0.038 0.943 £ 0.062
RMU 0.777 £0.101 0.330 £ 0.054 0.108 £0.060 0.104 £0.067 0.767 £ 0.040
03 0.889 £0.036 0.784 £0.026 0.793 £0.058 0.785+0.031 0.878 £0.025
Ours \ 0.950 £0.022 0.878 £ 0.018 0.896 £ 0.019 0.905 +0.041 0.988 + 0.038

Table 2: Performance scores of different unlearning methods on llama2-7b

only 0.076 from the Score, benchmark (0.812 vs. 0.888), demonstrating its superior capability
for continual knowledge removal while preserving model utility. In terms of method stability, our
approach achieves an average standard deviation of 0.028, while most baselines exhibit higher average
deviations (above 0.050). This demonstrates the superior stability of our method, as it consistently
performs well across varying sequential unlearning tasks. Additionally, to demonstrate the generality
of our method, we conducted the same experiments on the Qwen2.5-7B model and observed that our
approach still outperforms other baselines, maintaining an unlearning performance score of 0.938
after 4 unlearn tasks, which surpasses the best baseline score of 0.762. Detailed experimental results
can be found in Appendix D.2.
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Figure 3: The performance of the model on the unlearn and retain datasets under continual unlearning

task2 task3 taskd
unlearn progress

taskl

Beyond overall scores, we conducted detailed analysis of model performance on unlearn tasks. As
illustrated in Figure 3, Origin represents the original model accuracy, while Random denotes the
accuracy when the model answers randomly. Our research shows that the O3 method exhibits
significantly lower accuracy than Random (0.27 vs. 0.31), indicating detrimental effects on the
model’s fundamental capabilities (e.g., answering multiple-choice questions), which is an undesirable
side effect that proper unlearning should avoid. Other four baseline methods gradually approach the
Origin model’s accuracy as unlearning progresses, suggesting incomplete unlearning. Our method
maintains accuracy comparable to Random (0.30 vs. 0.31) even after four consecutive unlearning
operations, demonstrating both immediate and persistent unlearning effectiveness.

By analyzing the response situation of the retain dataset, we can see that: GA and O3’s severe
performance degradation (respectively 10% and 20% drop) on retain tasks confirms its damaging
impact on model capabilities. Other baseline methods preserve most retain accuracy, the performance
difference compared to the original model remains within a 5% margin, showing their ability
to maintain retain knowledge. These results collectively demonstrate that our approach uniquely
satisfies both unlearning completeness and knowledge preservation requirements in continual learning
scenarios.

In addition, we conduct identical experiments on the WMDP dataset. Our method achieved the
highest score of 0.891 after continuous unlearning across three datasets, demonstrating significant
improvement over the baseline’s highest score of 0.810. These results confirm our method’s broad
effectiveness across different datasets. Detailed experimental results can be found in Appendix D.1.

5.3 Unlearning without same retain dataset

We also considered another scenario where keeping the retain dataset for an extended period may be
impractical. In such cases, we can only perform the retain task using data similar to the retain dataset.
To simulate this condition, we only keep one of the language science or social science datasets as
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the training retain set, while using the other as the testing retain set. The experimental results are

demonstrated in Table 3 and Table 4

Table 3: Performance score of the model when only using language science as the training retain

dataset

Method \ Score; Scores Scores Scorey Scorea

GA 0.440 £ 0.007 0.464 +£0.107 0.204 +0.084 0.213 £0.063 0.415 £ 0.055
EUL 0.756 £0.028 0.273 +£0.052 0.243+0.102 0.133 +0.075 0.777 £0.047
NPO 0.829 £ 0.053 0.653+£0.030 0.474+0.037 0.378+0.173 0.834 +0.017
RMU 0.804 £ 0.086 0.484 +0.038 0.498 +0.034 0.415+0.009 0.818 +0.069
03 0.764 £ 0.056 0.746 £0.040 0.654 +0.097 0.710£0.045 0.804 +£0.015
Ours \ 0.863 £0.029 0.836 +0.007 0.815 +0.023 0.836 = 0.042 0.857 +0.028

Table 4: Performance score of the model when only using social science as the training retain dataset

