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Abstract

While Large Language Models (LLMs) have demonstrated impressive performance1

in various domains and tasks, concerns about their safety are becoming increas-2

ingly severe. In particular, since models may store unsafe knowledge internally,3

machine unlearning has emerged as a representative paradigm to ensure model4

safety. Existing approaches employ various training techniques, such as gradient5

ascent and negative preference optimization, in attempts to eliminate the influence6

of undesired data on target models. However, these methods merely suppress7

the activation of undesired data through parametric training without completely8

eradicating its informational traces within the model. This fundamental limitation9

makes it difficult to achieve effective continuous unlearning, rendering these meth-10

ods vulnerable to relearning attacks. To overcome these challenges, we propose11

a Metamorphosis Representation Projection (MRP) approach that pioneers the12

application of irreversible projection properties to machine unlearning. By imple-13

menting projective transformations in the hidden state space of specific network14

layers, our method effectively eliminates harmful information while preserving15

useful knowledge. Experimental results demonstrate that our approach enables16

effective continuous unlearning and successfully defends against relearning attacks,17

achieving state-of-the-art performance in unlearning effectiveness while preserving18

natural performance. Our code will be available upon publication.19

1 Introduction20

Recently, with the increasing capacity of Large Language Models (LLMs) to learn from vast corpora,21

growing concerns have emerged regarding their potential to generate private, harmful, or illegal22

content [30, 29, 17]. In response, regulatory frameworks such as the EU’s General Data Protection23

Regulation (GDPR) [35] and the California Consumer Privacy Act (CCPA) [4] have established the24

“right to be forgotten”, mandating that applications must support the deletion of specific information25

upon user request. This has spurred significant research interest in machine unlearning [5, 3, 15] to26

address these challenges.27

So far, existing LLM unlearning approaches primarily focus on parameter optimization. Some28

methods formulate loss functions to achieve model unlearning [39, 9, 42, 18, 21], while others29

modify model architectures by incorporating unlearning layers or classifiers to enhance unlearning30

performance [6, 13]. However, recent research [24, 33] reveals that even when unlearning appears to31

be successful, implicit knowledge may still persist within model parameters, showing the superficiality32

of existing unlearning methods. In particular, attackers can intentionally recover sensitive information33

through relearning or jailbreaking attacks. For instance, some adversaries employ adversarial attacks34

like GCG [45] to enhance the prompts to elicit the model’s harmful content generation [26]. Others35

fine-tune open-source models using benign data similar to the unlearned data [16, 27], effectively36
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Figure 1: A brief overview of MRP. Our method consists of two key components: Projection Matrix
Initialization and Continual Unlearning Training Cycle. For each unlearn data, we first feed both
unlearn and retain inputs into the target LLM to extract their hidden state vectors as representations.
The unlearning representations are then projected onto the orthogonal complement space of the
retention representations. Through PCA, we derive the initial projection matrix, which is combined
with the previous projection matrix and integrated into the target LLM to form a hooked LLM.
Finally, we perform unlearning fine-tuning on the combined projection matrix using both unlearn and
retain data. The trained projection matrix updates the previous projection matrix iteratively, enabling
continuous unlearning through successive inputs of unlearn/retain data pairs.

recovering forgotten knowledge. The success of these attacks demonstrates that existing unlearning37

methods struggle to completely eliminate knowledge-related information from models.38

Furthermore, most current unlearning methods handle only a single unlearning request. In prac-39

tice, however, unlearning requests are sequential [20, 32], as original training data may become40

inaccessible over time due to expired access rights, privacy concerns, or intellectual property protec-41

tion [24, 22]. However, existing unlearning methods suffer from catastrophic forgetting in continuous42

unlearning scenarios [43]. Our experiments confirm this phenomenon and further provide an intu-43

itive explanation: subsequent unlearn tasks may restore certain model parameters, reactivating their44

forgotten knowledge.45

To overcome these challenges, we propose a Metamorphosis Representation Projection (MRP)46

method that applies projection operations to the model’s hidden state vectors. Specifically, we47

introduce projection matrices after the MLP layers to erase forgotten information from hidden48

states while ensuring minimal impact on other useful tasks, as illustrated in Figure 1. Experiments49

demonstrate that our approach achieves strong unlearning effects with minimal parameter updates.50

Due to the compatibility of projection operations, even if the already projected vector is projected51

again, the forgotten information will not be restored, making our method particularly effective52

in continuous unlearning scenarios. Remarkably, by training only 0.1M parameters, our method53

maintains an unlearning performance score of 0.905 after completing four unlearn tasks, significantly54

outperforming the best baseline score of 0.785. Moreover, the irreversible nature of projections55

ensures that once hidden states are modified, unlearned information remains robust against relearning56

attacks. This property enables our method to maintain an accuracy of 0.383 on unlearn tasks even57

after five epochs of relearning attacks, while other baselines exhibit minimal accuracy increases to58

0.506 on the same tasks.59

Our key contributions are summarized as follows:60

• We identify limitations in existing unlearning methods and empirically demonstrate that both61

relearning attacks and continuous unlearning can lead to parameter recovery, reactivating62

forgotten knowledge.63

• We propose a hidden state projection approach, experimentally validating its effectiveness64

and robustness in removing task-specific information from hidden states.65
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• Our method achieves superior performance in continuous unlearning scenarios and provides66

strong defense against relearning attacks, addressing a critical challenge in LLM unlearning.67

2 Related Work68

2.1 Machine Unlearning69

Machine unlearning was first introduced by [5], with initial applications focusing on compliance70

with regulatory “right to be forgotten” requirements and eliminating retained knowledge that models71

should not possess [40, 41]. Significant progress has been made in unlearning across various domains,72

including image classification [12, 10], text-to-image generation [12, 10], Healthcare AI [31, 19, 1],73

blockchain [47, 23, 46], and graph neural networks [6, 7, 38].74

2.2 Language Model Unlearning75

Despite advances in unlearning techniques, unlearning in LLMs remains particularly challenging76

due to their internal complex mechanisms. The enormous parameter space of LLMs makes the77

precise targeting of unlearning objectives difficult. Existing representative approaches include78

