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ABSTRACT

Reinforcement learning (RL) with group relative policy optimization (GRPO) has
become a widely adopted approach for enhancing the reasoning capabilities of
multimodal large language models (MLLMs). While GRPO enables long-chain
reasoning without a traditional critic model, it often suffers from sparse rewards,
arising from the scarcity of positive feedback on difficult problems, and from ad-
vantage vanishing, which occurs when group-level rewards exhibit high consis-
tency for problems that are too easy or too hard. Existing solutions fall into three
categories: sample enhancement and expansion, which may aggravate vanishing
advantage due to poor control of difficulty distribution; selective sample utiliza-
tion, which fails to fully leverage the value of all data; and indirect reward design,
which may introduce biased optimization directions due to misalignment between
reasoning and the final outcome. However, these approaches overlook a funda-
mental question: for a given problem, how can we ensure that the within-group
reward distribution of responses exhibits enough variance to yield clear opti-
mization signals for each response? To address these issues, we propose DIVA-
GRPO, a difficulty-adaptive variant augmentation advantage method that dynam-
ically adjusts the difficulty distribution of variants for each problem from a global
perspective. Our method dynamically assesses problem difficulty, samples vari-
ants with appropriate difficulty levels, and advantages are computed within both
local and global(a problem and its variants) groups using difficulty-weighted and
normalized scaling. This design alleviates reward sparsity and advantage vanish-
ing, minimizes data waste, and improves training stability. Extensive experiments
on six reasoning benchmarks demonstrate that DIVA-GRPO outperforms existing
approaches in both training efficiency and reasoning performance.

1 INTRODUCTION

Multimodal large language models (MLLMs) (Chen et al., 2024b; Hurst et al., 2024; Laurençon
et al., 2024; Liu et al., 2023; Yin et al., 2024; Wu et al., 2024b; Alayrac et al., 2022; Zhu et al., 2023;
Li et al., 2023) have demonstrated remarkable ability to integrate textual and visual information
for complex reasoning tasks, such as visual question answering (Antol et al., 2015; Xiao et al.,
2024) and multimodal logical reasoning (Huang & Chang, 2022). Nevertheless, the heterogeneous
nature of text and visual modalities makes long-chain reasoning challenging, requiring both careful
observation and stepwise problem-solving. To address these challenges, recent studies have explored
multimodal chain-of-thought approaches (Zhou et al., 2024; Chen et al., 2024a; Wang et al., 2025b),
including Video-of-Thought (Fei et al., 2024), Det-CoT (Wu et al., 2024a), CoI (Meng et al., 2023),
and Grounded-RL (Sarch et al., 2025), which aim to improve reasoning by decomposing problems
or leveraging structured strategies. Complementary to these advances, reinforcement learning (RL)
has emerged as a powerful framework for further enhancing MLLMs: proximal policy optimization
(PPO) (Schulman et al., 2017) and direct preference optimization (DPO) (Rafailov et al., 2023)
are widely used for alignment, while GRPO (Shao et al., 2024) advances long-chain reasoning by
combining lightweight rule-based rewards with group-relative advantage estimation, significantly
boosting both alignment and reasoning efficiency.
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Figure 1: (a) Selective sample utilization relies on only a subset of data, leading to underuse. (b) Sample
enhancement expands data without difficulty awareness, causing even severer advantage sparsity. (c) Our
method adaptively expands the sample space by problem difficulty, ensuring a stable difficulty distribution.

However, directly applying GRPO to MLLMs faces a critical challenge—advantage vanishing
(Huang et al., 2025; Park et al., 2025; Yao et al., 2025; Wang et al., 2025a; Meng et al., 2025;
Zhang et al., 2025; Zhang & Zuo, 2025). GRPO computes relative advantages by comparing sam-
pled responses for a given problem and then standardizes the advantages across all samples. When
a problem is too easy (or too difficult) for the current model, obtaining too few positive (or negative)
rewards can lead to excessively large advantage values, causing high gradient noise and unstable
training. Under extreme conditions, all responses may be entirely correct or incorrect, yielding zero
relative advantage. This not only slows learning but also weakens the model’s reasoning perfor-
mance across problems of varying difficulty. Existing approaches attempt to address this issue in
several ways. One approach is sample enhancement and expansion, which enlarges the problem
space by adding prompts to difficult instances or generating diverse text and image variants, though
it may exacerbate advantage vanishing due to poor control over the difficulty distribution (Huang
et al., 2025; Park et al., 2025; Yao et al., 2025). Another approach is selective sample utilization,
which prioritizes highly effective samples or disregards those with low learning contribution to im-
prove efficiency; however, this may limit exposure to complex problems or reduce data diversity
(Wang et al., 2025a; Meng et al., 2025). Finally, indirect reward design provides finer-grained feed-
back signals to mitigate reward sparsity, but these rewards may not perfectly align with ultimate task
objectives, potentially guiding the model toward suboptimal directions (Zhang et al., 2025; Zhang
& Zuo, 2025).

Although the above methods can mitigate certain instances of advantage vanishing, they all overlook
a critical issue: as shown in Figure 1(c), as training progresses, problem difficulty continuously
decreases, advantage vanishing intensifies, and model training efficiency steadily declines. To ad-
dress this, we propose DIVA-GRPO, an adaptive method that dynamically adjusts problem difficulty
and variant distribution while preserving semantic consistency, and integrates both local (individual
problem) and global (multiple variants derived from the original problem) reward computation. Dur-
ing training, problem difficulty is iteratively assessed based on model responses: simple problems
are augmented with complex text and image perturbations, moderately difficult ones with diverse
text variants, and hard ones with “think-step” reasoning variants, ensuring effective sample uti-
lization and mitigating advantage vanishing. To balance feedback across different difficulty levels,
DIVA-GRPO applies batch z-score normalization and difficulty-weighted scaling, and further intro-
duces reward-range-based rescaling to prevent inflated advantages from minor reward differences.
This enables stable policy optimization, encourages exploration, and enhances long-chain reasoning,
while remaining broadly applicable to GRPO-based methods for improved optimization efficiency.

Extensive experiments validate the effectiveness and efficiency of DIVA-GRPO. Our model ex-
cels across six challenging benchmarks, achieving state-of-the-art performance at the 7B scale, ap-
proaching the accuracy of much larger models and proprietary commercial systems. Moreover,
DIVA-GRPO significantly accelerates training, reaching optimal performance more than 3.17×
faster than standard GRPO, while maintaining stable and informative advantage signals across vary-
ing difficulty levels. These results highlight the substantial improvements in both performance and
training efficiency offered by our model.

Overall, DIVA-GRPO overcomes the limitations of conventional GRPO by combining adaptive diffi-
culty assessment, variant generation, and robust advantage estimation. This framework alleviates re-
ward sparsity and advantage vanishing, while enhancing reasoning stability and performance across
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a wide range of multimodal tasks, from visual question answering to complex logical reasoning.
Our core contributions are as follows:

• Propose DIVA-GRPO, based on dynamic difficulty assessment, using difficulty-adaptive variant
generation and advantage sharing to alleviate reward sparsity and advantage vanishing.

• Introduce joint estimation of local and global advantages, combined with batch z-score normal-
ization and difficulty-weighted scaling, to improve training stability.

• Present a reward-range-based advantage rescaling method, effectively preventing unreasonable
advantage inflation and accelerating convergence.

• Conduct experiments on six mainstream multimodal reasoning benchmarks, demonstrating the
effectiveness and superiority of DIVA-GRPO.

2 CHALLENGE: REWARD SPARSITY AND ADVANTAGE VANISHING

We begin by reviewing the key concepts of Group Relative Policy Optimization (GRPO), which
form the foundation of our difficulty-adaptive variant strategy.

Group Relative Policy Optimization (GRPO). Let Q = {q1, q2, . . . , qN} denote the set of
training problems. For a given problem q, the model πθ generates k candidate responses Yq =
{y1, y2, . . . , yk} through rollouts. Each response yi receives a scalar reward r(yi) ∈ R from a rule-
based evaluation function, such as answer correctness. GRPO computes the relative advantage of
each response within its group by standardizing its reward:

A(yi) =
r(yi)− µr

σr + ϵ
, µr =

1

k

k∑
j=1

r(yj), σr =

√√√√1

k

k∑
j=1

(r(yj)− µr)2,

where ϵ is a small constant for numerical stability. The policy gradient is then estimated as

∇θL(θ) = Eq∼Q, y∼πθ

[
A(y)∇θ log πθ(y|q)

]
.

