DIVA-GRPO: ENHANCING MULTIMODAL REASON-ING THROUGH DIFFICULTY-ADAPTIVE VARIANT AD-VANTAGE

Anonymous authorsPaper under double-blind review

000

001

002

004

006

007

008 009 010

011 012 013

014

015

016

017

018

019

021

023

025

026

027

028

029

030

031

034

037

040

041

042

043

044

045

046

047

048

051

052

ABSTRACT

Reinforcement learning (RL) with group relative policy optimization (GRPO) has become a widely adopted approach for enhancing the reasoning capabilities of multimodal large language models (MLLMs). While GRPO enables long-chain reasoning without a traditional critic model, it often suffers from sparse rewards, arising from the scarcity of positive feedback on difficult problems, and from advantage vanishing, which occurs when group-level rewards exhibit high consistency for problems that are too easy or too hard. Existing solutions fall into three categories: sample enhancement and expansion, which may aggravate vanishing advantage due to poor control of difficulty distribution; selective sample utilization, which fails to fully leverage the value of all data; and indirect reward design, which may introduce biased optimization directions due to misalignment between reasoning and the final outcome. However, these approaches overlook a fundamental question: for a given problem, how can we ensure that the within-group reward distribution of responses exhibits enough variance to yield clear optimization signals for each response? To address these issues, we propose DIVA-GRPO, a difficulty-adaptive variant augmentation advantage method that dynamically adjusts the difficulty distribution of variants for each problem from a global perspective. Our method dynamically assesses problem difficulty, samples variants with appropriate difficulty levels, and advantages are computed within both local and global(a problem and its variants) groups using difficulty-weighted and normalized scaling. This design alleviates reward sparsity and advantage vanishing, minimizes data waste, and improves training stability. Extensive experiments on six reasoning benchmarks demonstrate that DIVA-GRPO outperforms existing approaches in both training efficiency and reasoning performance.

1 Introduction

Multimodal large language models (MLLMs) (Chen et al., 2024b; Hurst et al., 2024; Laurençon et al., 2024; Liu et al., 2023; Yin et al., 2024; Wu et al., 2024b; Alayrac et al., 2022; Zhu et al., 2023; Li et al., 2023) have demonstrated remarkable ability to integrate textual and visual information for complex reasoning tasks, such as visual question answering (Antol et al., 2015; Xiao et al., 2024) and multimodal logical reasoning (Huang & Chang, 2022). Nevertheless, the heterogeneous nature of text and visual modalities makes long-chain reasoning challenging, requiring both careful observation and stepwise problem-solving. To address these challenges, recent studies have explored multimodal chain-of-thought approaches (Zhou et al., 2024; Chen et al., 2024a; Wang et al., 2025b), including Video-of-Thought (Fei et al., 2024), Det-CoT (Wu et al., 2024a), CoI (Meng et al., 2023), and Grounded-RL (Sarch et al., 2025), which aim to improve reasoning by decomposing problems or leveraging structured strategies. Complementary to these advances, reinforcement learning (RL) has emerged as a powerful framework for further enhancing MLLMs: proximal policy optimization (PPO) (Schulman et al., 2017) and direct preference optimization (DPO) (Rafailov et al., 2023) are widely used for alignment, while GRPO (Shao et al., 2024) advances long-chain reasoning by combining lightweight rule-based rewards with group-relative advantage estimation, significantly boosting both alignment and reasoning efficiency.

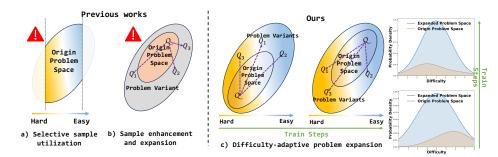


Figure 1: (a) Selective sample utilization relies on only a subset of data, leading to underuse. (b) Sample enhancement expands data without difficulty awareness, causing even severer advantage sparsity. (c) Our method adaptively expands the sample space by problem difficulty, ensuring a stable difficulty distribution.

However, directly applying GRPO to MLLMs faces a critical challenge—advantage vanishing (Huang et al., 2025; Park et al., 2025; Yao et al., 2025; Wang et al., 2025a; Meng et al., 2025; Zhang et al., 2025; Zhang & Zuo, 2025). GRPO computes relative advantages by comparing sampled responses for a given problem and then standardizes the advantages across all samples. When a problem is too easy (or too difficult) for the current model, obtaining too few positive (or negative) rewards can lead to excessively large advantage values, causing high gradient noise and unstable training. Under extreme conditions, all responses may be entirely correct or incorrect, yielding zero relative advantage. This not only slows learning but also weakens the model's reasoning performance across problems of varying difficulty. Existing approaches attempt to address this issue in several ways. One approach is sample enhancement and expansion, which enlarges the problem space by adding prompts to difficult instances or generating diverse text and image variants, though it may exacerbate advantage vanishing due to poor control over the difficulty distribution (Huang et al., 2025; Park et al., 2025; Yao et al., 2025). Another approach is selective sample utilization, which prioritizes highly effective samples or disregards those with low learning contribution to improve efficiency; however, this may limit exposure to complex problems or reduce data diversity (Wang et al., 2025a; Meng et al., 2025). Finally, indirect reward design provides finer-grained feedback signals to mitigate reward sparsity, but these rewards may not perfectly align with ultimate task objectives, potentially guiding the model toward suboptimal directions (Zhang et al., 2025; Zhang & Zuo, 2025).

Although the above methods can mitigate certain instances of advantage vanishing, they all overlook a critical issue: as shown in Figure 1(c), as training progresses, problem difficulty continuously decreases, advantage vanishing intensifies, and model training efficiency steadily declines. To address this, we propose DIVA-GRPO, an adaptive method that dynamically adjusts problem difficulty and variant distribution while preserving semantic consistency, and integrates both local (individual problem) and global (multiple variants derived from the original problem) reward computation. During training, problem difficulty is iteratively assessed based on model responses: simple problems are augmented with complex text and image perturbations, moderately difficult ones with diverse text variants, and hard ones with "think-step" reasoning variants, ensuring effective sample utilization and mitigating advantage vanishing. To balance feedback across different difficulty levels, DIVA-GRPO applies batch z-score normalization and difficulty-weighted scaling, and further introduces reward-range-based rescaling to prevent inflated advantages from minor reward differences. This enables stable policy optimization, encourages exploration, and enhances long-chain reasoning, while remaining broadly applicable to GRPO-based methods for improved optimization efficiency.

Extensive experiments validate the effectiveness and efficiency of DIVA-GRPO. Our model excels across six challenging benchmarks, achieving state-of-the-art performance at the 7B scale, approaching the accuracy of much larger models and proprietary commercial systems. Moreover, DIVA-GRPO significantly accelerates training, reaching optimal performance more than 3.17× faster than standard GRPO, while maintaining stable and informative advantage signals across varying difficulty levels. These results highlight the substantial improvements in both performance and training efficiency offered by our model.

Overall, DIVA-GRPO overcomes the limitations of conventional GRPO by combining adaptive difficulty assessment, variant generation, and robust advantage estimation. This framework alleviates reward sparsity and advantage vanishing, while enhancing reasoning stability and performance across

a wide range of multimodal tasks, from visual question answering to complex logical reasoning. Our core contributions are as follows:

- Propose DIVA-GRPO, based on dynamic difficulty assessment, using difficulty-adaptive variant generation and advantage sharing to alleviate reward sparsity and advantage vanishing.
- Introduce joint estimation of local and global advantages, combined with batch z-score normalization and difficulty-weighted scaling, to improve training stability.
- Present a reward-range-based advantage rescaling method, effectively preventing unreasonable advantage inflation and accelerating convergence.
- Conduct experiments on six mainstream multimodal reasoning benchmarks, demonstrating the effectiveness and superiority of DIVA-GRPO.

2 Challenge: Reward Sparsity and Advantage Vanishing

We begin by reviewing the key concepts of Group Relative Policy Optimization (GRPO), which form the foundation of our difficulty-adaptive variant strategy.

Group Relative Policy Optimization (GRPO). Let $\mathcal{Q}=\{q_1,q_2,\ldots,q_N\}$ denote the set of training problems. For a given problem q, the model π_θ generates k candidate responses $\mathcal{Y}_q=\{y_1,y_2,\ldots,y_k\}$ through rollouts. Each response y_i receives a scalar reward $r(y_i)\in\mathbb{R}$ from a rule-based evaluation function, such as answer correctness. GRPO computes the *relative advantage* of each response within its group by standardizing its reward:

$$A(y_i) = \frac{r(y_i) - \mu_r}{\sigma_r + \epsilon}, \quad \mu_r = \frac{1}{k} \sum_{j=1}^k r(y_j), \quad \sigma_r = \sqrt{\frac{1}{k} \sum_{j=1}^k (r(y_j) - \mu_r)^2},$$

where ϵ is a small constant for numerical stability. The policy gradient is then estimated as

$$\nabla_{\theta} \mathcal{L}(\theta) = \mathbb{E}_{q \sim \mathcal{Q}, y \sim \pi_{\theta}} [A(y) \nabla_{\theta} \log \pi_{\theta}(y|q)].$$

Reward Sparsity and Advantage Vanishing. GRPO and its extensions often face **reward sparsity**: when the base multimodal model has limited capability or the problem is difficult, only a few reasoning paths obtain positive rewards, especially in early training. They also suffer from **advantage vanishing**: since relative advantages are computed within response groups, overly hard or easy problems lead to all-correct or all-wrong outputs, yielding zero advantages. As training proceeds, this issue worsens, reducing optimization efficiency and sample utilization.

Motivation. Existing solutions attempt to alleviate these problems through (i) *sample enhancement and expansion*, which enlarges the problem space without adjusting intrinsic difficulty; (ii) *sample selection and utilization*, which improves efficiency but risks discarding valuable hard cases and reducing diversity; and (iii) *indirect reward design*, which enriches supervision but may bias optimization. While partially effective, these methods cannot guarantee stable reward variance within each group.

This motivates our central question: how can we preserve stable and informative reward variance regardless of problem difficulty? We argue that the key lies in dynamically assessing problem difficulty and adaptively adjusting the sampling of variants, ensuring every problem produces both positive and negative feedback.