Gradient Ascent (GA) [39] fine-tunes models by performing gradient ascent on unlearn data while79

applying gradient descent on retain data, Efficient Unlearning method for LLMs (EUL) [6] introduces80

an additional unlearning layer after MLP blocks, Negative Preference Optimization (NPO) [42]81

balances unlearning and retention through a tuning parameter β, and Representation Misdirection82

for Unlearning (RMU) [21] perturbs hidden states of unlearned data while preserving original83

representations for retained data.84

However, these methods exhibit two critical limitations: (1) They suffer from catastrophic forgetting85

when handling sequential unlearning requests, compromising performance on earlier tasks, and86

(2) They only superficially suppress model outputs without robustly erasing the internal unlearned87

knowledge representations.88

Recent work by [13] proposed the first systematic continuous unlearning framework using Orthogonal89

Low-Rank Adaptation (O-LoRA) [37] to maintain task independence, combined with an Out-of-90

Distribution (OOD) detection module to identify data requiring unlearning. While this approach91

shows improved continuous unlearning performance, it introduces substantial computational overhead92

for OOD training and suffers from false positives when processing data similar to unlearned examples.93

Crucially, it still fails to completely eliminate internal knowledge, leaving models vulnerable to94

relearning attacks.95

2.3 Model Representation96

Our work builds on model representation analysis [44]. In large language models, representations97

refer to the distributed patterns of neuron activations that encode specific linguistic features or task98

knowledge across network layers. These representations are typically extracted through forward99

propagation of input data and analysis of hidden state vectors at targeted layers. Recent studies100

demonstrate that task-specific representations in LLMs tend to be sparse and low-rank [8]. While101

some unlearning methods leverage representation manipulation [21] by controlling post-unlearning102

similarity to original representations, they underutilize these sparsity and low-rank properties.103

Our key insight addresses this gap: By extracting orthogonal subspaces of model representations for104

unlearned data and training projection matrices in these subspaces, we achieve precise elimination105

of target representations. The inherent sparsity and low-rank structure ensure minimal impact on106

other tasks’ performance while enabling continuous unlearning. Furthermore, the irreversible nature107

of our projections provides robust defense against relearning attacks, offering a novel solution to108

fundamental challenges in unlearning.109

3 Motivation and Preliminaries110

3.1 Motivation111

Most existing model unlearning studies employ fine-tuning approaches that treat unlearning as a112

learning task, where model parameters are adjusted using both unlearn and retain datasets. This113

methodology, however, is prone to catastrophic forgetting. To substantiate this claim, we conducted114
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preliminary experiments using LLama2-7B [36] as our target model and selected three consecutive115

unlearn tasks from the ScienceQA [25] dataset’s natural science module: biology (Task 1), chemistry116

(Task 2), and physics (Task 3).117

As shown in Table 1, when applying the traditional Gradient Ascent (GA) method to Task 1, we118

observed satisfactory unlearning performance with the QA accuracy dropping from 0.640 to 0.363.119

However, when proceeding to unlearn Tasks 2 and 3, the unlearning effectiveness on Task 1 deterio-120

rated significantly, with QA accuracy rebounding to 0.411 and eventually 0.447.121

To further investigate this phenomenon, we performed two gradient analysis experiments:122

• For the model that has unlearned on Task 1, we extracted average layer-wise gradients123

(Gunlearn1, Gunlearn2) when processing Tasks 1 and 2, respectively;124

• For the model that has unlearned on Tasks 1 and 2, we extracted gradients (G′
unlearn1,125

Gunlearn3) when processing Tasks 1 and 3.126

As shown in Figure 2(a), most layers exhibit negative cosine similarity between Gunlearn1 and127

Gunlearn2, indicating fundamental conflicts between Task 1 and Task 2 unlearn objectives. This128

explains why unlearn Task 2 partially reverses Task 1’s unlearning effects.Figure 2(b) demonstrates129

even stronger conflicts between G′
unlearn1 and Gunlearn3, with lower cosine similarity values. This130

suggests that unlearning interference becomes more severe as the model undergoes consecutive131

unlearning operations.132

Unlearn progress Origin Task 1 Task 2 Task 3

QA Accuracy 0.640 0.363 0.411 0.447

Table 1: Performance of the model on Task 1 during the continuous unlearning process

(a) The cosine similarity between Gunlearn1

and Gunlearn2

(b) The cosine similarity between G′
unlearn1

and Gunlearn3

Figure 2: Layer-wise gradient cosine similarity during unlearning across two tasks
Motivated by observations above, we propose a method capable of completely unlearning Task A133

while ensuring that the unlearning process for Task B does not interfere with the unlearning of Task134

A. Instead of overwriting the parameters with a new set of fine-tuned parameters, we conceptualize135

unlearn Task A as eliminating the information related to Task A from the parameters. To achieve136

this, we only need to project the model parameters orthogonally to the subspace associated with137

Task A, effectively removing the information pertaining to Task A from the parameters. Similarly,138

even if a similar projection operation is performed for Task B, the projected model parameters will139

remain orthogonal to Task A, thereby minimizing the impact on the unlearning performance for140

Task A. Overall, this procedure can be viewed as a metamorphosis representation projection (MRP)141

mechanism.142

3.2 Preliminaries143

Model architectures. We formulate the layer-wise components in LLMs as follows. Generally, a144

(decoder-only) LLM can be formulated as fW = g ◦ lT ◦ · · · ◦ l2 ◦ l1 ◦ f , where blocks {li}Ti=1145

represent successive layers of the model, consisting of attention modules and MLP modules, f and g146

denote the encoding and decoding operations respectively, W denotes all parameters of the model.147

Parameter Projection. To reduce computational resources while demonstrating the efficiency of148

our approach, we selectively apply projection after certain MLP layers rather than all layers. Let H149

denote the set of MLP layers that require projection. For layers not in H , we consider their projection150
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transformation as an identity transformation, corresponding to an identity matrix as the projection151

matrix.152

Formally, let fW,P be the modified model after projection. Let Then:153

fW,P = g ◦ Pn ◦ ln ◦ Pn−1 ◦ ln−1 ◦ · · · ◦ P1 ◦ l1 ◦ f (1)
where for h /∈ H , Ph = I (the identity matrix).154