Reward Sparsity and Advantage Vanishing. GRPO and its extensions often face reward spar-
sity: when the base multimodal model has limited capability or the problem is difficult, only a few
reasoning paths obtain positive rewards, especially in early training. They also suffer from advan-
tage vanishing: since relative advantages are computed within response groups, overly hard or easy
problems lead to all-correct or all-wrong outputs, yielding zero advantages. As training proceeds,
this issue worsens, reducing optimization efficiency and sample utilization.

Motivation. Existing solutions attempt to alleviate these problems through (i) sample enhance-
ment and expansion, which enlarges the problem space without adjusting intrinsic difficulty; (ii)
sample selection and utilization, which improves efficiency but risks discarding valuable hard cases
and reducing diversity; and (iii) indirect reward design, which enriches supervision but may bias op-
timization. While partially effective, these methods cannot guarantee stable reward variance within
each group.

This motivates our central question: how can we preserve stable and informative reward variance
regardless of problem difficulty? We argue that the key lies in dynamically assessing problem
difficulty and adaptively adjusting the sampling of variants, ensuring every problem produces both
positive and negative feedback.

3 DIFFICULTY-ADAPTIVE VARIANT ADVANTAGE WITH GRPO

To address this challenge, we design a difficulty-adaptive method, DIVA-GRPO. Its core idea is
to dynamically assess problem difficulty, adaptively sample semantically consistent variants of dif-
ferent difficulties, and enhance the diversity of rewards within the problem and its variant space.
By computing difficulty-weighted local (for the original problem) and global (for the problem and
its variants) group advantages, the framework mitigates reward sparsity and vanishing advantage
issues. Figure 2 illustrates the overall pipeline.
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Figure 2: Overview of the proposed DIVA-GRPO method. The left side illustrates the difficulty-variant space
from hard to easy. For a given question, we dynamically assess its difficulty based on past rollouts rewards and
adaptively sample variants of different difficulty levels. As shown, when the original question is hard, easier
variants are sampled to ensure reward diversity. We then compute local (the question itself) and global (the
question with its variants) advantages, and obtain the final advantage through difficulty-aware reweighting and
reward-range rescaling to update the policy model.

3.1 DIFFICULTY ASSESSMENT OF SAMPLES

A prerequisite for implementing adaptive strategies is to assign an appropriate difficulty level to each
problem. It is important to note that problem difficulty is neither inherent nor static; rather, it should
be dynamically assessed in line with the evolving capability of the model. To this end, DIVA-GRPO
introduces a difficulty assessment mechanism based on historical rollout outcomes: if most rollouts
for a problem are correct, it is regarded as relatively easy for the current model; otherwise, it is
considered relatively difficult. This assessment is recalibrated at every training epoch, ensuring that
perceived difficulty adapts as the model improves. The resulting difficulty estimates are then used
to guide variant generation and sampling strategies, enabling the model to balance exploration and
exploitation while maintaining meaningful advantage signals continuously.

We define problem difficulty within the range [Dmin, Dmax], where Dmin represents the easiest
level and Dmax the most difficult. At the beginning of training, all problems are initialized at the
midpoint of this range: Dmid = Dmin+Dmax

2 . Let each original problem contain m variants, and
let each variant be rolled out k times. We denote the empirical accuracy of these rollouts as α =
1

mk

∑m
i=1

∑k
j=1 I[yi,j is correct], where I[·] is the indicator function. The difficulty is then updated

according to the following rule:

Dnew = clip
(
Dold + η · (0.5− α), Dmin, Dmax

)
,

where η > 0 is a learning rate controlling the adjustment magnitude, and clip(·, Dmin, Dmax) en-
sures that the difficulty remains within [Dmin, Dmax]. This update rule guarantees that:

• if most rollouts are correct (α → 1), the difficulty decreases;
• if most rollouts fail (α → 0), the difficulty increases;
• if the accuracy is around 50%, the difficulty remains stable.

In this way, difficulty levels evolve smoothly with model performance, allowing more nuanced ad-
justments than the simple “all-correct/all-wrong” rule, and ensuring continuous calibration of sam-
pling strategies throughout training.

3.2 DIFFICULTY-ADAPTIVE VARIANT GENERATION

In this section, we aim to provide each problem with an appropriate advantage. To this end, we intro-
duce a method for generating adaptive variants based on the difficulty assessment of each problem
obtained in the previous section. Let each original problem be denoted as q = (Iq, Tq), where Iq is
the associated image and Tq is the textual description and question. After evaluating the difficulty
Dq ∈ [Dmin, Dmax] of each problem, we generate a set of difficulty-specific consistent variants

4
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Vq = {q(1), q(2), . . . } for training, ensuring that each variant preserves the original answer y∗q while
selectively adjusting its difficulty to optimize the model’s learning. By dynamically adjusting the
characteristics of each variant according to Dq , we aim to ensure that the reward distribution for
each problem provides meaningful advantage signals while maintaining a more balanced profile.

• Simpler problems (Dq < Dmid): Variants are generated by perturbing both the text and the
image: q(i) = (I

(i)
q , T

(i)
q ). Textual variants T

(i)
q are created by rephrasing, restructuring, or

introducing slight linguistic perturbations to the original question, ensuring the answer remains
unchanged. These modifications enhance the model’s sensitivity to subtle differences, thereby
improving robustness. Image variants I

(i)
q are generated through perturbation functions such

as rotation, Gaussian noise, salt-and-pepper noise, speckle noise, and blurring. Stronger or
multiple perturbations increase difficulty while preserving correctness. Alternatively, the textual
information Tq can be embedded within the images in the variant set Vq and provided as images
to convey the problem information.

• Moderate problems (Dq ≈ Dmid): Variants are generated by creating semantically equivalent
textual versions: Vq = {(Iq, T (i)

q ) | T (i)
q is a paraphrase of Tq}. These variants maintain the

original difficulty while diversifying expression. This allows the model to experience multiple
formulations of the same problem, improving generalization to unseen expressions.

• Difficult problems (Dq > Dmid): Variants incorporate partial reasoning guidance: q(i) =

(Iq, Tq⊕R
(i)
q ), where R(i)

q is a sequence of intermediate reasoning steps generated and verified
by a closed-source model. For more difficult problems, additional reasoning steps are provided
as hints. This ensures that even challenging problems produce meaningful advantage signals,
mitigating gradient vanishing and promoting gradual mastery of complex reasoning.

3.3 DIFFICULTY-WEIGHTED AND NORMALIZED ADVANTAGE BALANCING

Before introducing our balancing strategy, we first review the notion of local and global advantages
used in GRPO-based training. While GRPO computes advantages within a single problem, recent
work Yao et al. (2025) introduces semantically consistent variants to enable broader comparisons.
Let an original problem be denoted as q = (Iq, Tq), with associated image Iq and textual description
Tq . For each q, a set of variants Vq = {q(1), . . . , q(N)} is constructed, modifying only text or image
while preserving the ground-truth answer. Two types of advantages are defined:

• Local advantage: Alocal(y
(i)
i ), computed for each problem using the standard GRPO formula.

• Global advantage: Aglobal(y
(j)
i ), computed across all responses in the variant set:

Aglobal(y
(j)
i ) =

r(y
(j)
i )−µq

σq+ϵ , where µq and σq are the mean and standard deviation of rewards
across all responses in Vq .

To ensure that both local and global advantages contribute effectively while accounting for vary-
ing problem difficulty, we propose a two-step balancing strategy: (1) normalization to make local
and global signals comparable, and (2) difficulty-weighted scaling to adaptively rescale advantages
according to each problem’s dynamic difficulty coefficient. This design stabilizes optimization by
preventing dominance of global advantages and aligning reward signals with problem difficulty.

Formally, after sampling multiple variants for each problem, we compute both local and global
advantages. However, two issues arise in this process.

