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Abstract

The fashion domain encompasses a variety of001
real-world multimodal tasks, including mul-002
timodal retrieval and multimodal generation.003
The rapid advancements in artificial intelli-004
gence generated content, particularly in tech-005
nologies like large language models for text006
generation and diffusion models for visual gen-007
eration, have sparked widespread research in-008
terest in applying these multimodal models in009
the fashion domain. However, tasks involving010
embeddings, such as image-to-text or text-to-011
image retrieval, have been largely overlooked012
from this perspective due to the diverse nature013
of the multimodal fashion domain. And current014
research on multi-task single models lack focus015
on image generation. In this work, we present016
UniFashion, a unified framework that simulta-017
neously tackles the challenges of multimodal018
generation and retrieval tasks within the fash-019
ion domain, integrating image generation with020
retrieval tasks and text generation tasks. Uni-021
Fashion unifies embedding and generative tasks022
by integrating a diffusion model and LLM, en-023
abling controllable and high-fidelity generation.024
Our model significantly outperforms previous025
single-task state-of-the-art models across di-026
verse fashion tasks, and can be readily adapted027
to manage complex vision-language tasks. This028
work demonstrates the potential learning syn-029
ergy between multimodal generation and re-030
trieval, offering a promising direction for future031
research in the fashion domain.032

1 Introduction033

The fashion domain presents a range of real-world034

multimodal tasks, encompassing multimodal re-035

trieval (Gao et al., 2020; Wu et al., 2021; Bai036

et al., 2023) and multimodal generation (Yang et al.,037

2020) tasks. Such tasks have been utilized in di-038

verse e-commerce scenarios to enhance product039

discoverability, seller-buyer interaction, and cus-040

tomer conversion rates after catalog browsing (Han041

et al., 2023; Zhuge et al., 2021). The remarkable042

progress in the field of artificial intelligence gener- 043

ated content (AIGC), particularly in technologies 044

like large language models (LLMs) (Chiang et al., 045

2023; Touvron et al., 2023; Brown et al., 2020) 046

for text generation and diffusion models (Rombach 047

et al., 2022; Nichol et al., 2022; Saharia et al., 2022) 048

for visual generation, has sparked widespread re- 049

search interest in applying these multimodal mod- 050

els in the fashion domain. 051

Multimodal large language models (Liu et al., 052

2023a; Dai et al., 2023; Dong et al., 2023) 053

(MLLMs) seem to emerge as a promising direc- 054

tion for a single multi-task model. However, due to 055

the heterogeneous nature of the multimodal fash- 056

ion tasks (Han et al., 2023), existing MLLMs lack 057

the capability to be directly applied to the fashion 058

domain, such as embedding ability. For example, 059

in the fashion domain, retrieval tasks that rely on 060

embedding ability, like image-to-text or text-to- 061

image retrieval, have been largely neglected from 062

this aspect. Furthermore, MLLMs lack the ability 063

to solve composed image retrieval (CIR) (Liu et al., 064

2021; Baldrati et al., 2022) task, which composes 065

the reference image and related caption into a joint 066

embedding to calculate similarities with the candi- 067

date images and is particularly relevant in fashion 068

recommendation systems (Han et al., 2017). 069

Drawing inspiration from GRIT (Muennighoff 070

et al., 2024), which successfully combined embed- 071

ding and generative tasks into a unified model for 072

text-centric applications and showed improved em- 073

bedding performance through the addition of a gen- 074

erative objective, it becomes clear that investigating 075

task correlations and integrating embedding with 076

generative models in the fashion domain is is both 077

necessary and promising. 078

While previous works (Han et al., 2023; Zhuge 079

et al., 2021) in the fashion domain have also pro- 080

posed using a single model for solving multiple 081

tasks, they ignore the image generation tasks. Be- 082

sides, for fashion tasks such as try-on (Choi et al., 083
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Ivory Open Knit Anchor Dress.
Unstructured knit dress in ivory
white.

Orange Orchid Beam Duchess
Dress. Structured dress in tones of
purple...

Black Lambskin Fringe Detail
ShiftDress. Sleeveless boxy-fit
panelled leather dress in black.

Champagne Crepe Deep-V Dress.
Long sleeve crepe dress in
champagne

Long sleeve shirt in white and black plaid. Button-
down spread collar. Button closure at front. Breast
pocket. Single-button barrel cuffs. Curved hem.
Tonal stitching.

1. A yellow t-shirt with a graphic design on the front. The t-shirt has short
sleeves and a crew neckline.
2. A long-sleeved top in a soft pink or mauve color. The top features a ribbed
texture throughout. A lace or embroidered detail across the chest area. 

is green with a four
leaf clover,
is green and has no
text

A black shirt with white letters and a white
skull on it. the shirt has a camouflage
pattern and is buttoned up.

Text-to-Image Retrieval

Black Lambskin Fringe Detail
ShiftDress. Sleeveless boxy-fit
panelled leather dress in black.

A black dress with a black belt, the dress has a
looser fit and longer sleeves, and it features a
wider v-neckline.

Image-to-Text Retrieval

Text-to-Image Generation

Image-to-Text Generation

Composed Image Retrieval Composed Caption Generation

has white letters,
has more buttons

Composed Image Generation

Figure 1: Illustration of the fashion tasks encompassed in our UniFashion framework: cross-modal retrieval,
text-guided image retrieval, fashion image captioning, and fashion image generation. Model inputs highlighted with
a light yellow background and outputs denoted by a light blue background.