Method \ Scoreq Scores Scores Scorey Scorea

GA 0.592 +£0.084 0.205+0.073 0.113+0.103 0.237 +£0.091 0.452 +0.065
EUL 0.758 £0.081 0.134+£0.079 0.287£0.118 0.072+0.171 0.684 +0.064
NPO 0.843 £ 0.037 0.691 £0.083 0.448 +0.021 0.314 +0.099 0.789 +0.033
RMU 0.789 £ 0.067 0.435+0.092 0.570£0.094 0.504£0.124 0.920 = 0.081
03 0.603 £0.086 0.708 £0.049 0.661 £0.044 0.675+0.116 0.802 £ 0.062
Ours \ 0.822 £0.043 0.826 £ 0.025 0.829 £ 0.018 0.792 £ 0.090 0.851 +0.040

Our findings demonstrate that our method remains effective even under these conditions, maintaining
an average unlearning performance score of 0.814 after 4 unlearn tasks, which surpasses the highest
average baseline score of 0.693. Moreover, our method exhibits a lower score standard deviation,
indicating that its stability remains robust even in the absence of a retain dataset. Additional results
about model performance on unlearn tasks and retain tasks are provided in Appendix D.3.

5.4 Robustness evaluation
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QA accuracy
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Figure 4: The performance of the model on the unlearn and retain datasets under relearn attack

As shown in Figure 4, our method also demonstrates promising effectiveness against relearn attacks.
While most methods achieve satisfactory performance in the unlearn task, successfully reducing the
accuracy on the unlearn dataset below 0.4 (close to the random guess lower bound of 0.35), they
show vulnerability when facing relearn attacks. Notably, even when the relearn dataset is similar
to yet distinct from the unlearn dataset, most methods exhibit accuracy exceeding 0.45 after just
the first relearn epoch. After 5 epochs, these methods typically reach an accuracy around 0.5. This
observation strongly suggests that these approaches do not genuinely erase knowledge but rather mask
the model’s activation patterns for specific knowledge through parameter fine-tuning. In contrast, our
method maintains accuracy below 0.4 even after 5 relearn epochs, demonstrating superior robustness
in ensuring complete unlearning of the unlearn dataset knowledge.

For the retain dataset, our experiments reveal that the relearning also improves the performance
of the model on the retain dataset. This phenomenon suggests that the fine-tuning process on the
relearn dataset may provide beneficial transfer effects to the retain dataset, potentially enhancing its
performance through shared feature representations. Moreover, our method demonstrates a narrower
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0.5x standard deviation range in accuracy for both unlearn and retain datasets, further evidencing its
superior stability.

5.5 Computational cost comparison

Our method exhibits advantages

in both parameter efficiency method |GA EUL NPO RMU O3 Ours
and computational speed, as #Trainable
quantified in Table 5. During Parameters 42M 337M 42M 42M 20M 0.1M
continuous unlearning of four Clock time
tasks, the approach achieves su- per batch (s) 1.02 128 073 089 1.64 0.71

perior performance with merely
0.1M trainable parameters and Table 5: computational cost comparison across different methods
gain an order of magnitude

reduction, compared to the 4.2M parameters required by conventional LoRA-based methods.
Furthermore, runtime measurements reveal our method’s computational superiority, processing
batches in 0.71 seconds (vs. 0.89-1.28s for alternatives), representing a 20-45% speedup. These
combined efficiencies make the approach particularly suitable for resource-constrained environments.

5.6 Ablation Study

Removing matrix initialization. In our framework, the initialization of projection matrices consti-
tutes a crucial component. To validate its effectiveness, we conduct an ablation study by removing
this initialization step. When the matrix is randomly initialized, experimental results demonstrate that
the training requires 5 epochs to achieve optimal performance (with other hyperparameters kept at
default settings).

Method Scoreq Scores Scores Scorey Scorea

w/ initial ~ 0.950 £ 0.022 0.878 £ 0.018 0.896 + 0.019 0.905 + 0.041 0.988 + 0.038
w/o initial 0.881 +0.054 0.761 £0.057 0.768 +£0.045 0.655+0.072 0.856 + 0.056

Table 6: Performance comparison of our method with (w/) or without (w/0) the projection matrix
initialization

As evidenced in Table 6, the non-initialized projection matrix exhibits significantly inferior perfor-
mance. The initial score begins below 0.9, and further deteriorates to 0.65 after unlearning four
consecutive tasks. This suggests that merely fine-tuning randomly initialized parameters still ad-
versely affects the model’s retention capability. In contrast, our orthogonal initialization method
provides two key advantages: (1) it preserves model performance on retain tasks by enforcing orthogo-
nality between the projection directions and retain data, and (2) it substantially reduces computational
resources - achieving competitive results within just 2 training epochs compared to the 5 epochs
required by the random initialization baseline.