(1) Local–Global imbalance. The magnitudes of local and global advantages are unequal: local
advantages are computed from k rollouts, whereas global advantages are based on m × k samples.
Consequently, global advantages tend to be larger and dominate the optimization, while local signals
are underweighted. To address this issue, we apply batch-level z-score normalization separately:

Ãlocal(y) =
Alocal(y)− µlocal

σlocal + ϵ
, Ãglobal(y) =

Aglobal(y)− µglobal

σglobal + ϵ
,

where µlocal, σlocal and µglobal, σglobal are the mean and std of local and global advantages within a
batch. This ensures that both signals remain comparable and contribute fully to training.
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Table 1: Performance comparison across multimodal mathematical benchmarks. Bold denotes the best per-
formance among 7B models, and underline marks the best overall performance. Evaluation is conducted with
VLMEvalKit (Duan et al., 2024), while results for other models are taken from Meng et al. (2025) and Yao
et al. (2025). For each entry, the score before “/” is our re-evaluation using the officially released checkpoints,
and the score after “/” is reported in the original paper.

Model MathVista MathVerse Mathvision OlypamidBench WeMath MMK12test Avg.
Claude3.7-Sonnet 66.8 52.0 41.3 48.9 72.6 55.3 56.15
GPT-4o 63.8 50.2 30.4 35.0 68.8 49.9 49.68
o1 73.9 57.0 60.3 68.0 98.7 73.9 72.30
Gemini2-flash 70.4 59.3 41.3 51.0 71.4 65.2 59.77

InternVL2.5-VL-8B 64.4 39.5 19.7 12.3 53.5 45.6 39.17
Qwen-2.5-VL-7B 68.2 47.9 25.4 20.2 62.1 53.6 46.23
InternVL2.5-VL-38B 71.9 49.4 31.8 32.0 67.5 58.0 51.77
Qwen-2.5-VL-32B 71.7/74.7 49.9 40.1 30.0 69.1 66.8 54.6
InternVL2.5-VL-78B 72.3 51.7 32.2 31.1 66.3 61.6 52.53
Qwen-2.5-VL-72B 74.8 57.6 38.1 40.4 72.4 70.5 59.0

InternVL2.5-8B-MPO 68.9 35.5 21.5 7.8 53.5 34.5 36.95
InternVL2.5-38B-MPO 73.8 46.5 32.3 25.6 66.2 48.3 48.78
QVQ-72B-Preview 71.4 48.2 35.9 33.2 65.4 61.5 52.60
Adora-7B 73.5 50.1 23.0 20.1 64.2 58.1 48.17
R1-Onevision-7B 64.1 47.1 23.5/29.9 17.3 61.8 39.8 42.27
OpenVLThinker-7B 70.2 47.9 25.3 20.1 64.3 60.6 48.07
MM-Eureka-7B 71.7/73.0 50.3 26.9 20.1 66.1 64.5 49.93
R1-ShareVL-7B 73.5/75.4 52.8 29.5 21.3 67.9 68.8 52.30
SFT-7B 66.4 49.6 21.3 16.2 57.6 54.3 44.23
DIVA-GRPO-7B (Ours) 74.2 57.6 32.1 23.1 69.3 70.2 54.58

(2) Difficulty-weighted scaling. Existing methods treat easy and difficult problems equally when
computing advantages, without accounting for their varying difficulty levels. To encourage the
model to tackle harder problems, we introduce difficulty-weighted scaling after normalization.

Let {D(i)
q }Ni=1 denote the difficulty coefficients of the N variants in a problem group Vq , and let

D̄q = 1
N

∑N
i=1 D

(i)
q be the group-wise mean difficulty. For each response yi associated with variant

q(i), the rescaled advantage is computed as

Â(yi | q(i)) = exp
(
k · (D(i)

q − D̄q) · sgn(Ã(yi))
)
· Ã(yi),

where Ã(yi) is the normalized advantage, sgn(·) is the sign function, and k > 0 is a sensitivity.

Intuitively, when a variant is harder than the group average (D(i)
q > D̄q), correct answers (Ã > 0)

are amplified while incorrect ones are softened. Conversely, when a variant is easier than average,
correct answers are down-weighted and incorrect ones are penalized more heavily.

In this way, the training process achieves difficulty-adaptive optimization, effectively balancing the
contributions of both the relative difficulty within a problem group and the magnitudes of advan-
tages. The theoretical validity of this balancing strategy is rigorously established in Appendix B,
where Theorem B.1 demonstrates that reducing gradient variance accelerates convergence, and
Corollary B.2 shows that our normalization and weighting strategy significantly decreases variance
while preserving unbiased gradient estimates. Moreover, Appendix C mathematically confirms that
the optimization signal is strongest when the ratio of correct to incorrect samples is approximately
1:1, providing a solid theoretical foundation for our dynamic difficulty adjustment mechanism.

3.4 REWARD-RANGE-BASED ADVANTAGE RESCALING (RRB-RESCALING)

In GRPO-based reinforcement learning, we observed that advantage estimation can become unreli-
able when the reward range within a rollout group is small. If rewards are tightly clustered, standard
z-score normalization may exaggerate minor differences, producing misleading optimization sig-
nals. As a result, the model may over-reward trivial gains while overlooking substantial ones.

Consider a reward scheme where correctly formatted responses receive 0.1 and fully correct re-
sponses receive 0.9. Suppose we have two samples, each rolled out 5 times: Sample A with rewards
[0, 0, 0, 0, 0.1] and Sample B with rewards [0, 0, 0, 0, 1]. After applying standard z-score normaliza-
tion, both groups assign the same advantage (−0.45) to the zero-reward rollouts and the same high
advantage (1.79) to the last rollout. This overestimates the gain from minor formatting correctness
in Sample A and underestimates the greater achievement in Sample B.
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Figure 3: Effect of Training Steps on Model Performance on the Validation Set.

To address this issue, we propose reward-range-based advantage rescaling. Let Rq =
{r1, r2, . . . , rk} denote the rewards of all rollouts for a problem q, with the maximum possible
reward range Rmax. We define the reward range and the rescaled advantage as

∆rq = (max(Rq)−min(Rq))/Rmax, Ârange(yi) = ∆rq · Ã(yi)

where Ã(yi) is the normalized advantage obtained via standard z-score. Intuitively, this method
ensures that the magnitude of the advantage reflects the actual variability in rewards, preventing
minor differences from being exaggerated and providing a more reliable optimization signal.

This rescaling method can be applied independently of difficulty-weighted scaling and is compatible
with any GRPO-based framework, improving the stability and efficiency of policy optimization.

4 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate the effectiveness of DIVA-GRPO,
complemented by ablation studies to assess the contributions of its key components. Our evaluation
is driven by the following research questions:

• RQ1 (Effectiveness): How does DIVA-GRPO compare to recent advanced systems?
• RQ2 (Completeness): What impact does removing key components have on model performance?
• RQ3 (Generalization): How well does RRB-Rescaling generalize to standard GRPO?
• RQ4 (Efficiency): What impact does DIVA-GRPO have on training efficiency?

4.1 EXPERIMENTAL SETUP

Benchmarks. Our evaluation covers six diverse benchmarks: MathVista(Lu et al., 2023), Math-
Verse(Zhang et al., 2024), MathVision(Wang et al., 2024), OlypamidBench(He et al., 2024), We-
Math(Qiao et al., 2024), and MMK12-test(Meng et al., 2025).

Baselines. Our comparisons cover three categories of models: (i) closed-source proprietary
MLLMs; (ii) open-source base MLLMs; (iii) open-source fine-tuned MLLMs.

Implementation. Our method is trained on Qwen2.5-VL-7B-Instruct (Bai et al., 2025) with
AdamW at a learning rate of 10−6. Each sample generates k = 5 rollouts. Difficulty scores Dq

are initialized to 5 (Dmin = 1, Dmax = 9) with η = 4. Textual reasoning hints are pre-generated
offline, while image perturbations are applied online. All textual variants and reasoning sequences
are generated offline using GPT-o3.