2021) and fashion design (Baldrati et al., 2023b),084

it is generally required to generate target images085

based on multimodal input. However, previous086

works (Baldrati et al., 2023b) in fashion image gen-087

eration typically adopt the CLIP text encoder to088

encode text information, which may not be capable089

of effectively understanding the textual context due090

to their weaker text encoder, as noted in Saharia091

et al. (2022). Hence, we posit that current studies092

have not fully exploited the potential in learning093

synergy between generation and retrieval.094

In this work, we propose UniFashion, which095

unifies retrieval and generation tasks by integrat-096

ing LLMs and diffusion models, as illustrated in097

Figure 2. UniFashion consists of three parts: The098

Q-Former is crucial for amalgamating text and im-099

age input, creating multimodal learnable queries.100

These queries, once refined through task-specific101

adapters, enable the LLM module to utilize them as102

soft prompts for generating captions for target im-103

ages. Simultaneously, the diffusion module utilizes104

the learnable queries as conditions to guide the la-105

tent diffusion model in image synthesis and editing 106

tasks. To enable controllable and high-fidelity gen- 107

eration, we propose a two-phase training strategy. 108

In the first phase, we perform multimodal repre- 109

sentation learning on image-text pairs datasets. We 110

freeze Q-Former and fine-tune the LLM and diffu- 111

sion modules, ensuring they develop the capabil- 112

ity to comprehend the multimodal representations 113

provided by Q-Former. Subsequently, in the sec- 114

ond phase, we proceed to fine-tune UniFashion on 115

datasets with multimodal inputs, such as Fashion- 116

IQ, where we freeze the LLM and diffusion mod- 117

ules, only tuning Q-Former. This strategy ensures 118

that Q-Former is adept at crafting multimodal repre- 119

sentations that effectively integrate both reference 120

images and text inputs. 121

UniFashion holds three significant advantages 122

that address the challenges in multimodal fashion 123

retrieval and generation: 124

For the first time, we conduct an in-depth study 125

of the synergistic modeling of multimodal retrieval 126

and generation tasks within the fashion domain, 127
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thoroughly exploiting the inter-task relatedness.128

