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Abstract
Due to the heterogeneity of real-world data, the widely accepted independent and identically dis-
tributed (IID) assumption has been criticized in recent studies on causality. In this paper, we argue
that instead of being a questionable assumption, IID is a fundamental task-relevant property that
needs to be learned. Consider k independent random vectors Xi=1,...,k, we elaborate on how a variety
of different causal questions can be reformulated to learning a task-relevant function ϕ that induces
IID among Zi ..= ϕ ◦ Xi, which we term IID representation learning.

For proof of concept, we examine the IID representation learning on Out-of-Distribution (OOD)
generalization tasks. Concretely, by utilizing the representation obtained via the learned func-
tion that induces IID, we conduct prediction of molecular characteristics (molecular prediction)
on two biomedical datasets with real-world distribution shifts introduced by a) preanalytical varia-
tion and b) sampling protocol. To enable reproducibility and for comparison to the state-of-the-art
(SOTA) methods, this is done by following the OOD benchmarking guidelines recommended from
WILDS. Compared to the SOTA baselines supported in WILDS, the results confirm the superior
performance of IID representation learning on OOD tasks. The code is publicly accessible via
https://github.com/CTPLab/IID_representation_learning.
Keywords: IID, IID representation learning, OOD generalization, causality, biomedical.

1. Introduction

In machine learning (Vapnik, 1999), we commonly assume that data entries (yi,xi)i=1,...,n are inde-
pendently drawn from the same probability distribution P(Y,X) of a random vector (Y,X). This is
referred to as the independent and identically distributed (IID) assumption. However, real-world
data is usually characterized by significant heterogeneity (Bareinboim, 2014; Peters et al., 2017;
Arjovsky et al., 2019; Rosenfeld et al., 2021). Controlling data heterogeneity is particularly critical
in application of data driven methods to the medical domain (Cios and Moore, 2002), as medical
algorithms that suffer from prediction degradation on heterogeneous cohorts can have severe conse-
quences in medical practice. Consequently, the IID assumption needs to be critically questioned.
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The task of learning a robust model that is resistant to a heterogeneous data distribution is for-
mally denoted as Out-of-Distribution generalization (OOD) (Arjovsky et al., 2019; Koh et al., 2021).
For a thorough overview we refer interested readers to (Shen et al., 2021). A large number of studies
with diverse methodologies (Peters et al., 2016; Ganin et al., 2016; Sun and Saenko, 2016; Rojas-
Carulla et al., 2018; Arjovsky et al., 2019; Sagawa et al., 2020; Rosenfeld et al., 2021) have been
proposed to address this issue. From the viewpoint of domain adaptation (Pan et al., 2010), the root
causes of OOD failure come from domain or task shift (Wang and Deng, 2018). There have been
many studies dedicated to resolve the challenge. (Sun et al., 2016; Sun and Saenko, 2016) proposed
to align the second-order statistics of the source and target distributions. In case of simultaneous
domain and task shift, (Gong et al., 2016) suggested to pinpoint conditional transferable compo-
nents. Further, (Long et al., 2018) reduced the shifts in the data distributions across domains via
adversarial learning (Goodfellow et al., 2014). Built upon the invariant property reflected in causal-
ity (Pearl et al., 2000), (Peters et al., 2016) firstly proposed the seminal invariant causal prediction
(ICP) framework. Later, (Rojas-Carulla et al., 2018) investigated the invariant set and extended the
ICP to transfer learning (Pan and Yang, 2009; Muandet et al., 2013; Zhuang et al., 2020). Motivated
by the ICP, invariant risk minimization (IRM) (Arjovsky et al., 2019) was subsequently proposed
to learn an invariant predictor that is optimal for all environments. Recently, (Schölkopf et al.,
2021) pointed out the essential role of causal representation learning in OOD generalization. In
a nutshell, (Schölkopf et al., 2021) argued that cause-effect relations are critical components of
reasoning chains that remain robust in situations beyond training tasks. However, causal variables
are usually not given in machine learning tasks. Thus, (Schölkopf et al., 2021) suggested learning
causal representations to resolve the limitation of current approaches for OOD generalization.

Inspired by impactful studies centered on the investigation of statistical invariance:

• We introduce a novel pair of definitions: IID symmetry and its generalization. These defi-
nitions reflect the core message delivered in the work, i.e., instead of being a questionable
assumption, IID is a fundamental task-relevant property that needs to be learned.
• Then, we systematically discuss how IID and causality are two sides to the same coin. Con-

sider k independent random vectors Xi=1,...,k, we elaborate concrete examples of reformulat-
ing diverse causal problems to learning a task-relevant function ϕ that induces IID among
Zi ..= ϕ ◦ Xi, which we term IID representation learning.
• For proof of concept, we examine the IID representation learning on Out-of-Distribution

(OOD) generalization tasks. Concretely, in utilizing the representation obtained via the learned
function that induces IID, we conduct molecular prediction experiments on two comprehen-
sive biomedical datasets (RxRx1 (Taylor et al., 2019) and Swiss Colorectal Cancer (SCRC)
(Nguyen et al., 2021)). By following the OOD benchmarking guidelines recommended from
WILDS (Koh et al., 2021), we demonstrate that the IID representation learning can improve
the molecular predictions compared to the SOTA baselines supported in WILDS.