After obtaining the task specific representation, we need to find a projection transformation to155

eliminate the information of the model on the task while not affecting its performance in the retain156

task, we can achieve this by utilizing the following properties of the projection matrix.157

lemma 3.1. Let P ∈ Rn×n be a projection matrix. Then there exists an orthogonal matrix Q ∈ Rk×n158

(with k ≤ n) such that:P = I −QTQ.159

lemma 3.2. Let P ∈ Rn×n be a projection matrix, Q is an orthogonal matrix Q ∈ Rk×n such160

that:P = I −QTQ, For any x ∈ Rn, Px is the orthogonal projection of x onto the complement of161

the row space of Q162

The detailed proofs of these two lemmas are provided in the Appendix A.163

4 Proposed Method: Metamorphosis Representation Projection164

4.1 Projection Matrix Training165

From lemma 3.1, we can train a low-rank matrix Q to achieve the effect of the projection matrix166

P = I −QTQ. For the training objective, we employ the standard cross-entropy loss L(W,D) to167

measure the performance of model fW with parameters W on dataset D. To simultaneously consider168

both unlearning effectiveness and knowledge retention, we formulate the composite loss function as:169

L(W,Q) = −L(W,P,Dunlearn) + αL(W,P,Dretain), (2)
where α > 1 is a hyperparameter balancing the trade-off (set to 1.2 as default in our experiments),170

P = I − QTQ is the projection matrix, Dunlearn and Dretain denote the unlearn and retain datasets171

respectively, then the optimization objective becomes:172

argmin
Qh(h∈H)

[−L(W,Ph, Dunlearn) + αL(W,Ph, Dretain)] (3)

where Ph = I −QT
hQh, H represents the set of selected hidden layers for projection.173

4.2 Orthogonal Initialization174

To ensure effective initialization of Q, we leverage lemma 3.2 which suggests that retention task175

performance is preserved when the row vectors of Q are orthogonal to the retention task’s feature176

space. Our initialization procedure comprises four steps:177

1. Select K (K = 200) retain task data to extract hidden states {hret
1 , ..., hret

K}. In order to178

facilitate the initialization of the projection matrix, we also need to use the QR algorithm [11]179

calculate their orthogonal basis matrix: Qret = QR(hret
1 , ..., hret

K)180

2. Project the unlearn task’s hidden states hunl
i onto the orthogonal complement space spanned181

by {hret
1 , ..., hret

K}: hunl
i,p = (I −QT

retQret)h
unl
i182

3. Use PCA [14] to compute the top-k principal components of the projected hidden states to183

initialize Q’s row vectors:Qinit = PCA(hunl
1,p, ..., h

unl
K,p) This initialization guarantees:184

• Orthogonality to retain representation: Qinith
ret
i = 0 for all i ∈ [1, ...,K],185

• Alignment with unlearn task: Qinit approximates the most significant directions in the186

unlearn task’s residual space.187

4. Combine the initialized matrix Qinit with previous matrix Qprev, and then use QR decom-188

position again to calculate the orthogonal basis matrix of the matrix row vectors, obtain-189

ing the updated initialized matrix Q, Finally, obtain the initialized projection matrix P :190

Q = QR(Qprev, Qinit), P = I −QTQ191

The specific algorithm of our method is demonstrated in Appendix B192
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5 Experiments193

5.1 Experiment set-up194

Datasets. For the unlearn and retain task, we selected the widely recognized and popular ScienceQA195

dataset [25]. We collected pure text samples from this dataset to form a new dataset comprising196

8,000 training samples and 2,000 test samples. Since the dataset primarily consists of three major197

subjects - natural science, language science, and social science - we chose four topics from natural198

science as continual unlearning requests: physics, chemistry, biology, and earth science. For the test199

samples, we selected the language science and social science subjects as the retain dataset to evaluate200

the model’s commonsense reasoning capabilities. To verify the universality of our method across201

different data, we also conducted experiments using the WMDP dataset [21] as unlearning data. The202

specific experiments are detailed in Appendix D.1.203

For robustness testing, we designed the following scenario: The attacker cannot obtain direct data204

related to the forgotten tasks but may access similar data for relearning attacks [16]. Specifically,205

we selected the Genes to traits category from the biology topic as the unlearn task, while using the206

Classification and Heredity categories from the same biology topic as similar data available to the207

attacker for relearning through fine-tuning.208

Metrics. To evaluate the effectiveness of unlearning, we assessed model performance under the209

following conditions: For test tasks (all multiple-choice questions with varying options), we simulated210

complete unlearning by randomly guessing the answer and calculating the QA Accuracy as lower-211

bound accuracy ACClow
t . The original model’s performance served as the upper-bound accuracy212

ACCup
t . The final score for task t was calculated as: St = (ACCt−ACClow

t )/(ACCup
t −ACClow

t )213

In continual unlearning experiments, after unlearning step n, we computed: (1)The average score214

across all unlearned tasks: Sunl = 1
n

∑n
i=1 S

i
unl, (2)The average score across two retain tasks:215

Sret = 1
2 (S

1
ret + S2

ret). The final score was calculated as:Sret − Sunl. This score captures both216

unlearning effectiveness and model utility preservation.217

In addition to continuous unlearning scenarios, we evaluated all methods under a non-sequential218

unlearning setting. This simulates the case where model trainers have access to all unlearn data219

simultaneously and perform a single unlearning fine-tuning operation on the combined dataset. We220

measured the performance of this approach using score Scoreall =
1
2 (S

1
ret + S2

ret)− Sall
unl, where Sall

unl221

represents all the unlearn data.222

For robustness testing, after task unlearning and relearning, we directly measure the QA Accuracy of223

the model on the unlearn and retain datasets as our evaluation metric.224

Compared Baselines. To demonstrate our method’s advantages, we selected several established base-225

lines from machine unlearning literature, including both classical approaches and recent state-of-the-226

art methods. Specifically, we compared against GA [39], EUL [6], NPO [42], and RMU [21],O3 [13]227

with appropriate adaptations for the continual unsupervised learning scenario.228