Further, we introduce UniFashion, a versatile, uni-129

fied model that can handle all fashion tasks.130

Secondly, our model enhances performance via131

mutual task reinforcement. Specifically, the caption132

generation module aids the CIR task, while jointly133

training the generation and retrieval tasks improves134

the multimodal encoder for the diffusion module.135

Third, extensive experiments on diverse fash-136

ion tasks—including cross-modal retrieval, com-137

posed image retrieval, and multimodal genera-138

tion—demonstrate that our unified model signif-139

icantly surpasses previous state-of-the-art methods.140

2 Preliminaries and Related Works141

2.1 Fashion Tasks142

Fashion tasks encompass a range of image and143

language manipulations, including cross-modal re-144

trieval, composed image retrieval, fashion image145

captioning and generation, etc. The representative146

tasks can be briefly divided into the following two147

groups:148

Fashion Retrieval generally consists of Cross-149

Modal Retrieval (CMR) (Ma et al., 2022; Ros-150

tamzadeh et al., 2018) and composed image re-151

trieval (CIR) tasks (Baldrati et al., 2023a; Bai et al.,152

2023). CMR requests to efficiently retrieve the153

most matched image/sentence from a large candi-154

date pool D given a text/image query. CIR is a155

special type of image retrieval with a multimodal156

query (a combination of a reference image and a157

modifying text) matched against a set of images. It158

retrieves a target image from a vast image database159

based on a reference image and a text description160

detailing changes to be applied to the reference im-161

age. In this scenario, a query pair p = {IR, t} is162

provided, where IR is the reference image and t is163

the text describing the desired modifications. The164

challenge for this task is to accurately identify the165

target image IT that best matches the query among166

all potential candidates in the image corpus D.167

Fashion Generation consists of Fashion Image168

Captioning (FIC) and Fashion Image Generation169

(FIG). FIC (Yang et al., 2020) aims to generate170

a descriptive caption for a product based on the171

visual and/or textual information provided in the172

input. FIG aims to generate images based on the173

multimodal input, such as try-on (Choi et al., 2021;174

Gou et al., 2023) and fashion design (Baldrati et al.,175

2023b).176

2.2 Multimodal Language Models 177

Recent research has witnessed a surge of inter- 178

est in multimodal LLMs, including collaborative 179

models (Wu et al., 2023; Yang et al., 2023b; Shen 180

et al., 2023) and end-to-end methods (Alayrac et al., 181

2022; Zhao et al., 2023; Li et al., 2022; Bao et al., 182

2021; Wang et al., 2022b,a,a). More recently, some 183

works also explore training LLMs with parameter- 184

efficient tuning (Li et al., 2023b; Zhang et al., 185

2023b) and instruction tuning (Dai et al., 2023; Liu 186

et al., 2023a; Ye et al., 2023; Zhu et al., 2023a; Li 187

et al., 2023a). They only focus on generation tasks, 188

while UniFashion is built upon a unified framework 189

that enables both retrieval and generation tasks. 190

2.3 Diffusion Models 191

Diffusion generative models (Rombach et al., 2022; 192

Ramesh et al., 2021; Nichol et al., 2022; Ruiz et al., 193

2023) have achieved strong results in text condi- 194

tioned image generation works. Among contempo- 195

rary works that aim to condition pretrained latent 196

diffusion models, ControlNet (Zhang et al., 2023a) 197

proposes to extend the Stable Diffusion model with 198

an additional trainable copy part for conditioning 199

input. In this work, we focus on the fashion domain 200

and propose a unified framework that can leverage 201

latent diffusion models that directly exploit the con- 202

ditioning of textual sentences and other modalities 203

such as human body poses and garment sketches. 204

2.4 Problem Formulation 205

Existing fashion image retrieval and generation 206

methods are typically designed for specific tasks, 207

which inherently restricts their applicability to the 208

various task forms and input/output forms in the 209

fashion domain. To train a unified model that 210

can handle multiple fashion tasks, our approach 211

introduces a versatile framework capable of han- 212

dling multiple fashion tasks by aligning the multi- 213

modal representation into the LLM and the diffu- 214

sion model. This innovative strategy enhances the 215

model’s adaptability, and it can be represented as: 216

Iout, Tout = FTRet,TGen
(Iin, Tin; Θ), (1) 217

where FT represents the unified model parameter- 218

ized by Θ, it consists of retrieval module TRet and 219

generative module TGen. 220

3 Proposed Model: UniFashion 221

In this section, we introduce the UniFashion to 222

unify the fashion retrieval and generation tasks into 223
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Figure 2: Overview of the training framework of our UniFashion model. Phase 1 - Cross-modal Pre-training:
UniFashion acquires robust cross-modal fashion representation capabilities through pre-training, leveraging both
the language model and the diffusion model. Phase 2 - Composed Multimodal Fine-tuning: The model undergoes
fine-tuning to process both image and text inputs, refining its ability to learn composed modal representations. This
is achieved by aligning the multimodal encoder with the LLM and the diffusion model for enhanced performance.

a single model. By combining retrieval and gener-224

ative modules, the proposed UniFashion employs225

a two-stage training strategy to capture relatedness226

between image and language information. Con-227

sequently, it can seamlessly switch between two228

operational modes for cross-modal tasks and com-229

posed modal tasks.230

3.1 Phase 1: Cross-modal Pre-training231

In the first stage, we conduct pre-training on the232

retrieval and generation modules to equip the Large233

Language Model (LLM) and diffusion model with234

strong cross-modal fashion representation capabili-235

ties for the next phase.236

3.1.1 Cross-modal Retrieval237

For cross-modal retrieval tasks, given a batch of238

image caption pairs p = {I, C}, we first calculate239

their unimodal representations using an indepen-240

dent method. In particular, we adopt a lightweight241

Querying Transformer, i.e., Q-Former in BLIP-242

2 (Li et al., 2023b), to encode the multimodal in-243

puts, as it is effective in bridging the modality gap.244

To avoid information leaks, we employ a unimodal245

self-attention mask (Li et al., 2023b), where the246

queries and text are not allowed to see each other:247

ZI = Q-Former(I, q),

ZC = Q-Former(C).
(2)248

where the output sequence ZI is the encoding result249

of an initialized learnable query q with the input im-250

age and ZC is the encoded caption, which contains 251

the embedding of the output of the [CLS] token 252

ecls, which is a representation of the input caption 253

text. Since ZI contains multiple output embed- 254

dings (one from each query), we first compute the 255

pairwise similarity between each query output and 256

ecls, and then select the highest one as the image- 257

text similarity. In our experiments, we employ 32 258

queries in q, with each query having a dimension of 259

768, which is the same as the hidden dimension of 260

the Q-Former. For cross-modal learning objective, 261

we leverage the Image-Text Contrastive Learning 262

(ITC) and Image-Text Matching (ITM) method. 263

The first loss term is image-text contrastive loss, 264

which has been widely adopted in existing text-to- 265

image retrieval models. Specifically, the image-text 266

contrastive loss is defined as: 267

LITC(X,Y ) = − 1

B

B∑
i=1

log
exp[λ(XT

i · Y i)]∑B
j=1 exp[λ(X

T
i · Y j)]

,

(3) 268

where λ is a learnable temperature parameter. ITM 269

aims to learn fine-grained alignment between im- 270

age and text representation. It is a binary classi- 271

fication task where the model is asked to predict 272

whether an image-text pair is positive (matched) or 273

negative (unmatched), it is defined as, 274

LITM(X,Y ) = − 1

B

B∑
i=1

log
expfθ(Xi, Yi)∑B
j=1 expfθ(Xj , Yi)

, (4) 275
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Then, we maximize their similarities via symmetri-276