2. Proposed Definition

As elaborated above, the common ground of causal studies usually starts with exploring statistical
invariance. Thus, we introduce the definitions of IID symmetry and its generalization as follows:
Consider k + n independent random vectors X1, . . . ,Xk,Xk+1, . . . ,Xk+n and a Lebesgue integrable
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ϕ : Rl+1 7→ Rm+1, for i = 1, . . . , k + n, let QXi be a query distribution1 of Xi = (xi
0, x

i
1, . . . , x

i
l), let

Zi = (zi
0, z

i
1, . . . , z

i
m) ..= ϕ ◦ Xi and QZi

..= QXi ◦ ϕ−1,

Definition 1 We say that X1, . . . ,Xk have an (ϕ−)IID symmetry if ϕ inducedQZ1 , . . . ,QZk are iden-
tical distributions, i.e., QZ1 = . . . = QZk . Further, we say that the (ϕ−)IID symmetry is generalizable
to Xk+1, . . . ,Xk+n if QZ1 , . . . ,QZk ,QZk+1 , . . . ,QZk+n are identical distributions.

Remark 1 It is not difficult to see that Z1, . . . ,Zk+n are independent, since w.l.o.g. we can reduce
the proof to the simpler case of two random vectors Z1,Z2 and ϕ being continuous. Let f : Rm+1 →

R be bounded and continuous, then f ◦ ϕ : Rl+1 → R is also bounded and continuous. We have

E[ f (Z1) f (Z2)] = E[( f ◦ ϕ)(X1)( f ◦ ϕ)(X2)] = E[ f ◦ ϕ(X1)]E[ f ◦ ϕ(X2)]

= E[ f (Z1)]E[ f Z2)],
(1)

where the second equality comes from the independence of X1 and X2. As a large class of func-
tions including piece-wise continuous function (neural network) satisfies the Lebesgue integrability
condition, we claim the map ϕ discussed in this paper always induces independence. Since for
i = 1, . . . , k + n, Zi is independent and identically distributed w.r.t. Qϕ◦Xi , we call Zi an (ϕ−)IID
representation. It is worth mentioning that the entries of Zi are not required to be independent.

Remark 2 For i = 1, . . . , k + n, if QXi = PXi is the probability distribution of Xi, then Z1, . . . ,Zk+n

are IID in the canonical sense according to Rem. 1. Besides, the trivial IID symmetry and its
generalization always exist, for instance we can define a trivial ϕ such that ϕ ◦ Xi = const.

3. From Causality to IID

Causal inference is a fundamental research domain that reflects the zeitgeist in machine learn-
ing (Luo et al., 2020). Broadly speaking, prior studies on causal inference can be categorized
into two areas of research: causal identification (Pearl et al., 2009; Peters et al., 2017; Hernán
and Robins, 2020) and causal transportation (Balke and Pearl, 1995; Bareinboim and Pearl, 2014;
Bareinboim, 2014). The former aims to either identify the underlying Structural Causal Models
(SCM) (Peters et al., 2017) or quantify the Average Causal Effect (ACE) (Hernán and Robins, 2020),
whereas the latter is often meant for licensing the transportable causal knowledge from one popula-
tion to another (Bareinboim and Pearl, 2014; Bareinboim, 2014). In a recent study (Schölkopf et al.,
2021), the authors propose causal representation learning to resolve OOD generalization. To link
causal inference and IID, we first introduce two prerequisite concepts:
Structural Causal Model. Following the specification in (Peters et al., 2016, 2017), consider a
Structural Causal model (SCM), i.e., there exists a random vector X = (x0, . . . , xl) and a directed
acyclic graphs (DAG) consisting of vertices x0, . . . , xl and δ0, . . . , δl such that for j = 0, . . . , l we
have

x j = f j(XPAj , δ j), δ j y XPAj , (2)

where XPAj ⊂ {x0, x1, . . . , xl} is the set of known parents of x j, δ j is the unknown (parent) noise. By
drawing arrow(s) from XPAj , δ j to x j defined in Eq. 2, we obtain the edges of the DAG (See Fig. 1

1. i.e., a probability measure induced by Xi (e.g., conditional, marginal, and probability distribution of Xi) that is relevant
to the question of interest.
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for graph visualization). The SCM bears many practical interests for analyzing complex medical
datasets, e.g., given the patient overall survival x0