Implementation Details. Following Tofu [28] and O3 [13], we used LLaMA2-7B as our target229

model, Another popular model Qwen-7B [2] is also used in our experiment. All experiments are230

run repeatedly with three random cases, including random projected layers and random continual231

unlearning order, All experimental results were computed with the mean and 0.5× standard deviation232

to better evaluate the stability of different methods. We use the AdamW optimizer with 2e-4 as the233

learning rate and 5 as the batch size for both the unlearn and retain datasets. The default epochs are 2,234

and the LoRA rank for all experiments is 8. In each unlearning session, we select 200 unlearned and235

retain data to initialize the projection matrix. For each unlearning task, the dimension of the Q matrix236

in the projection matrix increases by 2. More details can be found in the Appendix C.237

5.2 Overall Results238

Comparison with non-sequential unlearning When comparing with Scoreall (the model perfor-239

mance after unified unlearning of all four tasks simultaneously), we find that most baselines show240

similar performance between Score1 (single-task unlearning) and Scoreall. This suggests that uni-241

fied unlearning can indeed produce satisfactory results. However, their Score4 scores (after four242

sequential unlearning operations) degrade dramatically, indicating these baseline methods funda-243

mentally struggle with continual unlearning. Our method achieves an Score4 score that differs by244
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Method Score1 Score2 Score3 Score4 Scoreall

GA 0.585 ± 0.078 0.603 ± 0.072 0.529 ± 0.063 0.387 ± 0.209 0.675 ± 0.086
EUL 0.577 ± 0.065 0.428 ± 0.061 0.418 ± 0.049 0.208 ± 0.075 0.634 ± 0.070
NPO 0.982 ± 0.075 0.327 ± 0.035 0.204 ± 0.047 0.172 ± 0.038 0.943 ± 0.062
RMU 0.777 ± 0.101 0.330 ± 0.054 0.108 ± 0.060 0.104 ± 0.067 0.767 ± 0.040
O3 0.889 ± 0.036 0.784 ± 0.026 0.793 ± 0.058 0.785 ± 0.031 0.878 ± 0.025

Ours 0.950 ± 0.022 0.878 ± 0.018 0.896 ± 0.019 0.905 ± 0.041 0.988 ± 0.038

Table 2: Performance scores of different unlearning methods on llama2-7b

only 0.076 from the Scoreall benchmark (0.812 vs. 0.888), demonstrating its superior capability245

for continual knowledge removal while preserving model utility. In terms of method stability, our246

approach achieves an average standard deviation of 0.028, while most baselines exhibit higher average247

deviations (above 0.050). This demonstrates the superior stability of our method, as it consistently248

performs well across varying sequential unlearning tasks. Additionally, to demonstrate the generality249

of our method, we conducted the same experiments on the Qwen2.5-7B model and observed that our250

approach still outperforms other baselines, maintaining an unlearning performance score of 0.938251

after 4 unlearn tasks, which surpasses the best baseline score of 0.762. Detailed experimental results252

can be found in Appendix D.2.253

(a) Unlearn Dataset
(natural science)

(b) Retain Dataset
(language science)

(c) Retain Dataset
(social science)

Figure 3: The performance of the model on the unlearn and retain datasets under continual unlearning

Beyond overall scores, we conducted detailed analysis of model performance on unlearn tasks. As254

illustrated in Figure 3, Origin represents the original model accuracy, while Random denotes the255

accuracy when the model answers randomly. Our research shows that the O3 method exhibits256

significantly lower accuracy than Random (0.27 vs. 0.31), indicating detrimental effects on the257

model’s fundamental capabilities (e.g., answering multiple-choice questions), which is an undesirable258

side effect that proper unlearning should avoid. Other four baseline methods gradually approach the259

Origin model’s accuracy as unlearning progresses, suggesting incomplete unlearning. Our method260

maintains accuracy comparable to Random (0.30 vs. 0.31) even after four consecutive unlearning261

operations, demonstrating both immediate and persistent unlearning effectiveness.262

By analyzing the response situation of the retain dataset, we can see that: GA and O3’s severe263

performance degradation (respectively 10% and 20% drop) on retain tasks confirms its damaging264

impact on model capabilities. Other baseline methods preserve most retain accuracy, the performance265

difference compared to the original model remains within a 5% margin, showing their ability266

to maintain retain knowledge. These results collectively demonstrate that our approach uniquely267

satisfies both unlearning completeness and knowledge preservation requirements in continual learning268

scenarios.269

In addition, we conduct identical experiments on the WMDP dataset. Our method achieved the270

highest score of 0.891 after continuous unlearning across three datasets, demonstrating significant271

improvement over the baseline’s highest score of 0.810. These results confirm our method’s broad272

effectiveness across different datasets. Detailed experimental results can be found in Appendix D.1.273

5.3 Unlearning without same retain dataset274

We also considered another scenario where keeping the retain dataset for an extended period may be275

impractical. In such cases, we can only perform the retain task using data similar to the retain dataset.276

To simulate this condition, we only keep one of the language science or social science datasets as277
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the training retain set, while using the other as the testing retain set. The experimental results are278

demonstrated in Table 3 and Table 4279

Table 3: Performance score of the model when only using language science as the training retain
dataset

Method Score1 Score2 Score3 Score4 Scoreall

GA 0.440 ± 0.007 0.464 ± 0.107 0.204 ± 0.084 0.213 ± 0.063 0.415 ± 0.055
EUL 0.756 ± 0.028 0.273 ± 0.052 0.243 ± 0.102 0.133 ± 0.075 0.777 ± 0.047
NPO 0.829 ± 0.053 0.653 ± 0.030 0.474 ± 0.037 0.378 ± 0.173 0.834 ± 0.017
RMU 0.804 ± 0.086 0.484 ± 0.038 0.498 ± 0.034 0.415 ± 0.009 0.818 ± 0.069
O3 0.764 ± 0.056 0.746 ± 0.040 0.654 ± 0.097 0.710 ± 0.045 0.804 ± 0.015