cal contrastive loss:277

Lcross = LITC(tc, ZI) + LITM(ZC , ZI), (5)278

3.1.2 Cross-modal Generation279

As depicted in Fig. 2, after the learnable queries280

q pass through the multimodal encoder, they are281

capable of integrating the visual information with282

textual guidance. However, in Section 3.1.1, we did283

not specify a learning target for q. Empirically, the284

q that has been merged with the reference image285

and edited text information should be equivalent286

to the encoding of the target image. This implies287

that we should be able to reconstruct the target288

image and its caption based on q. In this section,289

we will employ generative objectives to improve290

the representation of augmented q.291

In the first stage, we connect the Q-Former292

(equipped with a frozen image encoder) to a Large293

Language Model (LLM) to harness the LLM’s294

prowess in language generation, and to a diffu-295

sion model to exploit its image generation capa-296

bilities. Notably, we exclusively train the model297

using image-text pairs throughout this process. As298

depicted in Figure 2, we employ a Task Specific299

Adapter (TSA) layer to linearly project the output300

query embeddings q to match the dimensionality301

of the embeddings used by the LLM and diffusion302

model. In this stage, we freeze the parameters of303

the Q-Former and fine-tune only the adapter layers,304

connecting LLM and diffusion models. This ap-305

proach allows us to develop a discriminative model306

that can evaluate whether queries q can generate307

the target image and its corresponding caption.308

Target caption generation. The adapter layer309

is placed before the LLM to map the output of Q-310

Former to the text embedding space of the LLM.311

To synchronize the space of Q-Former with that of312

the LLM, we propose to use the image-grounded313

text generation (ITG) objective to drive the model314

to generate texts based on the input image by com-315

puting the auto-regressive loss:316

LITG = − 1

L

L∑
l=1

log pϕ(w
g
l |w

g
<l, fθ(q)), (6)317

where wg = (wg
1, ..., w

g
L) represents the ground-318

truth caption of image I with length L, q =319

Q-Former(I, q), ϕ denotes the LLM’s parameters,320

and θ denotes the text adapter layers’ parameters.321

Target image generation. In the first stage, our322

task also aims to reconstruct the image ÎT from q.323

As in standard latent diffusion models, given an 324

encoded input x, the proposed denoising network 325

is trained to predict the noise stochastically added 326

to x. The corresponding objective function can be 327

specified as: 328

Lq2I = Eϵy ,x0 [∥ϵx − ϵxη(xtx , fζ(q), t
x)∥2],

(7) 329

where η denotes the u-net models’ parameters and 330

ζ denotes the image adapter layers’ parameters. 331

The overall loss in the first stage can be expressed: 332

Lph1 = Lcross + LITG + Lq2T. (8) 333

After the first training stage, we can leverage the 334

LLM and diffusion model as discriminators to 335

guide the generation of composed queries. 336

3.2 Phase 2: Composed Multimodal 337

Fine-tuning 338

In this phase, the inputs are reference image and 339

guidance text, and we fine-tune the model for com- 340

posed multimodal retrieval and generation tasks. 341

342

3.2.1 Composed Image Retrieval 343

For CIR task, the target image IT generally encom- 344

passes the removal of objects and the modification 345

of attributes in the reference image. To solve this 346

problem, as depicted in Fig. 2, the multimodal en- 347

coder is utilized to extract features from the ref- 348

erence image and the guide text. It joint embeds 349

the given pair p = {IR, t} in a sequential output. 350

Specifically, a set of learnable queries q concate- 351

nated with text guidance t is introduced to interact 352

with the features of the reference image. Finally, 353

the output of Q-Former is the multimodal synthetic 354

prompt ZR. We use a bi-directional self-attention 355

mask, similar to the one used in BLIP2 (Li et al., 356

2023b), where all queries and texts can attend to 357

each other. The output query embeddings ZR thus 358

capture multimodal information: 359

ZR = Q-Former(IR, t, qR),

ZT = Q-Former(IT , qT ).
(9) 360

Noting that the output sequence ZR consists of 361

learnable queries q and encoded text guidance t, 362

which includes ecls, the embedding of the output 363

of the [CLS] token. On the other hand, the tar- 364

get image’s output sequence ZT consists only of 365

learnable queries. Therefore, we can use ZR as a 366

representation that incorporates information from 367
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the reference image and the guidance text and align368

it with the features of the target image ZT . More-369

over, as UniFashion acquires the ability to generate370

captions for images from Sec. 3.1.2, we can gen-371

erate captions for the candidate images and use372

ecls to retrieve the caption ZC of the target image.373

Then, the final contrastive loss for the CIR task is:374

Lcir = LITC(ecls, ZT ) + LITC(ecls, ZC)