4.2 MAIN RESULTS (RQ1: EFFECTIVENESS)

We report results on 7B-scale models, with the main experiments conducted on the R1-ShareVL-
52K dataset. DIVA-GRPO demonstrates superior performance compared to both the base models
and other multimodal training approaches. As shown in Table 1, we provide a comprehensive com-
parison against state-of-the-art systems across five widely used and challenging benchmarks.
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Our method achieves state-of-the-art performance across all datasets at the 7B scale, delivering con-
sistently strong results on both Chinese and English benchmarks with an average score of 54.58.
Remarkably, on MathVista, MathVerse, and WeMath, its performance is already on par with the
much larger Qwen2.5-VL-72B, while substantially outperforming several open-source base models
(e.g., Qwen2.5-VL-32B, InternVL2.5-VL-78B) and proprietary systems (e.g., GPT-4o, Claude 3.7-
Sonnet), showcasing notable efficiency and cost-effectiveness. Nevertheless, on more challenging
competition-level mathematics tasks, our method still falls short of ultra-large open-source mod-
els and cutting-edge proprietary systems, likely due to inherent limitations in model capacity and
training data coverage. We further explored applying direct SFT to the backbone model using rea-
soning traces generated by GPT-o3 and found that such direct training not only failed to improve
performance but even underperformed the base model—further underscoring the effectiveness of our
approach. Compared with its backbone model, Qwen2.5-VL-7B, our method consistently improves
results across all benchmarks, achieving an average accuracy gain of 8.23 points, which highlights
its clear advantages over existing multimodal training frameworks.

Figure 4 further illustrates the training dynamics: in the early stage, samples have not yet formed
a clear difficulty distribution, with most concentrated around medium difficulty and exhibiting only
small advantages. As training progresses, the distribution gradually expands toward both easier and
harder problems, and advantage signals become more distinct across difficulty levels. In later stages,
the model maintains informative and balanced advantage signals even on high-difficulty samples,
rather than collapsing into trivial “all-correct” or “all-wrong” states. These dynamics highlight the
effectiveness of DIVA-GRPO in sustaining stable and efficient optimization.

4.3 ABLATION STUDY

RQ2 (Completeness): Component Ablation of DIVA-GRPO

Table 2: Ablation study of DIVA-GRPO, showing that each
component provides gains and the full model achieves the
best performance (accuracy, %).

Method MathVista MathVerse MMK12test Avg.
w/o Variant Generation 70.0 53.7 61.1 61.6
w/o Difficulty-Weighting 69.9 55.7 66.5 64.0
w/o RRB-Rescaling 71.5 55.2 64.7 63.8
w/o G-L Balance 70.8 55.4 66.0 64.1
Full DIVA-GRPO 73.2 56.3 68.8 66.1

We perform ablation studies on the three
core components of DIVA-GRPO at the
7B scale using representative benchmarks
(MathVista, MathVerse, and MMK12test).
Experiments are conducted on 5,000
randomly sampled instances from the
MMK12 dataset to ensure timely and fair
comparisons. We evaluate the impact
of removing Adaptive Variant Generation,
Difficulty Weighting, Reward-Range-Based Advantage Rescaling (RRB-Rescaling), and Global-
Local Balance (G-L Balance), and compare each variant with the full model.

As reported in Table 2, removing any single component consistently decreases performance, with
the full DIVA-GRPO model achieving the highest accuracy across all benchmarks. These results
indicate that all components contribute complementary gains and none can be omitted without per-
formance degradation, highlighting the necessity of the complete model design.

RQ3 (Generalization): Generalization of RRB-Rescaling

Table 3: Evaluation of RRB-Rescaling on standard GRPO.

Method MathVista MathVerse MMK12test Avg.
GRPO (base) 69.3 52.8 58.6 60.23
+ Reward-Range 70.0 53.6 62.9 62.17

To verify the broader applicability of
Reward-Range-Based Advantage Rescal-
ing (RRB-Rescaling), we incorporate it
into standard GRPO without any other
modifications. Table 3 shows that adding
RRB-Rescaling improves the average accuracy from 60.23% to 62.17%, with gains observed across
all three benchmarks. This demonstrates that RRB-Rescaling enhances both stability and perfor-
mance in a general GRPO setting, confirming that this component is not limited to DIVA-GRPO
but can benefit other GRPO-style training frameworks.

RQ4 (Efficiency): Training Efficiency and Stability

We compared the training performance of DIVA-GRPO and GRPO on Qwen2.5-VL-7B. As shown
in Fig. 3c, we measured the number of steps DIVA-GRPO required to reach the test-set opti-
mum within the 150 steps of GRPO training. While GRPO reached its best performance at 130
steps, DIVA-GRPO achieved the same level in just 32 steps—resulting in a 3.17× faster training
speed—while also demonstrating improved training stability.
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(a) Train stage 1 (b) Train stage 2 (c) Train stage 3

Figure 4: 3D kernel density estimation (KDE) surfaces of the joint distribution between problem difficulty and
gloal advantage across different training stage. The surface height reflects the sample density, illustrating how
the model’s learning dynamics evolve with respect to difficulty and advantage.

5 RELATED WORK

With the increasing application of GRPO in MLLMs to enhance reasoning, several challenges re-
main unresolved, particularly sparse rewards and advantage vanishing. Existing solutions can be
grouped into three main approaches: sample augmentation and problem-space expansion, sample
selection and utilization, and reward design.

Sample augmentation and expansion methods aim to enlarge the problem space using difficulty-
aware mechanisms or diverse sample generation to improve exploration and generalization. Hint-
GRPO (Huang et al., 2025) adapts hints based on task difficulty, enhancing data efficiency for hard
samples. DeepVideo-R1 (Park et al., 2025) adjusts difficulty to help variants regain advantage,
though it doesn’t reshape single-sample difficulty distributions, leaving sparse rewards in extreme
cases. R1-shareVL (Yao et al., 2025) expands the space with multiple variants and applies global
advantage to shift difficulty, but lacks a complete mechanism to mitigate sparsity.

Sample selection and utilization methods focus computation on effective data while ignoring
unhelpful samples, improving efficiency but risking premature abandonment of hard cases. VL-
Rethinker (Wang et al., 2025a) uses selective replay to alleviate reward sparsity and preserves ad-
vantage diversity by replaying strong past samples. MM-Eureka (Meng et al., 2025) selects prompts
with partial correctness, filtering zero-advantage cases to stabilize training. While helpful, these
methods do not maximize overall sample utilization or provide a global optimization view.

Reward design methods aim to provide denser, continuous signals to reduce sparsity and stabilize
reasoning. MM-Eureka introduces a hyperparameter λ to weight format rewards. R1-VL (Zhang
et al., 2025) proposes StepGRPO, incorporating reasoning-accuracy and step-wise validity rewards
for denser feedback. DeepVideo-R1 introduces Reg-GRPO, transforming GRPO into a regression
loss, while GRPO-LEAD (Zhang & Zuo, 2025) weights hard problems in advantage computation
via dynamic difficulty awareness. Though these methods aid convergence, rewards often remain
indirect and may misalign with final objectives, potentially misguiding the model.

6 CONCLUSION

In this work, we identified and addressed a fundamental limitation of GRPO-based reinforcement
learning for multimodal large language models: reward sparsity and vanishing advantages, which
hinder effective long-chain reasoning. To overcome this, we proposed DIVA-GRPO, a difficulty-
adaptive variant advantage framework that dynamically assesses problem difficulty, generates tai-
lored variants, and computes both local and global advantages with difficulty-aware normalization
and reward-range-based rescaling. This design ensures stable and informative optimization sig-
nals across problems of varying difficulty, mitigates reward sparsity, and enhances training stability.
Extensive experiments on six multimodal reasoning benchmarks demonstrated that DIVA-GRPO
consistently outperforms existing GRPO-based methods in reasoning accuracy, convergence speed,
and training efficiency. Overall, our approach provides a generalizable framework for improving
reinforcement learning in MLLMs, offering a principled way to balance exploration, sample utiliza-
tion, and advantage estimation for complex multimodal reasoning tasks.
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REPRODUCIBILITY STATEMENT

To ensure full reproducibility of our experiments, we provide all code, configurations, and instruc-
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and detailed README documentation describing the dependencies and steps to reproduce the re-
ported results.
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A DETAILED BENCHMARKS AND BASELINES

A.1 BENCHMARKS

We evaluate six multimodal mathematical reasoning benchmarks:

• MathVista: A comprehensive benchmark combining challenges from diverse mathematical and
visual tasks. It consists of 6,141 examples, derived from 28 existing multimodal datasets involving
mathematics and 3 newly created datasets (i.e., IQTest, FunctionQA, and PaperQA).