Ours 0.863 ± 0.029 0.836 ± 0.007 0.815 ± 0.023 0.836 ± 0.042 0.857 ± 0.028

Table 4: Performance score of the model when only using social science as the training retain dataset

Method Score1 Score2 Score3 Score4 Scoreall

GA 0.592 ± 0.084 0.205 ± 0.073 0.113 ± 0.103 0.237 ± 0.091 0.452 ± 0.065
EUL 0.758 ± 0.081 0.134 ± 0.079 0.287 ± 0.118 0.072 ± 0.171 0.684 ± 0.064
NPO 0.843 ± 0.037 0.691 ± 0.083 0.448 ± 0.021 0.314 ± 0.099 0.789 ± 0.033
RMU 0.789 ± 0.067 0.435 ± 0.092 0.570 ± 0.094 0.504 ± 0.124 0.920 ± 0.081
O3 0.603 ± 0.086 0.708 ± 0.049 0.661 ± 0.044 0.675 ± 0.116 0.802 ± 0.062

Ours 0.822 ± 0.043 0.826 ± 0.025 0.829 ± 0.018 0.792 ± 0.090 0.851 ± 0.040

Our findings demonstrate that our method remains effective even under these conditions, maintaining280

an average unlearning performance score of 0.814 after 4 unlearn tasks, which surpasses the highest281

average baseline score of 0.693. Moreover, our method exhibits a lower score standard deviation,282

indicating that its stability remains robust even in the absence of a retain dataset. Additional results283

about model performance on unlearn tasks and retain tasks are provided in Appendix D.3.284

5.4 Robustness evaluation285

(a) Unlearn Dataset
(natural science)

(b) Retain Dataset
(language science)

(c) Retain Dataset
(social science)

Figure 4: The performance of the model on the unlearn and retain datasets under relearn attack

As shown in Figure 4, our method also demonstrates promising effectiveness against relearn attacks.286

While most methods achieve satisfactory performance in the unlearn task, successfully reducing the287

accuracy on the unlearn dataset below 0.4 (close to the random guess lower bound of 0.35), they288

show vulnerability when facing relearn attacks. Notably, even when the relearn dataset is similar289

to yet distinct from the unlearn dataset, most methods exhibit accuracy exceeding 0.45 after just290

the first relearn epoch. After 5 epochs, these methods typically reach an accuracy around 0.5. This291

observation strongly suggests that these approaches do not genuinely erase knowledge but rather mask292

the model’s activation patterns for specific knowledge through parameter fine-tuning. In contrast, our293

method maintains accuracy below 0.4 even after 5 relearn epochs, demonstrating superior robustness294

in ensuring complete unlearning of the unlearn dataset knowledge.295

For the retain dataset, our experiments reveal that the relearning also improves the performance296

of the model on the retain dataset. This phenomenon suggests that the fine-tuning process on the297

relearn dataset may provide beneficial transfer effects to the retain dataset, potentially enhancing its298

performance through shared feature representations. Moreover, our method demonstrates a narrower299
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0.5× standard deviation range in accuracy for both unlearn and retain datasets, further evidencing its300

superior stability.301

5.5 Computational cost comparison302

method GA EUL NPO RMU O3 Ours

#Trainable
Parameters 4.2M 33.7M 4.2M 4.2M 20M 0.1M

Clock time
per batch (s) 1.02 1.28 0.73 0.89 1.64 0.71

Table 5: computational cost comparison across different methods

Our method exhibits advantages303

in both parameter efficiency304

and computational speed, as305

quantified in Table 5. During306

continuous unlearning of four307

tasks, the approach achieves su-308

perior performance with merely309

0.1M trainable parameters and310

gain an order of magnitude311

reduction, compared to the 4.2M parameters required by conventional LoRA-based methods.312

Furthermore, runtime measurements reveal our method’s computational superiority, processing313

batches in 0.71 seconds (vs. 0.89-1.28s for alternatives), representing a 20-45% speedup. These314

combined efficiencies make the approach particularly suitable for resource-constrained environments.315

5.6 Ablation Study316

Removing matrix initialization. In our framework, the initialization of projection matrices consti-317

tutes a crucial component. To validate its effectiveness, we conduct an ablation study by removing318

this initialization step. When the matrix is randomly initialized, experimental results demonstrate that319

the training requires 5 epochs to achieve optimal performance (with other hyperparameters kept at320

default settings).321

Method Score1 Score2 Score3 Score4 Scoreall

w/ initial 0.950 ± 0.022 0.878 ± 0.018 0.896 ± 0.019 0.905 ± 0.041 0.988 ± 0.038
w/o initial 0.881 ± 0.054 0.761 ± 0.057 0.768 ± 0.045 0.655 ± 0.072 0.856 ± 0.056

Table 6: Performance comparison of our method with (w/) or without (w/o) the projection matrix
initialization
As evidenced in Table 6, the non-initialized projection matrix exhibits significantly inferior perfor-322

mance. The initial score begins below 0.9, and further deteriorates to 0.65 after unlearning four323

consecutive tasks. This suggests that merely fine-tuning randomly initialized parameters still ad-324

versely affects the model’s retention capability. In contrast, our orthogonal initialization method325

provides two key advantages: (1) it preserves model performance on retain tasks by enforcing orthogo-326

nality between the projection directions and retain data, and (2) it substantially reduces computational327

resources - achieving competitive results within just 2 training epochs compared to the 5 epochs328

required by the random initialization baseline.329

In our experiments, the number of projection layers and the dimensionality of projection matrices330

emerged as two critical hyperparameters. Through comprehensive hyperparameter studies, we331

observed that the model maintains a robust unlearning score of 0.890 after 4 unlearn tasks even when332

reduced to just 1 projection layer. Notably, increasing the projection matrix dimensionality from 1 to333