+ LITM(t, ZT ),
(10)375

3.2.2 Composed multimodal Generation376

For these generation tasks, we freeze the LLM377

parameters and tune the parameters of the task-378

specific adapters, the diffusion model, and the Q-379

Former. The loss function for the target image’s380

caption generation is formulated in a way that is381

similar to Eq. 6:382

LITG = − 1

L

L∑
l=1

log pϕ(w
g
l |w

g
<l, fθ(qR)), (11)383

The loss function for the target image generation is384

formulated in a way that is similar to Eq. 7:385

Lq2I = Eϵy ,x0 [∥ϵx − ϵxη(xtx , fζ(qR), t
x)∥2],

(12)386

The overall loss in the second stage can be ex-387

pressed as:388

Lstage2 = Lcir + LITG + Lq2I. (13)389

4 Experiments390

4.1 Experimental Setup391

We initialize the multimodal encoder from BLIP2’s392

Q-Former and MLLM from LLaVA-1.5. As for393

the diffusion module, following, StableVITON, we394

inherit the autoencoder and the denoising U-Net of395

the Stable Diffusion v1.4. We initialize the weights396

of the U-Net from the Paint-by-Example and for397

more refined person texture, we utilized a VAE398

fine-tuned on the VITONHD dataset from Stable-399

VITON. The statistics of the two-stage datasets can400

be found in Table 6. For cross-modal retrieval, we401

evaluated UniFashion on FashionGen validation set.402

For the image captioning task, UniFashion is evalu-403

ated in the FashionGen dataset. For the composed404

image retrieval task, we evaluated the Fashion-IQ405

validation set. To maintain consistency with previ-406

ous work, for the composed image generation task,407

we fine-tuned UniFashion and evaluated it on the408

VITON-HD and MGD datasets. More details can 409

be found in Appendix D. 410

Phase 1: For multimodal representation learning, 411

we follow BLIP2 and pretrain the Q-Former on 412

fahsion image-text pairs. To adapt the model for 413

multimodal generation, we freeze the parameters of 414

Q-Former and fine-tune the MLLM and diffusion 415

model with their task specific adapters separately. 416

Due to the different styles of captions in different 417

fashion datasets, we adopt the approach of instruc- 418

tion tuning to train the LLM so that it can generate 419

captions of different styles. More details can be 420

found in Appendix E. 421

Phase 2: In order to make UniFashion have the 422

composed retrieval and generation abilities, we 423

freeze the parameters of LLM and diffusion model, 424

only fine-tune the multimodal encoder. 425

4.2 Evaluation Methods 426

We compare our models with previous state-of-the- 427

art methods on each task. For extensive and fair 428

comparisons, all prior competitors are based on 429

large-scale pre-trained models. 430

Cross-modal retrieval evaluation: We consider 431

both image-to-text retrieval and text-to-image re- 432

trieval with random 100 protocols used by previ- 433

ous methods. 100 candidates are randomly sam- 434

pled from the same category to construct a retrieval 435

database. The goal is to locate the positive match 436

depicting the same garment instance from these 437

100 same-category negative matches. We utilize 438

Recall@K as the evaluation metric, which reflects 439

the percentage of queries whose true target ranked 440

within the top K candidates. 441

Fashion image captioning evaluation: For eval- 442

uating the performance of caption generation, we 443

utilize BLEU-4, METEOR, ROUGE-L, and CIDEr 444

as metrics. 445

Composed fashion image retrieval evaluation: 446

We compare our UniFashion with CIR methods 447

and the FAME-ViL model of V + L that is oriented 448

towards fashion in the original protocol used by 449

Fashion-IQ. For this task, we also utilize Recall@K 450

as the evaluation metric. 451

Composed fashion image generation evaluation: 452

We compare our UniFashion with try-on methods 453

on VITON-HD dataset and fashion design works 454

on MGD dataset. To evaluate the quality of image 455

generation, we use the Frechet Inception Distance 456

(FID) score to measure the divergence between two 457

multivariate normal distributions and employ the 458

CLIP Score (CLIP-S) provided in the TorchMetrics 459
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Model Image to Text Text to Image Mean
R@1 R@5 R@10 R@1 R@5 R@10

FashionBERT (Li et al., 2022) 23.96 46.31 52.12 26.75 46.48 55.74 41.89
OSCAR (Alayrac et al., 2022) 23.39 44.67 52.55 25.10 49.14 56.68 41.92
KaledioBERT (Li et al., 2023b) 27.99 60.09 68.37 33.88 60.60 68.59 53.25
EI-CLIP (Li et al., 2023b) 38.70 72.20 84.25 40.06 71.99 82.90 65.02
MVLT (Dai et al., 2023) 33.10 77.20 91.10 34.60 78.00 89.50 67.25
FashionViL (Zhu et al., 2023a) 65.54 91.34 96.30 61.88 87.32 93.22 82.60
FAME-ViL (Liu et al., 2023a) 65.94 91.92 97.22 62.86 87.38 93.52 83.14

UniFashion (Ours) 71.44 93.79 97.51 71.41 93.69 97.47 87.55

Table 1: Performance comparison of UniFashion and baseline models on the FashionGen dataset for cross-modal
retrieval tasks.

Model Image Captioning

BLEU-4 METEOR ROUGE-L CIDEr

FashionBERT 3.30 9.80 29.70 30.10
OSCAR 4.50 10.90 30.10 30.70
KaleidoBERT 5.70 12.80 32.90 32.60
FashionViL 16.18 25.60 37.23 39.30
FAME-ViL 30.73 25.04 55.83 150.4

UniFashion 35.53 29.32 54.59 169.5

Table 2: Image captioning task performance on the
FashionGen dataset.

library to assess the adherence of the image to the460

textual conditioning input (for fashion design task).461

4.3 Comparative Analysis of Baselines and462

Our Method463

UniFashion performs better compared to base-464

lines in all data sets. Tab. 1 presents the evaluation465

results for each baseline and our models in Fashion-466

Gen data sets for cross-modal retrieval. UniFashion467

outperforms most of the baseline models on both468

the text-to-image and image-to-text tasks. Follow-469

ing FAME-ViL, we also adopt a more challenging470

and practical protocol that conducts retrieval on the471

entire product set, which is in line with actual prod-472

uct retrieval scenarios. In Tab. 2, we performed473

a comparison between our UniFashion and other474

baselines on the FashionGen dataset for the image475

captioning task. By integrating the powerful gen-476

erative ability of the LLM, our model performed477

significantly better than the traditional multimodal478

models in this task. In Tab. 4, we conducted a com-479

parison between our UniFashion and CIR-specialist480

methods. Our findings are in line with those of481

Tab. 1.482

After fine-tuning UniFashion on different483

modal input composed image generation/editing484

tasks, it also demonstrates excellent perfor-485

mance. Tab. 3 evaluates the quality of the gen-486

erated image of UniFashion in the VITON-HD un-487

paired setting. In order to verify that our model488

can achieve good results in a variety of modal in- 489

puts, we have conducted tests respectively on the 490

traditional try-on task and the fashion design task 491

proposed in MGD. For a fair evaluation with base- 492

lines, all the models are trained at a 512 × 384 493

resolution. To confirm the efficacy of our approach, 494

we assess the realism using FID and KID score on 495

all the tasks and using CLIP-S score for fashion 496

design task. As can be seen, the proposed UniFash- 497

ion model consistently outperforms competitors in 498

terms of realism (i.e., FID and KID) and coherence 499

with input modalities (i.e., CLIP-S), indicating that 500

our method can better encode multimodal informa- 501

tion. Meanwhile, although our model is slightly 502

lower than StableVITON on the try-on task, this is 503

because we froze the parameters of the diffusion 504

model on the try-on task and only fine-tuned the 505

Q-former part, but it can still achieve top2 results. 506

4.4 Ablation Study 507

Our model completes the multimodal composed 508

tasks in more aspects. In Tab. 4, we also carry 509

out ablation studies on different retrieval methods. 510

Since UniFashion is capable of generating captions, 511

for the CIR task, we initially utilize UniFashion 512

to generate the captions of candidate images and 513

then conduct the image retrieval task (denoted as 514

UniFashion w/o cap) and the caption retrieval task 515

(denoted as UniFashion w/o img). We find that 516

our single-task variant has already achieved supe- 517

rior performance in the relevant field. Furthermore, 518

due to the generative ability of our model, the pre- 519

generated candidate library optimizes the model’s 520

performance in this task. For specific implementa- 521

tion details, please refer to Appendix C. 522

We researched the impact of different mod- 523

ules in UniFashion on various fashion tasks. In 524

Tab. 5, we perform an ablation study on the pro- 525

posed model architecture, with a focus on LLM 526

and diffusion models. For comparison on the cross- 527
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Model Modalities Metrics