In our experiments, the number of projection layers and the dimensionality of projection matrices
emerged as two critical hyperparameters. Through comprehensive hyperparameter studies, we
observed that the model maintains a robust unlearning score of 0.890 after 4 unlearn tasks even when
reduced to just 1 projection layer. Notably, increasing the projection matrix dimensionality from 1 to
2 yields a dramatic performance leap, improving the unlearning score from 0.591 to 0.905. Detailed
results can be found in Appendix D.4.

6 Conclusion

In this work, we presented Metamorphosis Representation Projection (MRP), a novel method for
effective continual unlearning in large language models. Our work provides a comprehensive solution
to two persistent challenges in machine unlearning—continuous unlearning and defense against
relearning attacks. Through both theoretical analysis and extensive experiments, we demonstrate that
the proposed method: (1) achieves stable performance in sequential unlearning scenarios without
catastrophic forgetting, and (2) effectively prevents knowledge recovery via relearning attacks. These
contributions advance the field by establishing a new paradigm for representation-level unlearning
while offering practical insights for real-world deployment. In addition, we discussed the content of
the article on limitations and future work in Appendix E.
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Appendix

A Proof of lemma 3.1 and lemma 3.2

A.1 Definitions

Definition A.1. A matrix P € R™*" is called a projection matrix if it is idempotent, i.e., P2=P

Definition A.2. A matrix Q € R**" is called orthogonal if its rows are orthonormal vectors, i.e.,
QQT = I, where I, is the k x k identity matrix.

A.2 Proof of Spectral Theorem

Before formally proving lemma 3.1, we first need to prove a fundamental theorem.

theorem A.1 (Spectral Theorem for Real Symmetric Matrices). Let A € R™*™ be a real symmetric
matrix (A = A", all eigenvalues of A are real). Then A can be diagonalized as:

A=QAQT
where A = diag(\1, . .., \,) contains the eigenvalues of A, and Q is an orthogonal matrix (QT Q =
1) whose columns are the corresponding eigenvectors.
Proof. We proceed by induction on the dimension n.
Base case (n = 1): Any 1 x 1 matrix is trivially diagonal, and the theorem holds.

Inductive step: Assume the theorem holds for all symmetric matrices of size (n — 1) x (n — 1).

Step 1: Existence of real eigenvalues. Consider A as a linear operator on C”. The characteristic
polynomial p4(A) = det(A — AI) has at least one complex root A; by the Fundamental Theorem of
Algebra. Let q; € C™ be a corresponding eigenvector (A — A\1I)gy = 0) with ||q1]| = 1.

Since A is real and symmetric:
M =a Mg = qi*ATqr = (Aqn) a1 = Mg "qr = Ay
where q1* is the conjugate transpose of q1
Thus \; € R.
Step 2: Construction of orthonormal basis. Let \; be an eigenvalue of A with corresponding unit
eigenvector q; € R™. Extend q; to an orthonormal basis {q1, wa, ..., w,} of R™.
Let Q1 = [q1 w2 -+ Wy,]. Then:
T _[an of
araa=y 0|
where A,, 1 is (n — 1) x (n — 1) and symmetric (since (QT AQ1)T = QT ATQ, = QT AQy).

Step 3: Induction. By the induction hypothesis, A, _1 has an orthonormal eigenbasis {qa, . .., qn }-
Let:

1 of ~
Q2 = [0 @] , Wwhere Q@ =[q2- - qy]
Then Q = Q1 Q3 is orthogonal and:
QTAQ = A = diag(\y,..., \y)
Thus A = QAQT.
Step 4: Orthogonality of eigenvectors. For distinct eigenvalues A\; # A;:

Al qj = (Aq))"q; = qf ATq; = qf Aq; = A\jq] q;

Thus ()\Z — )‘])quqj =0 = quqj =0.

For repeated eigenvalues, we can choose orthonormal eigenvectors via Gram-Schmidt. O
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corollary A.1.1 (Spectral Decomposition). Any real symmetric matrix A can be written as:
n
A= Z e
i=1
where \; are eigenvalues and {q;} form an orthonormal basis.