..= xos, we want to identify the key prognostic
variables among xage, xgender, xBMI, etc. that directly impact xos (Shapiro and Msaouel, 2021).
Do-Intervention. As discussed in (Pearl and Mackenzie, 2018), one of the most prominent building
blocks of causal inference is intervention. Formally, we denote the (hard) do-intervention, i.e., the
replacement of Eq. 2 with x j

..= const by do(x j = const). Noting that intervening on x j breaks
the arrow(s) between XPAj , δ j and x j. Accordingly, we denote the interventional distribution of x0
conditioned on x1, . . . , do(x j = const), . . . , xl by P(x0 | x1, . . . , xe

j, . . . , xl), the random vector by
Xe = (x0, x1, . . . , xe

j, . . . , xl) and the set of known parents of x j by Xe
PA j

. In the clinical domain, it
should be noted that the implementation of do-intervention is expensive (Martin et al., 2017) owing
to regulatory scrutiny and ethically challenging. This is illustrated by recent publications critically
discussing such interventions as placebo surgery (Angelos, 2013) and the involvement of vulnerable
patient groups (Caldwell et al., 2004; Farrell et al., 2020), etc.

In real-world applications, randomized clinical trials (RCT) are considered to be the gold-
standard for interventional clinical studies (Nout et al., 2010; de Boer et al., 2019). Given the
patient outcome x0, we are keen on understanding the distribution of x0 conditioned on (intervened)
treatment x1 and prognostic variables x2, . . . , xl in the presence of unknown noises. Thus, we discuss
how various related causal problems can be reformulated to learning a function inducing IID.

Figure 1: Left: The graphical visualization for causal variable identification. The black arrows indicate identical distri-
butions P(x0 | X

e1
PA0

) = . . . = P(x0 | X
ek
PA0

), the dotted arrows connect the unknown noises. The black hammers indicate
the do-interventions e1, . . . , ek implemented in the form of RCTs. Right: The graphical visualization for causal effect
transportation. The black arrow indicates that the distribution P′(x0 | x

ek+1
1 ) is transported from the identical P(x0 | x

ek
1 ),

where the gray dotted hammer indicates the do-intervention ek+1 that leads to P′(x0 | x
ek+1
1 ) and cannot be implemented in

the setting of a RCT due to ethical reasons.

3.1. Causal Variable Identification→ IID symmetry

Let us assume k SCMs underlying a medical datatset collected from clinical trials, i.e., for i =
1, . . . , k there exists an Xei = (x0, x1, . . . , x

ei
j1
, . . . , xei

jei
, . . . , xl) and its corresponding DAG with un-

known noises δ0, . . . , δl, where x0 is the patient outcome, e represents the do-intervention(s) imposed
on a subset variables of {x1, . . . , xl} in X (See Fig. 1 (left)). Due to the NP-hard challenge of learn-
ing an entire DAG (Chickering, 1996; Luo et al., 2020), invariant causal prediction (ICP) (Peters
et al., 2016) was proposed to identify plausible causal variables given the outcome of interest (here
patient outcome x0). Since for i = 1, . . . , k, Xei

PA0
is the set of plausible causal variables of x0 (Peters

et al., 2016), under the assumption of identical interventional distributions P(x0 |X
ei
PA0

) brought by k
different do-interventions we propose:
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Question Consider k independent random vectors Xe1 , . . . ,Xek specified above, for i = 1, . . . , k let
QXei = P(x0 | x1, . . . , x

ei
j1
, . . . , xei

jei
, . . . , xl), can we find a ϕ in Def. 1 such that Qϕ◦Xe1 , . . . ,Qϕ◦Xek are

identical distributions and it satisfies ϕ(x0, x1, . . . , xl) = (x0, . . .)?

Discussion The map ϕ ◦ Xei = (x0,X
ei
PA0

) that projects (x0, x1, . . . , x
ei
j1
, . . . , xei

jei
, . . . , xl) to (x0,X

ei
PA0

)

induces the identical Qϕ◦Xei = P(x0 | X
ei
PA0

). This is the consequence of Eq. 2, since for i = 1, . . . , k
the assignment f0 between x0 and Xei

PA0
, δ0 remains unchanged and δ0 is independent of Xei

PA0
. In

the toy experiments (App. A), we demonstrate the robustness of learning a projection map inducing
identical interventional distributions, where the map is parametrized with a simple neural network.