2 yields a dramatic performance leap, improving the unlearning score from 0.591 to 0.905. Detailed334

results can be found in Appendix D.4.335

6 Conclusion336

In this work, we presented Metamorphosis Representation Projection (MRP), a novel method for337

effective continual unlearning in large language models. Our work provides a comprehensive solution338

to two persistent challenges in machine unlearning—continuous unlearning and defense against339

relearning attacks. Through both theoretical analysis and extensive experiments, we demonstrate that340

the proposed method: (1) achieves stable performance in sequential unlearning scenarios without341

catastrophic forgetting, and (2) effectively prevents knowledge recovery via relearning attacks. These342

contributions advance the field by establishing a new paradigm for representation-level unlearning343

while offering practical insights for real-world deployment. In addition, we discussed the content of344

the article on limitations and future work in Appendix E.345
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Appendix479

A Proof of lemma 3.1 and lemma 3.2480

A.1 Definitions481

Definition A.1. A matrix P ∈ Rn×n is called a projection matrix if it is idempotent, i.e., P 2 = P .482

Definition A.2. A matrix Q ∈ Rk×n is called orthogonal if its rows are orthonormal vectors, i.e.,483

QQT = Ik where Ik is the k × k identity matrix.484

A.2 Proof of Spectral Theorem485

Before formally proving lemma 3.1, we first need to prove a fundamental theorem.486

theorem A.1 (Spectral Theorem for Real Symmetric Matrices). Let A ∈ Rn×n be a real symmetric487

matrix (A = AT , all eigenvalues of A are real). Then A can be diagonalized as:488

A = QΛQT

where Λ = diag(λ1, . . . , λn) contains the eigenvalues of A, and Q is an orthogonal matrix (QTQ =489

I) whose columns are the corresponding eigenvectors.490

Proof. We proceed by induction on the dimension n.491

Base case (n = 1): Any 1× 1 matrix is trivially diagonal, and the theorem holds.492

Inductive step: Assume the theorem holds for all symmetric matrices of size (n− 1)× (n− 1).493

Step 1: Existence of real eigenvalues. Consider A as a linear operator on Cn. The characteristic494

polynomial pA(λ) = det(A− λI) has at least one complex root λ1 by the Fundamental Theorem of495

Algebra. Let q1 ∈ Cn be a corresponding eigenvector ((A− λ1I)q1 = 0) with ∥q1∥ = 1.496

Since A is real and symmetric:497

λ1 = q1
∗λ1Iq1 = q1

∗ATq1 = (Aq1)
∗q1 = λ1q1

∗q1 = λ1

where q1
∗ is the conjugate transpose of q1498

Thus λ1 ∈ R.499

Step 2: Construction of orthonormal basis. Let λ1 be an eigenvalue of A with corresponding unit500

eigenvector q1 ∈ Rn. Extend q1 to an orthonormal basis {q1,w2, . . . ,wn} of Rn.501

Let Q1 = [q1 w2 · · · wn]. Then:502

QT
1 AQ1 =

[
λ1 0T

0 An−1

]
where An−1 is (n− 1)× (n− 1) and symmetric (since (QT

1 AQ1)
T = QT

1 A
TQ1 = QT

1 AQ1).503

Step 3: Induction. By the induction hypothesis, An−1 has an orthonormal eigenbasis {q2, . . . ,qn}.504

Let:505

Q2 =

[
1 0T

0 Q̃

]
, where Q̃ = [q2 · · ·qn]

Then Q = Q1Q2 is orthogonal and:506

QTAQ = Λ = diag(λ1, . . . , λn)

Thus A = QΛQT .507

Step 4: Orthogonality of eigenvectors. For distinct eigenvalues λi ̸= λj :508

λiq
T
i qj = (Aqi)

Tqj = qT
i A

Tqj = qT
i Aqj = λjq

T
i qj

Thus (λi − λj)q
T
i qj = 0 =⇒ qT

i qj = 0.509

For repeated eigenvalues, we can choose orthonormal eigenvectors via Gram-Schmidt.510
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corollary A.1.1 (Spectral Decomposition). Any real symmetric matrix A can be written as:511

A =

n∑
i=1

λiqiq
T
i

where λi are eigenvalues and {qi} form an orthonormal basis.512

A.3 Proof of lemma 3.1513

Proof of Lemma 3.1. Let P be a projection matrix. Since P is idempotent, it can be diagonalized514

with eigenvalues either 0 or 1.515

Let k = rank(I − P ). By theorem A.1, There exists an orthogonal matrix U ∈ Rn×n such that:516

P = U

[
In−k 0
0 0

]
UT

where In−k is the (n− k)× (n− k) identity matrix.517

Then:518

I − P = U

[
0 0
0 Ik

]
UT

Let Q ∈ Rk×n consist of the last k rows of UT . Since U is orthogonal, the rows of Q are orthonormal,519

making Q an orthogonal matrix. We can then write:520

I − P =

n∑
i=n−k+1

uiu
T
i = QTQ

where ui are the columns of U .521

Therefore, we have shown that P = I −QTQ for some orthogonal matrix Q.522

A.4 Proof of lemma 3.2523

Proof of Lemma 3.2. Given P = I − QTQ where Q is orthogonal, we need to show that for any524

x ∈ Rn, Px is the orthogonal projection onto the complement of the row space of Q.525

Let R(Q) denote the row space of Q and R(Q)⊥ its orthogonal complement.526

1. Projection property: First, verify that P is indeed a projection:527

P 2 = (I −QTQ)(I −QTQ)

= I − 2QTQ+QTQQTQ

= I −QTQ (sinceQQT = Ik)

= P

2. Range space: For any x ∈ Rn, Px = x−QTQx. Note that:528

QPx = Q(x−QTQx) = Qx− (QQT )Qx = Qx−Qx = 0

so x− xQTQ is orthogonal to R(Q) Therefore, xP is indeed the orthogonal projection of x onto529

the complement of the row space of Q.530

B Algorithm of MRP531

Our algorithm is presented as follows, with detailed procedures available in Section Proposed532

Method 4 of the paper533
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Algorithm 1 Continual Unlearning algorithm
Input: Unlearn datasets Du1 ∼ Dun, Retain dataset Dr, hyperparameter α, Learning rate β,
Projection layer set L, Origin Model fW , Model Parameter W ,Projection dimension k
Output: Unlearned model fW,P