A.3 Proof of lemma 3.1

Proof of Lemma 3.1. Let P be a projection matrix. Since P is idempotent, it can be diagonalized
with eigenvalues either O or 1.
Let k = rank(I — P). By theorem A.1, There exists an orthogonal matrix U € R™*™ such that:

_ Infk 0 T
peuftyr do

where I,y is the (n — k) x (n — k) identity matrix.
Then:

_ 710 01
i

LetQ € R**™ consist of the last k rows of UT . Since U is orthogonal, the rows of () are orthonormal,
making () an orthogonal matrix. We can then write:

n

I—-P= Z uiu?:QTQ

i=n—k+1
where u; are the columns of U.

Therefore, we have shown that P = I — Q7'Q for some orthogonal matrix Q. O

A.4 Proof of lemma 3.2

Proof of Lemma 3.2. Given P = I — QT where @ is orthogonal, we need to show that for any
x € R", Px is the orthogonal projection onto the complement of the row space of Q).

Let R(Q) denote the row space of ) and R(Q)> its orthogonal complement.

1. Projection property: First, verify that P is indeed a projection:

PP =(I-Q"QU-Q"Q)
=1-207Q+Q7QQ"Q

=T1-QTQ (sinceQQ” =1y,
=P

2. Range space: For any z € R", Pz = 2 — Q7 Qz. Note that:

QPr=Q(z - Q"Qx) = Qr — (QQT)Qz = Qz — Qz =0

so z — zQT Q is orthogonal to R(Q) Therefore, 2P is indeed the orthogonal projection of z onto
the complement of the row space of Q. O

B Algorithm of MRP

Our algorithm is presented as follows, with detailed procedures available in Section Proposed
Method 4 of the paper

14
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Algorithm 1 Continual Unlearning algorithm

Input: Unlearn datasets D,; ~ D,,, Retain dataset D,., hyperparameter «, Learning rate (3,
Projection layer set L, Origin Model f", Model Parameter W Projection dimension k

Output: Unlearned model f"V-¥
1: fori € [1..n] do
2: forle Ldo
3 Record previous projection matrices P preo = I — Qlj:prerlvjm’eU
4: compute Hidden state principal components matrix of retain tasks H; ,
5 Using QR decomposition to calculate the orthogonal basis of H; ,: @, = QR(H, lTT)
6 compute Hidden state principal components matrix of unlearn tasks H; ,;
7 Calculate the principal components after projecting H;,.;: H;; = PCA(I —

QIY:TQLV')Hl,I:ui)
Combine Q; prey and H; ; and calculate their orthogonal basis Q;; = QR( l:fpre,u, H lT7 )
: Update projection matrix P ; = I — inQlﬂ;
10: P, = {Plz” € L},Ql = {Ql,z“ € L}
11: Use the hook function to convert W to fW::
12:  end for
13 L(W,Q;,dy,d;) = aL(W, P;,d,) — L(W, P;,dy)
14:  for (dy,d;) in (Dy;, D;) do

15: for [ in L do

16: Qui = Qi — BVq, , LW, Qi,dy, dy)

17: end for

18:  end for

19: forlin L do

20: Update the previous projection matrix Qi prev = Q1,:
21:  end for

22: end for

23: return Unlearned model f"-F

C More Details on Experiments

C.1 System prompts

We follow [34] to use a system prompt in the following box to build a supervised data set for
fine-tuning.

Below is an instruction that describes a task, paired with an input that provides further context. Write a
response that appropriately completes the request. Instruction:instruction Input:input Response:response

For our experiment, we construct the following triplet of Instruction/Input/Response:

( a

The triplet of Instruction/Input/Response for ScienceQA dataset:

Instruction: Choose the correct answer’s letter,just like (A), (B), (C) or (D).

Input: <Corresponding input in ScienceQA dataset>(use (A), (B), (C), (D) as option labels)
Response: <Corresponding label in ScienceQA dataset>

The triplet of Instruction/Input/Response for WMDP dataset:

Instruction: Choose the correct answer’s letter,just like (A), (B), (C) or (D).

Input: <Corresponding input in WMDP dataset>(use (A), (B), (C), (D) as option labels)
Response: <Corresponding label in WMDP dataset>
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C.2 More details for baselines

GA: We follow the hyperparameter settings in the paper [39], set the learning rate of unlearn data to
0.1 and the learning rate of retain data to 1.