3.2. Causal Effect Transportation→ IID Generalization

Consider for i = 1, . . . , k, we know the assignment f0 between x0 and Xei
PA0

(Eq. 2) w.r.t. the iden-
tical P(x0 | X

ei
PA0

), since it is unethical and infeasible to re-run the clinical trial on lots of patient
cohorts, we often want to transport the causal knowledge to a new observational cohort (Barein-
boim, 2014). Let Xk+1 = (x0, x1, x′2, . . . , x

′
l) be a random vector representing the observational

cohort, based on the causal knowledge learned by Xe1 , . . . ,Xek , we aim to compute P′(x0 | x
ek+1
1 ) of

Xek+1 = (x0, x
ek+1
1 , x

′
2, . . . , x

′
l) (Bareinboim, 2014), i.e., the distribution of patient outcome x0 condi-

tioned on the intervened treatment xek+1
1 , Under the assumption of identical interventional distribu-

tions brought by k + 1 different do-interventions we propose:

Question Consider k independent random vectors Xe1 , . . . ,Xek specified in Sec. 3.1, for i = 1, . . . , k
letQXei = P(x0 |X

ei
PA0

), we further assume an Xek+1 = (x0, x
ek+1
1 , x

′
2, . . . , x

′
l) independent of Xe1 , . . . ,Xek

and QXek+1 = P′(x0 | X
ek+1
PA0

), can we find a ϕ in Def. 1 such that Qϕ◦Xe1 , . . . ,Qϕ◦Xek , Qϕ◦Xek+1 are
identical distributions and it satisfies ϕ(x0,xPA0) = (x0, x1, . . .)?

Discussion If the patient outcome conditioned on the intervened treatment remains invariant
across different cohorts, by determining ϕ ◦ Xek+1

PA0
= (x0, x

ek+1
1 ) we have Qϕ◦Xe1 = . . . = Qϕ◦Xek+1 =

P′(x0 | x
ek+1
1 ) (See Fig. 1 (right)). Otherwise if the patient outcome conditioned on the intervened

treatment in the same age group (x′2
..= xage) remains invariant, then we need to derive ϕ ◦ Xek+1

PA0
=

(x0, x
ek+1
1 , x

′
2) and obtainQϕ◦Xe1 = . . . = Qϕ◦Xek+1 = P′(x0 |x

ek+1
1 , xage), thus we conclude P′(x0 |x

ek+1
1 ) =∑

P′(x0 | x
ek+1
1 , xage)P′(xage), where P′(xage) is the marginal distribution of xage.

3.3. Causal Feature Representation→ IID Representation

One of the open questions raised in (Schölkopf et al., 2021) is how to learn a reusable feature rep-
resentation of X = (x1, . . . , xl). This question becomes essential when x1 . . . , xl do not correspond
to well-studied treatment and prognostic variables, but to pixels of medical imaging data that bear
critical information of possibly unknown variables. Based on the Independent Causal Mechanism
(ICM) (Peters et al., 2017) and Sparse Mechanism Shift (SMS), (Schölkopf et al., 2021) hypoth-
esize that learning a causal-aware representation in an auto-encoder fashion is promising for its
reusability in downstream tasks. In alignment with this keen insight and the assumption that latent
representations of training, validation and test datasets have identical probability distributions:

Question Consider k+n+p independent random vectors X1, . . . ,Xk,Xk+1, . . . ,Xk+n,Xk+n+1, . . . ,Xk+n+p,
for i = 1, . . . , k + n + p let QXi = PXi be the probability distribution of Xi, can we find a ϕ in Def. 1
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such that Qϕ◦X1 , . . .Qϕ◦Xk+n+p are identical distributions and there exists a ϕ′ : Rm 7→ Rl satisfying
ϕ′ ◦ ϕ = id?

Discussion According to Rem. 1, 2, we aim to learn an IID representation Zi = ϕ◦Xi = (zi
1, . . . , z

i
m)

for i = 1, . . . , k + n+ p as if the images in training (X1, . . . ,Xk), validation (Xk+1, . . . ,Xk+n) and test
(Xk+n+1, . . . ,Xk+n+p) datasets can be faithfully reconstructed from the identical distribution PZi . In
the following experiments, we demonstrate the reusability of learned IID representation for down-
stream prediction tasks.

4. OOD Experiment

As discussed above, one of the biggest challenges in application of machine learning methodolo-
gies to the medical domain lies in data heterogeneity that violates the conventional IID assumption.
There are many factors contributing to the heterogeneity such as preanalytical variation (Taylor
et al., 2019), sampling protocol (Karamitopoulou et al., 2011), etc. As the goal of OOD general-
ization is to resolve the challenge of heterogeneous training and test data (Shen et al., 2021), we
examine the IID representation learning under the OOD setting and conduct prediction of molecu-
lar characteristics (molecular prediction) on two comprehensive biomedical datasets–RxRx1 (Taylor
et al., 2019) and Swiss Colorectal Cancer (SCRC) (Nguyen et al., 2021). The former aims to pre-
dict genetic perturbations given fluorescence microscopy images of cancer cells contaminated with
preanalytical batch effects, while the latter study aims to classify the consensus molecular subtypes
(imCMS1-4 (Sirinukunwattana et al., 2020)) of colorectal cancer (CRC) based on tissue microarray
(TMA) images, where the TMAs are heterogeneously sampled from different tumor regions.