3 DIFFICULTY-ADAPTIVE VARIANT ADVANTAGE WITH GRPO

To address this challenge, we design a difficulty-adaptive method, **DIVA-GRPO**. Its core idea is to dynamically assess problem difficulty, adaptively sample semantically consistent variants of different difficulties, and enhance the diversity of rewards within the problem and its variant space. By computing difficulty-weighted local (for the original problem) and global (for the problem and its variants) group advantages, the framework mitigates reward sparsity and vanishing advantage issues. Figure 2 illustrates the overall pipeline.

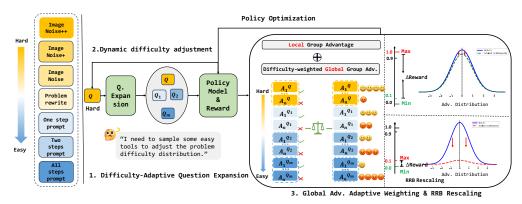


Figure 2: Overview of the proposed **DIVA-GRPO** method. The left side illustrates the difficulty-variant space from hard to easy. For a given question, we dynamically assess its difficulty based on past rollouts rewards and adaptively sample variants of different difficulty levels. As shown, when the original question is hard, easier variants are sampled to ensure reward diversity. We then compute local (the question itself) and global (the question with its variants) advantages, and obtain the final advantage through difficulty-aware reweighting and reward-range rescaling to update the policy model.

3.1 DIFFICULTY ASSESSMENT OF SAMPLES

A prerequisite for implementing adaptive strategies is to assign an appropriate difficulty level to each problem. It is important to note that problem difficulty is neither inherent nor static; rather, it should be dynamically assessed in line with the evolving capability of the model. To this end, DIVA-GRPO introduces a difficulty assessment mechanism based on historical rollout outcomes: if most rollouts for a problem are correct, it is regarded as relatively easy for the current model; otherwise, it is considered relatively difficult. This assessment is recalibrated at every training epoch, ensuring that perceived difficulty adapts as the model improves. The resulting difficulty estimates are then used to guide variant generation and sampling strategies, enabling the model to balance exploration and exploitation while maintaining meaningful advantage signals continuously.

We define problem difficulty within the range $[D_{\min}, D_{\max}]$, where D_{\min} represents the easiest level and D_{\max} the most difficult. At the beginning of training, all problems are initialized at the midpoint of this range: $D_{\min} = \frac{D_{\min} + D_{\max}}{2}$. Let each original problem contain m variants, and let each variant be rolled out k times. We denote the empirical accuracy of these rollouts as $\alpha = \frac{1}{mk} \sum_{i=1}^{m} \sum_{j=1}^{k} \mathbb{I}[y_{i,j} \text{ is correct}]$, where $\mathbb{I}[\cdot]$ is the indicator function. The difficulty is then updated according to the following rule:

$$D^{\text{new}} = \text{clip}\left(D^{\text{old}} + \eta \cdot (0.5 - \alpha), D_{\min}, D_{\max}\right),$$

where $\eta>0$ is a learning rate controlling the adjustment magnitude, and $\mathrm{clip}(\cdot,D_{\min},D_{\max})$ ensures that the difficulty remains within $[D_{\min},D_{\max}]$. This update rule guarantees that:

- if most rollouts are correct ($\alpha \to 1$), the difficulty decreases;
- if most rollouts fail ($\alpha \to 0$), the difficulty increases;
- if the accuracy is around 50%, the difficulty remains stable.

In this way, difficulty levels evolve smoothly with model performance, allowing more nuanced adjustments than the simple "all-correct/all-wrong" rule, and ensuring continuous calibration of sampling strategies throughout training.

3.2 DIFFICULTY-ADAPTIVE VARIANT GENERATION

In this section, we aim to provide each problem with an appropriate advantage. To this end, we introduce a method for generating adaptive variants based on the difficulty assessment of each problem obtained in the previous section. Let each original problem be denoted as $q=(I_q,T_q)$, where I_q is the associated image and T_q is the textual description and question. After evaluating the difficulty $D_q \in [D_{\min}, D_{\max}]$ of each problem, we generate a set of difficulty-specific consistent variants

 $\mathcal{V}_q = \{q^{(1)}, q^{(2)}, \dots\}$ for training, ensuring that each variant preserves the original answer y_q^* while selectively adjusting its difficulty to optimize the model's learning. By dynamically adjusting the characteristics of each variant according to D_q , we aim to ensure that the reward distribution for each problem provides meaningful advantage signals while maintaining a more balanced profile.

- Simpler problems $(D_q < D_{mid})$: Variants are generated by perturbing both the text and the image: $q^{(i)} = (I_q^{(i)}, T_q^{(i)})$. Textual variants $T_q^{(i)}$ are created by rephrasing, restructuring, or introducing slight linguistic perturbations to the original question, ensuring the answer remains unchanged. These modifications enhance the model's sensitivity to subtle differences, thereby improving robustness. Image variants $I_q^{(i)}$ are generated through perturbation functions such as rotation, Gaussian noise, salt-and-pepper noise, speckle noise, and blurring. Stronger or multiple perturbations increase difficulty while preserving correctness. Alternatively, the textual information T_q can be embedded within the images in the variant set \mathcal{V}_q and provided as images to convey the problem information.
- Moderate problems $(D_q \approx D_{mid})$: Variants are generated by creating semantically equivalent textual versions: $\mathcal{V}_q = \{(I_q, T_q^{(i)}) \mid T_q^{(i)} \text{ is a paraphrase of } T_q\}$. These variants maintain the original difficulty while diversifying expression. This allows the model to experience multiple formulations of the same problem, improving generalization to unseen expressions.
- **Difficult problems** ($D_q > D_{mid}$): Variants incorporate partial reasoning guidance: $q^{(i)} = (I_q, T_q \oplus R_q^{(i)})$, where $R_q^{(i)}$ is a sequence of intermediate reasoning steps generated and verified by a closed-source model. For more difficult problems, additional reasoning steps are provided as hints. This ensures that even challenging problems produce meaningful advantage signals, mitigating gradient vanishing and promoting gradual mastery of complex reasoning.

3.3 DIFFICULTY-WEIGHTED AND NORMALIZED ADVANTAGE BALANCING

Before introducing our balancing strategy, we first review the notion of local and global advantages used in GRPO-based training. While GRPO computes advantages within a single problem, recent work Yao et al. (2025) introduces semantically consistent variants to enable broader comparisons. Let an original problem be denoted as $q = (I_q, T_q)$, with associated image I_q and textual description T_q . For each q, a set of variants $\mathcal{V}_q = \{q^{(1)}, \ldots, q^{(N)}\}$ is constructed, modifying only text or image while preserving the ground-truth answer. Two types of advantages are defined:

- Local advantage: $A_{local}(y_i^{(i)})$, computed for each problem using the standard GRPO formula.
- Global advantage: $A_{\mathrm{global}}(y_i^{(j)})$, computed across all responses in the variant set: $A_{\mathrm{global}}(y_i^{(j)}) = \frac{r(y_i^{(j)}) \mu_q}{\sigma_q + \epsilon}$, where μ_q and σ_q are the mean and standard deviation of rewards across all responses in \mathcal{V}_q .

To ensure that both local and global advantages contribute effectively while accounting for varying problem difficulty, we propose a two-step balancing strategy: (1) *normalization* to make local and global signals comparable, and (2) *difficulty-weighted scaling* to adaptively rescale advantages according to each problem's dynamic difficulty coefficient. This design stabilizes optimization by preventing dominance of global advantages and aligning reward signals with problem difficulty.

Formally, after sampling multiple variants for each problem, we compute both local and global advantages. However, two issues arise in this process.

(1) Local–Global imbalance. The magnitudes of local and global advantages are unequal: local advantages are computed from k rollouts, whereas global advantages are based on $m \times k$ samples. Consequently, global advantages tend to be larger and dominate the optimization, while local signals are underweighted. To address this issue, we apply batch-level z-score normalization separately:

$$\tilde{A}_{\rm local}(y) = \frac{A_{\rm local}(y) - \mu_{\rm local}}{\sigma_{\rm local} + \epsilon}, \quad \tilde{A}_{\rm global}(y) = \frac{A_{\rm global}(y) - \mu_{\rm global}}{\sigma_{\rm global} + \epsilon},$$

where μ_{local} , σ_{local} and μ_{global} , σ_{global} are the mean and std of local and global advantages within a batch. This ensures that both signals remain comparable and contribute fully to training.

Table 1: Performance comparison across multimodal mathematical benchmarks. Bold denotes the best performance among 7B models, and underline marks the best overall performance. Evaluation is conducted with VLMEvalKit (Duan et al., 2024), while results for other models are taken from Meng et al. (2025) and Yao et al. (2025). For each entry, the score before "/" is our re-evaluation using the officially released checkpoints, and the score after "/" is reported in the original paper.

Model	MathVista	MathVerse	Mathvision	OlypamidBench	WeMath	MMK12test	Avg.
Claude3.7-Sonnet	66.8	52.0	41.3	48.9	72.6	55.3	56.15
GPT-40	63.8	50.2	30.4	35.0	68.8	49.9	49.68
01	73.9	57.0	60.3	68.0	98.7	73.9	72.30
Gemini2-flash	70.4	<u>59.3</u>	41.3	51.0	71.4	65.2	59.77
InternVL2.5-VL-8B	64.4	39.5	19.7	12.3	53.5	45.6	39.17
Qwen-2.5-VL-7B	68.2	47.9	25.4	20.2	62.1	53.6	46.23
InternVL2.5-VL-38B	71.9	49.4	31.8	32.0	67.5	58.0	51.77
Qwen-2.5-VL-32B	71.7/74.7	49.9	40.1	30.0	69.1	66.8	54.6
InternVL2.5-VL-78B	72.3	51.7	32.2	31.1	66.3	61.6	52.53
Qwen-2.5-VL-72B	74.8	57.6	38.1	40.4	72.4	70.5	59.0
InternVL2.5-8B-MPO	68.9	35.5	21.5	7.8	53.5	34.5	36.95
InternVL2.5-38B-MPO	73.8	46.5	32.3	25.6	66.2	48.3	48.78
QVQ-72B-Preview	71.4	48.2	35.9	33.2	65.4	61.5	52.60
Adora-7B	73.5	50.1	23.0	20.1	64.2	58.1	48.17
R1-Onevision-7B	64.1	47.1	23.5/29.9	17.3	61.8	39.8	42.27
OpenVLThinker-7B	70.2	47.9	25.3	20.1	64.3	60.6	48.07
MM-Eureka-7B	71.7/73.0	50.3	26.9	20.1	66.1	64.5	49.93
R1-ShareVL-7B	73.5/75.4	52.8	29.5	21.3	67.9	68.8	52.30
SFT-7B	66.4	49.6	21.3	16.2	57.6	54.3	44.23
DIVA-GRPO-7B (Ours)	74.2	57.6	32.1	23.1	69.3	70.2	54.58

(2) **Difficulty-weighted scaling.** Existing methods treat easy and difficult problems equally when computing advantages, without accounting for their varying difficulty levels. To encourage the model to tackle harder problems, we introduce difficulty-weighted scaling after normalization.