EUL: We follow the method described in the paper [6], plugging the unlearning layers into
transformer layers after the feed-forward networks and using Low-Rank Adaptation to train the
unlearning layers

NPO: We follow the hyperparameter settings in paper [42] and selected the hyperparameter [
within the range of 0.01 ~ 1. We found that § = 0.2 performed better, so we chose 5 = 0.2 as the
experimental hyperparameter in the article

RMU: We follow the hyperparameter settings in paper [21] and select the hyperparameter o within
the range of 10~% ~ 10. We found that o = 1 yields better performance, and thus we choose o = 1
as the experimental hyperparameter in our paper.

03: We followed the method described in the paper [13], employing O-LoRA for model fine-tuning
in continual unlearning, and training an OOD classifier for the ScienceQA dataset to make judgments.

D More Experiment Results

D.1 Performance of MRP on WMDP dataset
D.1.1 Setup

In our WMDP dataset, we selected a total of 2,000 samples as the unlearning training set and 800
samples as the test set for the unlearning task. For the unlearning task specifically, we chose three
subjects from the WMDP dataset - biology, chemistry, and cybersecurity - as the data for continuous
unlearning. The experiments were conducted with three randomized sequences, and the reported
results represent the mean values + 0.5 standard deviations.

Regarding the retain dataset, since WMDP doesn’t contain appropriate retain data, we continued
using the language science and social science subjects from Science QA as retain data. All other
experimental parameters remained identical to those used in the Science QA dataset experiments.

D.1.2 Result

Table 7: Performance scores of different unlearn methods on WMDP dataset

Method \ Score; Scores Scores Scorea

GA 0.663 £0.033 0.767 £0.040 0.650 +0.063 0.843 = 0.069
EUL 0.849 £0.062 0.521 £0.090 0.297 +£0.022 0.790 = 0.033
NPO 0.838 £0.053 0.386+0.050 0.265+0.114 0.895 +0.077
RMU 0.892 +£0.088 0.406+0.093 0.264 +0.078 0.872 +0.036
03 0.779 £0.022 0.798 £0.051 0.810+0.035 0.817 =0.055
Ours \ 0.905 + 0.020 0.872 +0.022 0.891 + 0.047 0.902 + 0.016

As shown in Table 7, our method maintains relatively high scores throughout the continuous unlearn-
ing process. Notably, after three consecutive unlearning operations, most baseline methods drop to
scores of 0.65 or below, while our method consistently remains above 0.87. After three unlearning
iterations, the difference between our method and the Scorey; is merely 0.011 points (0.891 vs.
0.902). These results demonstrate the broad effectiveness of our approach across the dataset.

D.2 Performance of MRP on Qwen model

As shown in Table 8, most baseline methods maintain relatively high scores when unlearning the first
task. However, their performance drops significantly to 0.8 or below during the second unlearning
operation. After unlearning four tasks, the scores of most methods decline to 0.57 or lower. In
contrast, our method consistently maintains a score above 0.9 throughout the continuous unlearning
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Table 8: Performance scores of different unlearn methods on qwen7b

Method \ Scoreq Scores Scores Scorey Scorea

GA 0.849+£0.018 0.436+0.019 0.291 +£0.037 0.271 £0.094 0.831+0.010
EUL 0.916 £0.008 0.837 £0.010 0.654 £0.018 0.569 £0.038 0.925 = 0.006
NPO 0.946 £0.016 0.805+0.007 0.395+0.015 0.407 +£0.007 0.921 +0.006
RMU 0.945 £0.008 0.739+£0.016 0.326+£0.043 0.429+£0.019 0.953 £0.037
03 0.684 +0.014 0.783+0.025 0.716 £0.018 0.762 +0.013 0.829 +0.026
Ours | 0.964 £0.003 0.940 £0.011 0.926 = 0.003 0.939 £ 0.012 0.975 +0.014

process. Another approach, O3, demonstrates reasonable performance in the sequential unlearning
scenario, but our method achieves superior results across all evaluation metrics.

When also comparing with Score,; (model performance after simultaneously unlearning all four
tasks), we observe that most baselines exhibit similar performance between Score; (single-task
unlearning) and Score,, suggesting that unified unlearning can indeed yield satisfactory results.
However, their Scorey scores (after four sequential unlearning operations) drop sharply, indicating
that these baseline methods fundamentally struggle with sustained unlearning.

In contrast, our method achieves a Scorey that differs from the Score,; benchmark by only 0.037
(0.938 vs. 0.975), demonstrating its superior capability in maintaining model utility while performing
continual knowledge removal.