• MathVerse: An all-around visual math benchmark designed for an equitable and in-depth eval-
uation of Multi-modal Large Language Models (MLLMs). It includes 2,612 high-quality, multi-
subject math problems with diagrams, each transformed into six distinct versions, totaling 15K
test samples.

• MathVision: A meticulously curated collection of 3,040 high-quality mathematical problems with
visual contexts sourced from real math competitions. Spanning 16 distinct mathematical disci-
plines and graded across 5 levels of difficulty.

• OlypamidBench: A dataset comprising 8,476 math and physics problems sourced from Inter-
national Olympiads, Chinese Olympiads, and the Chinese College Entrance Exam (GaoKao). It
features expert-level annotations for step-by-step reasoning.

• WeMath: Inspired by human-like mathematical reasoning, WeMath is the first benchmark specif-
ically designed to explore problem-solving principles beyond end-to-end performance. It meticu-
lously collects and categorizes 6.5K visual math problems, spanning 67 hierarchical knowledge
concepts and 5 layers of knowledge granularity.

• MMK12 test: A dataset focusing on subject-specific tasks in physics, chemistry, biology, and
mathematics. It includes questions with verified answers and is designed to evaluate subject-
specific reasoning capabilities.

A.2 BASELINES

Following the taxonomy used in Table 1, we group baseline systems into three categories:

• Closed-source proprietary MLLMs: Claude3.7-Sonnet, GPT-4o, o1, Gemini2-flash.
• Open-source base MLLMs: InternVL2.5-VL-8B, Qwen-2.5-VL-7B, InternVL2.5-VL-

38B, InternVL2.5-VL-78B.
• Open-source fine-tuned MLLMs: InternVL2.5-8B-MPO, InternVL2.5-38B-MPO, QVQ-

72B-Preview, Adora-7B, R1-Onevision-7B, OpenVLThinker-7B, MM-Eureka-7B, R1-
ShareVL-7B.

Our proposed system, DIVA-GRPO-7B, is instantiated on the same backbone as Qwen2.5-VL-7B
for fair comparison.

B THEORETICAL ANALYSIS OF ADVANTAGE NORMALIZATION AND
DIFFICULTY-WEIGHTED BALANCING

Theorem B.1 (Gradient Variance Control). Let g(θ) be the stochastic policy gradient estimator

g(θ) =

T∑
t=1

At ∇θ log πθ(at|st),

where At denotes the advantage function. Suppose E[g(θ)] = ∇J(θ) is unbiased and Var[g(θ)] <
∞. Then for step size η > 0, the expected squared error satisfies

E
[
∥θt+1 − θ∗∥2

]
≤ E

[
∥θt − θ∗∥2

]
− η∥∇J(θt)∥2 + η2 Var[g̃(θt)]. (1)

This inequality shows that the convergence rate depends critically on the variance of the gradient
estimator. Reducing gradient variance improves optimization stability and accelerates convergence.
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Corollary B.2 (Advantage Normalization and Difficulty-Weighted Balancing). Consider the ad-
justed gradient estimator

g̃(θ) =

k∑
i=1

Â(yi)∇θ log πθ(yi),

where the adjusted advantage is defined as

Â(yi) = exp
(
k · (Di − D̄) · sgn(Ã(yi))

)
Ã(yi).

Here Ã(yi) is the batch-level normalized advantage (either local or global), Di is the difficulty
coefficient of the variant q(i), D̄ is the mean difficulty within the group, and k > 0 is a sensitivity
parameter.

Then:

1. Unbiasedness: Normalization enforces zero-mean scaling, so E[g̃(θ)] = ∇J(θ).

2. Variance Reduction: Difficulty-weighted scaling adaptively reweights samples. Hard
problems amplify correct signals and soften incorrect ones, while easy problems down-
weight correct signals and penalize incorrect ones more strongly. This rebalancing pre-
vents domination by outliers, ensuring

Var[g̃(θ)] ≤ Var[g(θ)].

Substituting into Theorem B.1 yields

E
[
∥θt+1 − θ∗∥2

]
≤ E

[
∥θt − θ∗∥2

]
− η∥∇J(θt)∥2 + η2 Var[g̃(θt)]. (2)

Hence, the proposed balancing strategy preserves unbiased gradient estimates while reducing up-
date variance, leading to more stable and efficient convergence.

Discussion. Theorem B.1 establishes that variance directly governs the convergence behavior of
policy gradient methods. Corollary B.2 demonstrates that our difficulty-weighted and normalized
advantage balancing reduces variance while maintaining unbiasedness. Intuitively, this balances
contributions across problem difficulties and prevents either global or local advantages from domi-
nating optimization, thereby stabilizing training and improving efficiency.

C THEORETICAL PROOF OF OPTIMAL REWARD BALANCE UNDER Z-SCORE
NORMALIZATION

To further justify our design choices, we provide a theoretical proof. Our method adaptively assesses
the difficulty of each problem and generates variants to keep the overall difficulty moderate for the
current model, aiming to maintain an approximately 50/50 ratio of correct and incorrect samples
(rather than relying on a single correct or incorrect sample to produce an advantage). For simplicity,
we consider a binary-reward setting, where correct answers receive the maximum reward and incor-
rect answers receive zero. The proof shows that under this balanced setting, optimization is most
efficient: when correct and incorrect samples are equally represented, the estimated gradient aligns
most closely with the optimal update direction, leading to more effective model improvement.

Setup and notation. Consider a single batch (or mini-batch) of n rollouts in a GRPO-like proce-
dure. Rewards take only two values {0, Rmax}. Let k be the number of rollouts with reward Rmax

and set
µ :=

k

n
∈ [0, 1].

We compute advantages by z-score normalizing rewards over the batch:

Ai =
ri − r̄

σr
, r̄ = µRmax, σr =

√
Var(r) = Rmax

√
µ(1− µ).
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Let gi := ∇θ log π(ai|si) ∈ Rd denote the per-sample score-gradient vector. We assume the param-
eter update direction (up to a positive constant) follows the common policy-gradient form

∆θ ∝ 1

n

n∑
i=1

Ai gi.

Fix a reference unit vector v ∈ Rd that represents the desired “optimal” direction. Define

s+ := v⊤E[g | r = Rmax], s− := v⊤E[g | r = 0],

the average projection of class gradients onto v.

Lemma C.1 (advantages for binary rewards). In the above notation the two advantage values are

A+ :=
Rmax − r̄

σr
=

√
1− µ

µ
, A− :=

0− r̄

σr
= −

√
µ

1− µ
.

In particular, Rmax cancels and does not affect the dependence on µ.

Proof. Direct substitution yields

A+ =
Rmax − µRmax

Rmax

√
µ(1− µ)

=
1− µ√
µ(1− µ)

=

√
1− µ

µ
,

A− =
0− µRmax

Rmax

√
µ(1− µ)

= − µ√
µ(1− µ)

= −
√

µ

1− µ
.

Lemma C.2 (batch update projection onto v). Under the class-mean approximation (aggregating
samples of each reward class into their class means), the projection of the update onto v satisfies
(up to a positive constant)

v⊤∆θ ∝ µA+s+ + (1− µ)A−s− =
√
µ(1− µ) (s+ − s−).

Hence, the absolute projected magnitude is∣∣v⊤∆θ
∣∣ ∝

√
µ(1− µ) |s+ − s−|.

Proof. Aggregate the sum by reward classes:

∆θ ∝ µA+ E[g | r = Rmax] + (1− µ)A− E[g | r = 0].

Projecting onto v and substituting the expressions for A± gives

v⊤∆θ ∝ µA+s+ + (1− µ)A−s− =
√
µ(1− µ) s+ −

√
µ(1− µ) s− =

√
µ(1− µ) (s+ − s−).

Taking absolute value yields the stated expression.

Theorem C.3 (optimality of µ = 1
2 ). For any fixed s+, s− ∈ R, the absolute projected update

magnitude
F (µ) :=

√
µ(1− µ) |s+ − s−|

over µ ∈ [0, 1] attains its maximum at µ = 1
2 . Therefore, under the stated assumptions, a batch

with half the samples having reward Rmax and half having reward 0 maximizes the expected update
magnitude in direction v.