Let $\{D_q^{(i)}\}_{i=1}^N$ denote the difficulty coefficients of the N variants in a problem group \mathcal{V}_q , and let $\bar{D}_q = \frac{1}{N} \sum_{i=1}^N D_q^{(i)}$ be the group-wise mean difficulty. For each response y_i associated with variant $q^{(i)}$, the rescaled advantage is computed as

$$\hat{A}(y_i \mid q^{(i)}) = \exp\left(k \cdot (D_q^{(i)} - \bar{D}_q) \cdot \operatorname{sgn}(\tilde{A}(y_i))\right) \cdot \tilde{A}(y_i),$$

where $\tilde{A}(y_i)$ is the normalized advantage, $\operatorname{sgn}(\cdot)$ is the sign function, and k>0 is a sensitivity.

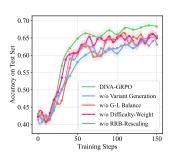
Intuitively, when a variant is harder than the group average $(D_q^{(i)} > \bar{D}_q)$, correct answers $(\tilde{A} > 0)$ are amplified while incorrect ones are softened. Conversely, when a variant is easier than average, correct answers are down-weighted and incorrect ones are penalized more heavily.

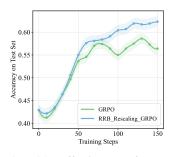
In this way, the training process achieves difficulty-adaptive optimization, effectively balancing the contributions of both the relative difficulty within a problem group and the magnitudes of advantages. The theoretical validity of this balancing strategy is rigorously established in Appendix B, where Theorem B.1 demonstrates that reducing gradient variance accelerates convergence, and Corollary B.2 shows that our normalization and weighting strategy significantly decreases variance while preserving unbiased gradient estimates. Moreover, Appendix C mathematically confirms that the optimization signal is strongest when the ratio of correct to incorrect samples is approximately 1:1, providing a solid theoretical foundation for our dynamic difficulty adjustment mechanism.

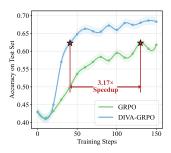
3.4 REWARD-RANGE-BASED ADVANTAGE RESCALING (RRB-RESCALING)

In GRPO-based reinforcement learning, we observed that advantage estimation can become unreliable when the reward range within a rollout group is small. If rewards are tightly clustered, standard z-score normalization may exaggerate minor differences, producing misleading optimization signals. As a result, the model may over-reward trivial gains while overlooking substantial ones.

Consider a reward scheme where correctly formatted responses receive 0.1 and fully correct responses receive 0.9. Suppose we have two samples, each rolled out 5 times: Sample A with rewards [0,0,0,0,0.1] and Sample B with rewards [0,0,0,0,1]. After applying standard z-score normalization, both groups assign the same advantage (-0.45) to the zero-reward rollouts and the same high advantage (1.79) to the last rollout. This overestimates the gain from minor formatting correctness in Sample A and underestimates the greater achievement in Sample B.







(a) RQ2: Ablation Study of the DIVA-GRPO

(b) RQ3: Effectiveness of RRB on General GRPO Methods

(c) RQ4: Impact of DIVA-GRPO on Efficiency and Speed

Figure 3: Effect of Training Steps on Model Performance on the Validation Set.

To address this issue, we propose reward-range-based advantage rescaling. Let $\mathcal{R}_q = \{r_1, r_2, \dots, r_k\}$ denote the rewards of all rollouts for a problem q, with the maximum possible reward range R_{\max} . We define the reward range and the rescaled advantage as

$$\Delta r_q = (\max(\mathcal{R}_q) - \min(\mathcal{R}_q)) / R_{\max}, \quad \hat{A}_{\text{range}}(y_i) = \Delta r_q \cdot \tilde{A}(y_i)$$

where $\tilde{A}(y_i)$ is the normalized advantage obtained via standard z-score. Intuitively, this method ensures that the magnitude of the advantage reflects the actual variability in rewards, preventing minor differences from being exaggerated and providing a more reliable optimization signal.

This rescaling method can be applied independently of difficulty-weighted scaling and is compatible with any GRPO-based framework, improving the stability and efficiency of policy optimization.

4 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate the effectiveness of DIVA-GRPO, complemented by ablation studies to assess the contributions of its key components. Our evaluation is driven by the following research questions:

- RQ1 (Effectiveness): How does DIVA-GRPO compare to recent advanced systems?
- RQ2 (Completeness): What impact does removing key components have on model performance?
- **RQ3** (Generalization): How well does RRB-Rescaling generalize to standard GRPO?
- **RQ4** (Efficiency): What impact does DIVA-GRPO have on training efficiency?

4.1 EXPERIMENTAL SETUP

Benchmarks. Our evaluation covers six diverse benchmarks: *MathVista*(Lu et al., 2023), *Math-Verse*(Zhang et al., 2024), *MathVision*(Wang et al., 2024), *OlypamidBench*(He et al., 2024), *We-Math*(Qiao et al., 2024), and *MMK12-test*(Meng et al., 2025).

Baselines. Our comparisons cover three categories of models: (i) closed-source proprietary MLLMs; (ii) open-source base MLLMs; (iii) open-source fine-tuned MLLMs.

Implementation. Our method is trained on **Qwen2.5-VL-7B-Instruct** (Bai et al., 2025) with AdamW at a learning rate of 10^{-6} . Each sample generates k=5 rollouts. Difficulty scores D_q are initialized to 5 ($D_{\min}=1$, $D_{\max}=9$) with $\eta=4$. Textual reasoning hints are pre-generated offline, while image perturbations are applied online. All textual variants and reasoning sequences are generated offline using GPT-o3.

4.2 Main Results (**RQ1: Effectiveness**)

We report results on 7B-scale models, with the main experiments conducted on the R1-ShareVL-52K dataset. DIVA-GRPO demonstrates superior performance compared to both the base models and other multimodal training approaches. As shown in Table 1, we provide a comprehensive comparison against state-of-the-art systems across five widely used and challenging benchmarks.

Our method achieves state-of-the-art performance across all datasets at the **7B scale**, delivering consistently strong results on both Chinese and English benchmarks with an average score of 54.58. Remarkably, on *MathVista*, *MathVerse*, and *WeMath*, its performance is already on par with the much larger Qwen2.5-VL-72B, while substantially outperforming several open-source base models (e.g., Qwen2.5-VL-32B, InternVL2.5-VL-78B) and proprietary systems (e.g., GPT-40, Claude 3.7-Sonnet), showcasing notable efficiency and cost-effectiveness. Nevertheless, on more challenging competition-level mathematics tasks, our method still falls short of ultra-large open-source models and cutting-edge proprietary systems, likely due to inherent limitations in model capacity and training data coverage. We further explored applying direct SFT to the backbone model using reasoning traces generated by GPT-o3 and found that such direct training not only failed to improve performance but even underperformed the base model—further underscoring the effectiveness of our approach. Compared with its backbone model, Qwen2.5-VL-7B, our method consistently improves results across all benchmarks, achieving an average accuracy gain of 8.23 points, which highlights its clear advantages over existing multimodal training frameworks.

Figure 4 further illustrates the training dynamics: in the early stage, samples have not yet formed a clear difficulty distribution, with most concentrated around medium difficulty and exhibiting only small advantages. As training progresses, the distribution gradually expands toward both easier and harder problems, and advantage signals become more distinct across difficulty levels. In later stages, the model maintains informative and balanced advantage signals even on high-difficulty samples, rather than collapsing into trivial "all-correct" or "all-wrong" states. These dynamics highlight the effectiveness of DIVA-GRPO in sustaining stable and efficient optimization.

4.3 ABLATION STUDY

RQ2 (Completeness): Component Ablation of DIVA-GRPO

We perform ablation studies on the three core components of DIVA-GRPO at the 7B scale using representative benchmarks (*MathVista*, *MathVerse*, and *MMK12test*). Experiments are conducted on 5,000 randomly sampled instances from the *MMK12* dataset to ensure timely and fair comparisons. We evaluate the impact of removing Adaptive Variant Generation,

Table 2: Ablation study of DIVA-GRPO, showing that each component provides gains and the full model achieves the best performance (accuracy, %).

Method	MathVista	MathVerse	MMK12test Avg.		
w/o Variant Generation	70.0	53.7	61.1	61.6	
w/o Difficulty-Weighting	69.9	55.7	66.5	64.0	
w/o RRB-Rescaling	71.5	55.2	64.7	63.8	
w/o G-L Balance	70.8	55.4	66.0	64.1	
Full DIVA-GRPO	73.2	56.3	68.8	66.1	

Difficulty Weighting, Reward-Range-Based Advantage Rescaling (RRB-Rescaling), and Global-Local Balance (G-L Balance), and compare each variant with the full model.

As reported in Table 2, removing any single component consistently decreases performance, with the full DIVA-GRPO model achieving the highest accuracy across all benchmarks. These results indicate that all components contribute complementary gains and none can be omitted without performance degradation, highlighting the necessity of the complete model design.

RQ3 (Generalization): Generalization of RRB-Rescaling

To verify the broader applicability of Reward-Range-Based Advantage Rescaling (RRB-Rescaling), we incorporate it into standard GRPO without any other modifications. Table 3 shows that adding

Table 3: Evaluation of RRB-Rescaling on standard GRPO.