1: for i ∈ [1...n] do
2: for l ∈ L do
3: Record previous projection matrices Pl,prev = I −QT

l,prevQl,prev

4: compute Hidden state principal components matrix of retain tasks Hl,r

5: Using QR decomposition to calculate the orthogonal basis of Hl,r: Ql,r = QR(HT
l,r)

6: compute Hidden state principal components matrix of unlearn tasks Hl,ui

7: Calculate the principal components after projecting Hl,ui: Hl,i = PCA((I −
QT

l,rQl,r)H
T
l,ui)

8: Combine Ql,prev and Hl,i and calculate their orthogonal basis Ql,i = QR(QT
l,prev, H

T
l,i)

9: Update projection matrixPl,i = I −QT
l,iQl,i

10: Pi = {Pl,i|l ∈ L}, Qi = {Ql,i|l ∈ L}
11: Use the hook function to convert fW to fW,Pi

12: end for
13: L(W,Qi, du, dr) = αL(W,Pi, dr)− L(W,Pi, du)
14: for (du, dr) in (Dui, Dr) do
15: for l in L do
16: Ql,i = Ql,i − β∇Ql,i

L(W,Qi, du, dr)
17: end for
18: end for
19: for l in L do
20: Update the previous projection matrix Ql,prev = Ql,i

21: end for
22: end for
23: return Unlearned model fW,P

C More Details on Experiments534

C.1 System prompts535

We follow [34] to use a system prompt in the following box to build a supervised data set for536

fine-tuning.537

Below is an instruction that describes a task, paired with an input that provides further context. Write a
response that appropriately completes the request. Instruction:instruction Input:input Response:response

538

For our experiment, we construct the following triplet of Instruction/Input/Response:539

The triplet of Instruction/Input/Response for ScienceQA dataset:
Instruction: Choose the correct answer’s letter,just like (A), (B), (C) or (D).
Input: <Corresponding input in ScienceQA dataset>(use (A), (B), (C), (D) as option labels)
Response: <Corresponding label in ScienceQA dataset>

540

The triplet of Instruction/Input/Response for WMDP dataset:
Instruction: Choose the correct answer’s letter,just like (A), (B), (C) or (D).
Input: <Corresponding input in WMDP dataset>(use (A), (B), (C), (D) as option labels)
Response: <Corresponding label in WMDP dataset>

541

15



C.2 More details for baselines542

GA: We follow the hyperparameter settings in the paper [39], set the learning rate of unlearn data to543

0.1 and the learning rate of retain data to 1.544

EUL: We follow the method described in the paper [6], plugging the unlearning layers into545

transformer layers after the feed-forward networks and using Low-Rank Adaptation to train the546

unlearning layers547

NPO: We follow the hyperparameter settings in paper [42] and selected the hyperparameter β548

within the range of 0.01 ∼ 1. We found that β = 0.2 performed better, so we chose β = 0.2 as the549

experimental hyperparameter in the article550

RMU: We follow the hyperparameter settings in paper [21] and select the hyperparameter α within551

the range of 10−4 ∼ 10. We found that α = 1 yields better performance, and thus we choose α = 1552

as the experimental hyperparameter in our paper.553

O3: We followed the method described in the paper [13], employing O-LoRA for model fine-tuning554

in continual unlearning, and training an OOD classifier for the ScienceQA dataset to make judgments.555

556

D More Experiment Results557

D.1 Performance of MRP on WMDP dataset558

D.1.1 Set up559

In our WMDP dataset, we selected a total of 2,000 samples as the unlearning training set and 800560

samples as the test set for the unlearning task. For the unlearning task specifically, we chose three561

subjects from the WMDP dataset - biology, chemistry, and cybersecurity - as the data for continuous562

unlearning. The experiments were conducted with three randomized sequences, and the reported563

results represent the mean values ± 0.5 standard deviations.564

Regarding the retain dataset, since WMDP doesn’t contain appropriate retain data, we continued565

using the language science and social science subjects from Science QA as retain data. All other566

experimental parameters remained identical to those used in the Science QA dataset experiments.567

D.1.2 Result568

Table 7: Performance scores of different unlearn methods on WMDP dataset
Method Score1 Score2 Score3 Scoreall

GA 0.663 ± 0.033 0.767 ± 0.040 0.650 ± 0.063 0.843 ± 0.069
EUL 0.849 ± 0.062 0.521 ± 0.090 0.297 ± 0.022 0.790 ± 0.033
NPO 0.838 ± 0.053 0.386 ± 0.050 0.265 ± 0.114 0.895 ± 0.077
RMU 0.892 ± 0.088 0.406 ± 0.093 0.264 ± 0.078 0.872 ± 0.036
O3 0.779 ± 0.022 0.798 ± 0.051 0.810 ± 0.035 0.817 ± 0.055

Ours 0.905 ± 0.020 0.872 ± 0.022 0.891 ± 0.047 0.902 ± 0.016

As shown in Table 7, our method maintains relatively high scores throughout the continuous unlearn-569

ing process. Notably, after three consecutive unlearning operations, most baseline methods drop to570

scores of 0.65 or below, while our method consistently remains above 0.87. After three unlearning571

iterations, the difference between our method and the Scoreall is merely 0.011 points (0.891 vs.572

0.902). These results demonstrate the broad effectiveness of our approach across the dataset.573

D.2 Performance of MRP on Qwen model574

As shown in Table 8, most baseline methods maintain relatively high scores when unlearning the first575

task. However, their performance drops significantly to 0.8 or below during the second unlearning576

operation. After unlearning four tasks, the scores of most methods decline to 0.57 or lower. In577

contrast, our method consistently maintains a score above 0.9 throughout the continuous unlearning578
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Table 8: Performance scores of different unlearn methods on qwen7b
Method Score1 Score2 Score3 Score4 Scoreall