Proof. Since |s+ − s−| is independent of µ, it suffices to maximize g(µ) :=
√

µ(1− µ) on [0, 1].
Note

g(µ)2 = µ(1− µ) = −µ2 + µ,

a concave quadratic with vertex at µ = 1
2 , where it attains the maximum value 1

4 . Hence g(µ) is
maximized at µ = 1

2 , and so is F (µ).
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Two representative geometric cases. Here we discuss two extreme yet representative cases sep-
arately.
Corollary C.4 (Case A: opposite-class gradients). Assume that the average class gradients are
exactly opposite along the reference direction, i.e.

s− = −s+.

Then the projected update satisfies (up to a positive constant)

v⊤∆θ ∝
√
µ(1− µ) (s+ − s−) = 2

√
µ(1− µ) s+,

and hence the absolute projected magnitude is proportional to∣∣v⊤∆θ
∣∣ ∝ 2|s+|

√
µ(1− µ).

Consequently this magnitude is maximized at µ = 1
2 .

Proof. Substitute s− = −s+ into the general expression v⊤∆θ ∝
√

µ(1− µ)(s+ − s−). This
yields the displayed expression, which is a scalar multiple of

√
µ(1− µ). The factor

√
µ(1− µ) is

maximized at µ = 1
2 , hence the result.

Corollary C.5 (Case B: orthogonal-class gradients). Suppose the class-mean gradient for the neg-
ative class is orthogonal to the reference direction, i.e.

s− = 0,

while s+ ̸= 0. Then
v⊤∆θ ∝

√
µ(1− µ) s+,

so the absolute projected magnitude is∣∣v⊤∆θ
∣∣ ∝ |s+|

√
µ(1− µ),

which is again maximized at µ = 1
2 .

Moreover, consider the stronger geometric picture where the mean gradient of the positive class
lies along v with norm ∥g+∥ = α and the mean gradient of the negative class is orthogonal with
norm ∥g−∥ = β. If the normalized advantage-weighted contributions from the two classes have
equal amplitudes (i.e. α

√
µ(1− µ) = β

√
µ(1− µ), equivalently α = β), then the resulting update

vector is the sum of two orthogonal vectors of equal magnitude, so the angle ϕ between the update
and v satisfies cosϕ = 1/

√
2 (independent of µ), while the absolute magnitude of the projection

onto v still scales as
√
µ(1− µ) and is maximized at µ = 1

2 .

Proof. The first statement follows immediately from substituting s− = 0 into the general projection
formula. For the geometric remark, if the two (orthogonal) class-mean vectors have equal weighted
amplitudes, their vector sum has length

√
2 times one amplitude, and the projection onto v equals

that amplitude; dividing by the total norm gives cosϕ = 1/
√
2. The dependence on µ appears only

through the common amplitude factor
√
µ(1− µ), which is maximized at µ = 1

2 .

Remarks.

1. The conclusion does not depend on Rmax: z-score standardization cancels the reward scale.
2. If s+ > s− then v⊤∆θ > 0 and the update moves toward v; if s+ < s− the update moves

opposite to v. In either case the absolute magnitude of the projection is maximal at µ = 1
2 .

3. The proof uses a simplifying class-mean approximation. In practice each class has inter-
nal variance; nonetheless the leading-order dependence of the expected projection on µ is
governed by

√
µ(1− µ). Under mild conditions on within-class variance, the qualitative

conclusion (maximum at µ = 1
2 ) remains valid in expectation.

4. For non-binary rewards the algebra changes: one must analyse ri−r̄
σr

for the full reward
distribution. The binary case provides a clear analytic baseline and shows the key role of
z-score normalization in making the effective signal scale proportional to

√
µ(1− µ).
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Table 4: Performance comparison across different disciplines in MMK12. Bold denotes the best performance
among 7B models, and underline marks the best overall performance.

Model Mathematics Physics Chemistry Biology Avg.
Closed-Source Models
Claude3.7-Sonnet 57.4 53.4 55.4 55.0 55.3
GPT-4o 55.8 41.2 47.0 55.4 49.9
o1 81.6 68.8 71.4 74.0 73.9
Gemini2-flash 76.8 53.6 64.6 66.0 65.2

Open-Source General Models
InternVL2.5-VL-8B 46.8 35.0 50.0 50.8 45.6
Qwen-2.5-VL-7B 58.4 45.4 56.4 54.0 53.6
InternVL2.5-VL-38B 61.6 49.8 60.4 60.0 58.0
Qwen-2.5-VL-32B 71.6 59.4 69.6 66.6 66.8
InternVL2.5-VL-78B 59.8 53.2 68.0 65.2 61.6
Qwen-2.5-VL-72B 75.6 64.8 69.6 72.0 70.5

Open-Source Reasoning Models
InternVL2.5-8B-MPO 26.6 25.0 42.4 44.0 34.5
InternVL2.5-38B-MPO 41.4 42.8 55.8 53.2 48.3
QVQ-72B-Preview 61.4 57.4 62.6 64.4 61.5
Adora 63.6 50.6 59.0 59.0 58.1
R1-Onevision 44.8 33.8 39.8 40.8 39.8
OpenVLThinker 63.0 53.8 60.6 65.0 60.6
MM-Eureka-7B 71.2 56.2 65.2 65.2 64.5
DIVA-GRPO-7B (Ours) 78.3 62.2 69.6 70.7 70.2

Conclusion. This theoretical analysis rigorously justifies the core motivation of our method. When
batch advantages are computed via z-score normalization and rewards are binary {0, Rmax}, the
expected magnitude of the update projected onto any fixed reference direction v is proportional
to

√
µ(1− µ), which attains its maximum when µ = 1

2 . In other words, a batch balanced with
equal numbers of correct and incorrect samples provides the strongest expected directional signal
for optimization. This result supports our design choice of adaptively generating problem variants
to maintain an approximately 50/50 ratio of correct and incorrect samples, ensuring that gradient
updates most efficiently align with the optimal update direction and thereby maximizing model
improvement.

D EFFECT OF QUESTION DIFFICULTY ON GRPO OPTIMIZATION

To further validate that providing the model with mod-
erately difficult questions is more conducive to op-
timization via GRPO, we conducted a new experi-
ment. Two sets of 5,000 samples were drawn from the
MMK12 training data: the first set consisted of ran-
domly sampled instances, while the second set com-
prised instances of moderate difficulty. Both sets were
used to train the model under standard GRPO with a
rollout parameter of k = 5. As shown in Figure 5,
training on the moderately difficult data enabled faster
and more effective model optimization.
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Figure 5: Comparison of GRPO optimiza-
tion on randomly sampled versus moder-
ately difficult questions.
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E CROSS-DISCIPLINARY PERFORMANCE ON MMK12

For the MMK12 dataset, we observed an interesting phenomenon: although our model is primarily
trained on mathematics problems, it also demonstrates improved reasoning capabilities in physics,
chemistry, and biology. The experimental results are summarized in Table. 4. Our model achieves
the best performance among 7B models across all four disciplines and even surpasses many closed-
source commercial and open-source general large models. Comparative results for other models can
be found in Meng et al. (2025).

F PROMPTS USED IN EXPERIMENTS

F.1 PART I — VARIANT GENERATION (PROMPT 1)

Purpose: Generate 5 distinct variants of a problem while preserving the exact same correct answer.
Variants must include the token <image> and be wrapped in <variant*>...</variant*>.

Generate 5 distinct variants of the following problem that:
1. Preserve the **exact same correct answer** as the original.
2. Use **significantly different wording, sentence structure**
3. You can adjust the sentence |lengtheither making it concise (using

streamlined language) or extending it (by explaining the question
content in detail or complicating it with advanced language to
increase difficulty)|but must ensure correctness.

4. Format of variants as, include <image> in the variants:
<variant1>[First variant’s full text]</variant1>
<variant2>[Second variant’s full text]</variant2>
...
<variant5>[Fifth variant’s full text]</variant5>
**Original Problem:**

Expected output (example):

<variant1>[... text ... <image> ...]</variant1>
<variant2>[... text ... <image> ...]</variant2>
...
<variant5>[... text ... <image> ...]</variant5>

F.2 PART II — REASONING AND VERIFICATION

PROMPT 2: STEP-BY-STEP REASONING (PROMPT FORMAT THINK STEP)

Purpose: Generate a stepwise reasoning chain (3–5 steps) with detailed diagram observations, end-
ing with \boxed[final answer].