Method	MathVista	MathVerse	MMK12test	Avg.
GRPO (base)	69.3	52.8	58.6	60.23
+ Reward-Range	70.0	53.6	62.9	62.17

RRB-Rescaling improves the average accuracy from 60.23% to 62.17%, with gains observed across all three benchmarks. This demonstrates that RRB-Rescaling enhances both stability and performance in a general GRPO setting, confirming that this component is not limited to DIVA-GRPO but can benefit other GRPO-style training frameworks.

RQ4 (Efficiency): Training Efficiency and Stability

We compared the training performance of DIVA-GRPO and GRPO on Qwen2.5-VL-7B. As shown in Fig. 3c, we measured the number of steps DIVA-GRPO required to reach the test-set optimum within the 150 steps of GRPO training. While GRPO reached its best performance at 130 steps, DIVA-GRPO achieved the same level in just 32 steps—resulting in a 3.17× faster training speed—while also demonstrating improved training stability.

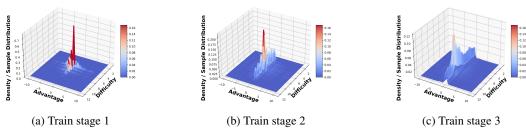


Figure 4: 3D kernel density estimation (KDE) surfaces of the joint distribution between problem difficulty and gloal advantage across different training stage. The surface height reflects the sample density, illustrating how the model's learning dynamics evolve with respect to difficulty and advantage.

5 RELATED WORK

With the increasing application of GRPO in MLLMs to enhance reasoning, several challenges remain unresolved, particularly sparse rewards and advantage vanishing. Existing solutions can be grouped into three main approaches: sample augmentation and problem-space expansion, sample selection and utilization, and reward design.

Sample augmentation and expansion methods aim to enlarge the problem space using difficulty-aware mechanisms or diverse sample generation to improve exploration and generalization. Hint-GRPO (Huang et al., 2025) adapts hints based on task difficulty, enhancing data efficiency for hard samples. DeepVideo-R1 (Park et al., 2025) adjusts difficulty to help variants regain advantage, though it doesn't reshape single-sample difficulty distributions, leaving sparse rewards in extreme cases. R1-shareVL (Yao et al., 2025) expands the space with multiple variants and applies global advantage to shift difficulty, but lacks a complete mechanism to mitigate sparsity.

Sample selection and utilization methods focus computation on effective data while ignoring unhelpful samples, improving efficiency but risking premature abandonment of hard cases. VL-Rethinker (Wang et al., 2025a) uses selective replay to alleviate reward sparsity and preserves advantage diversity by replaying strong past samples. MM-Eureka (Meng et al., 2025) selects prompts with partial correctness, filtering zero-advantage cases to stabilize training. While helpful, these methods do not maximize overall sample utilization or provide a global optimization view.

Reward design methods aim to provide denser, continuous signals to reduce sparsity and stabilize reasoning. MM-Eureka introduces a hyperparameter λ to weight format rewards. R1-VL (Zhang et al., 2025) proposes StepGRPO, incorporating reasoning-accuracy and step-wise validity rewards for denser feedback. DeepVideo-R1 introduces Reg-GRPO, transforming GRPO into a regression loss, while GRPO-LEAD (Zhang & Zuo, 2025) weights hard problems in advantage computation via dynamic difficulty awareness. Though these methods aid convergence, rewards often remain indirect and may misalign with final objectives, potentially misguiding the model.

6 Conclusion

In this work, we identified and addressed a fundamental limitation of GRPO-based reinforcement learning for multimodal large language models: reward sparsity and vanishing advantages, which hinder effective long-chain reasoning. To overcome this, we proposed DIVA-GRPO, a difficulty-adaptive variant advantage framework that dynamically assesses problem difficulty, generates tailored variants, and computes both local and global advantages with difficulty-aware normalization and reward-range-based rescaling. This design ensures stable and informative optimization signals across problems of varying difficulty, mitigates reward sparsity, and enhances training stability. Extensive experiments on six multimodal reasoning benchmarks demonstrated that DIVA-GRPO consistently outperforms existing GRPO-based methods in reasoning accuracy, convergence speed, and training efficiency. Overall, our approach provides a generalizable framework for improving reinforcement learning in MLLMs, offering a principled way to balance exploration, sample utilization, and advantage estimation for complex multimodal reasoning tasks.

ETHICS STATEMENT

In this study, all data collection and analysis were conducted in compliance with ethical standards, and no human subjects or animal experiments were involved. The research did not use any sensitive personal data or privacy information, and all experimental designs and data processing methods adhered to relevant legal and ethical guidelines. Regarding dataset releases, we have strictly followed applicable academic ethics regulations, ensuring that all data and code sharing comply with legal and ethical requirements. There are no conflicts of interest in this study, and all funding sources and support have been clearly disclosed. The study ensures transparency, integrity, and fairness, strictly adhering to relevant research ethics and compliance standards.

REPRODUCIBILITY STATEMENT

To ensure full reproducibility of our experiments, we provide all code, configurations, and instructions required to replicate our results in the repository: https://anonymous.4open.science/r/DIVA-GRPO-DCAD. The repository includes scripts for training and evaluation, pre-processing routines, and detailed README documentation describing the dependencies and steps to reproduce the reported results.

REFERENCES

- Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language model for few-shot learning. *Advances in neural information processing systems*, 35:23716–23736, 2022.
- Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence Zitnick, and Devi Parikh. Vqa: Visual question answering. In *Proceedings of the IEEE international conference on computer vision*, pp. 2425–2433, 2015.
- Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*, 2025.
- Qiguang Chen, Libo Qin, Jin Zhang, Zhi Chen, Xiao Xu, and Wanxiang Che. M³cot: A novel benchmark for multi-domain multi-step multi-modal chain-of-thought. *arXiv preprint arXiv:2405.16473*, 2024a.
- Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong, Kongzhi Hu, Jiapeng Luo, Zheng Ma, et al. How far are we to gpt-4v? closing the gap to commercial multimodal models with open-source suites. *Science China Information Sciences*, 67 (12):220101, 2024b.
- Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu Fang, Lin Chen, Yuan Liu, Xiaoyi Dong, Yuhang Zang, Pan Zhang, Jiaqi Wang, et al. Vlmevalkit: An open-source toolkit for evaluating large multi-modality models. In *Proceedings of the 32nd ACM international conference on multimedia*, pp. 11198–11201, 2024.
- Hao Fei, Shengqiong Wu, Wei Ji, Hanwang Zhang, Meishan Zhang, Mong-Li Lee, and Wynne Hsu. Video-of-thought: Step-by-step video reasoning from perception to cognition. *arXiv* preprint *arXiv*:2501.03230, 2024.
- Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for promoting agi with olympiad-level bilingual multimodal scientific problems. *arXiv preprint arXiv:2402.14008*, 2024.
- Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey. *arXiv preprint arXiv:2212.10403*, 2022.

- Qihan Huang, Weilong Dai, Jinlong Liu, Wanggui He, Hao Jiang, Mingli Song, Jingyuan Chen, Chang Yao, and Jie Song. Boosting mllm reasoning with text-debiased hint-grpo. *arXiv* preprint *arXiv*:2503.23905, 2025.
- Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint arXiv:2410.21276*, 2024.
 - Hugo Laurençon, Andrés Marafioti, Victor Sanh, and Léo Tronchon. Building and better understanding vision-language models: insights and future directions. *arXiv* preprint arXiv:2408.12637, 2024.
 - Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-training with frozen image encoders and large language models. In *International conference on machine learning*, pp. 19730–19742. PMLR, 2023.
 - Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in neural information processing systems*, 36:34892–34916, 2023.
 - Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of foundation models in visual contexts. *arXiv* preprint arXiv:2310.02255, 2023.
- Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, Botian Shi, Wenhai Wang, Junjun He, Kaipeng Zhang, et al. Mm-eureka: Exploring visual aha moment with rule-based large-scale reinforcement learning. *CoRR*, 2025.
- Fanxu Meng, Haotong Yang, Yiding Wang, and Muhan Zhang. Chain of images for intuitively reasoning. *arXiv preprint arXiv:2311.09241*, 2023.
- Jinyoung Park, Jeehye Na, Jinyoung Kim, and Hyunwoo J Kim. Deepvideo-r1: Video reinforcement fine-tuning via difficulty-aware regressive grpo. *arXiv* preprint arXiv:2506.07464, 2025.
- Runqi Qiao, Qiuna Tan, Guanting Dong, Minhui Wu, Chong Sun, Xiaoshuai Song, Zhuoma GongQue, Shanglin Lei, Zhe Wei, Miaoxuan Zhang, et al. We-math: Does your large multimodal model achieve human-like mathematical reasoning? *arXiv preprint arXiv:2407.01284*, 2024.
- Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances in neural information processing systems*, 36:53728–53741, 2023.
- Gabriel Sarch, Snigdha Saha, Naitik Khandelwal, Ayush Jain, Michael J Tarr, Aviral Kumar, and Katerina Fragkiadaki. Grounded reinforcement learning for visual reasoning. *arXiv* preprint *arXiv*:2505.23678, 2025.
- John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
- Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.
- Haozhe Wang, Chao Qu, Zuming Huang, Wei Chu, Fangzhen Lin, and Wenhu Chen. Vlrethinker: Incentivizing self-reflection of vision-language models with reinforcement learning. arXiv preprint arXiv:2504.08837, 2025a.
- Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Houxing Ren, Aojun Zhou, Mingjie Zhan, and Hongsheng Li. Measuring multimodal mathematical reasoning with math-vision dataset. *Advances in Neural Information Processing Systems*, 37:95095–95169, 2024.
- Yaoting Wang, Shengqiong Wu, Yuecheng Zhang, Shuicheng Yan, Ziwei Liu, Jiebo Luo, and Hao Fei. Multimodal chain-of-thought reasoning: A comprehensive survey. *arXiv preprint arXiv:2503.12605*, 2025b.