To enable reproducibility and for comparison to the SOTA methods, we run molecular prediction
experiments by following the guidelines of WILDS (Koh et al., 2021). Accordingly, we split RxRx1
to training (40612 images), validation (9854), in-distribution (ID) (40612) and OOD test (34432)
data. Since SCRC contains TMAs sampled from tumor front (3333), micro-environment (micro)
(2819) and center (3914) regions, we take images from two out of the three tumor regions to form
the training data. By excluding 2 TMAs/patient from the held-back region as validation, we have
the remaining TMAs as OOD test data. This leads to three variants of experiments: SCRC0 (front
and micro for training), 1 (micro and center for training) and 2 (center and front for training). We
then compare the IID representation learning to the SOTA baselines supported in WILDS: Empirical
risk minimization (ERM) that minimizes the average classification loss on training sample (Vapnik,
1992; Shen et al., 2021), invariant risk minimization (IRM) (Arjovsky et al., 2019) with ERM +
gradient regularization, correlation alignment (CORAL) (Sun and Saenko, 2016) with ERM + co-
variance regularization, group distributed robust optimization (GroupDRO) (Sagawa et al., 2020)
with ERM + worst-case group regularization. For the IID representation learning, we first learn an
IID representation in an auto-encoder fashion and then combine the learned IID representation with
ERM for downstream molecular predictions, i.e., ERM + IID representation (See Fig. 2). Accord-
ing to WILDS’ experiment and metric design, all molecular prediction experiments are run at least
3 times (4 times in our case) and we report average prediction results with standard deviation (SD).
Learning the Approximate IID Representation. Despite being conceptually simple, learning an
IID representation that can faithfully reconstruct a given input image is non-trivial. To approx-
imate the IID property and to achieve good reconstruction quality, we propose to utilize the in-
stance normalization (IN) (Ulyanov et al., 2016) in the encoder for proof of concept. Concretely,
we apply two kinds of blocks containing IN operations: morphology (morph) and stain to obtain
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Figure 2: Left: The model illustrations of the proposed IID representation learning (Restyle Encoder and StyleGAN
Decoder (Alaluf et al., 2021)) and its downstream molecular predictor (ERM + IID representation). Right: The visual
comparison and average PSNR with SD achieved by the IID representation learning. Here, we normalize the RxRx1
images along each channel and zoom in on a small region of ground-truth (red bounding box) and reconstructed images
for better visualization.

Zi ..= (

morph︷           ︸︸           ︷
Zi

m,0, . . . ,Z
i
m,4,

stain︷          ︸︸          ︷
Zi

s,0, . . . ,Z
i
s,13) in Sec. 3.3 (See Fig. 2). Compared to other normalization

strategies (Ioffe and Szegedy, 2015; Ba et al., 2016), IN allows to impose the identical mean and
standard deviation on the entries of Zi

m,0, . . . ,Z
i
m,4,Z

i
s,0, . . . ,Z

i
s,13 without violating the independence

of Zi (See App. C for more normalization studies). This suggests that the learned representation Zi

is independent and approximately identically distributed.
Based on the recent development in image inversion (Alaluf et al., 2021), we instantiate the

ϕ, ϕ′ in Sec. 3.3 with the Restyle encoder (Alaluf et al., 2021) and StyleGAN decoder (Karras et al.,
2020). As shown in Fig. 2 (left), we couple the morph and stain with the noise (A) and style (B)
modules of StyleGAN respectively. This is meant for learning a semantic-aware representation for
the follow-up interpretation (See Fig. 11). Then, the objective is to reconstruct the input image with
256 × 256 resolution and defined as L = λ0L2 + λ1Llpips + λ2Lsim, where L2 is the pixel-wise
loss, Llpips is the perceptual loss (Tov et al., 2021), Lsim is the loss measuring the cosine similarity,
λ0,1,2 are the coefficients weighing on the losses. Fig. 2 (right) shows that the approximate IID
representation Zi induced by ϕ (Restyle encoder with IN) achieves robust image reconstruction for
RxRx1 and SCRC. See App. B, C for more hyper-parameter and result discussions.
The Learned IID Representation in ERM. After freezing the learned Restyle encoder ϕ described
above, we integrate the ϕ induced IID representation Zi to two standard (ResNet (He et al., 2016),
DenseNet (Huang et al., 2017)) and two light-weight (MobileNet (Sandler et al., 2018), Mnas-
Net (Tan et al., 2019)) backbones (See Fig. 2 (left)) that are widely used under the ERM frame-
work. Due to the dimensional compatibility between Zi

m,0, . . . ,Z
i
m,4,Z

i
s,0, . . . ,Z

i
s,13 and layer out-

puts of the compared backbones, this is implemented via adding the scaled 2-dim output (z̃i
m, j =

λm, jz
i
m, j for j = 0, . . . , 4) of morph blocks to the block of backbones, and via processing the

1-dim outputs (z̃i
s = Conv1d(Cat(zi

s,0, . . . ,z
i
s,13))) of stain blocks for latent vector concatenation

(See also Fig. 2 (left bottom)), where λm, j is a learnable scalar coefficient. Accordingly, the ob-
jective is to predict the class of genetic perturbation (RxRx1) and imCMS (SCRC) and defined as
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Table 1: The main results of RxRx1. Top: The average classification accuracies with SD for optimally tuned (Optimal)
compared methods (Left) and for ERM and proposed method (Prop) under the same backbones (Right). Bottom: The
overall stratified accuracies with SD for ERM and Prop on 4 cell types: HEPG2, HUVEC, RPE, U2OS.