You are a mathematician, statistician, and geometer. Below, I will
present you with a math problem along with its accompanying diagram.
Please carefully observe the details in the image.

Given the text, images, generate a step-by-step reasoning process that
logically leads to the correct result in the \boxed{}.
Requirements:Flexible step count (3-5 steps)...

[full problem text and image here]

Expected output (example):

<step1> ... observation ... </step1>
<step2> ... inference ... </step2>
<step3> ... inference ... </step3>
<step4> ... conclusion ... </step4>
\boxed{[final answer]}
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PROMPT 3: ANSWER COMPARISON

Purpose: Compare two numerical answers (answer1, answer2) ignoring formatting, return ¡an-
swer¿True¡/answer¿ if equal, else ¡answer¿False¡/answer¿.

Compare these two answers numerically, ignoring any formatting
differences:

Answer 1: {result[’answer1’]}
Answer 2: {result[’answer2’]}

Extract just the numerical values from each answer and compare them. If
the numerical values are the same, return True. Otherwise return
False. Reply with <answer>True</answer> or <answer>False</answer>

PROMPT 4: REFLECTION AND REVISION (PROMPT FORMAT THINK STEP 2)

Purpose: Refine reasoning steps after correctness feedback, without directly inserting the correct
answer in steps or reverse-engineering from it.

You are a mathematician, statistician,
and geometer. Please carefully observe the details in the image.
You have already provided the reasoning steps and correct answer above.
Do you think your answer is correct? Revise or improve your reasoning
steps based on the correct answer.
Emphasize!
- DO NOT include the correct answer in <step>.
- DO NOT reverse-engineer from the answer.
[full problem text and image here]

Expected output (example):

<step1> ... refined observation ... </step1>
<step2> ... refined inference ... </step2>
<step3> ... refined inference ... </step3>
<step4> ... refined conclusion ... </step4>
\boxed{[final answer]}

G CASE STUDY OF TRAIN DATASET

G.1 CASE 1

Problem:

The figure <image> below shows the graphs of the functions:
$$y=xˆ{2}-1$$, $$y=xˆ{2}+6x+8$$, $$y=xˆ{2}-6x+8$$,
$$y=xˆ{2}-12x+35$$ in the same Cartesian coordinate system. The most
likely graph for $$y=xˆ{2}-6x+8$$ is ___.

Figure 6: Original Problem
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DIFFICULT VARIANT

Text and Image Variant:

Embed both the original problem description and the question directly into the image, and replace
the prompt text with the following fixed instruction:

As shown in the <image>, answer the question according to the figure.

Figure 7: Vision-Dominant Problem
Image Variants:

• Salt Noise: The image is perturbed with salt noise to increase complexity in recognizing
the object.

• Blur: The image is blurred, making it harder to focus on specific details.

• Gauss Noise: The image is perturbed with Gaussian noise.

• Rotate: The image is rotated, increasing difficulty in spatial reasoning.

(a) Salt Noise (b) Blur

(c) Gauss Noise (d) Rotate

Figure 8: Image Variants: Salt Noise, Blur, Gauss Noise, and Rotate.

Text Variants:
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Semantically equivalent reformulations of the original problem, preserving both meaning and the
correct answer.

Problem Variant 1:

In the Cartesian plane depicted in the figure <image>, four distinct
parabolic curves are illustrated, each corresponding to one of the
following equations: $$y=xˆ{2}-1$$, $$y=xˆ{2}+6x+8$$,
$$y=xˆ{2}-6x+8$$, and $$y=xˆ{2}-12x+35$$. Your challenge is to
discern and point out the specific curve that is generated by the
equation $$y=xˆ{2}-6x+8$$.

Problem Variant 2:

Among the provided graphs in the figure <image>, identify which one
corresponds to the quadratic function $$y=xˆ{2}-6x+8$$. This
function, when compared to the |others$$y=xˆ{2}-1$$,
$$y=xˆ{2}+6x+8$$, and $$y=xˆ{2}-12x+35|$$displays a unique vertex
and orientation. Your task is to select the graph that accurately
represents $$y=xˆ{2}-6x+8$$.

EASIER VARIANT

Think Step:

• Step 1:

The image displays four parabolic graphs labeled 1⃝, 2⃝, 3⃝,
and 4⃝. Each graph represents a quadratic function of the form
\\(y = axˆ2 + bx + c\\). The general characteristics of these
parabolas include their orientation (all open upwards,
indicating a positive leading coefficient) and their
respective vertices.

• Step 2:

To identify which graph corresponds to the function \\(y =
xˆ2 - 6x + 8\\), we first rewrite this function in vertex
form. Completing the square:\n\n\\[ y = xˆ2 - 6x + 8 = (xˆ2 -
6x + 9) - 9 + 8 = (x-3)ˆ2 - 1 \\]\n\nThis reveals that the
vertex of the parabola is at the point \\((3, -1)\\).

• Step 3:

Next, we analyze the positions of the vertices for each
graph:\n- Graph 1⃝ has its vertex to the left of the
y-axis.\n- Graph 2⃝ has its vertex at the origin or very close
to it.\n- Graph 3⃝ has its vertex at \\((3, -1)\\), as
determined from the vertex form.\n- Graph 4⃝ has its vertex to
the right of the y-axis but not at \\((3, -1)\\).\n\n

• Step 4:

Thus, the graph with the vertex at \\((3, -1)\\) is graph 3⃝.
Given the analysis, the function \\(y = xˆ2 - 6x + 8\\)
corresponds to the graph labeled 3⃝, as it is the only graph
with the correct vertex coordinates..
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G.2 CASE 2

Problem:
<image>Subtract all brown cubes. Subtract all blue cylinders. How many

cubes are left?

Figure 9: Original Problem

DIFFICULT VARIANT

Text and Image Variant:

Embed both the original problem description and the question directly into the image, and replace
the prompt text with the following fixed instruction:
As shown in the <image>, answer the question according to the figure.

Figure 10: Vision-Dominant Problem
Image Variants:

• Salt Noise: The image is perturbed with salt noise to increase complexity in recognizing
the object.

• Blur: The image is blurred, making it harder to focus on specific details.
• Gauss Noise: The image is perturbed with Gaussian noise.
• Rotate: The image is rotated, increasing difficulty in spatial reasoning.

Text Variants:

Semantically equivalent reformulations of the original problem, preserving both meaning and the
correct answer.

Problem Variant 1:
<image>Once all brown cubes and blue cylinders are taken away, what is

the number of cubes left?
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(a) Salt Noise (b) Blur

(c) Gauss Noise (d) Rotate

Figure 11: Image Variants: Salt Noise, Blur, Gauss Noise, and Rotate.

Problem Variant 2:

<image>Remove all brown cubes and all blue cylinders. How many cubes
remain?

EASIER VARIANT

Think Step:

• Step 1:

Leftmost object: a single cube, distinctly green. \•n
Immediately to the right of that cube: a large, dark-blue
cylinder. \•n Farther right: two smaller cylinders of a
lighter, cyan-blue hue. \•n Several spheres (purple, gold,
yellow) appear, but these are not cubes or cylinders. \•n No
object in the scene exhibits a brown color. \nThus, only one
cube (green) is present, and there are three blue-family
cylinders (one dark, two cyan).

• Step 2:

Interpret the problem instructions with the observed
inventory. \•n \Subtract all brown cubes". Because none
exist, this operation leaves the cube count unaffected. \•n
\Subtract all blue cylinders".

• Step 3:
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Although three cylinders satisfy the color condition,
removing cylinders changes only the cylinder inventory; cubes
remain untouched. Perform the mandated subtractions. \•n
After eliminating zero brown cubes, the cube inventory is the
same as noted in Step 1.

• Step 4:
\•n Removing the three blue cylinders affects only the
cylinder category; the cube category remains exactly as
before. Summarize the effect of both operations. \•n None of
the specified subtractions alters the original cube count, so
the final cube tally equals the initial cube tally recorded in
Step 1..

H CASE STUDY OF TEST DATASET

H.1 CASE 1

Problem.
As shown in the figure, △ABC ∼= △ADE. From the figure we have ∠B = 70◦, ∠C = 30◦, and
∠DAC = 35◦. Find ∠EAC.
Choices: A: 40◦, B: 45◦, C: 35◦, D: 25◦.