GA 0.849 ± 0.018 0.436 ± 0.019 0.291 ± 0.037 0.271 ± 0.094 0.831 ± 0.010
EUL 0.916 ± 0.008 0.837 ± 0.010 0.654 ± 0.018 0.569 ± 0.038 0.925 ± 0.006
NPO 0.946 ± 0.016 0.805 ± 0.007 0.395 ± 0.015 0.407 ± 0.007 0.921 ± 0.006
RMU 0.945 ± 0.008 0.739 ± 0.016 0.326 ± 0.043 0.429 ± 0.019 0.953 ± 0.037
O3 0.684 ± 0.014 0.783 ± 0.025 0.716 ± 0.018 0.762 ± 0.013 0.829 ± 0.026

Ours 0.964 ± 0.003 0.940 ± 0.011 0.926 ± 0.003 0.939 ± 0.012 0.975 ± 0.014

process. Another approach, O3, demonstrates reasonable performance in the sequential unlearning579

scenario, but our method achieves superior results across all evaluation metrics.580

When also comparing with Scoreall (model performance after simultaneously unlearning all four581

tasks), we observe that most baselines exhibit similar performance between Score1 (single-task582

unlearning) and Scoreall, suggesting that unified unlearning can indeed yield satisfactory results.583

However, their Score4 scores (after four sequential unlearning operations) drop sharply, indicating584

that these baseline methods fundamentally struggle with sustained unlearning.585

In contrast, our method achieves a Score4 that differs from the Scoreall benchmark by only 0.037586

(0.938 vs. 0.975), demonstrating its superior capability in maintaining model utility while performing587

continual knowledge removal.588

This result indicates that our method is still effective in different models, proving the universality of589

our method.590

D.3 Unlearning without same retain dataset591

(a) Unlearn Dataset
(natural science)

(b) Retain Dataset
(social science)

Figure 5: The performance of the model on the unlearn and retain datasets when only use language
science dataset as the training retain dataset

In Tables 3 and 4, we show overall scores of this experiment, beyond overall scores, we conducted592

detailed analysis of model performance on unlearn tasks and retain tasks.As demonstrated in Figure 5593

and Figure 6, our method consistently maintains a lower QA accuracy on the unlearn tasks across594

both experiments. Even after four epochs of unlearn requests, the QA accuracy remains around 0.4,595

while most other methods exhibit an increase to approximately 0.5. Notably, although O3 achieves596

even lower accuracy on the unlearn task, its performance falls below that of Random, indicating597

that O3’s approach compromises the model’s capability in handling multiple-choice questions. This598

observation is further corroborated by the performance on the retain datasets.599

Our method demonstrates robust performance on the retain datasets in both experiments. On the600

social science dataset, the accuracy drops by less than 0.05 compared to the original model, whereas601
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(a) Unlearn Dataset
(natural science)

(b) Retain Dataset
(language science)

Figure 6: The performance of the model on the unlearn and retain datasets when only use social
science dataset as the training retain dataset

most other methods suffer a decline of around 0.15. Particularly, O3 experiences a significant drop of602

0.20, highlighting its detrimental impact on the model’s performance in other tasks.603

These results strongly suggest that, even in the absence of the original retain dataset, our approach604

can effectively utilize similar datasets as substitutes to achieve competitive retain performance.605

D.4 hyperparameter experiments606

In this section, we conducted hyperparameter experiments on two critical parameters: the projection607

dimension and the number of projection layers. For the projection dimension, we tested values from608

1 to 4 while maintaining a fixed learning rate of 2× 10−4 and 2 projection layers. For the projection609

layers, we also tested layer numbers from 1 to 4 while maintaining a fixed learning rate of 2× 10−4610

and 2 projection layers.Other hyperparameters kept at default settings.611

Table 9: Performance scores of different projection dimensions
Dim Score1 Score2 Score3 Score4 Scoreall

1 0.445 ± 0.053 0.669 ± 0.049 0.603 ± 0.080 0.591 ± 0.061 0.454 ± 0.057
2 0.950 ± 0.021 0.878 ± 0.027 0.896 ± 0.027 0.905 ± 0.079 0.988 ± 0.074
3 1.113 ± 0.026 0.876 ± 0.012 0.863 ± 0.033 0.901 ± 0.082 0.982 ± 0.033
4 1.223 ± 0.017 0.853 ± 0.014 0.855 ± 0.031 0.884 ± 0.021 1.016 ± 0.035

Table 10: Performance scores of different number of projection layers
Num Score1 Score2 Score3 Score4 Scoreall

1 0.480 ± 0.084 0.863 ± 0.016 0.838 ± 0.065 0.890 ± 0.128 0.897 ± 0.059
2 0.950 ± 0.019 0.878 ± 0.018 0.896 ± 0.024 0.905 ± 0.046 0.988 ± 0.103
3 0.668 ± 0.025 0.804 ± 0.008 0.859 ± 0.004 0.860 ± 0.065 0.962 ± 0.068
4 0.755 ± 0.020 0.835 ± 0.019 0.881 ± 0.023 0.855 ± 0.010 0.944 ± 0.021

D.4.1 Projection Dimension Analysis612

As shown in Table 9, when the dimension equals 1, the model achieves relatively low performance613

(score ≈ 0.5), indicating insufficient capacity for effective unlearning. Higher dimensions yield614

significantly better results (scores ≈ 0.9), demonstrating improved unlearning effectiveness. Notably,615

the orthogonal constraint between projection directions and retain data preserves the retain dataset616

accuracy despite increasing dimensions.617
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D.4.2 Projection Layer Analysis618

Table 10 reveals optimal performance at 2 projection layers (final score: 0.905). Both insufficient619

and excessive layers degrade performance - the former limits unlearning effectiveness while the latter620

may interfere with retain dataset performance. This suggests careful layer count selection is crucial.621

E Limitations and Future Work622

Although our method performs robustly across a range of projection layer selections, specific layers623

can still be chosen for optimal results depending on the target model. Additionally, since this is the624

first application of projection-based methods to LLM unlearning, we have only validated MRP on625

smaller 7B language models. Its scalability to larger models or other types of models beyond LLMs626

(such as multimodal models) remains to be thoroughly investigated. Furthermore, the concept of627

projection can be widely applied to other safety-related domains, such as eliminating discriminatory628

or harmful information. Research in this direction will be a focus of our future work.629
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