Text Sketch Pose Cloth FID↓ KID ↓ CLIP-S

try-on task
VITON-HD (Choi et al., 2021) ✓ ✓ 12.12 3.23 -
Paint-by-Example (Yang et al., 2023a) ✓ ✓ 11.94 3.85 -
GP-VTON (Xie et al., 2023) ✓ ✓ 13.07 4.66 -
StableVITON (Kim et al., 2024) ✓ ✓ 8.23 0.49 -
UniFashion (Ours) ✓ ✓ 8.42 0.67 -

fashion design task
SDEdit (Meng et al., 2021) ✓ ✓ ✓ 15.12 5.67 28.61
MGD (Baldrati et al., 2023b) ✓ ✓ ✓ 12.81 3.86 30.75
UniFashion (Ours) ✓ ✓ ✓ 12.43 3.74 31.29

Table 3: Performance analysis of unpaired settings on VITON-HD and MGD datasets across different input
modalities.

Model Dress Shirt Toptee Average
R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50 Avg.

FashionVLP (Goenka et al., 2022) 32.42 60.29 31.89 58.44 38.51 68.79 34.27 62.51 48.39
CASE (Levy et al., 2023) 47.44 69.36 48.48 70.23 50.18 72.24 48.79 70.68 59.74
AMC (Zhu et al., 2023b) 31.73 59.25 30.67 59.08 36.21 66.06 32.87 61.64 47.25
CoVR-BLIP (Ventura et al., 2024) 44.55 69.03 48.43 67.42 52.60 74.31 48.53 70.25 59.39
CLIP4CIR (Baldrati et al., 2023a) 33.81 59.40 39.99 60.45 41.41 65.37 38.32 61.74 50.03
FAME-ViL (Han et al., 2023) 42.19 67.38 47.64 68.79 50.69 73.07 46.84 69.75 58.29
TG-CIR (Wen et al., 2023) 45.22 69.66 52.60 72.52 56.14 77.10 51.32 73.09 58.05
Re-ranking (Liu et al., 2023b) 48.14 71.43 50.15 71.25 55.23 76.80 51.17 73.13 62.15
SPRC (Bai et al., 2023) 49.18 72.43 55.64 73.89 59.35 78.58 54.92 74.97 64.85
UniFashion w/o cap 49.65 72.17 56.88 74.12 59.29 78.11 55.27 74.80 65.04
UniFashion w/o img 32.49 49.11 44.70 59.63 43.16 60.26 40.12 56.33 48.22
UniFashion 53.72 73.66 61.25 76.67 61.84 80.46 58.93 76.93 67.93

Table 4: Comparative evaluation of UniFashion and variants and baseline models on the Fashion-IQ dataset for
composed image retrieval task. Best and second-best results are highlighted in bold and underlined, respectively.

Model CMR CIR FIC FIG

Base 87.38 64.76 - -
Base+LLM 87.49 65.04 36.21 -
Base+LLM w/ cap 87.49 66.83 36.21 -
Base+LLM+diff. 87.55 67.93 35.53 12.43

Table 5: Ablation study and analysis of UniFash-
ion across FashionGen, Fashion-IQ, and VITON-HD
Datasets. Metrics reported include average image-to-
text and text-to-image recall for cross-modal retrieval
(CMR), average recall for composed image retrieval
(CIR), BLEU-4 for Fashion Image Captioning, and FID
for Fashion image generation (FIG).

modal retrieval task (CMR), we design the base528

model as directly fine-tuning BLIP2 without any529

new modules. The results indicate that the base530

model performs relatively well on this task and that531

the introduction of other modules does not lead to532

significant improvements. However, in the CIR533

task, the introduction of LLM and diffusion mod-534

els as supervision can lead to significant improve-535

ments, especially when utilizing the captions pre-536

generated by the UniFashion to assist in retrieval,537

resulting in greater benefits. At the same time, we538

note that, after introducing the diffusion model, it539

may have some negative impact on the model’s540

image captioning ability, possibly due to the inher- 541

ent alignment differences between LLM and the 542

diffusion model. 543

5 Conclusion 544

We have introduced UniFashion, a unified frame- 545

work that addresses the challenges in multimodal 546

generation and retrieval tasks within the fashion 547

domain. By unifying embedding and generative 548

tasks with a diffusion model and LLM, UniFashion 549

enables controllable and high-fidelity generation, 550

significantly outperforming previous single-task 551

state-of-the-art models across diverse fashion tasks. 552

Our model’s ability to readily adapt to manage 553

complex vision-language tasks demonstrates its po- 554

tential for enhancing various e-commerce scenarios 555

and fashion-related applications. The findings of 556

this study highlight the importance of exploring 557

the potential learning synergy between multimodal 558

generation and retrieval, and provide a promising 559

direction for future research in the fashion domain. 560
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6 Limitations561