Figure 12: Geometry problem: MathVerse 7.

OUR MODEL — FINAL ANSWER: B: 45◦

Complete derivation (external, step-by-step).

1. In △ABC, the triangle angle-sum gives ∠BAC = 180◦−∠B−∠C = 180◦−70◦−30◦ =
80◦.

2. By congruence △ABC ∼= △ADE, corresponding angles are equal; hence ∠DAE =
∠BAC = 80◦.

3. At vertex A, the angle decomposition yields ∠DAE = ∠DAC + ∠CAE. Given
∠DAC = 35◦, we have ∠CAE = 80◦ − 35◦ = 45◦.

4. Therefore ∠EAC = ∠CAE = 45◦, corresponding to choice B.

OTHER MODEL (BASELINE) — REPORTED ANSWER: A: 40◦

Reported derivation (reconstructed from the baseline output).

1. The baseline asserts that by congruence ∠DAE = ∠BAC (this assertion is geometrically
correct in form).

2. The baseline then (incorrectly) reads or treats ∠BAC as 35◦ and reads ∠CAD (or ∠DAC)
as 30◦ (this is a misreading of the labels in the figure / given data).

3. Using the (incorrect) equality ∠BAC = ∠CAD + ∠EAC, the baseline computes
∠EAC = 35◦ − 30◦ = 5◦.
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4. The baseline then presents an alternative arithmetic attempt: it treats some combination as
an ”exterior” or summed angle, computing 35◦ + 30◦ = 65◦, and then (without a valid
geometric justification) performs 65◦ − 70◦ and reports 40◦ as the final choice.

EXPLICIT ERROR ANALYSIS.

• Label/misreading error. The baseline’s step that sets ∠BAC = 35◦ is inconsistent with
the given values ∠B = 70◦ and ∠C = 30◦, which imply ∠BAC = 80◦. Misidentifying
which labeled angle corresponds to ∠BAC is the root cause.

• Invalid arithmetic and unjustified operations. The baseline mixes different angle-sum
operations (interior vs. exterior) without geometric justification and carries out arithmetic
(e.g., 65◦ − 70◦ → 40◦ in the reported text) that is both algebraically incorrect and lacks
geometric meaning in context.

• Broken logical chain. Because the baseline’s premises are incorrect, subsequent deduc-
tions (such as subtracting or summing those incorrect angles) do not follow from valid
geometric facts (triangle angle-sum, congruence correspondence, or correct angle decom-
position).

SUMMARY — WHY OUR MODEL IS PREFERABLE IN THIS CASE

• Accurate visual interpretation: Our model correctly identifies the labels and reads ∠B,
∠C, and ∠DAC from the figure, avoiding the label-confusion that the baseline exhibits.

• Correct and verifiable reasoning: Each step follows a basic geometric rule (angle-sum in
a triangle, congruence ⇒ corresponding angles equal, and decomposition of an angle at a
vertex), and the arithmetic is straightforward and checkable.

• Transparent presentation: The derivation above is externalized and suitable for inclusion
in an appendix so that reviewers can trace the reasoning and confirm correctness.

H.2 CASE 2

Problem.
Write the set of numbers represented on the number line in interval notation.

Figure 13: Geometry problem: MathVerse 474.

OUR MODEL — FINAL ANSWER: (−2,−1]

Complete derivation (external, step-by-step).

1. Inspect the endpoints shown on the number line: one endpoint is at −2 and the other is at
−1.

2. Determine inclusion/exclusion from the marker style:

• −2 is marked with an open (hollow) circle ⇒−2 is not included.
• −1 is marked with a solid (filled) circle ⇒−1 is included.

3. Translate inclusion/exclusion to interval notation:

• Excluding −2 uses a parenthesis ‘(’ at the left.
• Including −1 uses a bracket ‘]’ at the right.

4. Therefore the interval is (−2,−1].

5. In inequality form this corresponds to −2 < x ≤ −1.
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OTHER MODEL (BASELINE) — REPORTED ANSWER: (−2,−1)

Reported derivation (reconstructed from the baseline output).

1. The baseline identifies the endpoints as −2 and −1.

2. It (incorrectly) interprets both endpoint markers as open circles, concluding that neither
endpoint is included.

3. From that (mis)interpretation it writes the interval using parentheses on both sides and
reports (−2,−1).

EXPLICIT ERROR ANALYSIS.

• Visual misinterpretation error. The baseline’s central mistake is reading the marker at −1
as open when it is actually solid (closed). This single perceptual/mapping error changes ‘≤‘
to ‘<‘ at the right endpoint and thus changes the bracket type.

• Notation consequence. Interval notation is sensitive to endpoint inclusion: confusing a
closed endpoint for an open one converts a bracket ‘]‘ to a parenthesis ‘)‘, producing a
different set. Here that error changes the set by including or excluding the point −1.

• Downstream impact. Because the baseline misreads the marker, any inequality-form state-
ment or set-membership statement it produces (e.g., −2 < x < −1) will be incorrect for
points equal to −1.

SUMMARY — WHY OUR MODEL IS PREFERABLE IN THIS CASE

• Correct visual-to-symbol mapping: Our model correctly maps hollow vs. filled endpoint
markers to exclusion vs. inclusion and therefore uses the appropriate parenthesis/bracket
combination.

• Clear, verifiable steps: Each step is an elementary, checkable rule: identify endpoints, read
marker style, convert to interval notation, and (optionally) supply the equivalent inequality.
This transparency makes verification straightforward for reviewers.

• Precise final expression: The answer (−2,−1] cleanly and unambiguously communicates
the set of real numbers greater than −2 and less than or equal to −1, matching the figure
where −1 is solid.

H.3 CASE 3

Problem.
Given the figure below, find the slope of the line.

Figure 14: Line slope problem: MathVerse 591
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OUR MODEL — FINAL ANSWER: −1

Complete derivation (external, step-by-step).

1. The slope of a line passing through two points (x1, y1) and (x2, y2) is given by:

slope =
y2 − y1
x2 − x1

.

2. From the graph, identify two points on the line: (−1, 2) and (1, 0).

3. Substitute these points into the slope formula:

slope =
0− 2

1− (−1)
=

−2

2
= −1.

4. Therefore, the slope of the line is −1.

OTHER MODEL (BASELINE) — REPORTED ANSWER: −2

Reported derivation (reconstructed from the baseline output).

1. The baseline identifies two points on the line as (1, 2) and (0, 4).

2. Using the slope formula:

slope =
2− 4

1− 0
=

−2

1
= −2.

3. The baseline reports the final slope as −2.

EXPLICIT ERROR ANALYSIS.

• Incorrect point selection: The baseline misreads the coordinates of points on the line.
Using (1, 2) and (0, 4) does not correspond to the actual line in the figure.

• Consequent incorrect slope: Because the points are wrong, the computed slope −2 does
not match the true slope of the line, which is −1.

• Logical chain broken: All subsequent reasoning is mathematically consistent with the
chosen points, but the premise (point selection) is flawed, leading to an incorrect final
answer.

SUMMARY — WHY OUR MODEL IS PREFERABLE IN THIS CASE

• Accurate visual interpretation: Our model correctly identifies the actual points on the
line from the figure.

• Correct reasoning: Step-by-step application of the slope formula leads directly to the
correct answer −1.

• Transparent derivation: The reasoning is fully externalized, making it easy for reviewers
to verify correctness and consistency with the figure.

I GENAI USAGE DISCLOSURE

In this work, Large Language Models were utilized to aid in refining and polishing the writing.
The author(s) affirm that none of the data analysis, methodology development, or theoretical con-
tributions in this paper involved content generation or research assistance from the GenAI tool. All
aspects of the study, including code and data, were developed independently.
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J LIMITATIONS

Although DIVA-GRPO effectively alleviates reward sparsity and improves performance on multi-
modal reasoning tasks, some limitations remain. First, the variant generation process for difficult
problems requiring intermediate reasoning steps relies on external models, which may introduce
potential biases. Second, difficulty-weighted scaling involves hyperparameters that need careful
tuning, which reduces out-of-the-box usability. Finally, DIVA-GRPO has been primarily evaluated
on multimodal reasoning tasks, and its generalization to non-multimodal tasks or tasks with funda-
mentally different reward structures remains to be explored.
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