Table 2: The main results of SCRC. Left: The average classification accuracies with SD for optimally tuned (Optimal)
compared methods and for ERM and proposed method (Prop) under the same backbones (Right). Right: The overall
stratified accuracies with SD for ERM and Prop on imCMS1, 2, 3, 4 (Nguyen et al., 2021).

L = λLcrs + (1− λ)Larc, where Lcrs is the cross-entropy loss, Larc is the ArcFace loss (Deng et al.,
2019), λ is the coefficient balancing the losses. See App. E for more hyper-parameter discussions
on SOTA baselines supported in WILDS and proposed method.
Molecular Prediction Result. Surprisingly, the ERM method outperforms the SOTA IRM (ERM
+ gradient), CORAL (ERM + covariance) and GroupDRO (ERM + worst-case group) in the exper-
iments (See Tab. 1 and 2). More importantly, our proposed method (Prop: ERM + IID representa-
tion) achieves top classification accuracies compared to these optimally tuned baselines supported
in WILDS for both ID (RxRx1) and OOD test data (SCRC, RxRx1). The consistent improvements
under various backbones (Tab. 1 (right) and Tab. 2 (left)) confirm the reusability of learned IID rep-
resentation. With further stratifying the results by cell types (Tab. 1 (bottom)) and imCMS classes
(Tab. 2 (right)) we conclude that the proposed IID representation learning achieves superior results
on OOD generalization tasks for RxRx1 and SCRC. Please see App. D for more ablation studies.

5. Conclusion

In this paper, we propose the IID representation learning and discuss its essential connection to
causality. Experimental results on two biomedical datasets show that reusing learned IID repre-
sentation can improve downstream molecular predictions in terms of OOD generalization. In future
work, follow-up investigations from theoretical and biological viewpoints need be conducted to bet-
ter understand the theoretical guarantee and underlying biological drivers of the IID representation.
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Appendix A. Toy Experiments for Causal Variable Identification

Complementary to Sec. 4, we conduct toy experiments on the causal variable identification task
(Sec. 3.1) for validating the proposed IID representation learning. This is done by following
the experimental design of AICP (Gamella and Heinze-Deml, 2020) (Please see also https:
//github.com/juangamella/aicp). Specifically, we start the data simulation by creating a di-
rected acyclic graph (DAG) endowed with vertices, edges and Gaussian noises, where the vertices
of the DAG correspond to the variables x0, x1, . . . , xl in Sec. 3.1. These specifications form a linear
Gaussian SCM.

W.l.o.g. consider x0 be the outcome variable and XPA0 be the set of x0’s parent variables, under
the assumption of without intervening on the outcome x0, we implement do-interventions e j=1,...,l
independently via breaking the edges pointing to x j and letting x j

..= c, which simulates the RCT
setting described in Sec. 3.1. As specified in https://github.com/juangamella/aicp, we then
collect l batches of data samples that are randomly drawn from the SCM intervened with e j=1,...,l
resp. In the same manner as AICP (Gamella and Heinze-Deml, 2020), given such a dataset, our
goal is to identify the set of parent variables of the outcome x0.

Instead of a sophisticated auto-encoder proposed in Sec. 4, here we utilize a simple neural
network ϕ′ ◦ ϕ, where ϕ′ is a standard MLP layer, ϕ(x) = w ⊙ x is the element-wise multiplication
of the input x and binary penalty weights w (initialized with 1). We propose to learn the projection
map ϕ inducing identical interventional distribution among (Xej

PA0
, x0) for j = 1, . . . , l, where ϕ

should project {x1, . . . , xl} to XPA0 . Noting that ϕ also induces independence among (Xej

PA0
, x0) for

j = 1, . . . , l due to the independently intervened SCMs. Concretely, we train ϕ′ ◦ϕ for l epochs with
∥.∥2 norm and iteratively penalize if xj ∈ XPA0 holds true (w j of ϕ remains to be 1) for j = 1, . . . , l per
epoch. Such penalty is conditioned on max j=1,...,l FID (µ j, µ jc), where FID is the Fréchet inception
distance (Heusel et al., 2017), µ j, µ jc are the interventional distributions of ∥ϕ′ ◦ ϕ(x1, . . . , xl)− x0∥2
w.r.t. the data sampled from {e j} and {e1, . . . , el} \ {e j} intervened SCM(s) resp.