This section aims to highlight the limitations of our562

work and provide further insight into the research563

in this area. Our model relies on diffusion for multi-564

modal interaction, which means that the composed565

image generation processes may take longer. In566

our experiments, we tested the performance of our567

model on one A100 (80G) GPU. During inference,568

using 1000 examples from VITON-HD dataset,569

UniFashion took approximately 3.15 seconds for570

each image generation. We believe it would be571

beneficial to explore more efficient sampling meth-572

ods, such as DPM-Solver++ (Lu et al., 2022), to573

improve the overall efficiency of UniFashion.574
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A Ethics Statement909

We adhere to the ACL Ethics Policy and have910

conducted our research using publicly available911

repositories and datasets. Our primary focus is on912

investigating the integration of diffusion models913

and LLMs for multimodal generation. Therefore,914

the results should be seen as AI-generated content.915

While we have not observed deliberate harmful916

content, the model has the potential to generate917

such content if triggered. We have taken steps to918

minimize this risk through fine-tuning on public919

datasets, but caution is still exercised. In future, we920

will prioritize improving downstream performance921

and exploring methods to enhance control over the922

generation process. To ensure reproducibility and923

support future research, we have made all resources924

publicly available and provided proper citations to925

previous research within the code.926

B Basics of Diffusion Models927

After the initial proposal of diffusion models928

by (Sohl-Dickstein et al., 2015), they have demon-929

strated remarkable capacity for generating high-930

quality and diverse data. DDPM (Ho et al.,931

2020) connects diffusion and score matching mod-932

els through a noise prediction formulation, while933

DDIM (Song et al., 2020) proposes an implicit gen-934

erative model that generates deterministic samples935

from latent variables.936

Given a data point sampled from a real data dis-937

tribution x0 ∈ q(x), during forward diffusion, x0938

is gradually “corrupted” at each step t by adding939

Gaussian noise to the output of step t-1. It produces940

a sequence of noisy samples x1, ..., xT . Each step941

is controlled by:942

Stable Diffusion Model. In the field of image943

generation, diffusion models operate by progres-944

sively denoising a random variable that is sam-945

pled from a Gaussian distribution. Latent diffusion946

models (LDMs) operate in the latent space of a947

pre-trained autoencoder achieving higher compu-948

tational efficiency while preserving the generation949

quality. Stable diffusion model is composed of950

an autoencoder with an encoder E and a decoder951

D, a conditional U-Net denoising model ϵθ, and a952

CLIP-based text encoder. With the fixed encoder953

E, an input image x is first transformed to a lower-954

dimensional latent space z0 = E(x). The decoder955

D performs the opposite operation, decoding z0956

into the pixel space. When considering a latent957

variable z and its noisy counterpart zt, which is 958

obtained by incrementally adding noises to z over 959

t steps, the latent diffusion models are designed to 960

train the ϵθ(·) to predict the added noise ϵ using a 961

standard mean squared error loss: 962

L := Ez,ϵ,t[∥ϵ− ϵθ(zt, t)∥2]. (14) 963

Multimodal Conditional Generation. In the 964

context of our current work, we have a particular 965

focus on the pre-trained multimodal latent diffusion 966

models. For a multimodal conditional generation, 967

given a target image x0, in addition to the textual 968

information, the input condition y0 also contains 969

other constraints such as . The aim is to model 970

the conditional data distribution q(x0|y0), where 971

y0 contains different modalities prompts. The con- 972

ditioning mechanism is implemented by first en- 973

coding conditional information, then the denoising 974

network ϵθ conditions on y0 via cross-attention. 975

The label y0 in a class-conditional diffusion model 976

ϵθ(xt|y0) is replaced with a null label ∅ with a fixed 977

probability during training. At inference time, with 978

a guidance scale s, the modified score estimate is 979

further in the direction of ϵθ(xt|y0) and away from 980

ϵθ(xt|∅) as follows: 981

ϵ̂θ(xt|y0) = ϵθ(xt|∅)+
s · (ϵθ(xt|y0)− ϵθ(xt|∅)).

982

C Datasets 983

We test the effectiveness of UniFashion by experi- 984

menting on different tasks including fashion image 985

captioning, cross-modal retrieval, composed image 986

retrieval and composed image generation. Table 6 987

shows the statistics of the datasets used for two 988

stage in our training process. 989

We use the FashionGen and FshaionIQ (Lin 990

et al., 2014) datasets for retrieval tasks. Fashion- 991

Gen contains 68k fashion products accompanied 992

by text descriptions. Each product includes 1 - 6 993

images from different angles, resulting in 260.5k 994

image-text pairs for training and 35.5k for testing. 995

Fashion-IQ contains 18k training triplets (that is, 996

reference image, modifying text, target image) and 997

6k validation triplets over three categories: Dress, 998

Shirt, and Toptee. Each pair (reference image, tar- 999

get image) is manually annotated with two modify- 1000

ing texts, which are concatenated. 1001

For fashion image captioning tasks, we utilize 1002

the FashionGen (Zang et al., 2021) dataset. Ad- 1003

ditionally, to enhance our model’s capability in 1004
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Data types Dataset Size Stage 1 Stage 2 Metrics

CMR FashionGen (Lin et al., 2014) 60K " " R@K
Fashion200K (Krishna et al., 2017) 172K " % -

CIR Fashion-IQ (Liu et al., 2023a) 30K % " R@K

FIC FashionGen (Liu et al., 2023a) 80K " " BLEU,CIDEr,METEOR,ROUGE-L
Fashion-IQ-Cap (Krishna et al., 2017) 60K " % -

FIG VITON-HD (Goyal et al., 2017) 83K % " FID, KID
MGD (Schwenk et al., 2022) 66K % " FID,KID,CLIP-S