- Yixuan Wu, Yizhou Wang, Shixiang Tang, Wenhao Wu, Tong He, Wanli Ouyang, Philip Torr, and Jian Wu. Dettoolchain: A new prompting paradigm to unleash detection ability of mllm. In *European Conference on Computer Vision*, pp. 164–182. Springer, 2024a.
- Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao Liu, Wen Liu, Damai Dai, Huazuo Gao, Yiyang Ma, Chengyue Wu, Bingxuan Wang, et al. Deepseek-vl2: Mixture-of-experts vision-language models for advanced multimodal understanding. *arXiv preprint arXiv:2412.10302*, 2024b.
- Yijia Xiao, Edward Sun, Tianyu Liu, and Wei Wang. Logicvista: Multimodal Ilm logical reasoning benchmark in visual contexts. *arXiv preprint arXiv:2407.04973*, 2024.
- Huanjin Yao, Qixiang Yin, Jingyi Zhang, Min Yang, Yibo Wang, Wenhao Wu, Fei Su, Li Shen, Minghui Qiu, Dacheng Tao, et al. R1-sharevl: Incentivizing reasoning capability of multimodal large language models via share-grpo. *arXiv preprint arXiv:2505.16673*, 2025.
- Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on multimodal large language models. *National Science Review*, 11(12):nwae403, 2024.
- Jingyi Zhang, Jiaxing Huang, Huanjin Yao, Shunyu Liu, Xikun Zhang, Shijian Lu, and Dacheng Tao. R1-vl: Learning to reason with multimodal large language models via step-wise group relative policy optimization. *arXiv* preprint arXiv:2503.12937, 2025.
- Jixiao Zhang and Chunsheng Zuo. Grpo-lead: A difficulty-aware reinforcement learning approach for concise mathematical reasoning in language models. *arXiv preprint arXiv:2504.09696*, 2025.
- Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou, Pan Lu, Kai-Wei Chang, Yu Qiao, et al. Mathverse: Does your multi-modal llm truly see the diagrams in visual math problems? In *European Conference on Computer Vision*, pp. 169–186. Springer, 2024.
- Xiongtao Zhou, Jie He, Lanyu Chen, Jingyu Li, Haojing Chen, Víctor Gutiérrez-Basulto, Jeff Z Pan, and Hanjie Chen. Miceval: Unveiling multimodal chain of thought's quality via image description and reasoning steps. *arXiv preprint arXiv:2410.14668*, 2024.
- Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhancing vision-language understanding with advanced large language models. *arXiv* preprint arXiv:2304.10592, 2023.

A DETAILED BENCHMARKS AND BASELINES

A.1 BENCHMARKS

We evaluate six multimodal mathematical reasoning benchmarks:

- MathVista: A comprehensive benchmark combining challenges from diverse mathematical and visual tasks. It consists of 6,141 examples, derived from 28 existing multimodal datasets involving mathematics and 3 newly created datasets (i.e., IQTest, FunctionQA, and PaperQA).
- MathVerse: An all-around visual math benchmark designed for an equitable and in-depth evaluation of Multi-modal Large Language Models (MLLMs). It includes 2,612 high-quality, multi-subject math problems with diagrams, each transformed into six distinct versions, totaling 15K test samples.
- Math Vision: A meticulously curated collection of 3,040 high-quality mathematical problems with visual contexts sourced from real math competitions. Spanning 16 distinct mathematical disciplines and graded across 5 levels of difficulty.
- OlypamidBench: A dataset comprising 8,476 math and physics problems sourced from International Olympiads, Chinese Olympiads, and the Chinese College Entrance Exam (GaoKao). It features expert-level annotations for step-by-step reasoning.
- WeMath: Inspired by human-like mathematical reasoning, WeMath is the first benchmark specifically designed to explore problem-solving principles beyond end-to-end performance. It meticulously collects and categorizes 6.5K visual math problems, spanning 67 hierarchical knowledge concepts and 5 layers of knowledge granularity.
- MMK12_test: A dataset focusing on subject-specific tasks in physics, chemistry, biology, and mathematics. It includes questions with verified answers and is designed to evaluate subject-specific reasoning capabilities.

A.2 BASELINES

Following the taxonomy used in Table 1, we group baseline systems into three categories:

- Closed-source proprietary MLLMs: Claude3.7-Sonnet, GPT-4o, o1, Gemini2-flash.
- Open-source base MLLMs: InternVL2.5-VL-8B, Qwen-2.5-VL-7B, InternVL2.5-VL-38B, InternVL2.5-VL-78B.
- Open-source fine-tuned MLLMs: InternVL2.5-8B-MPO, InternVL2.5-38B-MPO, QVQ-72B-Preview, Adora-7B, R1-Onevision-7B, OpenVLThinker-7B, MM-Eureka-7B, R1-ShareVL-7B.

Our proposed system, **DIVA-GRPO-7B**, is instantiated on the same backbone as Qwen2.5-VL-7B for fair comparison.

B THEORETICAL ANALYSIS OF ADVANTAGE NORMALIZATION AND DIFFICULTY-WEIGHTED BALANCING

Theorem B.1 (Gradient Variance Control). Let $q(\theta)$ be the stochastic policy gradient estimator

$$g(\theta) = \sum_{t=1}^{T} A_t \nabla_{\theta} \log \pi_{\theta}(a_t|s_t),$$

where A_t denotes the advantage function. Suppose $\mathbb{E}[g(\theta)] = \nabla J(\theta)$ is unbiased and $Var[g(\theta)] < \infty$. Then for step size $\eta > 0$, the expected squared error satisfies

$$\mathbb{E}\left[\|\theta_{t+1} - \theta^*\|^2\right] \le \mathbb{E}\left[\|\theta_t - \theta^*\|^2\right] - \eta\|\nabla J(\theta_t)\|^2 + \eta^2 \operatorname{Var}\left[\tilde{g}(\theta_t)\right]. \tag{1}$$

This inequality shows that the convergence rate depends critically on the variance of the gradient estimator. Reducing gradient variance improves optimization stability and accelerates convergence.

Corollary B.2 (Advantage Normalization and Difficulty-Weighted Balancing). *Consider the adjusted gradient estimator*

$$\tilde{g}(\theta) = \sum_{i=1}^{k} \hat{A}(y_i) \nabla_{\theta} \log \pi_{\theta}(y_i),$$

where the adjusted advantage is defined as

$$\hat{A}(y_i) = \exp(k \cdot (D_i - \bar{D}) \cdot \operatorname{sgn}(\tilde{A}(y_i))) \tilde{A}(y_i).$$

Here $\tilde{A}(y_i)$ is the batch-level normalized advantage (either local or global), D_i is the difficulty coefficient of the variant $q^{(i)}$, \bar{D} is the mean difficulty within the group, and k > 0 is a sensitivity parameter.

Then:

- 1. Unbiasedness: Normalization enforces zero-mean scaling, so $\mathbb{E}[\tilde{q}(\theta)] = \nabla J(\theta)$.
- 2. Variance Reduction: Difficulty-weighted scaling adaptively reweights samples. Hard problems amplify correct signals and soften incorrect ones, while easy problems downweight correct signals and penalize incorrect ones more strongly. This rebalancing prevents domination by outliers, ensuring

$$Var[\tilde{g}(\theta)] \leq Var[g(\theta)].$$

Substituting into Theorem B.1 yields

$$\mathbb{E}[\|\theta_{t+1} - \theta^*\|^2] \le \mathbb{E}[\|\theta_t - \theta^*\|^2] - \eta \|\nabla J(\theta_t)\|^2 + \eta^2 \operatorname{Var}[\tilde{g}(\theta_t)]. \tag{2}$$

Hence, the proposed balancing strategy preserves unbiased gradient estimates while reducing update variance, leading to more stable and efficient convergence.

Discussion. Theorem B.1 establishes that variance directly governs the convergence behavior of policy gradient methods. Corollary B.2 demonstrates that our difficulty-weighted and normalized advantage balancing reduces variance while maintaining unbiasedness. Intuitively, this balances contributions across problem difficulties and prevents either global or local advantages from dominating optimization, thereby stabilizing training and improving efficiency.

C THEORETICAL PROOF OF OPTIMAL REWARD BALANCE UNDER Z-SCORE NORMALIZATION

To further justify our design choices, we provide a theoretical proof. Our method adaptively assesses the difficulty of each problem and generates variants to keep the overall difficulty moderate for the current model, aiming to maintain an approximately 50/50 ratio of correct and incorrect samples (rather than relying on a single correct or incorrect sample to produce an advantage). For simplicity, we consider a binary-reward setting, where correct answers receive the maximum reward and incorrect answers receive zero. The proof shows that under this balanced setting, optimization is most efficient: when correct and incorrect samples are equally represented, the estimated gradient aligns most closely with the optimal update direction, leading to more effective model improvement.

Setup and notation. Consider a single batch (or mini-batch) of n rollouts in a GRPO-like procedure. Rewards take only two values $\{0, R_{\max}\}$. Let k be the number of rollouts with reward R_{\max} and set

$$\mu := \frac{k}{n} \in [0, 1].$$

We compute advantages by z-score normalizing rewards over the batch:

$$A_i = \frac{r_i - \bar{r}}{\sigma_r}, \quad \bar{r} = \mu R_{\text{max}}, \quad \sigma_r = \sqrt{\text{Var}(r)} = R_{\text{max}} \sqrt{\mu (1 - \mu)}.$$

Let $g_i := \nabla_\theta \log \pi(a_i|s_i) \in \mathbb{R}^d$ denote the per-sample score-gradient vector. We assume the parameter update direction (up to a positive constant) follows the common policy-gradient form

$$\Delta\theta \propto \frac{1}{n} \sum_{i=1}^{n} A_i g_i.$$

Fix a reference unit vector $v \in \mathbb{R}^d$ that represents the desired "optimal" direction. Define

$$s_{+} := v^{\top} \mathbb{E}[g \mid r = R_{\max}], \qquad s_{-} := v^{\top} \mathbb{E}[g \mid r = 0],$$

the average projection of class gradients onto v.

Lemma C.1 (advantages for binary rewards). In the above notation the two advantage values are

$$A_+:=\frac{R_{\max}-\bar{r}}{\sigma_r}=\sqrt{\frac{1-\mu}{\mu}}, \qquad A_-:=\frac{0-\bar{r}}{\sigma_r}=-\sqrt{\frac{\mu}{1-\mu}}.$$

In particular, $R_{\rm max}$ cancels and does not affect the dependence on μ .