This result indicates that our method is still effective in different models, proving the universality of
our method.

D.3 Unlearning without same retain dataset
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Figure 5: The performance of the model on the unlearn and retain datasets when only use language
science dataset as the training retain dataset

In Tables 3 and 4, we show overall scores of this experiment, beyond overall scores, we conducted
detailed analysis of model performance on unlearn tasks and retain tasks.As demonstrated in Figure 5
and Figure 6, our method consistently maintains a lower QA accuracy on the unlearn tasks across
both experiments. Even after four epochs of unlearn requests, the QA accuracy remains around 0.4,
while most other methods exhibit an increase to approximately 0.5. Notably, although O3 achieves
even lower accuracy on the unlearn task, its performance falls below that of Random, indicating
that O3’s approach compromises the model’s capability in handling multiple-choice questions. This
observation is further corroborated by the performance on the retain datasets.

Our method demonstrates robust performance on the retain datasets in both experiments. On the
social science dataset, the accuracy drops by less than 0.05 compared to the original model, whereas
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Figure 6: The performance of the model on the unlearn and retain datasets when only use social
science dataset as the training retain dataset

most other methods suffer a decline of around 0.15. Particularly, O3 experiences a significant drop of
0.20, highlighting its detrimental impact on the model’s performance in other tasks.

These results strongly suggest that, even in the absence of the original retain dataset, our approach
can effectively utilize similar datasets as substitutes to achieve competitive retain performance.

D.4 hyperparameter experiments

In this section, we conducted hyperparameter experiments on two critical parameters: the projection
dimension and the number of projection layers. For the projection dimension, we tested values from
1 to 4 while maintaining a fixed learning rate of 2 x 10~% and 2 projection layers. For the projection
layers, we also tested layer numbers from 1 to 4 while maintaining a fixed learning rate of 2 x 10~*
and 2 projection layers.Other hyperparameters kept at default settings.

Table 9: Performance scores of different projection dimensions

Dim Scorey Scores Scores Scorey Scorea

1 0.445 £0.053 0.669 +0.049 0.603 £0.080 0.591 £0.061 0.454 +0.057
2 0.950 +£0.021 0.878 £ 0.027 0.896 + 0.027 0.905 £ 0.079 0.988 +£0.074
3 1.113+£0.026 0.876 £0.012 0.863 £0.033 0.901 £0.082 0.982 +0.033
4 1.223 £0.017 0.853 +0.014 0.855+0.031 0.884 +£0.021 1.016 £ 0.035

Table 10: Performance scores of different number of projection layers

Num Scoreq Scores Scores Scorey Scorea

1 0.480 £0.084 0.863+0.016 0.838 £0.065 0.890+0.128 0.897 +0.059
2 0.950 + 0.019 0.878 +£ 0.018 0.896 + 0.024 0.905 £ 0.046 0.988 + 0.103
3 0.668 +0.025 0.804 £0.008 0.859 +£0.004 0.860%0.065 0.962 +0.068
4 0.755+£0.020 0.835+0.019 0.881+£0.023 0.855+0.010 0.944 +0.021

D.4.1 Projection Dimension Analysis

As shown in Table 9, when the dimension equals 1, the model achieves relatively low performance
(score = 0.5), indicating insufficient capacity for effective unlearning. Higher dimensions yield
significantly better results (scores ~ 0.9), demonstrating improved unlearning effectiveness. Notably,
the orthogonal constraint between projection directions and retain data preserves the retain dataset
accuracy despite increasing dimensions.
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D.4.2 Projection Layer Analysis

Table 10 reveals optimal performance at 2 projection layers (final score: 0.905). Both insufficient
and excessive layers degrade performance - the former limits unlearning effectiveness while the latter
may interfere with retain dataset performance. This suggests careful layer count selection is crucial.

E Limitations and Future Work

Although our method performs robustly across a range of projection layer selections, specific layers
can still be chosen for optimal results depending on the target model. Additionally, since this is the
first application of projection-based methods to LLM unlearning, we have only validated MRP on
smaller 7B language models. Its scalability to larger models or other types of models beyond LLMs
(such as multimodal models) remains to be thoroughly investigated. Furthermore, the concept of
projection can be widely applied to other safety-related domains, such as eliminating discriminatory
or harmful information. Research in this direction will be a focus of our future work.
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