Jaccard Similarity (FWER)
2 Confounders 1 Confounder 0 Confounder

ICP 0.318 (1.00) 0.401 (0.84) 1.00 (0.00)
NICP 0.317 (1.00) 0.406 (0.82) 1.00 (0.00)
AICP 0.438 (0.05) 0.485 (0.11) 1.00 (0.00)
Proposed 0.909 (0.16) 0.926 (0.12) 1.00 (0.00)

Table 3: Top: The results of causal variable identification for the toy experiments between ICPs and the proposed IID
representation learning. Here, we report Jaccard Similarity (JS) and Family-wise error rate (FWER) (Gamella and Heinze-
Deml, 2020) for quantitative comparison. Bottom: The visual illustration of SCMs with and without hidden confounder.
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Then we compare the proposed method with ICP (Peters et al., 2016), NICP (Heinze-Deml
et al., 2018) and AICP, all of which are developed upon the idea of identifying XPA0 via the intersec-
tion of sets of plausible causal variables. To better examine the robustness of compared methods,
not only do we randomly choose 50 DAGs to re-run the experiments but additionally introduce 1
and 2 hidden confounder(s) for each DAG resp. As shown in Tab. 3, our proposed IID representa-
tion learning outperforms the ICPs especially with the inclusion of hidden confounder(s), in terms
of better Jaccard Similarity (JS) and Family-wise error rate (FWER) (Gamella and Heinze-Deml,
2020) averaged on 50 DAGs,

JS(Z,XPA0) =
|Z ∩ XPA0 |

|Z ∪ XPA0 |
, FWER = P(Z ⊈ XPA0),where Z = ϕ(x1, . . . , xl) = (w1x1, . . . ,wlxl). (3)

Appendix B. Unsupervised Training of StyleGAN Decoder

Since there are not pre-trained StyleGAN (Karras et al., 2020) decoders available for the IID rep-
resentation learning on RxRx1 and SCRC, we start the experiments with training StyleGAN in
an unsupervised manner. Concretely, we take the widely-used PyTorch implementation https:
//github.com/rosinality/stylegan2-pytorch for training StyleGAN. Following the sug-
gestions from WILDS, we only utilize the training data of RxRx1 and SCRC0,1,2 to learn four
different StyleGAN models that can synthesize visually plausible microscopy images, while the
validation and test data are held back during training. Due to the nature of moderate amount of
training data, we follow the default configurations of StyleGAN training suggested in the repository
except that we customize the training iterations to be 100k for all experiments, batch size to be 32
for RxRx1 and 16 for SCRC. Then we take advantage of the Distributed Data-Parallel (DDP) mech-
anism provided in PyTorch and train the StyGAN models on 4 A-100 GPUs and 2 A-100 GPUs
for RxRx1 and SCRC respectively. We report the average Fréchet inception distance (FID) (Heusel
et al., 2017) scores with SD obtained with four different random seeds for all the experiments in
Tab. 4 and demonstrate the non-cherry-picked synthesized images in Fig. 3, 4, 5, 6. Noting that the
large FID score for RxRx1 is resulted from comparing the total statistical difference on the ensemble
of fluorescent medical images with more than 1000 classes of genetic perturbation, which differs
from the common FID score computation in terms of a single class natural image generation (Karras
et al., 2019, 2020).

Table 4: The average FID scores with SD achieved by StyleGAN on RxRx1 and SCRC0, 1, 2 obtained with four random
seeds.
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Figure 3: Nonexistent fluorescence images synthesized by StyleGAN learned with RxRx1 training data.
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Figure 4: Nonexistent TMA images synthesized by StyleGAN learned with SCRC0 training data.
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Figure 5: Nonexistent TMA images synthesized by StyleGAN learned with SCRC1 training data.
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Figure 6: Nonexistent TMA images synthesized by StyleGAN learned with SCRC2 training data.
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Appendix C. Learning the Approximate IID Representation

To achieve faithful microscopy image reconstruction, we utilize the pre-trained StyleGAN decoder
discussed in App. B and Restyle encoder (Alaluf et al., 2021) for learning the approximate IID
representation. For the perceptual Llpips (Zhang et al., 2018; Tov et al., 2021) and cosine similarity
Lsim (Chen et al., 2020) loss of the reconstruction objective, we follow the default configuration
introduced in Restyle encoder (Alaluf et al., 2021), i.e., the Llpips and Lsim are computed based on
features extracted from the linear layer of the pre-trained AlexNet (Krizhevsky et al., 2012) and the
MoCoV2 (Chen et al., 2020) pretrained ResNet50 (He et al., 2016) respectively, see also https:
//github.com/yuval-alaluf/restyle-encoder for more implementation details. Besides, by
tuning on the validation data, it suffices to execute one step for iterative refinement and train all the
experiments with 90k iterations. Lastly, the hyper-parameters λ0,1,2 in the reconstruction objective
are determined to be 1.5, 0.5, 0.5 and 5, 0.2, 0.2 for SCRC0,1,2 and RxRx1 respectively.