Proof. Direct substitution yields

$$A_{+} = \frac{R_{\text{max}} - \mu R_{\text{max}}}{R_{\text{max}} \sqrt{\mu (1 - \mu)}} = \frac{1 - \mu}{\sqrt{\mu (1 - \mu)}} = \sqrt{\frac{1 - \mu}{\mu}},$$

$$A_{-} = \frac{0 - \mu R_{\text{max}}}{R_{\text{max}} \sqrt{\mu (1 - \mu)}} = -\frac{\mu}{\sqrt{\mu (1 - \mu)}} = -\sqrt{\frac{\mu}{1 - \mu}}.$$

Lemma C.2 (batch update projection onto v). Under the class-mean approximation (aggregating samples of each reward class into their class means), the projection of the update onto v satisfies (up to a positive constant)

$$v^{\top} \Delta \theta \propto \mu A_{+} s_{+} + (1 - \mu) A_{-} s_{-} = \sqrt{\mu (1 - \mu)} (s_{+} - s_{-}).$$

Hence, the absolute projected magnitude is

$$|v^{\top}\Delta\theta| \propto \sqrt{\mu(1-\mu)} |s_{+} - s_{-}|.$$

Proof. Aggregate the sum by reward classes:

$$\Delta\theta \propto \mu A_{+} \mathbb{E}[g \mid r = R_{\text{max}}] + (1 - \mu) A_{-} \mathbb{E}[g \mid r = 0].$$

Projecting onto v and substituting the expressions for A_+ gives

$$v^{\top} \Delta \theta \propto \mu A_{+} s_{+} + (1 - \mu) A_{-} s_{-} = \sqrt{\mu (1 - \mu)} s_{+} - \sqrt{\mu (1 - \mu)} s_{-} = \sqrt{\mu (1 - \mu)} (s_{+} - s_{-}).$$

Taking absolute value yields the stated expression.

Theorem C.3 (optimality of $\mu = \frac{1}{2}$). For any fixed $s_+, s_- \in \mathbb{R}$, the absolute projected update magnitude

$$F(\mu) := \sqrt{\mu(1-\mu)} |s_+ - s_-|$$

over $\mu \in [0,1]$ attains its maximum at $\mu = \frac{1}{2}$. Therefore, under the stated assumptions, a batch with half the samples having reward R_{\max} and half having reward 0 maximizes the expected update magnitude in direction v.

Proof. Since $|s_+ - s_-|$ is independent of μ , it suffices to maximize $g(\mu) := \sqrt{\mu(1-\mu)}$ on [0,1].

$$g(\mu)^2 = \mu(1-\mu) = -\mu^2 + \mu,$$

a concave quadratic with vertex at $\mu = \frac{1}{2}$, where it attains the maximum value $\frac{1}{4}$. Hence $g(\mu)$ is maximized at $\mu = \frac{1}{2}$, and so is $F(\mu)$.

Two representative geometric cases. Here we discuss two extreme yet representative cases separately.

Corollary C.4 (Case A: opposite-class gradients). Assume that the average class gradients are exactly opposite along the reference direction, i.e.

$$s_{-} = -s_{+}$$

Then the projected update satisfies (up to a positive constant)

$$v^{\top} \Delta \theta \propto \sqrt{\mu(1-\mu)} (s_{+} - s_{-}) = 2\sqrt{\mu(1-\mu)} s_{+},$$

and hence the absolute projected magnitude is proportional to

$$|v^{\top} \Delta \theta| \propto 2|s_{+}|\sqrt{\mu(1-\mu)}.$$

Consequently this magnitude is maximized at $\mu = \frac{1}{2}$.

Proof. Substitute $s_- = -s_+$ into the general expression $v^\top \Delta \theta \propto \sqrt{\mu(1-\mu)}(s_+ - s_-)$. This yields the displayed expression, which is a scalar multiple of $\sqrt{\mu(1-\mu)}$. The factor $\sqrt{\mu(1-\mu)}$ is maximized at $\mu = \frac{1}{2}$, hence the result.

Corollary C.5 (Case B: orthogonal-class gradients). Suppose the class-mean gradient for the negative class is orthogonal to the reference direction, i.e.

$$s_{-} = 0$$

while $s_{+} \neq 0$. Then

$$v^{\top} \Delta \theta \propto \sqrt{\mu(1-\mu)} \, s_+,$$

so the absolute projected magnitude is

$$|v^{\top} \Delta \theta| \propto |s_{+}| \sqrt{\mu(1-\mu)},$$

which is again maximized at $\mu = \frac{1}{2}$.

Moreover, consider the stronger geometric picture where the mean gradient of the positive class lies along v with norm $\|g_+\| = \alpha$ and the mean gradient of the negative class is orthogonal with norm $\|g_-\| = \beta$. If the normalized advantage-weighted contributions from the two classes have equal amplitudes (i.e. $\alpha \sqrt{\mu(1-\mu)} = \beta \sqrt{\mu(1-\mu)}$, equivalently $\alpha = \beta$), then the resulting update vector is the sum of two orthogonal vectors of equal magnitude, so the angle ϕ between the update and v satisfies $\cos \phi = 1/\sqrt{2}$ (independent of μ), while the absolute magnitude of the projection onto v still scales as $\sqrt{\mu(1-\mu)}$ and is maximized at $\mu = \frac{1}{2}$.

Proof. The first statement follows immediately from substituting $s_-=0$ into the general projection formula. For the geometric remark, if the two (orthogonal) class-mean vectors have equal weighted amplitudes, their vector sum has length $\sqrt{2}$ times one amplitude, and the projection onto v equals that amplitude; dividing by the total norm gives $\cos\phi=1/\sqrt{2}$. The dependence on μ appears only through the common amplitude factor $\sqrt{\mu(1-\mu)}$, which is maximized at $\mu=\frac{1}{2}$.

Remarks.

- 1. The conclusion does not depend on $R_{\rm max}$: z-score standardization cancels the reward scale.
- 2. If $s_+ > s_-$ then $v^\top \Delta \theta > 0$ and the update moves toward v; if $s_+ < s_-$ the update moves opposite to v. In either case the absolute magnitude of the projection is maximal at $\mu = \frac{1}{2}$.
- 3. The proof uses a simplifying class-mean approximation. In practice each class has internal variance; nonetheless the leading-order dependence of the expected projection on μ is governed by $\sqrt{\mu(1-\mu)}$. Under mild conditions on within-class variance, the qualitative conclusion (maximum at $\mu=\frac{1}{2}$) remains valid in expectation.
- 4. For non-binary rewards the algebra changes: one must analyse $\frac{r_i \bar{r}}{\sigma_r}$ for the full reward distribution. The binary case provides a clear analytic baseline and shows the key role of z-score normalization in making the effective signal scale proportional to $\sqrt{\mu(1-\mu)}$.

Table 4: Performance comparison across different disciplines in MMK12. Bold denotes the best performance among 7B models, and underline marks the best overall performance.

Model	Mathematics	Physics	Chemistry	Biology	Avg.		
Closed-Source Models							
Claude3.7-Sonnet	57.4	53.4	55.4	55.0	55.3		
GPT-4o	55.8	41.2	47.0	55.4	49.9		
o1	81.6	68.8	71.4	74.0	73.9		
Gemini2-flash	76.8	53.6	64.6	66.0	65.2		
Open-Source General Mo	Open-Source General Models						
InternVL2.5-VL-8B	46.8	35.0	50.0	50.8	45.6		
Qwen-2.5-VL-7B	58.4	45.4	56.4	54.0	53.6		
InternVL2.5-VL-38B	61.6	49.8	60.4	60.0	58.0		
Qwen-2.5-VL-32B	71.6	59.4	69.6	66.6	66.8		
InternVL2.5-VL-78B	59.8	53.2	68.0	65.2	61.6		
Qwen-2.5-VL-72B	75.6	64.8	69.6	72.0	70.5		
Open-Source Reasoning Models							
InternVL2.5-8B-MPO	26.6	25.0	42.4	44.0	34.5		
InternVL2.5-38B-MPO	41.4	42.8	55.8	53.2	48.3		
QVQ-72B-Preview	61.4	57.4	62.6	64.4	61.5		
Adora	63.6	50.6	59.0	59.0	58.1		
R1-Onevision	44.8	33.8	39.8	40.8	39.8		
OpenVLThinker	63.0	53.8	60.6	65.0	60.6		
MM-Eureka-7B	71.2	56.2	65.2	65.2	64.5		
DIVA-GRPO-7B (Ours)	78.3	62.2	69.6	70.7	70.2		

Conclusion. This theoretical analysis rigorously justifies the core motivation of our method. When batch advantages are computed via z-score normalization and rewards are binary $\{0, R_{\max}\}$, the expected magnitude of the update projected onto any fixed reference direction v is proportional to $\sqrt{\mu(1-\mu)}$, which attains its maximum when $\mu=\frac{1}{2}$. In other words, a batch balanced with equal numbers of correct and incorrect samples provides the strongest expected directional signal for optimization. This result supports our design choice of adaptively generating problem variants to maintain an approximately 50/50 ratio of correct and incorrect samples, ensuring that gradient updates most efficiently align with the optimal update direction and thereby maximizing model improvement.

D EFFECT OF QUESTION DIFFICULTY ON GRPO OPTIMIZATION

To further validate that providing the model with moderately difficult questions is more conducive to optimization via GRPO, we conducted a new experiment. Two sets of 5,000 samples were drawn from the MMK12 training data: the first set consisted of randomly sampled instances, while the second set comprised instances of moderate difficulty. Both sets were used to train the model under standard GRPO with a rollout parameter of k=5. As shown in Figure 5, training on the moderately difficult data enabled faster and more effective model optimization.

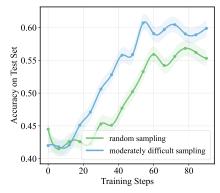


Figure 5: Comparison of GRPO optimization on randomly sampled versus moderately difficult questions.