Table 6: Description of datasets used in two stages.
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Figure 3: Model’s architecture for MGD finetuning, where the diffusion model receives multimodal’s output, cloth
sketch and human features as input, then generate the target images. We provide the cloth sketch and text guidance
as a multimodal input to the encoder, such that the extracted image sketch and text features are more relevant to the
ground truth.

the CIR task, which involves the ability to re-1005

trieve captions for target images, we have annotated1006

images from the training set of Fashion-IQ. Rec-1007

ognizing that manually annotating all the images1008

would be time-consuming and resource-intensive,1009

we draw inspiration from the success of recent1010

MLLM models such as LLaVA in text-annotation1011

tasks, and propose leveraging LLaVA 1.5 (13B) to1012

semi-automatically annotate the dataset. We per-1013

form word lemmatization to reduce each word to1014

its root form. Such pre-processing stage is crucial1015

for the Fashion-IQ dataset, as the captions do not1016

describe a single garment but instead express the1017

properties to modify in a given image to match its1018

target. As shown in Fig. 4, by analysis of the cap-1019

tions in Fashion-IQ, we extracted key words that1020

describe clothing information such as color, sleeve,1021

pattern, lace, etc., as prompts for MLLM (LLaVA1022

1.5). We then instructed the model to generate1023

the corresponding captions referencing words that1024

match the image features, as shown in Fig. 5. After1025

this process, we got the captions for Fashion-IQ1026

dataset. The trained UniFashion from this dataset1027

(Fashion-IQ-cap) can generate captions for images 1028

in the evaluation set of Fashion-IQ to assist in the 1029

CIR task. 1030

Figure 4: Vocabulary of the frequent words scaled by
frequency for dresses.

D Implementation Details 1031

LLM During the first phase, due to the flexibil- 1032

ity brought by the modular architectural design of 1033

BLIP-2, we are able to adapt the model to a broad 1034
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Dataset Instruction

Fashion200K USER:<image>+Short description. Assistant:

FashionGen USER:<image>+Write a detail and professional description for the cloth. Assistant:

Fashion-IQ-cap USER:<image>+Describe the cloth’s style, color, design... and other key points. Assistant:

Table 7: Examples of task instruction templates. <image> represents the input image, <question> denotes the
question in the VQA and LLaVA 80K dataset, and <photo> is the image description of the input image.

The dress is colorful and has a flowery pattern. It is a long dress with thin 

straps and a fitted design. The dress is not revealing and has a modest 

style. The pattern is not plain, but rather a combination of different 

patterns. The dress is not crocheted and does not have a collar. It is not a 

tighter or looser dress, but rather a fitted dress. The dress is autumn 

colored, and has a vibrant and colorful design.

Please generate a detailed caption to describe the {dress_type}. The 

caption describe the {dress_type}'s style, color, pattern's style, design and 

other key points. Please select sufficient appropriate words from: 

revealing, conservative, western, eastern, sexy, modest, patterned, plain, 

frilly, simple, crochet, collar, floral, plain, elegant, casual, 

monochromatic, colorful, flowery, plain, shiny, matte, darker, lighter, 

fitted, loose, print, plain, flare, tight, loose...

Image:

Prompts:

New Caption:

has thin straps and different pattern,

more autumn colored and longer

Original Caption:

Figure 5: Illustration of Instruction-Following Data.
The top section displays an image alongside its original
captions from Fashion-IQ dataset. The bottom section
presents detailed captions generated by LLaVA-1.5. The
original captions are not prompts for generation but
are provided for comparison with the newly generated
caption.

spectrum of LLMs. In our experiments, in order1035

to effectively utilize the capabilities of the exist-1036

ing MLLM models, we adopted LLaVA-1.5 as the1037

LLM module of the model. Technically, we lever-1038

age LoRA to enable a small subset of parameters1039

within UniFashion to be updated concurrently with1040

two layers of adapter during this phase. Specifi-1041

cally, the lora rank is 128 and lora alpha is 256. We1042

utilize the AdamW optimizer with β0 = 0.9, β1 =1043

0.99, and weight decay of 0. The LLMs are trained1044

with a cosine learning rate of 2e-5 and a warmup1045

rate of 0.03. We use a batch size of 32 for the tuned1046

LLMs.1047

Diffusion Module Following, StableVITON, we1048

inherit the autoencoder and the denoising U-Net1049

of the Stable Diffusion v1.4. We initialize our de-1050

noising U-Net with the weights of the U-Net from1051

the Paint-by-Example and for more refined person 1052

texture, we utilized a VAE fine-tuned on the VI- 1053

TONHD dataset from StableVITON. We train the 1054

model using an AdamW optimizer with a fixed 1055

learning rate of 1e-4 for 360k iterations, employing 1056

a batch size of 32. For inference, we employ the 1057

pseudo linear multi-step (PLMS) sampler, with the 1058

number of sampling steps set to 50. 1059

E Instruction-Tuning LLMs for Different 1060

Caption Style 1061

Liu et al.’s work shows that LLMs have the po- 1062

tential to handle multimodal tasks based on text 1063

description of images. Due to the different styles 1064

of captions in different fashion datasets, we adopt 1065

different instructions to tune the LLM so that it can 1066

generate captions of different styles. 1067

We designed different instructions for different 1068

datasets and tasks, as shown in Table 7. General 1069

instruction template is denoted as follows: 1070

USER: <Img><queries></Img> + Instruction. As- 1071

sistant: <answer>. 1072

For the <image> placeholder, we substitute it 1073

with the output of Multimodal Encoder. To avoid 1074

overfitting to the specific task and counteract the 1075

model’s inclination to generate excessively short 1076

outputs, we have devised specific instructions, 1077

which enable the LLM to produce concise re- 1078

sponses when necessary. 1079
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