With computing the batch-wise statistics, the batch normalization (Ioffe and Szegedy, 2015)
(BN) introduces unnecessary batch dependence between training data. Because of the element-wise
affine operation applied on each image by default, the requirement that learning a function inducing
identical distributions cannot be guaranteed by layer normalization (Ba et al., 2016) (LN). In combi-
nation of these observations and independent, approximately identically distributed Zi (Sec. 3.3) ob-
tained via instance normalization (Ulyanov et al., 2016) (IN), we impose IN on the Restyle encoder
(including the ResNet backbone). Under the same Restyle architecture, we run experiments and
compare the reconstruction performance achieved between IN, BN (utilized in the default Restyle
encoder), LN as well as group normalization (Wu and He, 2018) (GN). As a result, we experimen-
tally justified the superiority of IN in terms of robust PSNR scores (See Tab. 5) and better visual
qualities (See Fig. 7, 8, 9, 10).

Table 5: The average PSNR with SD achieved by four compared normalization methods under the same architecture of
Restyle encoder and StyleGAN decoder.
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Figure 7: The RxRx1 visual comparison between ground-truth (red bounding box) and reconstructed images for Batch
(BN), Layer (LN), Group (GN) and Instance (IN) normalization. Here, we normalize the ground-truth and reconstructed
images along each channel for a clearer comparison. Please zoom in on the image details for better visualization.
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Figure 8: The SCRC0 visual comparison between ground-truth (red bounding box) and reconstructed images for Batch
(BN), Layer (LN), Group (GN) and Instance (IN) normalization. Please zoom in on the image details for better visual-
ization.
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Figure 9: The SCRC1 visual comparison between ground-truth (red bounding box) and reconstructed images for Batch
(BN), Layer (LN), Group (GN) and Instance (IN) normalization. Please zoom in on the image details for better visual-
ization.
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Figure 10: The SCRC2 visual comparison between ground-truth (red bounding box) and reconstructed images for Batch
(BN), Layer (LN), Group (GN) and Instance (IN) normalization. Please zoom in on the image details for better visual-
ization.
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Appendix D. Ablation Studies on Stain and Morph blocks

When examining stain and morph blocks individually (See Fig. 11, 12), the takeaways are mixed.
For RxRx1, the stand-alone stain blocks clearly contribute to the prediction improvement. This
may be explained by the preanalytical variation in forms of batch-wise staining shift embedded in
validation and test images. For SCRC, neither stain nor morph blocks bring clear quantitative im-
provements individually. Only by utilizing both of them can we robustify the OOD generalization.

Figure 11: The ablation studies of utilizing stain or morph blocks individually.

Figure 12: The RxRx1 and SCRC0,1,2 visualization of interpolating the outputs of stain and morph blocks simultane-
ously, interpolating stain outputs while freezing morph ones and vice-versa. Please zoom in on the image details for
better visualization.
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Appendix E. The learned IID Representation in ERM

To enable reproducibility and for comparison to the SOTA methods, we utilize the WILDS reposi-
tory https://github.com/p-lambda/wilds.git to run the experiments. Precisely, we call the
data loader functions of RxRx1 implemented in WILDS and write the corresponding data loader
functions for SCRC following the WILDS coding style. Except that we introduce the CutMix (Yun
et al., 2019) as a complement to the standard augmentation methods supported in WILDS, we do
not use additional techniques such as fusing the outputs from several rotated inputs or from multi-
ple models to boost the performance for compared methods. During the training, we do not feed
the validation and test data to the model, the validation data is only used for hyper-parameter tun-
ing. Accordingly, all compared methods are well tuned on the hyper-parameters with the careful
selection of augmentations, backbones, etc.

For ERM, we determine the optimal λ to be 0.8 and λCutMix to be 1 for RxRx1 and SCRC,
ResNet50/DenseNet121 for RxRx1 and MobileNetV2 for SCRC. For IRM and CORAL, we deter-
mine the optimal λ to be 1, the backbone to be MobileNetV2 and λCutMix = 0 for both RxRx1 and
SCRC. In terms of GroupDRO, the configurations are the same to IRM and CORAL except that
with utilizing DenseNet121 it achieves competitive results to MobileNetV2 in SCRC experiments.
As to the proposed method (Prop), the optimal results are obtained by λ = 0.8, λCutMix = 1 for both
RxRx1 and SCRC, as well as ResNet50 for RxRx1 and MobileNetV2 for SCRC. Complementary
to the Tab. 1 and 2 in the main manuscript, we present detailed results for all compared methods
with respect to the same backbones in Tab. 6 and 7.

Table 6: The average classification accuracies with SD of RxRx1 that are obtained with four different backbones for all
compared methods.
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Table 7: The average classification accuracies with SD of SCRC that are obtained with four different backbones for all
compared methods.
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