E Cross-Disciplinary Performance on MMK12

For the MMK12 dataset, we observed an interesting phenomenon: although our model is primarily trained on mathematics problems, it also demonstrates improved reasoning capabilities in physics, chemistry, and biology. The experimental results are summarized in Table. 4. Our model achieves the best performance among 7B models across all four disciplines and even surpasses many closed-source commercial and open-source general large models. Comparative results for other models can be found in Meng et al. (2025).

F PROMPTS USED IN EXPERIMENTS

F.1 PART I — VARIANT GENERATION (PROMPT 1)

Purpose: Generate 5 distinct variants of a problem while preserving the exact same correct answer. Variants must include the token <image> and be wrapped in <variant *>...</variant *>.

```
Generate 5 distinct variants of the following problem that:
1. Preserve the **exact same correct answer** as the original.
2. Use **significantly different wording, sentence structure**
3. You can adjust the sentence |lengtheither making it concise (using streamlined language) or extending it (by explaining the question content in detail or complicating it with advanced language to increase difficulty)|but must ensure correctness.
4. Format of variants as, include <image> in the variants:
<variant1>[First variant's full text]</variant1>
<variant2>[Second variant's full text]</variant2>
...
<variant5>[Fifth variant's full text]</variant5>
**Original Problem:**
```

Expected output (example):

```
<variant1>[... text ... <image> ...]</variant1>
<variant2>[... text ... <image> ...]</variant2>
...
<variant5>[... text ... <image> ...]</variant5>
```

F.2 PART II — REASONING AND VERIFICATION

PROMPT 2: STEP-BY-STEP REASONING (PROMPT_FORMAT_THINK_STEP)

Purpose: Generate a stepwise reasoning chain (3–5 steps) with detailed diagram observations, ending with \boxed[final answer].

```
You are a mathematician, statistician, and geometer. Below, I will present you with a math problem along with its accompanying diagram. Please carefully observe the details in the image.

Given the text, images, generate a step-by-step reasoning process that logically leads to the correct result in the \boxed{}. Requirements:Flexible step count (3-5 steps)...

[full problem text and image here]
```

Expected output (example):

```
<step1> ... observation ... </step1>
<step2> ... inference ... </step2>
<step3> ... inference ... </step3>
<step4> ... conclusion ... </step4>
\boxed{[final answer]}
```

PROMPT 3: ANSWER COMPARISON

 Purpose: Compare two numerical answers (answer1, answer2) ignoring formatting, return ¡answer¿True¡/answer¿ if equal, else ¡answer¿ False¡/answer¿.

```
Compare these two answers numerically, ignoring any formatting
    differences:
Answer 1: {result['answer1']}
Answer 2: {result['answer2']}

Extract just the numerical values from each answer and compare them. If
    the numerical values are the same, return True. Otherwise return
    False. Reply with <answer>True</answer> or <answer>False</answer>
```

PROMPT 4: REFLECTION AND REVISION (PROMPT_FORMAT_THINK_STEP_2)

Purpose: Refine reasoning steps after correctness feedback, without directly inserting the correct answer in steps or reverse-engineering from it.

```
You are a mathematician, statistician, and geometer. Please carefully observe the details in the image. You have already provided the reasoning steps and correct answer above. Do you think your answer is correct? Revise or improve your reasoning steps based on the correct answer.

Emphasize!

- DO NOT include the correct answer in <step>.

- DO NOT reverse-engineer from the answer.

[full problem text and image here]
```

Expected output (example):

```
<step1> ... refined observation ... </step1>
<step2> ... refined inference ... </step2>
<step3> ... refined inference ... </step3>
<step4> ... refined conclusion ... </step4>
\boxed{[final answer]}
```

G CASE STUDY OF TRAIN DATASET

G.1 CASE 1

Problem:

```
The figure <image> below shows the graphs of the functions: \$\$y=x^{2}-1\$\$, \ \$\$y=x^{2}+6x+8\$\$, \ \$\$y=x^{2}-6x+8\$\$, \\ \$\$y=x^{2}-12x+35\$\$ in the same Cartesian coordinate system. The most likely graph for <math>\$\$y=x^{2}-6x+8\$\$ is ____.
```

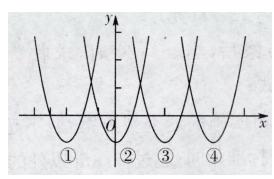


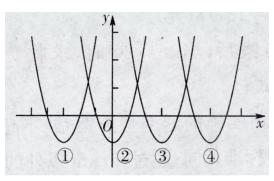
Figure 6: Original Problem

DIFFICULT VARIANT

Text and Image Variant:

Embed both the original problem description and the question directly into the image, and replace the prompt text with the following fixed instruction:

As shown in the <image>, answer the question according to the figure.

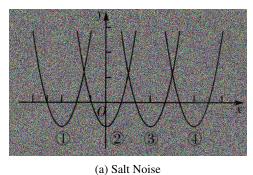


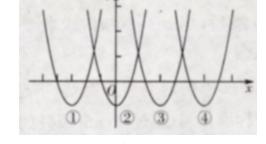
The figure <image> below shows the graphs of the functions: $$\y=x^{2}-1$$, $$\y=x^{2}+6x+8$$, $$\y=x^{2}-6x+8$$, $$\y=x^{2}-12x+35$$ in the same Cartesian coordinate system. The most likely graph for $$\y=x^{2}-6x+8$$ is ____.

Figure 7: Vision-Dominant Problem

Image Variants:

- Salt Noise: The image is perturbed with salt noise to increase complexity in recognizing the object.
- Blur: The image is blurred, making it harder to focus on specific details.
- Gauss Noise: The image is perturbed with Gaussian noise.
- Rotate: The image is rotated, increasing difficulty in spatial reasoning.





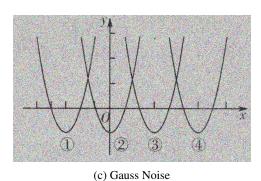




Figure 8: Image Variants: Salt Noise, Blur, Gauss Noise, and Rotate.

Text Variants:

Semantically equivalent reformulations of the original problem, preserving both meaning and the correct answer.

Problem Variant 1:

In the Cartesian plane depicted in the figure <image>, four distinct parabolic curves are illustrated, each corresponding to one of the following equations: $\$\$y=x^{2}-1\$\$$, $\$\$y=x^{2}+6x+8\$\$$, $\$\$y=x^{2}-6x+8\$\$$, and $\$\$y=x^{2}-12x+35\$\$$. Your challenge is to discern and point out the specific curve that is generated by the equation $\$\$y=x^{2}-6x+8\$\$$.

Problem Variant 2:

Among the provided graphs in the figure <image>, identify which one corresponds to the quadratic function $\$\$y=x^{2}-6x+8\$\$$. This function, when compared to the |others $\$\$y=x^{2}-1\$\$$, $\$\$y=x^{2}+6x+8\$\$$, and $\$\$y=x^{2}-12x+35|\$\$$ displays a unique vertex and orientation. Your task is to select the graph that accurately represents $\$\$y=x^{2}-6x+8\$\$$.

EASIER VARIANT

Think Step:

• Step 1:

The image displays four parabolic graphs labeled \bigcirc , \bigcirc , \bigcirc , and \bigcirc . Each graph represents a quadratic function of the form $\setminus (y = ax^2 + bx + c \setminus)$. The general characteristics of these parabolas include their orientation (all open upwards, indicating a positive leading coefficient) and their respective vertices.

• Step 2:

• Step 3:

Next, we analyze the positions of the vertices for each graph:\n- Graph ① has its vertex to the left of the y-axis.\n- Graph ② has its vertex at the origin or very close to it.\n- Graph ③ has its vertex at \\((3, -1)\\), as determined from the vertex form.\n- Graph ④ has its vertex to the right of the y-axis but not at \\((3, -1)\\).\n\n

• Step 4:

Thus, the graph with the vertex at $\((3, -1)\)$ is graph ③. Given the analysis, the function $\(y = x^2 - 6x + 8\)$ corresponds to the graph labeled ③, as it is the only graph with the correct vertex coordinates..

G.2 CASE 2

Problem:

<image>Subtract all brown cubes. Subtract all blue cylinders. How many
 cubes are left?

Figure 9: Original Problem

DIFFICULT VARIANT

Text and Image Variant:

Embed both the original problem description and the question directly into the image, and replace the prompt text with the following fixed instruction:

As shown in the <image>, answer the question according to the figure.

<image>Once all brown cubes and blue cylinders are taken away, what is the number of cubes left?



Figure 10: Vision-Dominant Problem

Image Variants:

- Salt Noise: The image is perturbed with salt noise to increase complexity in recognizing the object.
- Blur: The image is blurred, making it harder to focus on specific details.
- Gauss Noise: The image is perturbed with Gaussian noise.
- Rotate: The image is rotated, increasing difficulty in spatial reasoning.

Text Variants:

Semantically equivalent reformulations of the original problem, preserving both meaning and the correct answer.

Problem Variant 1:

<image>Once all brown cubes and blue cylinders are taken away, what is
the number of cubes left?

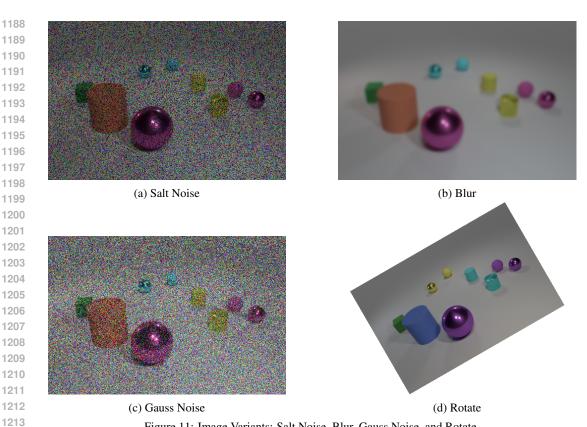


Figure 11: Image Variants: Salt Noise, Blur, Gauss Noise, and Rotate.

Problem Variant 2:

1214 1215 1216

1217

1218

1219 1220

1221 1222

1223 1224

1225

1226

1227

1228

1229

1231

1232 1233 1234

1235

1236

1237

1238

1239 1240 1241

<image>Remove all brown cubes and all blue cylinders. How many cubes remain?

EASIER VARIANT

Think Step:

• Step 1:

Leftmost object: a single cube, distinctly green. Immediately to the right of that cube: a large, dark-blue cylinder. \•n Farther right: two smaller cylinders of a lighter, cyan-blue hue. \•n Several spheres (purple, gold, yellow) appear, but these are not cubes or cylinders. \. No object in the scene exhibits a brown color. $\verb|\nThus|,$ only one cube (green) is present, and there are three blue-family cylinders (one dark, two cyan).

• Step 2:

Interpret the problem instructions with the observed inventory. \. 'n \Subtract all brown cubes". Because none \Subtract all blue cylinders".

• Step 3:

Although three cylinders satisfy the color condition, removing cylinders changes only the cylinder inventory; cubes remain untouched. Perform the mandated subtractions. \•n After eliminating zero brown cubes, the cube inventory is the same as noted in Step 1.

• Step 4:

\•n Removing the three blue cylinders affects only the
cylinder category; the cube category remains exactly as
before. Summarize the effect of both operations. \•n None of
the specified subtractions alters the original cube count, so
the final cube tally equals the initial cube tally recorded in
Step 1..

H CASE STUDY OF TEST DATASET

H.1 CASE 1

Problem.

As shown in the figure, $\triangle ABC\cong\triangle ADE$. From the figure we have $\angle B=70^\circ$, $\angle C=30^\circ$, and $\angle DAC=35^\circ$. Find $\angle EAC$.

Choices: A: 40°, B: 45°, C: 35°, D: 25°.

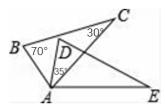


Figure 12: Geometry problem: MathVerse 7.

Our Model — Final Answer: $\boxed{\text{B:} 45^{\circ}}$

Complete derivation (external, step-by-step).

- 1. In $\triangle ABC$, the triangle angle-sum gives $\angle BAC = 180^{\circ} \angle B \angle C = 180^{\circ} 70^{\circ} 30^{\circ} = 80^{\circ}$.
- 2. By congruence $\triangle ABC\cong\triangle ADE$, corresponding angles are equal; hence $\angle DAE=\angle BAC=80^{\circ}$.
- 3. At vertex A, the angle decomposition yields $\angle DAE = \angle DAC + \angle CAE$. Given $\angle DAC = 35^{\circ}$, we have $\angle CAE = 80^{\circ} 35^{\circ} = 45^{\circ}$.
- 4. Therefore $\angle EAC = \angle CAE = 45^{\circ}$, corresponding to choice B.

Other Model (Baseline) — Reported Answer: $A: 40^{\circ}$

Reported derivation (reconstructed from the baseline output).

- 1. The baseline asserts that by congruence $\angle DAE = \angle BAC$ (this assertion is geometrically correct in form).
- 2. The baseline then (incorrectly) reads or treats $\angle BAC$ as 35° and reads $\angle CAD$ (or $\angle DAC$) as 30° (this is a misreading of the labels in the figure / given data).
- 3. Using the (incorrect) equality $\angle BAC = \angle CAD + \angle EAC$, the baseline computes $\angle EAC = 35^{\circ} 30^{\circ} = 5^{\circ}$.

4. The baseline then presents an alternative arithmetic attempt: it treats some combination as an "exterior" or summed angle, computing $35^{\circ} + 30^{\circ} = 65^{\circ}$, and then (without a valid geometric justification) performs $65^{\circ} - 70^{\circ}$ and reports 40° as the final choice.

EXPLICIT ERROR ANALYSIS.

- Label/misreading error. The baseline's step that sets $\angle BAC = 35^{\circ}$ is inconsistent with the given values $\angle B = 70^{\circ}$ and $\angle C = 30^{\circ}$, which imply $\angle BAC = 80^{\circ}$. Misidentifying which labeled angle corresponds to $\angle BAC$ is the root cause.
- Invalid arithmetic and unjustified operations. The baseline mixes different angle-sum operations (interior vs. exterior) without geometric justification and carries out arithmetic (e.g., 65° − 70° → 40° in the reported text) that is both algebraically incorrect and lacks geometric meaning in context.
- Broken logical chain. Because the baseline's premises are incorrect, subsequent deductions (such as subtracting or summing those incorrect angles) do not follow from valid geometric facts (triangle angle-sum, congruence correspondence, or correct angle decomposition).

SUMMARY — WHY OUR MODEL IS PREFERABLE IN THIS CASE

- Accurate visual interpretation: Our model correctly identifies the labels and reads $\angle B$, $\angle C$, and $\angle DAC$ from the figure, avoiding the label-confusion that the baseline exhibits.
- Correct and verifiable reasoning: Each step follows a basic geometric rule (angle-sum in a triangle, congruence \Rightarrow corresponding angles equal, and decomposition of an angle at a vertex), and the arithmetic is straightforward and checkable.
- **Transparent presentation:** The derivation above is externalized and suitable for inclusion in an appendix so that reviewers can trace the reasoning and confirm correctness.

H.2 CASE 2

Problem.

Write the set of numbers represented on the number line in interval notation.

Figure 13: Geometry problem: MathVerse 474.

OUR MODEL — FINAL ANSWER: (-2,-1]

Complete derivation (external, step-by-step).

- 1. Inspect the endpoints shown on the number line: one endpoint is at -2 and the other is at -1.
- 2. Determine inclusion/exclusion from the marker style:
 - -2 is marked with an *open* (hollow) circle $\Rightarrow -2$ is *not* included.
 - -1 is marked with a *solid* (filled) circle $\Rightarrow -1$ is included.
- 3. Translate inclusion/exclusion to interval notation:
 - Excluding -2 uses a parenthesis '(' at the left.
 - Including -1 uses a bracket ']' at the right.
- 4. Therefore the interval is (-2, -1].
- 5. In inequality form this corresponds to $-2 < x \le -1$.

Other Model (Baseline) — Reported Answer: (-2,-1)

Reported derivation (reconstructed from the baseline output).

- 1. The baseline identifies the endpoints as -2 and -1.
- 2. It (incorrectly) interprets both endpoint markers as *open* circles, concluding that neither endpoint is included.
- 3. From that (mis)interpretation it writes the interval using parentheses on both sides and reports (-2, -1).

EXPLICIT ERROR ANALYSIS.

- **Visual misinterpretation error.** The baseline's central mistake is reading the marker at -1 as open when it is actually solid (closed). This single perceptual/mapping error changes ' \leq ' to '<' at the right endpoint and thus changes the bracket type.
- **Notation consequence.** Interval notation is sensitive to endpoint inclusion: confusing a closed endpoint for an open one converts a bracket ']' to a parenthesis ')', producing a different set. Here that error changes the set by including or excluding the point -1.
- **Downstream impact.** Because the baseline misreads the marker, any inequality-form statement or set-membership statement it produces (e.g., -2 < x < -1) will be incorrect for points equal to -1.

SUMMARY — WHY OUR MODEL IS PREFERABLE IN THIS CASE

- Correct visual-to-symbol mapping: Our model correctly maps hollow vs. filled endpoint
 markers to exclusion vs. inclusion and therefore uses the appropriate parenthesis/bracket
 combination.
- Clear, verifiable steps: Each step is an elementary, checkable rule: identify endpoints, read marker style, convert to interval notation, and (optionally) supply the equivalent inequality. This transparency makes verification straightforward for reviewers.
- **Precise final expression:** The answer (-2, -1] cleanly and unambiguously communicates the set of real numbers greater than -2 and less than or equal to -1, matching the figure where -1 is solid.

H.3 CASE 3

Problem.

Given the figure below, find the slope of the line.

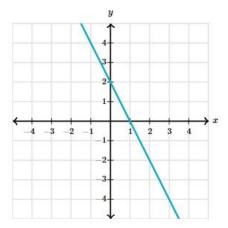


Figure 14: Line slope problem: MathVerse 591

OUR MODEL — FINAL ANSWER: -1Complete derivation (external, step-by-step). 1. The slope of a line passing through two points (x_1, y_1) and (x_2, y_2) is given by: slope = $\frac{y_2 - y_1}{x_2 - x_1}$. 2. From the graph, identify two points on the line: (-1,2) and (1,0). 3. Substitute these points into the slope formula: slope = $\frac{0-2}{1-(-1)} = \frac{-2}{2} = -1$. 4. Therefore, the slope of the line is -1. OTHER MODEL (BASELINE) — REPORTED ANSWER: |-2|Reported derivation (reconstructed from the baseline output). 1. The baseline identifies two points on the line as (1, 2) and (0, 4). 2. Using the slope formula: slope = $\frac{2-4}{1-0} = \frac{-2}{1} = -2$. 3. The baseline reports the final slope as -2. EXPLICIT ERROR ANALYSIS. • **Incorrect point selection:** The baseline misreads the coordinates of points on the line. Using (1,2) and (0,4) does not correspond to the actual line in the figure. • Consequent incorrect slope: Because the points are wrong, the computed slope -2 does not match the true slope of the line, which is -1. • Logical chain broken: All subsequent reasoning is mathematically consistent with the chosen points, but the premise (point selection) is flawed, leading to an incorrect final answer. SUMMARY — WHY OUR MODEL IS PREFERABLE IN THIS CASE • Accurate visual interpretation: Our model correctly identifies the actual points on the line from the figure. • Correct reasoning: Step-by-step application of the slope formula leads directly to the correct answer -1. • Transparent derivation: The reasoning is fully externalized, making it easy for reviewers to verify correctness and consistency with the figure. GENAI USAGE DISCLOSURE In this work, Large Language Models were utilized to aid in refining and polishing the writing. The author(s) affirm that none of the data analysis, methodology development, or theoretical con-tributions in this paper involved content generation or research assistance from the GenAI tool. All

aspects of the study, including code and data, were developed independently.

J LIMITATIONS

Although DIVA-GRPO effectively alleviates reward sparsity and improves performance on multimodal reasoning tasks, some limitations remain. First, the variant generation process for difficult problems requiring intermediate reasoning steps relies on external models, which may introduce potential biases. Second, difficulty-weighted scaling involves hyperparameters that need careful tuning, which reduces out-of-the-box usability. Finally, DIVA-GRPO has been primarily evaluated on multimodal reasoning tasks, and its generalization to non-multimodal tasks or tasks with fundamentally different reward structures remains to be explored.